[go: up one dir, main page]

JP2022078385A - Optical member and method for manufacturing the same - Google Patents

Optical member and method for manufacturing the same Download PDF

Info

Publication number
JP2022078385A
JP2022078385A JP2019068469A JP2019068469A JP2022078385A JP 2022078385 A JP2022078385 A JP 2022078385A JP 2019068469 A JP2019068469 A JP 2019068469A JP 2019068469 A JP2019068469 A JP 2019068469A JP 2022078385 A JP2022078385 A JP 2022078385A
Authority
JP
Japan
Prior art keywords
functional film
optical member
photocatalytic
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019068469A
Other languages
Japanese (ja)
Inventor
小百合 中川
Sayuri Nakagawa
貴則 加本
Takanori Kamoto
貴文 嶋谷
Takafumi Shimatani
友啓 渡邉
Tomohiro Watanabe
朋 田所
Tomo Tadokoro
紗友里 若村
Sayuri Wakamura
明典 山本
Akinori Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Nidec Instruments Corp
Original Assignee
Nidec Sankyo Corp
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp, Nidec Corp filed Critical Nidec Sankyo Corp
Priority to JP2019068469A priority Critical patent/JP2022078385A/en
Priority to PCT/JP2020/006724 priority patent/WO2020202875A1/en
Publication of JP2022078385A publication Critical patent/JP2022078385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/395Thickness of the active catalytic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide an optical member having a functional film having photocatalytic activity and low reflectance.SOLUTION: An optical member 1 includes a translucent member 2 and a functional film 3 for covering the translucent member 2. The functional film 3 includes photocatalyst particles activated by ultraviolet rays and a binder layer 5 for covering the translucent member 2. At least part of the photocatalyst particles constitutes photocatalyst secondary particles 4. At least part of the photocatalyst secondary particles 4 is partially buried in the binder layer 5. A thickness of the functional film 3 is greater than or equal to 15 nm and less than or equal to 200 nm.SELECTED DRAWING: Figure 1

Description

本発明は、光学部材及びその製造方法に関する。 The present invention relates to an optical member and a method for manufacturing the same.

特許文献1に記載の光触媒機能材料の製造方法は、光触媒粉体を含む原料を光触媒作用が低下しない温度でプレス成形してなる光触媒膜形成用スパッタリングターゲットを準備する工程と、光触媒膜形成用スパッタリングターゲットを用いて、耐熱性の低い基材が変形しない温度でスパッタリング法により基材の上に光触媒膜を形成する工程とを含む。 The method for producing a photocatalytic functional material described in Patent Document 1 includes a step of preparing a sputtering target for forming a photocatalyst film formed by press-molding a raw material containing a photocatalyst powder at a temperature at which the photocatalytic action does not deteriorate, and sputtering for forming a photocatalyst film. It includes a step of forming a photocatalytic film on the substrate by a sputtering method at a temperature at which the substrate having low heat resistance is not deformed by using a target.

特開2015-112524号公報Japanese Unexamined Patent Publication No. 2015-11524

しかしながら、特許文献1に記載の製造方法で光学部材を製造した場合、反射率が比較的高くなる傾向がある。 However, when the optical member is manufactured by the manufacturing method described in Patent Document 1, the reflectance tends to be relatively high.

本発明は上記課題に鑑みてなされたものであり、その目的は、光触媒活性を有する機能膜を備え、かつ反射率が低い光学部材を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical member having a functional film having photocatalytic activity and having a low reflectance.

本発明の例示的な光学部材は、透光性部材と、前記透光性部材を被覆する機能膜とを備える。前記機能膜は、紫外線により活性化される光触媒粒子と、前記透光性部材を被覆するバインダ層とを含む。前記光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成する。前記光触媒二次粒子のうち少なくとも一部は、前記バインダ層に部分的に埋もれている。前記機能膜の厚さは、15nm以上200nm以下である。 An exemplary optical member of the present invention includes a translucent member and a functional film that covers the translucent member. The functional film includes photocatalytic particles activated by ultraviolet rays and a binder layer covering the translucent member. At least a part of the photocatalytic particles constitutes photocatalytic secondary particles. At least a part of the photocatalytic secondary particles is partially buried in the binder layer. The thickness of the functional film is 15 nm or more and 200 nm or less.

