[go: up one dir, main page]

JP2022080081A - Switching power source apparatus, and control device and control method therefor - Google Patents

Switching power source apparatus, and control device and control method therefor Download PDF

Info

Publication number
JP2022080081A
JP2022080081A JP2020191050A JP2020191050A JP2022080081A JP 2022080081 A JP2022080081 A JP 2022080081A JP 2020191050 A JP2020191050 A JP 2020191050A JP 2020191050 A JP2020191050 A JP 2020191050A JP 2022080081 A JP2022080081 A JP 2022080081A
Authority
JP
Japan
Prior art keywords
output
voltage
current
primary side
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020191050A
Other languages
Japanese (ja)
Other versions
JP7492441B2 (en
Inventor
輝男 鎌倉
Teruo Kamakura
貴之 小林
Takayuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2020191050A priority Critical patent/JP7492441B2/en
Publication of JP2022080081A publication Critical patent/JP2022080081A/en
Application granted granted Critical
Publication of JP7492441B2 publication Critical patent/JP7492441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

To reduce conduction loss by reducing an in-circuit current when load is light in a state where a voltage difference between an input and an output is large.SOLUTION: A switching power source apparatus includes a primary-side inverter 10, a transformer 20, a secondary-side inverter 30, and a control device 40 that generates drive pulses S11-S16, S31-S36 for turning on/off switches 11-16, 31-36 of the inverters 10, 30. The control device 40 has a function of controlling output power Po of the secondary-side inverter 30 by changing a phase difference φ between an output value of the primary-side inverter 10 and an input value of the secondary-side inverter 30, and a function of comparing a triangular carrier TC and a comparison value CV having large and small modulation factors MR to obtain a comparison result, and modulating the drive pulses S11-S16, S31-S36 on the basis of the comparison result.SELECTED DRAWING: Figure 1

Description

本発明は、デュアル・アクティブ・ブリッジ(以下「DAB」という。)型DC/DCコンバータといったスイッチング電源装置とその制御装置及び制御方法に関するものである。 The present invention relates to a switching power supply device such as a dual active bridge (hereinafter referred to as "DAB") type DC / DC converter, a control device thereof, and a control method.

従来、スイッチング電源装置の一つであるDAB型DC/DCコンバータは、例えば、特許文献1,2に記載されているように、変圧器の1次側と2次側のフルブリッジインバータを位相シフト制御することにより、双方向に電力伝送が可能な直流/直流変換器である。 Conventionally, a DAB type DC / DC converter, which is one of switching power supply devices, has a phase shift of a full bridge inverter on the primary side and a secondary side of a transformer, for example, as described in Patent Documents 1 and 2. It is a DC / DC converter that can transmit power in both directions by controlling it.

図8は、特許文献1に記載された従来の3相DAB型DC/DCコンバータ(以下「従来型DAB」という。)の構成図である。
この従来型DABは、直流の1次側電圧E1及び1次側電流I1を平滑する1次側平滑コンデンサ1に対して並列に、1次側インバータ10が接続されている。1次側インバータ10は、平滑された1次側電圧E1及び1次側電流I1をスイッチングして3相交流電圧及び3相交流電流に変換する回路であり、U相の高レベル(以下「H」という。)側スイッチ11、U相の低レベル(以下「L」という。)側スイッチ12、V相のH側スイッチ13、V相のL側スイッチ14、W相のH側スイッチ15、及びW相のL側スイッチ16のフルブリッジ回路により構成されている。スイッチ11,12間の接続点、スイッチ13,14間の接続点、及びスイッチ15,16間の接続点には、3相のリアクトル17,18,19を介して、3相の変圧器20の1次巻線が接続されている。
FIG. 8 is a block diagram of a conventional three-phase DAB type DC / DC converter (hereinafter referred to as “conventional DAB”) described in Patent Document 1.
In this conventional DAB, the primary side inverter 10 is connected in parallel with the primary side smoothing capacitor 1 that smoothes the DC primary side voltage E1 and the primary side current I1. The primary side inverter 10 is a circuit that switches between the smoothed primary side voltage E1 and the primary side current I1 to convert them into a three-phase AC voltage and a three-phase AC current, and is a high level U-phase (hereinafter referred to as “H”). () Side switch 11, U-phase low-level (hereinafter referred to as "L") side switch 12, V-phase H-side switch 13, V-phase L-side switch 14, W-phase H-side switch 15, and It is composed of a full bridge circuit of the W-phase L-side switch 16. The connection point between the switches 11 and 12, the connection point between the switches 13 and 14, and the connection point between the switches 15 and 16 are connected to the three-phase transformer 20 via the three-phase reactors 17, 18 and 19. The primary winding is connected.

変圧器20の2次巻線には、2次側インバータ30が接続されている。なお、変圧器20の1次巻線及び2次巻線の上端付近に付された黒丸は、巻線の巻き初めを表している。2次側インバータ30は、変圧器20の2次巻線から出力される3相交流電圧及び3相交流電流を整流する回路であり、U相のH側スイッチ31、U相のL側スイッチ32、V相のH側スイッチ33、V相のL側スイッチ34、W相のH側スイッチ35、及びW相のL側スイッチ36のフルブリッジ回路により構成されている。
2次側インバータ30で整流された直流電圧及び直流電流は、2次側平滑コンデンサ37にて平滑され、平滑された直流の2次側電圧E2及び2次側電流I2が出力されるようになっている。
A secondary side inverter 30 is connected to the secondary winding of the transformer 20. The black circles attached to the vicinity of the upper ends of the primary winding and the secondary winding of the transformer 20 indicate the beginning of winding of the winding. The secondary side inverter 30 is a circuit that rectifies the three-phase AC voltage and the three-phase AC current output from the secondary winding of the transformer 20, and is a U-phase H-side switch 31 and a U-phase L-side switch 32. , V-phase H-side switch 33, V-phase L-side switch 34, W-phase H-side switch 35, and W-phase L-side switch 36.
The DC voltage and DC current rectified by the secondary side inverter 30 are smoothed by the secondary side smoothing capacitor 37, and the smoothed DC secondary side voltage E2 and the secondary side current I2 are output. ing.

1次側インバータ10及び2次側インバータ30を構成するスイッチ11~16,31~36は、図示しない制御装置から供給される駆動パルスS11~S16,S31~S36によってそれぞれオン/オフ動作する素子であり、メタル・オキサイド・セミコンダクタ型電界効果トランジスタ(以下「MOSFET」という。)や、絶縁ゲート・バイポーラ・トランジスタ(以下「IGBT」という。)等のパワー半導体素子により構成されている。例えば、各駆動パルスS11~S16,S31~S36がHの時に各スイッチ11~16,31~36がオンし、各駆動パルスS11~S16,S31~S36がLの時に各スイッチ11~16,31~36がオフする。各スイッチ11~16,31~36には、回生用のダイオードがそれぞれ逆並列に接続されている。 The switches 11 to 16, 31 to 36 constituting the primary side inverter 10 and the secondary side inverter 30 are elements that are turned on / off by drive pulses S11 to S16 and S31 to S36 supplied from a control device (not shown), respectively. It is composed of power semiconductor elements such as a metal oxide semiconductor conductor type field effect transistor (hereinafter referred to as "PWM") and an insulated gate bipolar transistor (hereinafter referred to as "IGBT"). For example, when the drive pulses S11 to S16 and S31 to S36 are H, the switches 11 to 16, 31 to 36 are turned on, and when the drive pulses S11 to S16 and S31 to S36 are L, the switches 11 to 16, 31 are turned on. ~ 36 turns off. Regenerative diodes are connected in antiparallel to each of the switches 11 to 16 and 31 to 36.

図8の従来型DABの電力変換部を駆動する駆動パルスS11~S16,S31~S36は、周波数ωが一定であり、デューティ比Dが0.5の固定、各U,V,W相が120°ずつの位相差βを持っている。
1次側インバータ10は、図示しない制御装置から供給される1次側駆動パルスS11~S16により、スイッチ11~16がオン/オフ動作し、直流の1次側電圧E1及び1次側電流I1を3相交流電圧vp(以下「出力電圧vp」という。)及び3相交流電流に変換する。2次側インバータ30は、図示しない制御装置から供給される2次側駆動パルスS31~S36により、スイッチ31~36がオン/オフ動作し、変圧器20の2次巻線に誘起された3相交流電圧vs(以下「入力電圧vs」という。)及び3相交流電流を直流の2次側電圧E2及び2次側電流I2に変換する。
The drive pulses S11 to S16 and S31 to S36 for driving the power conversion unit of the conventional DAB in FIG. 8 have a constant frequency ω, a fixed duty ratio D of 0.5, and 120 U, V, and W phases, respectively. It has a phase difference β of each °.
In the primary side inverter 10, the switches 11 to 16 are turned on / off by the primary side drive pulses S11 to S16 supplied from a control device (not shown), and the DC primary side voltage E1 and the primary side current I1 are generated. It is converted into a three-phase AC voltage vp (hereinafter referred to as "output voltage vp") and a three-phase AC current. In the secondary side inverter 30, the switches 31 to 36 are turned on / off by the secondary side drive pulses S31 to S36 supplied from a control device (not shown), and the three phases are induced in the secondary winding of the transformer 20. The AC voltage vs. (hereinafter referred to as "input voltage vs.") and the three-phase AC current are converted into a DC secondary voltage E2 and a secondary current I2.

1次側インバータ10の出力電圧vp(又は出力電流)と2次側インバータ30の入力電圧vs(又は入力電流)との間の位相差φにより、入力電圧(又は入力電流)、出力電圧(又は出力電流)、及び電力の流れを制御できる。変圧器20の1次巻線及び2次巻線間の電圧vl(=vp-vs)がリアクトル17~19を通ることにより、変圧器電流(リアクトル電流ILであるU相リアクトル電流IL_U、V相リアクトル電流IL_V、及びW相リアクトル電流IL_Wと同一)が流れる。この時、リアクトル電圧VLであるU相リアクトル電圧VL_U、V相リアクトル電圧VL_V、及びW相リアクトル電圧VL_Wが生じる。リアクトル電流ILの実効値ILTから、出力電力Poを計算できる。
このように、従来型DABでは、位相差φを変えることにより、容易に昇降圧動作、及び双方向電力変換が可能である。
The input voltage (or input current) and output voltage (or) are due to the phase difference φ between the output voltage vp (or output current) of the primary side inverter 10 and the input voltage vs (or input current) of the secondary side inverter 30. Output current) and power flow can be controlled. When the voltage bl (= vp-vs) between the primary winding and the secondary winding of the transformer 20 passes through the reactors 17 to 19, the transformer current (U-phase reactor current IL_U, V-phase, which is the reactor current IL). (Same as reactor current IL_V and W phase reactor current IL_W) flows. At this time, a U-phase reactor voltage VL_U, a V-phase reactor voltage VL_V, and a W-phase reactor voltage VL_W, which are reactor voltages VL, are generated. The output power Po can be calculated from the effective value ILT of the reactor current IL.
As described above, in the conventional DAB, the buck-boost operation and the bidirectional power conversion can be easily performed by changing the phase difference φ.