本発明の例示的な光学部材の製造方法は、紫外線により活性化される光触媒粒子及びバインダ原料を含有する塗布液を、ウェットプロセスにより透光性部材の表面に塗布することで機能膜を形成する塗布工程を備える。前記機能膜は、前記透光性部材を被覆するバインダ層と、前記光触媒粒子とを含む。前記光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成する。前記光触媒二次粒子のうち少なくとも一部は、前記バインダ層に部分的に埋もれている。前記機能膜の厚さは、15nm以上200nm以下である。 In the method for producing an exemplary optical member of the present invention, a functional film is formed by applying a coating liquid containing photocatalytic particles activated by ultraviolet rays and a binder raw material to the surface of the translucent member by a wet process. It has a coating process. The functional film includes a binder layer covering the translucent member and the photocatalytic particles. At least a part of the photocatalytic particles constitutes photocatalytic secondary particles. At least a part of the photocatalytic secondary particles is partially buried in the binder layer. The thickness of the functional film is 15 nm or more and 200 nm or less.

例示的な本発明は、光触媒活性を有する機能膜を備え、かつ反射率が低い光学部材を提供できる。 An exemplary invention can provide an optical member comprising a functional film having photocatalytic activity and having a low reflectance.

図1は、本発明の第1実施形態に係る光学部材の一例の模式図である。FIG. 1 is a schematic view of an example of an optical member according to the first embodiment of the present invention. 図2は、図1の光学部材の変形例1の模式図である。FIG. 2 is a schematic view of a modification 1 of the optical member of FIG. 図3は、図1の光学部材の変形例2の模式図である。FIG. 3 is a schematic view of a modification 2 of the optical member of FIG. 図4は、実施例で製造した光学部材(A-1)~(A-6)のチタン原子の積分強度と機能膜の厚さとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the integrated strength of the titanium atoms of the optical members (A-1) to (A-6) manufactured in the examples and the thickness of the functional film. 図5は、実施例で製造した光学部材(B-1)~(B-3)の加速劣化試験の結果を示すグラフである。FIG. 5 is a graph showing the results of accelerated deterioration tests of the optical members (B-1) to (B-3) manufactured in the examples. 図6は、実施例で製造した光学部材(B-4)~(B-6)の加速劣化試験の結果を示すグラフである。FIG. 6 is a graph showing the results of accelerated deterioration tests of the optical members (B-4) to (B-6) manufactured in the examples. 図7は、実施例で製造した光学部材(B-1)~(B-3)の払拭試験の結果を示すグラフである。FIG. 7 is a graph showing the results of the wiping test of the optical members (B-1) to (B-3) manufactured in the examples. 図8は、実施例で製造した光学部材(B-4)~(B-6)の払拭試験の結果を示すグラフである。FIG. 8 is a graph showing the results of the wiping test of the optical members (B-4) to (B-6) manufactured in the examples. 図9は、実施例で製造した光学部材(C-1)~(C-4)の分光反射率を示すグラフである。FIG. 9 is a graph showing the spectral reflectances of the optical members (C-1) to (C-4) manufactured in the examples. 図10は、実施例で製造した光学部材(D-1)~(D-2)の分光反射率を示すグラフである。FIG. 10 is a graph showing the spectral reflectances of the optical members (D-1) to (D-2) manufactured in the examples.

以下、図面を参照しながら本発明の実施形態を説明する。なお、図中、同一又は相当部分には同一の参照符号を付して説明を繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the figure, the same or corresponding parts are designated by the same reference numerals and the description is not repeated.

本明細書において、粒子、微粒子又は凝集体の「平均粒径」は、走査型電子顕微鏡(SEM)を用いて観察することによって求められる。具体的には、SEM画像により観察される測定対象(粒子、微粒子又は凝集体)から、その全体像を確認できる任意の50個の測定対象を選択する。各測定対象について、最大径及び最小径をそれぞれ測定してその平均値を各測定対象の粒径とする。そして、50個のそれぞれの測定対象の粒径の平均値を「平均粒径」とする。なお、最大径は、測定対象の幾何中心を通り、かつ両端がそれぞれ測定対象の外縁に位置する線分の中で最長の線分の長さである。最小径は、測定対象の幾何中心を通り、かつ両端がそれぞれ測定対象の外縁に位置する線分の中で最短の線分の長さである。 In the present specification, the "average particle size" of particles, fine particles or aggregates is determined by observing with a scanning electron microscope (SEM). Specifically, from the measurement targets (particles, fine particles or aggregates) observed by the SEM image, any 50 measurement targets whose entire image can be confirmed are selected. For each measurement target, the maximum diameter and the minimum diameter are measured respectively, and the average value is used as the particle size of each measurement target. Then, the average value of the particle size of each of the 50 measurement targets is defined as the "average particle size". The maximum diameter is the length of the longest line segment among the line segments that pass through the geometric center of the measurement target and whose ends are located at the outer edges of the measurement target. The minimum diameter is the length of the shortest line segment among the line segments that pass through the geometric center of the measurement target and whose ends are located at the outer edges of the measurement target.