米国特許5,027,264号公報US Pat. No. 5,027,264 特開2020-102933号公報Japanese Unexamined Patent Publication No. 2020-102933

図9は、図8の駆動パルスS11~S16,S31~S36のオン/オフパターン及び電力変換部の動作波形を示す図である。この図9の動作波形として、例えば、2次側電圧E2が0Vの垂下状態(位相差φ=0°)の時のU相リアクトル電圧VL_U、U相リアクトル電流IL_U、及び1次側電流I1が示されている。スイッチ11~16,31~36のオン/オフ切り替え時のデッドタイムは、含まれていない。Tは、制御上の1周期である。
図10は、従来の特許文献2に記載された駆動パルスS11~S16のパターン図である。
FIG. 9 is a diagram showing on / off patterns of the drive pulses S11 to S16 and S31 to S36 of FIG. 8 and operation waveforms of the power conversion unit. As the operation waveform of FIG. 9, for example, the U-phase reactor voltage VL_U, the U-phase reactor current IL_U, and the primary side current I1 when the secondary side voltage E2 is in a drooping state of 0 V (phase difference φ = 0 °) are shown. It is shown. The dead time when switching on / off of switches 11 to 16 and 31 to 36 is not included. T is one control cycle.
FIG. 10 is a pattern diagram of the drive pulses S11 to S16 described in the conventional patent document 2.

図8の従来型DABは、絶縁が可能であり、容易に昇降圧動作、双方向電力変換が可能であるが、特に入出力間の電圧差が大きい場合は回路内に循環する電流が増大し、その場合は主に導通損失が増大するため、電力変換効率が低下しやすい問題がある。又、入出力電圧差が略最大値となる一方が短絡又はそれに近い状態になった際にも、回路内に循環する電流を抑制することができない。 The conventional DAB of FIG. 8 can be insulated and can easily perform buck-boost operation and bidirectional power conversion. However, especially when the voltage difference between input and output is large, the current circulating in the circuit increases. In that case, since the conduction loss mainly increases, there is a problem that the power conversion efficiency tends to decrease. Further, even when one of the input / output voltage differences having a substantially maximum value becomes a short circuit or a state close to the short circuit, the current circulating in the circuit cannot be suppressed.

即ち、図9に示すように、2次側電圧E2が0Vの垂下状態では、電力変換することができないので、出力指令値である制御パラメータの位相差φを0°に制御し、1次側駆動パルスS11~S16と2次側駆動パルスS31~S36との位相が一致状態になるようにしている。しかし、U相リアクトル電圧VL_U波形には、1次側電圧E1からもたらされる電圧が、どの時間においても印加されていることが確認できる(同様に、V相リアクトル電圧VL_V波形及びW相リアクトル電圧VL_W波形も、120°の位相差があることを除き、U相リアクトル電圧VL_U波形と同一になる)。そのため、リアクトル17では、原理的にリアクトル電流IL_Uが発生してしまう(同様に、他のリアクトル18,19もリアクト電流IL_V,IL_Wが発生してしまう)。電流経路の関係上、1次側入力部にも1次側電流I1は発生しているが、これは平均値が0Aの三角波波形となり、図示しない外部のフィルタ回路で直流の0Aに平滑されるため、有効の電力は発生せず、流れている電流は全て無効電流になる。
このように、図8の従来型DABでは、どの時間においても、U,V,W各相のスイッチ状態が全て同一(オン又はオフ)となる区間が存在しないため、短絡時等の電流低減ができない。
That is, as shown in FIG. 9, since power conversion cannot be performed when the secondary voltage E2 is 0 V, the phase difference φ of the control parameter, which is the output command value, is controlled to 0 ° on the primary side. The phases of the drive pulses S11 to S16 and the secondary drive pulses S31 to S36 are in the same phase. However, it can be confirmed that the voltage brought about by the primary side voltage E1 is applied to the U-phase reactor voltage VL_U waveform at any time (similarly, the V-phase reactor voltage VL_V waveform and the W-phase reactor voltage VL_W). The waveform is also the same as the U-phase reactor voltage VL_U waveform, except that there is a phase difference of 120 °). Therefore, in principle, the reactor current IL_U is generated in the reactor 17, and the reactor currents IL_V and IL_W are also generated in the other reactors 18 and 19 as well). Due to the current path, the primary side current I1 is also generated in the primary side input section, but this becomes a triangular wave waveform with an average value of 0A, and is smoothed to DC 0A by an external filter circuit (not shown). Therefore, no effective power is generated, and all the flowing current becomes an invalid current.
As described above, in the conventional DAB of FIG. 8, since there is no section in which the switch states of the U, V, and W phases are all the same (on or off) at any time, the current can be reduced at the time of a short circuit or the like. Can not.

そこで、特許文献2に記載された3相DAB型DC/DCコンバータでは、図10に示すように、強制的に駆動パルスS11~S16(及び/又はS31~S36)を反転するデューティDの付加パターンPAを挿入することにより、電流成分を低減している。
しかしながら、近年、回路設計の自由度を向上させるために、従来型DABにおける基本回路の構成を変更することなく、駆動パルス変調方法を変更して、特許文献2と同様の作用効果を奏するDAB型DC/DCコンバータ等のスイッチング電源装置の実現が要望されていた。
Therefore, in the three-phase DAB type DC / DC converter described in Patent Document 2, as shown in FIG. 10, a duty D addition pattern for forcibly inverting the drive pulses S11 to S16 (and / or S31 to S36) is added. By inserting PA, the current component is reduced.
However, in recent years, in order to improve the degree of freedom in circuit design, the drive pulse modulation method is changed without changing the configuration of the basic circuit in the conventional DAB, and the DAB type having the same effect as that of Patent Document 2 is obtained. There has been a demand for the realization of a switching power supply device such as a DC / DC converter.

本発明のスイッチング電源装置は、複数の1次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、直流の1次側電圧及び1次側電流をスイッチングして交流電圧及び交流電流に変換して出力する1次側インバータと、1次巻線及び2次巻線を有し、前記1次側インバータの出力電圧及び出力電流を前記1次巻線に入力し、誘起された交流電圧及び交流電流を前記2次巻線から出力する変圧器と、複数の2次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、前記2次巻線の出力電圧及び出力電流を整流し、直流の2次側電圧及び2次側電流を出力する2次側インバータと、前記1次側インバータに供給する前記複数の1次側駆動パルスと前記2次側インバータに供給する前記複数の2次側駆動パルスとを出力し、前記1次側インバータの出力値と前記2次側インバータの入力値との間の位相差を変えて前記2次側インバータの出力電力を制御する制御装置と、を備えている。 In the switching power supply device of the present invention, a plurality of switches that operate on / off by a plurality of primary side drive pulses are bridge-connected, and the DC primary side voltage and the primary side current are switched to the AC voltage and the AC current. It has a primary side inverter that converts and outputs, a primary winding and a secondary winding, and the output voltage and output current of the primary side inverter are input to the primary winding to induce an AC voltage. A transformer that outputs AC current from the secondary winding and a plurality of switches that operate on / off by a plurality of secondary drive pulses are bridge-connected to rectify the output voltage and output current of the secondary winding. Then, the secondary side inverter that outputs the DC secondary voltage and the secondary side current, the plurality of primary side drive pulses supplied to the primary side inverter, and the plurality of units supplied to the secondary side inverter. A control device that outputs a secondary side drive pulse and controls the output power of the secondary side inverter by changing the phase difference between the output value of the primary side inverter and the input value of the secondary side inverter. , Is equipped.

そして、前記制御装置は、制御上の1周期の間に複数周期発生するキャリアの中間値から+側と-側への増大により制御される大小の変調率を持つ比較値と、前記キャリアと、を比較して比較結果を求め、前記比較結果に基づき、前記1次側駆動パルス及び前記2次側駆動パルスを変調する機能を有している。ここで、前記比較値は、出力指令値である前記変調率を持ち、前記制御上の1周期の間に複数レベルに変化する値である。 Then, the control device includes a comparative value having a large and small modulation factor controlled by an increase from an intermediate value of carriers generated in a plurality of cycles during one control cycle to the + side and the-side, and the carrier. The above-mentioned primary side drive pulse and the secondary side drive pulse are modulated based on the comparison result. Here, the comparison value is a value that has the modulation factor, which is an output command value, and changes to a plurality of levels during one control cycle.

本発明のスイッチング電源装置の制御装置は、複数の1次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、直流の1次側電圧及び1次側電流をスイッチングして交流電圧及び交流電流に変換して出力する1次側インバータと、1次巻線及び2次巻線を有し、前記1次側インバータの出力電圧及び出力電流を前記1次巻線に入力し、誘起された交流電圧及び交流電流を前記2次巻線から出力する変圧器と、複数の2次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、前記2次巻線の出力電圧及び出力電流を整流し、直流の2次側電圧及び2次側電流を出力する2次側インバータと、を備えるスイッチング電源装置の制御装置である。 In the control device of the switching power supply device of the present invention, a plurality of switches that operate on / off by a plurality of primary side drive pulses are bridge-connected, and AC voltage and AC voltage and primary side current are switched by switching the DC primary side voltage and the primary side current. It has a primary side inverter that converts to alternating current and outputs, a primary winding and a secondary winding, and is induced by inputting the output voltage and output current of the primary side inverter to the primary winding. A transformer that outputs the AC voltage and AC current from the secondary winding and a plurality of switches that operate on / off by a plurality of secondary drive pulses are bridge-connected, and the output voltage and output of the secondary winding are connected. It is a control device of a switching power supply device including a secondary side inverter that rectifies a current and outputs a DC secondary side voltage and a secondary side current.