本明細書において、「厚さ」は、平均厚さを意味する。「厚さ」は、接触式膜厚測定器(例えば、Bruker社製「DekTakXT-S」)により測定される。 As used herein, "thickness" means average thickness. The "thickness" is measured by a contact type film thickness measuring device (for example, "DekTakXT-S" manufactured by Bruker).

<第1実施形態:光学部材>
本発明の第1実施形態に係る光学部材は、透光性部材と、透光性部材を被覆する機能膜とを備える。機能膜は、紫外線により活性化される光触媒粒子と、透光性部材を被覆するバインダ層とを含む。光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成する。光触媒二次粒子のうち少なくとも一部は、バインダ層に部分的に埋もれている。機能膜の厚さは、15nm以上200nm以下である。以下、紫外線により活性される光触媒粒子を、単に「光触媒粒子」と記載することがある。
<First Embodiment: Optical member>
The optical member according to the first embodiment of the present invention includes a translucent member and a functional film that covers the translucent member. The functional film includes photocatalytic particles activated by ultraviolet rays and a binder layer covering a translucent member. At least a part of the photocatalytic particles constitutes photocatalytic secondary particles. At least a part of the photocatalytic secondary particles is partially buried in the binder layer. The thickness of the functional film is 15 nm or more and 200 nm or less. Hereinafter, the photocatalytic particles activated by ultraviolet rays may be simply referred to as "photocatalytic particles".

機能膜は、光触媒粒子を含有するため優れた光触媒活性を有する。具体的には、機能膜は、高い親水性を有する。即ち、機能膜は、水に対して高い濡れ性を有する。そのため、機能膜に水滴が付着すると、機能膜の表面に、ほぼ均一な厚さの水の膜が形成される。また、機能膜は、使用に伴って親水性が低下した場合においても、紫外線が照射されることで親水性を回復する。 Since the functional film contains photocatalytic particles, it has excellent photocatalytic activity. Specifically, the functional membrane has high hydrophilicity. That is, the functional film has high wettability to water. Therefore, when water droplets adhere to the functional film, a film of water having a substantially uniform thickness is formed on the surface of the functional film. Further, even when the hydrophilicity of the functional film decreases with use, the hydrophilicity is restored by irradiation with ultraviolet rays.

第1実施形態に係る光学部材は、機能膜を有するため、水の付着する環境下で用いる光学部材として好適である。第1実施形態に係る光学部材は、例えば、屋外で使用される光学部材として好適である。具体的には、第1実施形態に係る光学部材は、車両の周囲をモニタするための車載カメラのレンズとして好適である。 Since the optical member according to the first embodiment has a functional film, it is suitable as an optical member used in an environment where water adheres. The optical member according to the first embodiment is suitable as, for example, an optical member used outdoors. Specifically, the optical member according to the first embodiment is suitable as a lens of an in-vehicle camera for monitoring the surroundings of a vehicle.

第1実施形態に係る光学部材は、光触媒活性を有する機能膜を備え、かつ反射率が低い。その理由は以下の通りである。一般的な用途(例えば、壁又は窓の塗料)においては、機能膜が厚いほど光触媒活性が向上するため、比較的厚い機能膜を形成する傾向がある。しかしながら、光学部材においては、機能膜が厚過ぎると反射率が低下して画像不良(例えば、ゴースト画像又はフレア)の原因となる。本発明者は、機能膜の厚さを15nm以上200nm以下と比較的薄くすることで、機能膜に十分な光触媒活性を発揮させつつ、光学部材の反射率を抑制できることを発見した。本発明は、以上の知見に基づく発明である。即ち、第1実施形態に係る光学部材は、機能膜の厚さが15nm以上200nm以下であるため、機能膜が十分な光触媒活性を発揮し、かつ反射率が低い。 The optical member according to the first embodiment includes a functional film having photocatalytic activity and has a low reflectance. The reason is as follows. In general applications (eg, paints for walls or windows), the thicker the functional film, the better the photocatalytic activity, so there is a tendency to form a relatively thick functional film. However, in the optical member, if the functional film is too thick, the reflectance is lowered, which causes an image defect (for example, a ghost image or flare). The present inventor has discovered that by reducing the thickness of the functional film to 15 nm or more and 200 nm or less, the functional film can exhibit sufficient photocatalytic activity and suppress the reflectance of the optical member. The present invention is an invention based on the above findings. That is, in the optical member according to the first embodiment, since the thickness of the functional film is 15 nm or more and 200 nm or less, the functional film exhibits sufficient photocatalytic activity and has low reflectance.