そして、前記制御装置は、前記1次側インバータに供給する前記複数の1次側駆動パルスと前記2次側インバータに供給する前記複数の2次側駆動パルスとを出力し、前記1次側インバータの出力値と前記2次側インバータの入力値との間の位相差を変えて前記2次側インバータの出力電力を制御する機能と、制御上の1周期の間に複数周期発生するキャリアの中間値から+側と-側への増大により制御される大小の変調率を持つ比較値と、前記キャリアと、を比較して比較結果を求め、前記比較結果に基づき、前記1次側駆動パルス及び前記2次側駆動パルスを変調する機能と、を有している。ここで、前記比較値は、出力指令値である前記変調率を持ち、前記制御上の1周期の間に複数レベルに変化する値である。 Then, the control device outputs the plurality of primary side drive pulses supplied to the primary side inverter and the plurality of secondary side drive pulses supplied to the secondary side inverter, and the primary side inverter. Between the function of controlling the output power of the secondary side inverter by changing the phase difference between the output value of and the input value of the secondary side inverter and the carrier that generates multiple cycles during one control cycle. A comparison value having a large and small modulation factor controlled by an increase from the value to the + side and the-side is compared with the carrier to obtain a comparison result, and based on the comparison result, the primary side drive pulse and the primary side drive pulse and It has a function of modulating the secondary drive pulse. Here, the comparison value is a value that has the modulation factor, which is an output command value, and changes to a plurality of levels during one control cycle.

本発明のスイッチング電源装置の制御方法は、複数の1次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、直流の1次側電圧及び1次側電流をスイッチングして交流電圧及び交流電流に変換して出力する1次側インバータと、1次巻線及び2次巻線を有し、前記1次側インバータの出力電圧及び出力電流を前記1次巻線に入力し、誘起された交流電圧及び交流電流を前記2次巻線から出力する変圧器と、複数の2次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、前記2次巻線の出力電圧及び出力電流を整流し、直流の2次側電圧及び2次側電流を出力する2次側インバータと、を備えるスイッチング電源装置の制御方法である。 In the control method of the switching power supply device of the present invention, a plurality of switches that operate on / off by a plurality of primary side drive pulses are bridge-connected, and an AC voltage and an AC voltage and a primary side current are switched by switching the DC primary side voltage and the primary side current. It has a primary side inverter that converts to alternating current and outputs, a primary winding and a secondary winding, and is induced by inputting the output voltage and output current of the primary side inverter to the primary winding. A transformer that outputs the AC voltage and AC current from the secondary winding and a plurality of switches that operate on / off by a plurality of secondary drive pulses are bridge-connected, and the output voltage and output of the secondary winding are connected. It is a control method of a switching power supply device including a secondary side inverter that rectifies a current and outputs a DC secondary side voltage and a secondary side current.

そして、前記制御方法は、前記1次側インバータに供給する前記複数の1次側駆動パルスと前記2次側インバータに供給する前記複数の2次側駆動パルスとを出力し、前記1次側インバータの出力値と前記2次側インバータの入力値との間の位相差を変えて前記2次側インバータの出力電力を制御すると共に、制御上の1周期の間に複数周期発生するキャリアの中間値から+側と-側への増大により制御される大小の変調率を持つ比較値と、前記キャリアと、を比較して比較結果を求め、前記比較結果に基づき、前記1次側駆動パルス及び前記2次側駆動パルスを変調する。ここで、前記比較値は、出力指令値である前記変調率を持ち、前記制御上の1周期の間に複数レベルに変化する値である。 Then, the control method outputs the plurality of primary side drive pulses supplied to the primary side inverter and the plurality of secondary side drive pulses supplied to the secondary side inverter, and outputs the plurality of secondary side drive pulses to the primary side inverter. The output power of the secondary side inverter is controlled by changing the phase difference between the output value of the above and the input value of the secondary side inverter, and the intermediate value of the carrier generated in a plurality of cycles during one control cycle. A comparison value having a large and small modulation factor controlled by an increase from the + side to the-side and the carrier are compared to obtain a comparison result, and based on the comparison result, the primary side drive pulse and the said. Modulates the secondary drive pulse. Here, the comparison value is a value that has the modulation factor, which is an output command value, and changes to a plurality of levels during one control cycle.

本発明によれば、1次側電圧と2次側電圧との電圧比が大きい場合、従来型DABから基本回路の構成を変更することなく、変調率を小さくすることで、回路内を循環する無効電流を抑制できる。更に、従来型DABと同様に、位相差による双方向電力変換も可能となっている。しかも、特許文献2と同様に、1次側電圧と2次側電圧との電圧差が大きい状態での軽負荷時の回路内電流を減少させることにより、導通損失を低減することができる。又、各相の駆動パルスのパターンが全く異なることから、従来型DABの課題改善の選択肢も増加させることができる。 According to the present invention, when the voltage ratio between the primary side voltage and the secondary side voltage is large, it circulates in the circuit by reducing the modulation factor without changing the configuration of the basic circuit from the conventional DAB. Reactive current can be suppressed. Further, like the conventional DAB, bidirectional power conversion by phase difference is also possible. Moreover, as in Patent Document 2, the conduction loss can be reduced by reducing the current in the circuit at the time of a light load when the voltage difference between the primary side voltage and the secondary side voltage is large. Further, since the drive pulse pattern of each phase is completely different, the options for improving the problem of the conventional DAB can be increased.

本発明の実施例1における3相DAB型DC/DCコンバータの構成図Configuration diagram of the three-phase DAB type DC / DC converter according to the first embodiment of the present invention. 図1の制御装置40における駆動パルス変調方法を示す動作波形図An operation waveform diagram showing a drive pulse modulation method in the control device 40 of FIG. 図1の駆動パルスの代表的なパターン図Typical pattern diagram of the drive pulse of FIG. 図1の駆動パルスの一例を示すパターン図(E2=0V、φ=0°、1次側変調率MR1=2次側変調率MR2=0)Pattern diagram showing an example of the drive pulse of FIG. 1 (E2 = 0V, φ = 0 °, primary side modulation factor MR1 = secondary side modulation factor MR2 = 0) 従来型DABと本実施例1のDAB型DC/DCコンバータとの出力特性の比較図Comparison diagram of output characteristics between the conventional DAB and the DAB type DC / DC converter of the first embodiment. 図1の出力短絡時における変圧器電流の垂下特性を示す図The figure which shows the drooping characteristic of a transformer current at the time of output short circuit of FIG. 本発明の実施例2の駆動パルス変調方法を示す動作波形図Operational waveform diagram showing the drive pulse modulation method of the second embodiment of the present invention. 従来の3相DAB型DC/DCコンバータ(従来型DAB)の構成図Configuration diagram of a conventional 3-phase DAB type DC / DC converter (conventional type DAB) 図8の駆動パルスのオン/オフパターン及び電力変換部の動作波形を示す図The figure which shows the on / off pattern of the drive pulse of FIG. 8 and the operation waveform of a power conversion part. 従来の特許文献2に記載された駆動パルスのパターン図Conventional pattern diagram of drive pulse described in Patent Document 2.

本発明を実施するための形態は、以下の好ましい実施例の説明を添付図面と照らし合わせて読むと、明らかになるであろう。但し、図面はもっぱら解説のためのものであって、本発明の範囲を限定するものではない。 The embodiments for carrying out the present invention will become clear when the following description of preferred embodiments is read in light of the accompanying drawings. However, the drawings are for illustration purposes only and do not limit the scope of the present invention.

(実施例1の構成)
図1は、本発明の実施例1における3相DAB型DC/DCコンバータの構成図である。
本実施例1の3相DAB型DC/DCコンバータは、従来型DABと同様の1次側平滑コンデンサ1、1次側インバータ10、3相のリアクトル17,18,19、3相の変圧器20、2次側インバータ30、及び2次側平滑コンデンサ37を有する電力変換部と、従来とは異なる制御装置40と、により構成されている。
(Structure of Example 1)
FIG. 1 is a block diagram of a three-phase DAB type DC / DC converter according to the first embodiment of the present invention.
The three-phase DAB type DC / DC converter of the first embodiment has the same primary side smoothing capacitor 1, primary side inverter 10, three-phase reactors 17, 18, 19, and three-phase transformer 20 as in the conventional DAB. It is composed of a power conversion unit having a secondary side inverter 30 and a secondary side smoothing capacitor 37, and a control device 40 different from the conventional one.

従来型DABと同様に、1次側インバータ10及び2次側インバータ30を構成するスイッチ11~16,31~36は、制御装置40から供給される1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36によってそれぞれオン/オフ動作する素子であり、MOSFETやIGBT等のパワー半導体素子により構成されている。例えば、各駆動パルスS11~S16,S31~S36がHの時に各スイッチ11~16,31~36がオンし、各駆動パルスS11~S16,S31~S36がLの時に各スイッチ11~16,31~36がオフする。各スイッチ11~16,31~36には、回生用のダイオードがそれぞれ逆並列に接続されている。各スイッチ11~16,31~36をMOSFETで構成する場合には、例えば、そのMOSFETの寄生ダイオードを使用しても良い。 Similar to the conventional DAB, the switches 11 to 16, 31 to 36 constituting the primary side inverter 10 and the secondary side inverter 30 are the primary side drive pulses S11 to S16 and the secondary side supplied from the control device 40. It is an element that is turned on / off by each of the drive pulses S31 to S36, and is composed of a power semiconductor element such as a MOSFET or an IGBT. For example, when the drive pulses S11 to S16 and S31 to S36 are H, the switches 11 to 16, 31 to 36 are turned on, and when the drive pulses S11 to S16 and S31 to S36 are L, the switches 11 to 16, 31 are turned on. ~ 36 turns off. Regenerative diodes are connected in antiparallel to each of the switches 11 to 16 and 31 to 36. When each switch 11 to 16, 31 to 36 is composed of a MOSFET, for example, a parasitic diode of the MOSFET may be used.