また、機能膜は、バインダ層を含む。バインダ層は、透光性部材を被覆する。光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成する。そして、光触媒二次粒子のうち少なくとも一部は、バインダ層に部分的に埋もれている。第1実施形態に係る光学部材は、光触媒二次粒子がバインダ層に部分的に埋もれているため、光触媒二次粒子が脱離し難く、機能膜の耐摩耗性が優れている。更に、第1実施形態に係る光学部材は、全ての光触媒二次粒子がバインダ層に完全に埋もれていない(即ち、少なくとも一部の光触媒二次粒子がバインダ層から露出している)ため、機能膜の光触媒活性が優れている。 The functional film also includes a binder layer. The binder layer covers the translucent member. At least a part of the photocatalytic particles constitutes photocatalytic secondary particles. Then, at least a part of the photocatalytic secondary particles is partially buried in the binder layer. In the optical member according to the first embodiment, since the photocatalyst secondary particles are partially embedded in the binder layer, the photocatalyst secondary particles are difficult to be detached, and the wear resistance of the functional film is excellent. Further, the optical member according to the first embodiment has a function because not all the photocatalytic secondary particles are completely buried in the binder layer (that is, at least a part of the photocatalytic secondary particles are exposed from the binder layer). The photocatalytic activity of the film is excellent.

以下、図1を参照して、第1実施形態に係る光学部材1を説明する。図1は、第1実施形態に係る光学部材1の模式図である。光学部材1は、透光性部材2と、透光性部材2を被覆する機能膜3とを備える。機能膜3は、光触媒粒子と、バインダ層5とを含む。光触媒粒子のうち少なくとも一部は、光触媒二次粒子4を構成する。光触媒二次粒子4のうち少なくとも一部は、バインダ層5に部分的に埋もれている。具体的には、機能膜3の下層付近では、光触媒二次粒子4がバインダ層5に部分的又は完全に埋もれている。以下、バインダ層5に部分的又は完全に埋もれている光触媒二次粒子4を、「埋没粒子」と記載することがある。バインダ層5に部分的に埋もれている光触媒二次粒子4は、バインダ層5から部分的に露出している。機能膜3の表層付近では、光触媒二次粒子4が埋没粒子上に堆積している。埋没粒子上に堆積している光触媒二次粒子4は、バインダ層5から完全に露出している。 Hereinafter, the optical member 1 according to the first embodiment will be described with reference to FIG. 1. FIG. 1 is a schematic view of the optical member 1 according to the first embodiment. The optical member 1 includes a translucent member 2 and a functional film 3 that covers the translucent member 2. The functional film 3 includes photocatalytic particles and a binder layer 5. At least a part of the photocatalyst particles constitutes the photocatalyst secondary particles 4. At least a part of the photocatalytic secondary particles 4 is partially buried in the binder layer 5. Specifically, in the vicinity of the lower layer of the functional film 3, the photocatalytic secondary particles 4 are partially or completely buried in the binder layer 5. Hereinafter, the photocatalytic secondary particles 4 partially or completely buried in the binder layer 5 may be referred to as “buried particles”. The photocatalytic secondary particles 4 partially buried in the binder layer 5 are partially exposed from the binder layer 5. In the vicinity of the surface layer of the functional film 3, the photocatalytic secondary particles 4 are deposited on the buried particles. The photocatalytic secondary particles 4 deposited on the buried particles are completely exposed from the binder layer 5.

[透光性部材]
図1に示すように、透光性部材2は、単一部材から構成されている。但し、後述する変形例1に示す通り、第1実施形態に係る光学部材の透光性部材は、複数の部材から構成されていてもよい。透光性部材2は透光性を有する。即ち、透光性部材2は光を透過させる。透光性部材2は、透明であってもよく、半透明であってもよい。透光性部材2は、例えば、ガラス又は樹脂を含有する。
[Translucent member]
As shown in FIG. 1, the translucent member 2 is composed of a single member. However, as shown in Modification 1 described later, the translucent member of the optical member according to the first embodiment may be composed of a plurality of members. The translucent member 2 has translucency. That is, the translucent member 2 transmits light. The translucent member 2 may be transparent or translucent. The translucent member 2 contains, for example, glass or resin.

透光性部材2の形状は、例えば、レンズ状である。透光性部材2の形状がレンズ状である場合、透光性部材2のレンズ面の曲率半径としては、10mm以上15mm以下が好ましい。透光性部材2の曲率半径が10mm未満である場合、透光性部材2の中心部と、透光性部材2の外縁部とで機能膜3の厚さのバラつきが大きくなる傾向がある。透光性部材2の曲率半径が15mm超である場合、光学部材1に所望の画角を付与し難くなる傾向がある。 The shape of the translucent member 2 is, for example, a lens shape. When the shape of the translucent member 2 is lenticular, the radius of curvature of the lens surface of the translucent member 2 is preferably 10 mm or more and 15 mm or less. When the radius of curvature of the translucent member 2 is less than 10 mm, the thickness of the functional film 3 tends to vary greatly between the central portion of the translucent member 2 and the outer edge portion of the translucent member 2. When the radius of curvature of the translucent member 2 exceeds 15 mm, it tends to be difficult to impart a desired angle of view to the optical member 1.

[機能膜]
機能膜3は、光触媒活性を有する。具体的には、機能膜3は、親水性を有する。機能膜3の表面の純水に対する静的接触角としては、30.0度以下が好ましく、20.0度以下がより好ましく、10.0度以下が更に好ましい。以下、純水に対する静的接触角を、単に「接触角」と記載することがある。ここで、機能膜3の接触角は、機能膜3に紫外線を十分に照射した後に温度23℃±3℃、相対湿度50%±3%の環境で測定した値である。紫外線の照射条件は、例えば、波長352nm、照射時間96時間、放射照度1mW/cm2である。
[Functional membrane]
The functional film 3 has photocatalytic activity. Specifically, the functional membrane 3 has hydrophilicity. The static contact angle of the surface of the functional film 3 with respect to pure water is preferably 30.0 degrees or less, more preferably 20.0 degrees or less, still more preferably 10.0 degrees or less. Hereinafter, the static contact angle with respect to pure water may be simply referred to as "contact angle". Here, the contact angle of the functional film 3 is a value measured in an environment where the temperature is 23 ° C. ± 3 ° C. and the relative humidity is 50% ± 3% after the functional film 3 is sufficiently irradiated with ultraviolet rays. The irradiation conditions of ultraviolet rays are, for example, a wavelength of 352 nm, an irradiation time of 96 hours, and an irradiance of 1 mW / cm 2 .

機能膜3は、透光性部材2の表面のうち少なくとも一部を被覆する。機能膜3は、透光性部材2の表面のうち他の部材によって被覆されていない部分の全面を被覆していることが好ましい。 The functional film 3 covers at least a part of the surface of the translucent member 2. The functional film 3 preferably covers the entire surface of the translucent member 2 that is not covered by other members.

機能膜3の厚さは、上述の通り15nm以上200nm以下である。機能膜3の厚さとしては、20nm以上180nm以下が好ましく、30nm以上160nm以下が更に好ましい。機能膜3の厚さとしては、40nm以上が特に好ましい。機能膜3の厚さを15nm以上とすることで、機能膜3が十分な光触媒活性を発揮する。機能膜3の厚さを200nm以下とすることで、光学部材1の反射率を低減できる。 The thickness of the functional film 3 is 15 nm or more and 200 nm or less as described above. The thickness of the functional film 3 is preferably 20 nm or more and 180 nm or less, and more preferably 30 nm or more and 160 nm or less. The thickness of the functional film 3 is particularly preferably 40 nm or more. By setting the thickness of the functional film 3 to 15 nm or more, the functional film 3 exhibits sufficient photocatalytic activity. By setting the thickness of the functional film 3 to 200 nm or less, the reflectance of the optical member 1 can be reduced.

(光触媒粒子)
光触媒粒子は、光触媒を含有する一次粒子である。光触媒粒子のうち少なくとも一部は、光触媒二次粒子4を構成する。光触媒粒子のうち少なくとも一部は、一次粒子の状態で機能膜3に含有されていてもよい。光触媒粒子は、光触媒を含有する限り、光触媒以外の成分を更に含有していてもよい。光触媒以外の成分としては、例えば、電子補足効果を有する成分が挙げられる。電子補足効果を有する物質としては、例えば、金、銀、銅、白金、パラジウム、鉄、ニッケル、コバルト、亜鉛及び酸化銅が挙げられる。光触媒粒子における光触媒の含有割合としては、90質量%以上が好ましく、99質量%以上がより好ましく、100質量%が更に好ましい。
(Photocatalytic particles)
The photocatalyst particles are primary particles containing a photocatalyst. At least a part of the photocatalyst particles constitutes the photocatalyst secondary particles 4. At least a part of the photocatalytic particles may be contained in the functional film 3 in the state of primary particles. As long as the photocatalyst particles contain the photocatalyst, the photocatalyst particles may further contain components other than the photocatalyst. Examples of the component other than the photocatalyst include a component having an electron-capturing effect. Examples of the substance having an electron-supplementing effect include gold, silver, copper, platinum, palladium, iron, nickel, cobalt, zinc and copper oxide. The content ratio of the photocatalyst in the photocatalyst particles is preferably 90% by mass or more, more preferably 99% by mass or more, still more preferably 100% by mass.