又、変圧器20の1次巻線と2次巻線とには、それぞれ3相のリアクトルが直列に接続される。それらのリアクトルは、変圧器20の漏れインダクタンスで代用しても良い。図1では、図示を簡略化するために、変圧器20の1次巻線側に、リアクトル17,18,19がそれぞれ直列に接続されている。例えば、1次側電圧E1が入力されると、リアクトル17,18,19には、それぞれリアクトル電圧VLであるU相リアクトル電圧VL_U、V相リアクトル電圧VL_V、及びW相リアクトル電圧VL_Wが生じると共に、それぞれリアクトル電流ILであるU相リアクトル電流IL_U、V相リアクトル電流IL_V、及びW相リアクトル電流IL_Wが流れる。 Further, a three-phase reactor is connected in series to each of the primary winding and the secondary winding of the transformer 20. Those reactors may be replaced by the leakage inductance of the transformer 20. In FIG. 1, in order to simplify the illustration, the reactors 17, 18, and 19 are connected in series to the primary winding side of the transformer 20, respectively. For example, when the primary side voltage E1 is input, the U-phase reactor voltage VL_U, the V-phase reactor voltage VL_V, and the W-phase reactor voltage VL_W, which are the reactor voltages VL, are generated in the reactors 17, 18 and 19, respectively. A U-phase reactor current IL_U, a V-phase reactor current IL_V, and a W-phase reactor current IL_W, which are reactor currents IL, flow, respectively.

制御装置40は、例えば、測定された2次側電流I2と2次側目標電流値Ithとを入力し、その2次側電流I2と2次側目標電流値Ithとの誤差を減少するような、1次側インバータ10の出力電圧vp(又は出力電流)と2次側インバータ30の入力電圧vs(又は入力電流)との間の、出力指令値である制御パラメータの位相差φを求め、複数の1次側駆動パルスS11~S16及び複数の2次側駆動パルスS31~S36を生成し、1次側インバータ10及び2次側インバータ30をスイッチング制御して、2次側インバータの出力電力Poを制御する機能を有している。 The control device 40 inputs, for example, the measured secondary side current I2 and the secondary side target current value Is, and reduces the error between the secondary side current I2 and the secondary side target current value Is. The phase difference φ of the control parameter, which is the output command value, between the output voltage vp (or output current) of the primary side inverter 10 and the input voltage vs (or input current) of the secondary side inverter 30 is obtained, and a plurality of them are obtained. Primary side drive pulses S11 to S16 and a plurality of secondary side drive pulses S31 to S36 are generated, and the primary side inverter 10 and the secondary side inverter 30 are switched and controlled to generate the output power Po of the secondary side inverter. It has a function to control.

更に、制御装置40は、例えば、測定された1次側電圧E1と2次側電圧E2とを入力して、1次側/2次側電圧比E1/E2を求め、その電圧比E1/E2が大きい場合(最悪で2次側が短絡状態)、キャリア(例えば、三角波キャリアTC)の中間値から+側と-側への増大により制御される大小の変調率MRを持つ比較値CVと、その三角波キャリアTCと、を比較して比較結果を求め、その比較結果に基づき、1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36を変調する機能を有している。ここで、三角波キャリアTCは、制御上の1周期Tの間に複数周期(例えば、3周期)発生する。大小の変調率MRは、出力指令値である制御パラメータであり、1次側変調率MR1及び2次側変調率MR2を有している。その変調率MRを持つ比較値CVは、U相比較値CV_U、V相比較値CV_V及びW相比較値CV_Wを有し、制御上の1周期Tの間に複数レベル(例えば、0、+側及び-側の3通りのレベル)に変化し、且つ、制御上の1周期T内でそれぞれ120°ずつ発生する値である。 Further, the control device 40 inputs, for example, the measured primary side voltage E1 and the secondary side voltage E2 to obtain the primary side / secondary side voltage ratio E1 / E2, and obtains the voltage ratio E1 / E2. When is large (in the worst case, the secondary side is short-circuited), the comparative value CV having a large and small modulation factor MR controlled by the increase from the intermediate value of the carrier (for example, the triangular wave carrier TC) to the + side and the-side, and its It has a function of obtaining a comparison result by comparing with the triangular wave carrier TC and modulating the primary side drive pulses S11 to S16 and the secondary side drive pulses S31 to S36 based on the comparison result. Here, the triangular wave carrier TC generates a plurality of cycles (for example, 3 cycles) during one control cycle T. The large and small modulation factor MRs are control parameters that are output command values, and have a primary side modulation factor MR1 and a secondary side modulation factor MR2. The comparison value CV having the modulation factor MR has a U-phase comparison value CV_U, a V-phase comparison value CV_V, and a W-phase comparison value CV_W, and has a plurality of levels (for example, 0, + side) during one control cycle T. It is a value that changes to (and three levels on the − side) and is generated by 120 ° in one control cycle T.

制御パラメータである位相差φと変調率MRとの関係は、次の通りである。
位相差φと変調率MRとは、それぞれ独立の制御パラメータである。そのため、制御装置40において、例えば、位相差φを決定し、その位相差φに対して1次側変調率MR1及び2次側変調率MR2を決めた駆動パルスS11~S16,S31~S36を生成する制御方法、又は、1次側変調率MR1及び2次側変調率MR2を決めた駆動パルスS11~S16,S31~S36を生成してその位相差φを調整する制御方法のいずれか一方を採用できる。
このような制御装置40は、例えば、中央処理装置(CPU)や、半導体素子等の個別回路により構成されている。
The relationship between the phase difference φ, which is a control parameter, and the modulation factor MR is as follows.
The phase difference φ and the modulation factor MR are independent control parameters. Therefore, in the control device 40, for example, the drive pulses S11 to S16 and S31 to S36 in which the phase difference φ is determined and the primary side modulation factor MR1 and the secondary side modulation factor MR2 are determined with respect to the phase difference φ are generated. Either a control method for adjusting the phase difference φ by generating drive pulses S11 to S16 and S31 to S36 for determining the primary side modulation factor MR1 and the secondary side modulation factor MR2 is adopted. can.
Such a control device 40 is composed of, for example, a central processing unit (CPU) or an individual circuit such as a semiconductor element.

(実施例1の制御方法)
図2は、図1の制御装置40における1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36の変調方法の一例を示す動作波形図である。
制御装置40は、測定された1次側電圧E1と2次側電圧E2とに基づき、1次側/2次側電圧比E1/E2を求め、その電圧比E1/E2が大きい場合(最悪で2次側が短絡状態)、制御パラメータである大小の変調率MRを持つU,V,W相比較値CV_U,CV_V,CV_Wに基づき、そのU,V,W相比較値CV_U,CV_V,CV_Wと、三角波キャリアTCと、を比較して比較結果を求め、その比較結果に基づき、1次側駆動パルスS11a~S16a及び2次側駆動パルス31a~36aを生成(変調)し、出力する。
(Control method of Example 1)
FIG. 2 is an operation waveform diagram showing an example of a modulation method of the primary side drive pulses S11 to S16 and the secondary side drive pulses S31 to S36 in the control device 40 of FIG.
The control device 40 obtains the primary side / secondary side voltage ratio E1 / E2 based on the measured primary side voltage E1 and the secondary side voltage E2, and when the voltage ratio E1 / E2 is large (at worst). (The secondary side is short-circuited), and the U, V, W phase comparison values CV_U, CV_V, CV_W are based on the U, V, W phase comparison values CV_U, CV_V, CV_W having the magnitude and small modulation factor MRs, which are control parameters. The comparison result is obtained by comparing with the triangular wave carrier TC, and the primary side drive pulses S11a to S16a and the secondary side drive pulses 31a to 36a are generated (modulated) and output based on the comparison result.

ここで、三角波キャリアTCは、制御上の1周期Tの間に3周期発生する。U,V,W相比較値CV_U,CV_V,CV_Wは、図2の上段の波形図に示すように、それぞれ0、+側、-側の3通り発生し、制御上の1周期T内でそれぞれ120°ずつ発生する。図2の下段の(a),(b),(c)の波形図に示すように、振幅である変調率MRの大小(=最小の0、中、大)は、+側、-側の三角波キャリアTCの中間値からの増大により制御される。そのU,V,W相比較値CV_U,CV_V,CV_Wは、互いに120°の位相差を持つ。変調率MRは、各U,V,W相で同一となる。 Here, the triangular wave carrier TC is generated in three cycles during one controlled cycle T. As shown in the upper waveform diagram of FIG. 2, the U, V, and W phase comparison values CV_U, CV_V, and CV_W are generated in three ways, 0, + side, and-side, respectively, within one control cycle T, respectively. It occurs by 120 °. As shown in the waveform diagrams of (a), (b), and (c) at the bottom of FIG. 2, the magnitude (= minimum 0, medium, large) of the modulation factor MR, which is the amplitude, is on the + side and-side. It is controlled by the increase from the intermediate value of the triangular wave carrier TC. The U, V, and W phase comparison values CV_U, CV_V, and CV_W have a phase difference of 120 ° from each other. The modulation factor MR is the same for each U, V, and W phase.

次に、1次側電圧E1と2次側電圧E2とが近い場合の制御動作(A1)と、無負荷時の2次側短絡の場合の制御動作(A2)と、を説明する。 Next, a control operation (A1) when the primary side voltage E1 and the secondary side voltage E2 are close to each other and a control operation (A2) when the secondary side short circuit is performed when no load is applied will be described.

(A1) 1次側電圧E1と2次側電圧E2とが近い場合の制御動作
1次側電圧E1と2次側電圧E2とが近く、定格出力近傍等の高出力時は、図2(c)に示すように、変調率MRが大きくなり、更に、1次側インバータ10の出力電圧vp(又は出力電流)と2次側インバータ30の入力電圧vs(又は入力電流)との間の位相差φも大きくなり、それに対応した駆動パルスS11~S16,S31~S36が、制御装置40から出力され、1次側インバータ10及び2次側インバータ30がスイッチング動作する。
(A1) Control operation when the primary side voltage E1 and the secondary side voltage E2 are close to each other When the primary side voltage E1 and the secondary side voltage E2 are close to each other and the output is high such as near the rated output, FIG. ), The modulation factor MR becomes large, and the phase difference between the output voltage vp (or output current) of the primary side inverter 10 and the input voltage vs (or input current) of the secondary side inverter 30. φ also becomes large, and the corresponding drive pulses S11 to S16 and S31 to S36 are output from the control device 40, and the primary side inverter 10 and the secondary side inverter 30 are switched.