光触媒粒子が含有する光触媒としては、例えば、酸化チタン、チタン酸ストロンチウム、酸化亜鉛、炭化ケイ素、リン酸ガリウム、硫化カドミウム、セレン化カドミウム及び三硫化モリブデンが挙げられる。光触媒粒子は、酸化チタンを含有することが好ましい。光触媒粒子が酸化チタンを含有することで、機能膜3の光触媒活性がより向上する。 Examples of the photocatalyst contained in the photocatalyst particles include titanium oxide, strontium titanate, zinc oxide, silicon carbide, gallium phosphate, cadmium sulfide, cadmium selenide and molybdenum trisulfide. The photocatalytic particles preferably contain titanium oxide. When the photocatalytic particles contain titanium oxide, the photocatalytic activity of the functional film 3 is further improved.

酸化チタンとしては、例えば、アナターゼ型酸化チタン、ルチル型酸化チタン及びブルッカイト型酸化チタンが挙げられる。酸化チタンとしては、光触媒活性の観点から、アナターゼ型酸化チタンが好ましい。 Examples of titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide. As the titanium oxide, anatase-type titanium oxide is preferable from the viewpoint of photocatalytic activity.

光触媒粒子が酸化チタンを含有する場合、光学部材1は、蛍光X線により測定されるチタン原子の積分強度が600以上35,000以下であることが好ましい。チタン原子の積分強度は、4,000以上30,000以下がより好ましく、8,000以上30,000以下が更に好ましい。チタン原子の積分強度は、機能膜3の厚さと、機能膜3における酸化チタンの含有割合とに概ね比例する。即ち、機能膜3が厚いほどチタン原子の積分強度が増大する。また、機能膜3における酸化チタンの含有割合が高いほどチタン原子の積分強度が増大する。チタン原子の積分強度が600以上35,000以下の範囲である光学部材1は、機能膜3の厚さと、機能膜3における酸化チタンの含有割合とが適度である。その結果、光学部材1は、機能膜3の光触媒活性の高さと、反射率の低さとがよりバランスよく満たされる。 When the photocatalyst particles contain titanium oxide, it is preferable that the optical member 1 has an integrated intensity of titanium atoms measured by fluorescent X-rays of 600 or more and 35,000 or less. The integrated strength of the titanium atom is more preferably 4,000 or more and 30,000 or less, and further preferably 8,000 or more and 30,000 or less. The integrated strength of titanium atoms is roughly proportional to the thickness of the functional film 3 and the content ratio of titanium oxide in the functional film 3. That is, the thicker the functional film 3, the higher the integrated strength of the titanium atom. Further, the higher the content ratio of titanium oxide in the functional film 3, the higher the integrated strength of titanium atoms. In the optical member 1 in which the integrated strength of titanium atoms is in the range of 600 or more and 35,000 or less, the thickness of the functional film 3 and the content ratio of titanium oxide in the functional film 3 are appropriate. As a result, the optical member 1 is more balanced between the high photocatalytic activity of the functional film 3 and the low reflectance.

機能膜3の光触媒活性を向上させる観点から、光触媒二次粒子4のうち一部は、機能膜3の表面に部分的又は完全に露出していることが好ましい。具体的には、全ての光触媒二次粒子4のうち機能膜3の表面に部分的又は完全に露出している粒子(以下、露出粒子と記載することがある)の割合としては、1%以上が好ましく、5%以上がより好ましく、10%以上が更に好ましい。露出粒子の割合は、電子顕微鏡により機能膜3の断面を観察し、任意の100個の光触媒二次粒子4のうちの露出粒子の個数の割合から算出される。 From the viewpoint of improving the photocatalytic activity of the functional film 3, it is preferable that a part of the photocatalytic secondary particles 4 is partially or completely exposed on the surface of the functional film 3. Specifically, the ratio of particles partially or completely exposed on the surface of the functional film 3 (hereinafter, may be referred to as exposed particles) among all the photocatalytic secondary particles 4 is 1% or more. Is preferable, 5% or more is more preferable, and 10% or more is further preferable. The ratio of exposed particles is calculated from the ratio of the number of exposed particles among any 100 photocatalytic secondary particles 4 by observing the cross section of the functional film 3 with an electron microscope.