例えば、1次側インバータ10内のU相のH側スイッチ11がオフ、L側スイッチ12がオン、V相のH側スイッチ13がオン、L側スイッチ14がオフ、W相のH側スイッチ15がオフ、及びL側スイッチ16がオンする。更に、位相差φだけずれて、2次側インバータ30内のU相のH側スイッチ31がオフ、L側スイッチ32がオン、V相のH側スイッチ33がオン、L側スイッチ34がオフ、W相のH側スイッチ35がオフ、及びL側スイッチ36がオンする。 For example, the U-phase H-side switch 11 in the primary-side inverter 10 is off, the L-side switch 12 is on, the V-phase H-side switch 13 is on, the L-side switch 14 is off, and the W-phase H-side switch 15. Is off, and the L-side switch 16 is on. Further, the phase difference φ is deviated, the U-phase H-side switch 31 in the secondary-side inverter 30 is off, the L-side switch 32 is on, the V-phase H-side switch 33 is on, and the L-side switch 34 is off. The H-side switch 35 of the W phase is turned off, and the L-side switch 36 is turned on.

すると、図1において、1次側電圧E1源の+側→H側スイッチ13→リアクトル18→変圧器20の1次巻線→リアクトル17→L側スイッチ12→1次側電圧E1源の-側の経路と、1次側電圧E1源の+側→H側スイッチ13→リアクトル18→変圧器20の1次巻線→リアクトル19→L側スイッチ16→1次側電圧E1源の-側の経路と、に1次側電流I1が流れる。これに対応して、変圧器20の2次巻線に誘導起電力が発生し、変圧器20の2次巻線→H側スイッチ33のダイオード→負荷→L側スイッチ32のダイオード→2次巻線の経路と、変圧器20の2次巻線→H側スイッチ33のダイオード→負荷→L側スイッチ36のダイオード→2次巻線の経路と、に2次側電流I2が流れ、制御上の1周期Tのスイッチング動作が終了する。 Then, in FIG. 1, the + side of the primary side voltage E1 source → the H side switch 13 → the reactor 18 → the primary winding of the transformer 20 → the reactor 17 → the L side switch 12 → the negative side of the primary side voltage E1 source. And the path on the + side of the primary voltage E1 source → H side switch 13 → reactor 18 → primary winding of the transformer 20 → reactor 19 → L side switch 16 → negative side path of the primary voltage E1 source And, the primary side current I1 flows through. Correspondingly, an induced electromotive current is generated in the secondary winding of the transformer 20, and the secondary winding of the transformer 20 → the diode of the H side switch 33 → the load → the diode of the L side switch 32 → the secondary winding. The secondary side current I2 flows in the wire path and the secondary winding of the transformer 20 → the diode of the H side switch 33 → the load → the diode of the L side switch 36 → the secondary winding path. The switching operation of one cycle T ends.

(A2) 無負荷時の2次側短絡の場合の制御動作
例えば、無負荷時の2次側短絡によって1次側/2次側電圧比E1/E2が大きく、出力を絞る場合は、変調率MRも位相差φも小さくなり、それに対応した駆動パルスS11~S16,S31~S36が、制御装置40から出力され、1次側インバータ10及び2次側インバータ30がスイッチング動作する。
(A2) Control operation in the case of a secondary side short circuit when there is no load For example, when the primary side / secondary side voltage ratio E1 / E2 is large due to the secondary side short circuit when there is no load and the output is throttled, the modulation factor Both MR and the phase difference φ become small, and the corresponding drive pulses S11 to S16 and S31 to S36 are output from the control device 40, and the primary side inverter 10 and the secondary side inverter 30 are switched.

図3は、図1の駆動パルス(例えば、1次側駆動パルスS11~S16)の代表的なパターン図である。
U相の相補的な駆動パルスS11,S12、V相の相補的な駆動パルスS13,S14、及び、W相の相補的な駆動パルスS15,S16のパルス幅大、中(デューティ比D=0.5)、小を順番に入れ替えることにより、全スイッチ11~16が同一状態(例えば、全L側スイッチ12,14,16がオン状態、又は、全H側スイッチ11,13,15がオン状態)となる区間が生成されている。
なお、2次側駆動パルスS31~S36の代表的なパターン図も、図3と同様である。
FIG. 3 is a typical pattern diagram of the drive pulse of FIG. 1 (for example, the primary side drive pulse S11 to S16).
U-phase complementary drive pulses S11, S12, V-phase complementary drive pulses S13, S14, and W-phase complementary drive pulses S15, S16 have large and medium pulse widths (duty ratio D = 0. 5) By exchanging the small ones in order, all the switches 11 to 16 are in the same state (for example, all the L side switches 12, 14 and 16 are in the on state, or all the H side switches 11, 13 and 15 are in the on state). Is generated.
The typical pattern diagram of the secondary side drive pulses S31 to S36 is the same as that in FIG.

例えば、負荷の変動によって2次側電圧E2が0V(短絡状態)になった場合、図3に示すように、全スイッチ11~16(及び31~36)が同一状態(例えば、全L側スイッチ12,14,16がオン状態、又は、全H側スイッチ11,13,15がオン状態。同様に、全L側スイッチ32,34,36がオン状態、又は、全H側スイッチ31,33,35がオン状態)となる区間が生成される。
2次側電圧E2が0Vになると、平滑コンデンサ37に蓄積された電荷が放電され、瞬時的にパルス状の大電流が発生するが、その後、2次側電流I2が一定値に維持される。この時、制御装置40では、1次側/2次側電圧比E1/E2が最大値であるので、図2に示すように、所望の1次側変調率MR1及び2次側変調率MR2(例えば、MR1=MR2=最小の0、中又は大)を算出する。
For example, when the secondary side voltage E2 becomes 0V (short circuit state) due to load fluctuation, all switches 11 to 16 (and 31 to 36) are in the same state (for example, all L side switches) as shown in FIG. 12, 14, 16 are on, or all H-side switches 11, 13, 15 are on. Similarly, all L-side switches 32, 34, 36 are on, or all H-side switches 31, 33, A section in which 35 is on) is generated.
When the secondary side voltage E2 becomes 0V, the electric charge accumulated in the smoothing capacitor 37 is discharged, and a large pulse-shaped current is instantaneously generated, but after that, the secondary side current I2 is maintained at a constant value. At this time, in the control device 40, since the primary side / secondary side voltage ratio E1 / E2 is the maximum value, as shown in FIG. 2, the desired primary side modulation factor MR1 and the secondary side modulation factor MR2 ( For example, MR1 = MR2 = minimum 0, medium or large) is calculated.

例えば、図2の下段の(a)~(c)に示すように、U,V,W相比較値CV_U,CV_V,CV_Wの変調率MR(MR1,MR2)が最小の0、中又は大により、U相駆動パルスS11,S12(S31,S32)、V相駆動パルスS13,S14(S33,S34)、及びW相駆動パルスS15,S16(S35,S36)のパルス幅が変化する。但し、図2の下段の(a)の波形図に示すように、変調率MRが最小の0の場合、U,V,W相比較値CV_U,CV_V,CV_Wは、三角波キャリアTCの中間値でフラットになるので、1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36のパルス幅が全て同一になる。
そして、制御装置40は、U,V,W相比較値CV_U,CV_V,CV_Wと三角波キャリアTCとの比較結果に基づき、1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36を生成し、1次側インバータ10内のスイッチ11~16と2次側インバータ30内のスイッチ31~36とをオン/オフ動作させる。
For example, as shown in (a) to (c) at the bottom of FIG. 2, the modulation factor MR (MR1, MR2) of the U, V, W phase comparison values CV_U, CV_V, CV_W is the minimum 0, medium or large. , U-phase drive pulses S11, S12 (S31, S32), V-phase drive pulses S13, S14 (S33, S34), and W-phase drive pulses S15, S16 (S35, S36) change pulse widths. However, as shown in the waveform diagram of (a) at the bottom of FIG. 2, when the modulation factor MR is 0, which is the minimum, the U, V, and W phase comparison values CV_U, CV_V, and CV_W are intermediate values of the triangular wave carrier TC. Since it becomes flat, the pulse widths of the primary side drive pulses S11 to S16 and the secondary side drive pulses S31 to S36 are all the same.
Then, the control device 40 generates the primary side drive pulses S11 to S16 and the secondary side drive pulses S31 to S36 based on the comparison result between the U, V, W phase comparison values CV_U, CV_V, CV_W and the triangular wave carrier TC. Then, the switches 11 to 16 in the primary side inverter 10 and the switches 31 to 36 in the secondary side inverter 30 are turned on / off.

すると、図3に示すように、全L側スイッチ12,14,16(及び32,34,36)と全H側スイッチ11,13,15(及び31,33,35)とがオンする区間が生じ、回路内を循環する電流が理論上0Aとなる。従って、特に入出力間の電圧差が大きい場合に顕著となる回路内を循環する無効電流を抑制することができる。 Then, as shown in FIG. 3, there is a section in which all L-side switches 12, 14, 16 (and 32, 34, 36) and all H-side switches 11, 13, 15 (and 31, 33, 35) are turned on. The generated current that circulates in the circuit is theoretically 0A. Therefore, it is possible to suppress the reactive current circulating in the circuit, which becomes remarkable especially when the voltage difference between the input and output is large.

図4は、図1の駆動パルスS11~S16,S31~S36の一例を示すパターン図(E2=0V、φ=0°、1次側変調率MR1=2次側変調率MR2=0)である。
この図4では、図1の3相DAB型DC/DCコンバータでの2次側電圧E2が0Vの垂下状態の動作波形が示されている。1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36には、デッドタイムが含まれていない。2次側電圧E2が0Vの垂下状態では、電力変換することができないので、制御パラメータである位相差φと変調率MR(=1次側変調率MR1及び2次側変調率MR2)とを全て0としている。
FIG. 4 is a pattern diagram (E2 = 0V, φ = 0 °, primary side modulation factor MR1 = secondary side modulation factor MR2 = 0) showing an example of the drive pulses S11 to S16 and S31 to S36 of FIG. ..
FIG. 4 shows an operating waveform in a drooping state in which the secondary voltage E2 in the three-phase DAB type DC / DC converter of FIG. 1 is 0 V. The primary side drive pulses S11 to S16 and the secondary side drive pulses S31 to S36 do not include a dead time. Since power conversion cannot be performed when the secondary voltage E2 is 0 V, the control parameters phase difference φ and the modulation factor MR (= primary side modulation factor MR1 and secondary side modulation factor MR2) are all used. It is set to 0.

図2の下段の(a)の波形図と同様に、1次側変調率MR1及び2次側変調率MR2が最小の0の場合、1次側駆動パルスS11~S16及び2次側駆動パルスS31~S36において、U,V,W相は同一の波形状態(即ち、パルス幅が全て同一)となる。そして、全H側スイッチ11,13,15,31,33,35がオン、全L側スイッチ12,14,16,32,34,36がオフ、又は、全H側スイッチ11,13,15,31,33,35がオフ、全L側スイッチ12,14,16,32,34,36がオンのいずれかの状態になる。この動作状態においては、リアクトル電圧VL(例えば、U相リアクトル電圧VL_U)に電圧が印加される回路接続状態が発生しなくなる(VL_U=0V)。そのため、リアクトル電流IL(例えば、U相リアクトル電流IL_U)も電流が発生せず、常に0Aとなる。V相及びW相も、U相リアクトル電圧VL_U及びU相リアクトル電流IL_Uと同一となる。従って、1次側電流I1は発生せず(0A)、無効電流成分が完全に抑制される。このように、特に入出力間の電圧差が大きい場合に顕著となる回路内を循環する無効電流が抑制されることが分かる。 Similar to the waveform diagram of (a) in the lower part of FIG. 2, when the primary side modulation factor MR1 and the secondary side modulation factor MR2 are the minimum 0, the primary side drive pulses S11 to S16 and the secondary side drive pulse S31 In ~ S36, the U, V, and W phases have the same waveform state (that is, the pulse widths are all the same). Then, all H side switches 11, 13, 15, 31, 33, 35 are on, all L side switches 12, 14, 16, 32, 34, 36 are off, or all H side switches 11, 13, 15, 31, 33, 35 is off, and all L-side switches 12, 14, 16, 32, 34, 36 are on. In this operating state, the circuit connection state in which the voltage is applied to the reactor voltage VL (for example, the U-phase reactor voltage VL_U) does not occur (VL_U = 0V). Therefore, the reactor current IL (for example, the U-phase reactor current IL_U) does not generate a current and is always 0 A. The V phase and the W phase are also the same as the U phase reactor voltage VL_U and the U phase reactor current IL_U. Therefore, the primary side current I1 is not generated (0A), and the reactive current component is completely suppressed. As described above, it can be seen that the reactive current circulating in the circuit, which becomes remarkable especially when the voltage difference between the input and output is large, is suppressed.

(実施例1の効果)
本実施例1によれば、次の(1)~(4)のような効果がある。
(1) 図3の1次側駆動パルスS11~S16(及び2次側駆動パルスS31~S36も同様)のパターン図に示すように、U,V,W各相のパルス幅大、中(デューティ比D=0.5)、小を順番に入れ替えることにより、全スイッチ11~16(及び/又は31~36)が同一状態となる区間を作りだしている。この駆動パルス変調方法が図2に示されている。図2に示すように、変調率MRが最小(=0)となる条件においては(図2の下段の(a)の状態、及び図4の状態)、U,V,W全相のスイッチ11~16(及び/又は31~36)の動作状態が同一になる。この時の回路の状態は、どのタイミングにおいても2通り(U相H側スイッチ11、V相H側スイッチ13、W相H側スイッ15がオン状態、U相L側スイッチ12、V相L側スイッチ14、W相L側スイッチ16がオフ状態、又は、U相L側スイッチ12、V相L側スイッチ14、W相L側スイッチ16がオン状態、U相H側スイッチ11、V相H側スイッチ13、W相H側スイッチ15がオフ状態のいずれか)しか発生できなくなる(スイッチS31~S36も同様)。この状態においては、図4に示すように、その2つのパターンのいずれにおいても、巻線部(リアクトル17~19と変圧器20がある部位)の線間に電圧が発生できなくなり(例えば、U相リアクトル電圧VL_U=0V)、その巻線部に電圧が印加されるモードが消滅する。これにより、回路内を循環する電流を低減できる(例えば、U相リアクトル電流IL_U=0A、1次側電流I1=0A)。
このように、本実施例1によれば、1次側/2次側電圧比E1/E2が大きい場合、従来型DABから基本回路の構成を変更することなく、変調率MR(MR1,MR2)を小さくすることで、回路内を循環する無効電流を抑制できる。但し、変調率MR(MR1,MR2)を小さくした場合は、有効電力成分も抑制されてしまうので、1次側/2次側電圧比E1/E2が小さい場合は、あまり変調率MR(MR1,MR2)の減少を行うべきではない。
(Effect of Example 1)
According to the first embodiment, the following effects (1) to (4) are obtained.
(1) As shown in the pattern diagram of the primary side drive pulses S11 to S16 (and the same applies to the secondary side drive pulses S31 to S36) in FIG. 3, the pulse widths of the U, V, and W phases are large and medium (duty). By exchanging the ratio D = 0.5) and the small in order, a section in which all the switches 11 to 16 (and / or 31 to 36) are in the same state is created. This drive pulse modulation method is shown in FIG. As shown in FIG. 2, under the condition that the modulation factor MR is the minimum (= 0) (the state of (a) in the lower part of FIG. 2 and the state of FIG. 4), the U, V, and W all-phase switches 11 The operating states of ~ 16 (and / or 31 ~ 36) are the same. At this time, there are two circuit states (U-phase H-side switch 11, V-phase H-side switch 13, W-phase H-side switch 15 are on, U-phase L-side switch 12, V-phase L-side) at any timing. Switch 14, W-phase L-side switch 16 is off, or U-phase L-side switch 12, V-phase L-side switch 14, W-phase L-side switch 16 is on, U-phase H-side switch 11, V-phase H-side. Only the switch 13 or the W-phase H-side switch 15 is in the off state) can be generated (the same applies to the switches S31 to S36). In this state, as shown in FIG. 4, no voltage can be generated between the lines of the winding portion (the part where the reactors 17 to 19 and the transformer 20 are located) in either of the two patterns (for example, U). Phase reactor voltage VL_U = 0V), the mode in which the voltage is applied to the winding portion disappears. Thereby, the current circulating in the circuit can be reduced (for example, U-phase reactor current IL_U = 0A, primary side current I1 = 0A).
As described above, according to the first embodiment, when the primary side / secondary side voltage ratio E1 / E2 is large, the modulation factor MR (MR1, MR2) does not change the configuration of the basic circuit from the conventional DAB. By reducing the value of, the reactive current circulating in the circuit can be suppressed. However, if the modulation factor MR (MR1, MR2) is reduced, the active power component is also suppressed, so if the primary side / secondary side voltage ratio E1 / E2 is small, the modulation factor MR (MR1, MR2) is too small. MR2) should not be reduced.

(2) 図5は、従来型DABと本実施例1のDAB型DC/DCコンバータとの出力特性の比較図である。図5の横軸は位相差φ(°)、縦軸は出力電力Poである変換電力(正規化)である。
この図5に示すように、本実施例1では、従来型DABと同様に、位相差φによる双方向電力変換も可能となっている。
(2) FIG. 5 is a comparison diagram of output characteristics between the conventional DAB and the DAB type DC / DC converter of the first embodiment. The horizontal axis of FIG. 5 is the phase difference φ (°), and the vertical axis is the conversion power (normalized) which is the output power Po.
As shown in FIG. 5, in the first embodiment, bidirectional power conversion by the phase difference φ is also possible as in the conventional DAB.

(3) 図6は、図1の出力短絡時(=2次側電圧E2が0V)における変圧器電流の垂下特性を示す図である。図6の横軸は変調率MR(1次側変調率MR1=2次側変調率MR2)、縦軸は変圧器電流(Arms)(リアクトル電流ILと同一)である。変調率MRは、最小が0.0、最大が1.0である。
本実施例1では、図6の実線の変圧器電流実効値で示すように、出力短絡時(=2次側電圧E2が0V)において、制御パラメータである変調率MR(MR1,MR2)を変えることにより、変圧器電流(リアクトル電流ILと同一)の実効値を変えることができる。例えば、変調率MR(MR1,MR2)が最小の0.0の時、変圧器電流の実効値は0Aとなる。
従来型DABの位相差φの制御では、図6の破線の電流値(イメージ)で示すように、常時最大電流が流れ続けるので、変圧器電流を軽減できない。これに対して、本実施例1では、特許文献2と同様に、入出力間の電圧差が大きい状態での軽負荷時の回路内電流を減少させることにより、導通損失を低減することができる。
(3) FIG. 6 is a diagram showing a drooping characteristic of the transformer current at the time of output short circuit of FIG. 1 (= secondary side voltage E2 is 0V). The horizontal axis of FIG. 6 is the modulation factor MR (primary side modulation factor MR1 = secondary side modulation factor MR2), and the vertical axis is the transformer current (Arms) (same as the reactor current IL). The modulation factor MR has a minimum of 0.0 and a maximum of 1.0.
In the first embodiment, as shown by the solid transformer current effective value in FIG. 6, the modulation factor MR (MR1, MR2), which is a control parameter, is changed when the output is short-circuited (= the secondary voltage E2 is 0V). Thereby, the effective value of the transformer current (same as the reactor current IL) can be changed. For example, when the modulation factor MR (MR1, MR2) is 0.0, which is the minimum, the effective value of the transformer current is 0A.
In the control of the phase difference φ of the conventional DAB, as shown by the current value (image) shown by the broken line in FIG. 6, the maximum current always flows, so that the transformer current cannot be reduced. On the other hand, in the first embodiment, as in Patent Document 2, the conduction loss can be reduced by reducing the in-circuit current at the time of a light load when the voltage difference between the input and output is large. ..

(4) 本実施例1では、図3に示すように、U,V,W相の駆動パルスS11~S16(及びS31~S36)のパターンが全く異なることから、従来型DABの課題改善の選択肢も増加させることができる。 (4) In the first embodiment, as shown in FIG. 3, since the patterns of the U, V, and W phase drive pulses S11 to S16 (and S31 to S36) are completely different, there is an option for improving the problem of the conventional DAB. Can also be increased.