機能膜3の平面視における光触媒粒子の占有面積割合としては、5%以上100%以下が好ましく、10%以上80%以下がより好ましい。光触媒粒子の占有面積割合を5%以上とすることで、機能膜3の光触媒活性をより向上できる。光触媒粒子の占有面積割合を80%以下とすることで、光学部材1の反射率をより向上できる。光触媒粒子の占有面積割合は、機能膜3の表面における6μm×4μmの範囲をSEMにより観察することにより測定される。 The occupied area ratio of the photocatalytic particles in the plan view of the functional film 3 is preferably 5% or more and 100% or less, and more preferably 10% or more and 80% or less. By setting the occupied area ratio of the photocatalytic particles to 5% or more, the photocatalytic activity of the functional film 3 can be further improved. By setting the occupied area ratio of the photocatalyst particles to 80% or less, the reflectance of the optical member 1 can be further improved. The occupied area ratio of the photocatalyst particles is measured by observing a range of 6 μm × 4 μm on the surface of the functional film 3 by SEM.

光触媒粒子の一次粒子の平均粒径としては、1nm以上20nm以下が好ましく、5nm以上18nm以下がより好ましい。光触媒粒子の一次粒子の平均粒径が1nm以上20nm以下であることにより、光学部材1の透光性が向上する。 The average particle size of the primary particles of the photocatalyst particles is preferably 1 nm or more and 20 nm or less, and more preferably 5 nm or more and 18 nm or less. When the average particle size of the primary particles of the photocatalyst particles is 1 nm or more and 20 nm or less, the translucency of the optical member 1 is improved.

光触媒二次粒子4の平均粒径としては、10nm以上90nm以下が好ましく、10nm以上50nm以下がより好ましい。光触媒二次粒子4の平均粒径が10nm以上であることにより、光触媒二次粒子4がバインダ層5から露出し易くなる。その結果、機能膜3の光触媒活性がより向上する。光触媒二次粒子4の平均粒径が90nm以下であることにより、機能膜3の透光性が向上する。 The average particle size of the photocatalyst secondary particles 4 is preferably 10 nm or more and 90 nm or less, and more preferably 10 nm or more and 50 nm or less. When the average particle size of the photocatalyst secondary particles 4 is 10 nm or more, the photocatalyst secondary particles 4 are easily exposed from the binder layer 5. As a result, the photocatalytic activity of the functional film 3 is further improved. When the average particle size of the photocatalyst secondary particles 4 is 90 nm or less, the translucency of the functional film 3 is improved.

光触媒二次粒子4は、凝集体を構成していてもよい。このように、光触媒二次粒子4が凝集体を構成していることで、光触媒二次粒子4が機能膜3の表面に露出し易くなる。その結果、機能膜3の光触媒活性がより向上する。また、光触媒二次粒子4が凝集体を構成していることで、機能膜3の透光性が向上する。凝集体の平均粒径としては、15nm以上200nm以下が好ましく、60nm以上150nm以下がより好ましい。凝集体の平均粒径が20nm以上であることにより、光触媒二次粒子4が機能膜3の表面に更に露出し易くなる。凝集体の平均粒径が200nm以下であることにより、機能膜3の透光性がより向上する。なお、複数の凝集体は、バインダ層5中で接触していてもよい。このように、複数の凝集体がバインダ層5中で接触していることで、電池構造が形成され、機能膜3の光触媒活性が向上する。 The photocatalytic secondary particles 4 may form aggregates. As described above, since the photocatalyst secondary particles 4 form an aggregate, the photocatalyst secondary particles 4 are easily exposed on the surface of the functional film 3. As a result, the photocatalytic activity of the functional film 3 is further improved. Further, since the photocatalyst secondary particles 4 form an aggregate, the translucency of the functional film 3 is improved. The average particle size of the aggregate is preferably 15 nm or more and 200 nm or less, and more preferably 60 nm or more and 150 nm or less. When the average particle size of the agglomerates is 20 nm or more, the photocatalytic secondary particles 4 are more easily exposed on the surface of the functional film 3. When the average particle size of the aggregate is 200 nm or less, the translucency of the functional film 3 is further improved. The plurality of aggregates may be in contact with each other in the binder layer 5. As described above, the plurality of aggregates are in contact with each other in the binder layer 5, so that the battery structure is formed and the photocatalytic activity of the functional film 3 is improved.

機能膜3の表面側から入射する波長450nm以上780nm以下の入射光に対する最大反射率としては、5.0%以下が好ましく、2.0%以下がより好ましい。このように、最大反射率を5.0%以下とすることで、光学部材1を使用する際の画像不良をより効果的に抑制できる。ここで、反射率とは、反射率測定装置(例えば、オリンパス株式会社製「USPM-RU」)を用い、入射角0度で測定される反射率である。 The maximum reflectance for incident light having a wavelength of 450 nm or more and 780 nm or less incident from the surface side of the functional film 3 is preferably 5.0% or less, more preferably 2.0% or less. By setting the maximum reflectance to 5.0% or less in this way, it is possible to more effectively suppress image defects when the optical member 1 is used. Here, the reflectance is a reflectance measured at an incident angle of 0 degrees using a reflectance measuring device (for example, "USPM-RU" manufactured by Olympus Co., Ltd.).