本発明のスイッチング電源装置は、実施例1の3相DAB型DC/DCコンバータ以外の単相、或いは、4相以上のDAB型DC/DCコンバータにも適用が可能である。
以下、実施例2として、例えば、単相DAB型DC/DCコンバータについて説明する。
The switching power supply device of the present invention can be applied to a single-phase or four-phase or more DAB-type DC / DC converter other than the three-phase DAB-type DC / DC converter of the first embodiment.
Hereinafter, as Example 2, for example, a single-phase DAB type DC / DC converter will be described.

(実施例2の構成)
本実施例2の単相DAB型DC/DCコンバータは、例えば、図1において、W相のスイッチ15,16,35,36、及びリアクトル19が省略され、3相の変圧器20が単相の変圧器(以下、符号「20A」を付す。)に置き換えられ、更に、制御装置40から出力される駆動パルスS15,S16,S35,S36が省略された構成になっている。
本実施例2の制御装置(以下、符号「40A」を付す。)は、実施例1の制御装置40と略同様に、測定された2次側電流I2と2次側目標電流値Ithとを入力し、その2次側電流I2と2次側目標電流値Ithとの誤差を減少するような、1次側インバータ(以下、符号「10A」を付す。)の出力電圧vp(又は出力電流)と2次側インバータ(以下、符号「30A」を付す。)の入力電圧vs(又は入力電流)との間の、出力指令値である制御パラメータの位相差φを求め、複数の1次側駆動パルスS11~S14及び複数の2次側駆動パルスS31~S34を生成し、1次側インバータ10A及び2次側インバータ30Aをスイッチング制御して、2次側インバータ30Aの出力電力Poを制御する機能を有している。
(Structure of Example 2)
In the single-phase DAB type DC / DC converter of the second embodiment, for example, in FIG. 1, the W-phase switches 15, 16, 35, 36 and the reactor 19 are omitted, and the three-phase transformer 20 is a single-phase transformer. It is replaced with a transformer (hereinafter, designated by reference numeral "20A"), and further, the drive pulses S15, S16, S35, and S36 output from the control device 40 are omitted.
The control device of the second embodiment (hereinafter, referred to as “40A”) has the measured secondary side current I2 and the secondary side target current value Is in substantially the same manner as the control device 40 of the first embodiment. The output voltage vp (or output current) of the primary side inverter (hereinafter referred to as "10A") that is input and reduces the error between the secondary side current I2 and the secondary side target current value Is. And the phase difference φ of the control parameter, which is the output command value, between the input voltage vs (or the input current) of the secondary side inverter (hereinafter referred to as “30A”) is obtained, and a plurality of primary side drives are obtained. A function to generate pulses S11 to S14 and a plurality of secondary side drive pulses S31 to S34, switch and control the primary side inverter 10A and the secondary side inverter 30A, and control the output power Po of the secondary side inverter 30A. Have.

更に、制御装置40Aは、例えば、測定された1次側電圧E1と2次側電圧E2とを入力して、1次側/2次側電圧比E1/E2を求め、その電圧比E1/E2が大きい場合(最悪で2次側が短絡状態)、キャリア(例えば、三角波キャリアTC)の中間値から+側と-側への増大により制御される大小の変調率MRを持つ比較値CVと、その三角波キャリアTCと、を比較して比較結果を求め、その比較結果に基づき、1次側駆動パルスS11~S14及び2次側駆動パルスS31~S34を変調する機能を有している。ここで、三角波キャリアTCは、制御上の1周期Tの間に複数周期(例えば、2周期)発生する。大小の変調率MRは、出力指令値である制御パラメータであり、1次側変調率MR1及び2次側変調率MR2を有している。その変調率MRを持つ比較値CVは、U相比較値CV_U、V相比較値CV_V及びW相比較値CV_Wを有し、制御上の1周期Tの間に複数レベル(例えば、+側及び-側の2通りのレベル)に変化し、且つ、制御上の1周期T内でそれぞれ180°ずつ発生する値である。 Further, the control device 40A inputs, for example, the measured primary side voltage E1 and the secondary side voltage E2 to obtain the primary side / secondary side voltage ratio E1 / E2, and obtains the voltage ratio E1 / E2. When is large (in the worst case, the secondary side is short-circuited), the comparative value CV having a large and small modulation factor MR controlled by the increase from the intermediate value of the carrier (for example, the triangular wave carrier TC) to the + side and the-side, and its It has a function of obtaining a comparison result by comparing with the triangular wave carrier TC and modulating the primary side drive pulses S11 to S14 and the secondary side drive pulses S31 to S34 based on the comparison result. Here, the triangular wave carrier TC generates a plurality of cycles (for example, two cycles) during one controlled cycle T. The large and small modulation factor MRs are control parameters that are output command values, and have a primary side modulation factor MR1 and a secondary side modulation factor MR2. The comparison value CV having the modulation factor MR has a U-phase comparison value CV_U, a V-phase comparison value CV_V, and a W-phase comparison value CV_W, and has a plurality of levels (for example, + side and-) during one control cycle T. It is a value that changes to two levels on the side) and is generated by 180 ° in one control cycle T.

制御パラメータである位相差φと変調率MRとの関係は、次の通りである。
実施例1と略同様に、位相差φと変調率MRとは、それぞれ独立の制御パラメータである。そのため、制御装置40Aにおいて、例えば、位相差φを決定し、その位相差φに対して1次側変調率MR1及び2次側変調率MR2を決めた駆動パルスS11~S14,S31~S34を生成する制御方法、又は、1次側変調率MR1及び2次側変調率MR2を決めた駆動パルスS11~S14,S31~S34を生成してその位相差φを調整する制御方法のいずれか一方を採用できる。
The relationship between the phase difference φ, which is a control parameter, and the modulation factor MR is as follows.
Similar to the first embodiment, the phase difference φ and the modulation factor MR are independent control parameters. Therefore, in the control device 40A, for example, the drive pulses S11 to S14 and S31 to S34 in which the phase difference φ is determined and the primary side modulation factor MR1 and the secondary side modulation factor MR2 are determined with respect to the phase difference φ are generated. Either a control method for adjusting the phase difference φ by generating drive pulses S11 to S14 and S31 to S34 for determining the primary side modulation factor MR1 and the secondary side modulation factor MR2 is adopted. can.

(実施例2の制御方法及び効果)
図7は、本発明の実施例2の制御装置40Aにおける1次側駆動パルスS11~S14及び2次側駆動パルスS31~S34の変調方法の一例を示す動作波形図である。
図7に示すように、三角波キャリアTCは、制御上の1周期Tの間に2周期発生する。U,V相比較値CV_U,CV_Vは、図7の上段の波形図に示すように、それぞれ+側、-側の2通り発生し、制御上の1周期T内でそれぞれ180°ずつ発生する。図7の下段の(a),(b),(c)の波形図に示すように、振幅である変調率MRの大小(=最小の0、中、大)は、+側、-側の三角波キャリアTCの中間値からの増大により制御される。そのU,V相比較値CV_U,CV_Vは、互いに180°の位相差を持つ。変調率MRは、各U,V相で同一となる。
(Control method and effect of Example 2)
FIG. 7 is an operation waveform diagram showing an example of a modulation method of the primary side drive pulses S11 to S14 and the secondary side drive pulses S31 to S34 in the control device 40A of the second embodiment of the present invention.
As shown in FIG. 7, the triangular wave carrier TC is generated in two cycles during one controlled cycle T. As shown in the upper waveform diagram of FIG. 7, the U and V phase comparison values CV_U and CV_V are generated in two ways, the + side and the-side, respectively, and are generated by 180 ° in one control cycle T, respectively. As shown in the waveform diagrams of (a), (b), and (c) at the bottom of FIG. 7, the magnitude (= minimum 0, medium, large) of the modulation factor MR, which is the amplitude, is on the + side and-side. It is controlled by the increase from the intermediate value of the triangular wave carrier TC. The U and V phase comparison values CV_U and CV_V have a phase difference of 180 ° from each other. The modulation factor MR is the same for each U and V phase.

本実施例2の制御装置40Aによれば、実施例1と略同様に動作し、実施例1と略同様の効果がある。 According to the control device 40A of the second embodiment, the operation is substantially the same as that of the first embodiment, and the same effect as that of the first embodiment is obtained.

(変形例)
本発明は、上記実施例1,2に限定されず、種々の利用形態や変形が可能である。例えば、図1に示すDAB型DC/DCコンバータにおける電力変換部の構成は、図示以外の構成に変更しても良い。
(Modification example)
The present invention is not limited to the above-mentioned Examples 1 and 2, and various usage forms and modifications are possible. For example, the configuration of the power conversion unit in the DAB type DC / DC converter shown in FIG. 1 may be changed to a configuration other than that shown in the figure.

1 1次側平滑コンデンサ
10 1次側インバータ
11~16,31~36 スイッチ
17~19 リアクトル
20 変圧器
30 2次側インバータ
37 2次側平滑コンデンサ
40 制御装置
1 Primary side smoothing capacitor 10 Primary side inverter 11 to 16, 31 to 36 Switch 17 to 19 Reactor 20 Transformer 30 Secondary side inverter 37 Secondary side smoothing capacitor 40 Control device

Claims (5)

複数の1次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、直流の1次側電圧及び1次側電流をスイッチングして交流電圧及び交流電流に変換して出力する1次側インバータと、
1次巻線及び2次巻線を有し、前記1次側インバータの出力電圧及び出力電流を前記1次巻線に入力し、誘起された交流電圧及び交流電流を前記2次巻線から出力する変圧器と、
複数の2次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、前記2次巻線の出力電圧及び出力電流を整流し、直流の2次側電圧及び2次側電流を出力する2次側インバータと、
前記1次側インバータに供給する前記複数の1次側駆動パルスと前記2次側インバータに供給する前記複数の2次側駆動パルスとを出力し、前記1次側インバータの出力値と前記2次側インバータの入力値との間の位相差を変えて前記2次側インバータの出力電力を制御する制御装置と、
を備え、
前記制御装置は、
制御上の1周期の間に複数周期発生するキャリアの中間値から+側と-側への増大により制御される、出力指令値である大小の変調率を持ち、前記制御上の1周期の間に複数レベルに変化する比較値と、前記キャリアと、を比較して比較結果を求め、前記比較結果に基づき、前記1次側駆動パルス及び前記2次側駆動パルスを変調する、
ことを特徴とするスイッチング電源装置。
Multiple switches that operate on / off by multiple primary side drive pulses are bridge-connected, and the primary side that switches the DC primary side voltage and primary side current to convert them into AC voltage and AC current and outputs them. With an inverter
It has a primary winding and a secondary winding, the output voltage and output current of the primary side transformer are input to the primary winding, and the induced AC voltage and AC current are output from the secondary winding. Transformers and
A plurality of switches that operate on / off by a plurality of secondary drive pulses are bridge-connected, rectify the output voltage and output current of the secondary winding, and output the DC secondary voltage and secondary current. Secondary side inverter and
The plurality of primary side drive pulses supplied to the primary side inverter and the plurality of secondary side drive pulses supplied to the secondary side inverter are output, and the output value of the primary side inverter and the secondary side inverter are output. A control device that controls the output power of the secondary inverter by changing the phase difference with the input value of the side inverter, and
Equipped with
The control device is
It has a large and small modulation factor, which is an output command value, controlled by an increase from the intermediate value of carriers generated in multiple cycles during one control cycle to the + side and-side, and during the control cycle. The comparison value that changes to a plurality of levels is compared with the carrier to obtain a comparison result, and the primary side drive pulse and the secondary side drive pulse are modulated based on the comparison result.
A switching power supply that features.
前記キャリアは、前記制御上の1周期の間に3周期発生する三角波キャリアであり、
前記比較値は、前記制御上の1周期の間に0、+側及び-側の3通りのレベルに変化し、且つ、前記制御上の1周期内でそれぞれ120°ずつ発生する、
ことを特徴とする請求項1記載のスイッチング電源装置。
The carrier is a triangular wave carrier generated in three cycles during one controlled cycle.
The comparison value changes to three levels of 0, + side and-side during one control cycle, and is generated by 120 ° each within one control cycle.
The switching power supply device according to claim 1.
前記キャリアは、前記制御上の1周期の間に2周期発生する三角波キャリアであり、
前記比較値は、前記制御上の1周期の間に+側及び-側の2通りのレベルに変化し、且つ、前記制御上の1周期内でそれぞれ180°ずつ発生する、
ことを特徴とする請求項1記載のスイッチング電源装置。
The carrier is a triangular wave carrier generated in two cycles during one controlled cycle.
The comparison value changes to two levels, + side and-side, during one control cycle, and occurs by 180 ° each within one control cycle.
The switching power supply device according to claim 1.
複数の1次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、直流の1次側電圧及び1次側電流をスイッチングして交流電圧及び交流電流に変換して出力する1次側インバータと、
1次巻線及び2次巻線を有し、前記1次側インバータの出力電圧及び出力電流を前記1次巻線に入力し、誘起された交流電圧及び交流電流を前記2次巻線から出力する変圧器と、
複数の2次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、前記2次巻線の出力電圧及び出力電流を整流し、直流の2次側電圧及び2次側電流を出力する2次側インバータと、
を備えるスイッチング電源装置の制御装置であって、
前記1次側インバータに供給する前記複数の1次側駆動パルスと前記2次側インバータに供給する前記複数の2次側駆動パルスとを出力し、前記1次側インバータの出力値と前記2次側インバータの入力値との間の位相差を変えて前記2次側インバータの出力電力を制御する機能と、
制御上の1周期の間に複数周期発生するキャリアの中間値から+側と-側への増大により制御される、出力指令値である大小の変調率を持ち、前記制御上の1周期の間に複数レベルに変化する比較値と、前記キャリアと、を比較して比較結果を求め、前記比較結果に基づき、前記1次側駆動パルス及び前記2次側駆動パルスを変調する機能と、
を有することを特徴とするスイッチング電源装置の制御装置。
Multiple switches that operate on / off by multiple primary side drive pulses are bridge-connected, and the primary side that switches the DC primary side voltage and primary side current to convert them into AC voltage and AC current and outputs them. With an inverter
It has a primary winding and a secondary winding, the output voltage and output current of the primary side transformer are input to the primary winding, and the induced AC voltage and AC current are output from the secondary winding. Transformers and
A plurality of switches that operate on / off by a plurality of secondary drive pulses are bridge-connected, rectify the output voltage and output current of the secondary winding, and output the DC secondary voltage and secondary current. Secondary side inverter and
It is a control device of a switching power supply device provided with
The plurality of primary side drive pulses supplied to the primary side inverter and the plurality of secondary side drive pulses supplied to the secondary side inverter are output, and the output value of the primary side inverter and the secondary side inverter are output. The function to control the output power of the secondary side inverter by changing the phase difference with the input value of the side inverter, and
It has a large and small modulation factor, which is an output command value, controlled by an increase from the intermediate value of carriers generated in multiple cycles during one control cycle to the + side and-side, and during the control cycle. A function to obtain a comparison result by comparing a comparison value that changes to a plurality of levels with the carrier, and to modulate the primary side drive pulse and the secondary side drive pulse based on the comparison result.
A control device for a switching power supply device, characterized by having.
複数の1次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、直流の1次側電圧及び1次側電流をスイッチングして交流電圧及び交流電流に変換して出力する1次側インバータと、
1次巻線及び2次巻線を有し、前記1次側インバータの出力電圧及び出力電流を前記1次巻線に入力し、誘起された交流電圧及び交流電流を前記2次巻線から出力する変圧器と、
複数の2次側駆動パルスによりオン/オフ動作する複数のスイッチがブリッジ接続され、前記2次巻線の出力電圧及び出力電流を整流し、直流の2次側電圧及び2次側電流を出力する2次側インバータと、
を備えるスイッチング電源装置の制御方法であって、
前記1次側インバータに供給する前記複数の1次側駆動パルスと前記2次側インバータに供給する前記複数の2次側駆動パルスとを出力し、前記1次側インバータの出力値と前記2次側インバータの入力値との間の位相差を変えて前記2次側インバータの出力電力を制御すると共に、
制御上の1周期の間に複数周期発生するキャリアの中間値から+側と-側への増大により制御される、出力指令値である大小の変調率を持ち、前記制御上の1周期の間に複数レベルに変化する比較値と、前記キャリアと、を比較して比較結果を求め、前記比較結果に基づき、前記1次側駆動パルス及び前記2次側駆動パルスを変調する、
ことを特徴とするスイッチング電源装置の制御方法。
Multiple switches that operate on / off by multiple primary side drive pulses are bridge-connected, and the primary side that switches the DC primary side voltage and primary side current to convert them into AC voltage and AC current and outputs them. With an inverter
It has a primary winding and a secondary winding, the output voltage and output current of the primary side transformer are input to the primary winding, and the induced AC voltage and AC current are output from the secondary winding. Transformers and
A plurality of switches that operate on / off by a plurality of secondary drive pulses are bridge-connected, rectify the output voltage and output current of the secondary winding, and output the DC secondary voltage and secondary current. Secondary side inverter and
It is a control method of a switching power supply device provided with
The plurality of primary side drive pulses supplied to the primary side inverter and the plurality of secondary side drive pulses supplied to the secondary side inverter are output, and the output value of the primary side inverter and the secondary side inverter are output. While controlling the output power of the secondary side inverter by changing the phase difference with the input value of the side inverter,
It has a large and small modulation factor, which is an output command value, controlled by an increase from the intermediate value of carriers generated in multiple cycles during one control cycle to the + side and-side, and during the control cycle. The comparison value that changes to a plurality of levels is compared with the carrier to obtain a comparison result, and the primary side drive pulse and the secondary side drive pulse are modulated based on the comparison result.
A method of controlling a switching power supply, which is characterized by the fact that.
JP2020191050A 2020-11-17 2020-11-17 Switching power supply device, control device thereof, and control method Active JP7492441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020191050A JP7492441B2 (en) 2020-11-17 2020-11-17 Switching power supply device, control device thereof, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020191050A JP7492441B2 (en) 2020-11-17 2020-11-17 Switching power supply device, control device thereof, and control method

Publications (2)

Publication Number Publication Date
JP2022080081A true JP2022080081A (en) 2022-05-27
JP7492441B2 JP7492441B2 (en) 2024-05-29

Family

ID=81731522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020191050A Active JP7492441B2 (en) 2020-11-17 2020-11-17 Switching power supply device, control device thereof, and control method

Country Status (1)

Country Link
JP (1) JP7492441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448872B1 (en) 2023-09-25 2024-03-13 日新電機株式会社 DC-DC converter and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336309B2 (en) 2009-09-07 2013-11-06 三菱電機株式会社 DC power supply
CN105914781B (en) 2016-04-28 2018-10-30 北京京东方能源科技有限公司 Zero sequence circulation inhibition method, device and gird-connected inverter control method for parallel connection system
JP2020102933A (en) 2018-12-21 2020-07-02 新電元工業株式会社 Switching power supply device and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448872B1 (en) 2023-09-25 2024-03-13 日新電機株式会社 DC-DC converter and control method

Also Published As

Publication number Publication date
JP7492441B2 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
Ooi et al. A three-phase controlled-current PWM converter with leading power factor
US11108326B2 (en) DC-DC converter
JP4416531B2 (en) Voltage controlled pulse width modulation frequency converter and control method thereof
JP6062058B2 (en) Power converter
JP5377604B2 (en) Power converter
JP5377603B2 (en) Power converter
JPWO2007029438A1 (en) Non-contact power feeding device
JP5437334B2 (en) Power converter
US20110194317A1 (en) Stacked flyback converter with independent current loop control
JP2013055868A5 (en)
JP2020102933A (en) Switching power supply device and method for controlling the same
JP6142926B2 (en) Power converter
JP7492441B2 (en) Switching power supply device, control device thereof, and control method
JP3584686B2 (en) Voltage source power conversion circuit
KR20110135126A (en) Inrush current prevention device of cascade multilevel high voltage inverter
KR20160110621A (en) Boost matrix converter and motor driving system using thereof
JP6505261B2 (en) Power converter
JP2012010507A (en) Dc power supply device
JP7713291B2 (en) Switching power supply device, control device thereof, and control method thereof
JP3703024B2 (en) AC / DC bidirectional buck-boost converter
WO2019163068A1 (en) Rectifier circuit device
JPH01231662A (en) Dc power supply
JP2021197758A (en) Switching power supply, its control device and control method
JP4725694B2 (en) PWM power converter control device
KR102326076B1 (en) Motor Driving Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240517

R150 Certificate of patent or registration of utility model

Ref document number: 7492441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150