(バインダ層)
バインダ層5は、バインダを含有する。バインダは、無機バインダ及び有機バインダの何れであってもよい。無機バインダとしては、例えば、シリカ及びシリケートが挙げられる。有機バインダとしては、例えば、樹脂が挙げられる。光触媒活性によるバインダの分解を抑制する観点から、バインダとしては、無機バインダが好ましく、シリカ又はシリケートがより好ましい。
(Binder layer)
The binder layer 5 contains a binder. The binder may be either an inorganic binder or an organic binder. Examples of the inorganic binder include silica and silicate. Examples of the organic binder include a resin. From the viewpoint of suppressing decomposition of the binder due to photocatalytic activity, the binder is preferably an inorganic binder, and more preferably silica or silicate.

バインダ層5の厚さとしては、5nm以上50nm以下が好ましく、10nm以上30nm以下がより好ましい。バインダ層5の厚さが5nm以上であることにより、光触媒二次粒子4の脱離が効果的に抑制される。その結果、機能膜3の耐摩耗性がより向上する。バインダ層5の厚さが50nm以下であることにより、光触媒二次粒子4がバインダ層5から露出し易くなる。その結果、機能膜3の光触媒活性がより向上する。 The thickness of the binder layer 5 is preferably 5 nm or more and 50 nm or less, and more preferably 10 nm or more and 30 nm or less. When the thickness of the binder layer 5 is 5 nm or more, the desorption of the photocatalytic secondary particles 4 is effectively suppressed. As a result, the wear resistance of the functional film 3 is further improved. When the thickness of the binder layer 5 is 50 nm or less, the photocatalytic secondary particles 4 are easily exposed from the binder layer 5. As a result, the photocatalytic activity of the functional film 3 is further improved.

<変形例1>
次に、図2を参照して光学部材1の変形例1に係る光学部材11を説明する。光学部材11は、透光性部材12と、透光性部材12を被覆する機能膜13とを備える。透光性部材12は、基材12aと、基材12aを被覆する反射防止膜12bとを備える。機能膜13は、透光性部材12における反射防止膜12bを被覆する。機能膜13は、光触媒二次粒子14と、バインダ層15とを含む。光触媒二次粒子14のうち少なくとも一部は、バインダ層15に部分的に埋もれている。
<Modification 1>
Next, the optical member 11 according to the modification 1 of the optical member 1 will be described with reference to FIG. The optical member 11 includes a translucent member 12 and a functional film 13 that covers the translucent member 12. The translucent member 12 includes a base material 12a and an antireflection film 12b that covers the base material 12a. The functional film 13 covers the antireflection film 12b in the translucent member 12. The functional film 13 includes a photocatalytic secondary particle 14 and a binder layer 15. At least a part of the photocatalytic secondary particles 14 is partially buried in the binder layer 15.

変形例1に係る光学部材11は、図1の光学部材1と比較し、透光性部材12が単一部材ではなく、複数の部材(基材12a及び反射防止膜12b)から構成されるという点のみが相違する。そのため、光学部材1と重複する説明については省略する。透光性部材12は、反射防止膜12bを備えることにより、光学特性に優れる。 Compared to the optical member 1 of FIG. 1, the optical member 11 according to the modification 1 is said that the translucent member 12 is not a single member but is composed of a plurality of members (base material 12a and antireflection film 12b). Only the point is different. Therefore, the description overlapping with the optical member 1 will be omitted. The translucent member 12 is provided with the antireflection film 12b, so that the translucent member 12 is excellent in optical characteristics.

(基材)
基材12aは透光性を有する。即ち、基材12aは光を透過させる。基材12aは、透明であってもよく、半透明であってもよい。基材12aは、ガラス又は樹脂を含有する。
(Base material)
The base material 12a has translucency. That is, the base material 12a transmits light. The base material 12a may be transparent or translucent. The base material 12a contains glass or resin.

(反射防止膜)
反射防止膜12bは、光の反射を抑制する。具体的には、光学部材11は、反射防止膜12bを備えることにより、機能膜13側の表面から透光性部材12に進入しようとする光が機能膜13側の表面で反射することを抑制する。
(Anti-reflective coating)
The antireflection film 12b suppresses the reflection of light. Specifically, the optical member 11 is provided with the antireflection film 12b to prevent light that is about to enter the translucent member 12 from the surface on the functional film 13 side from being reflected on the surface on the functional film 13 side. do.

反射防止膜12bは、一層構造でもよく、多層構造でもよい。反射防止膜12bは、例えば、金属又は金属酸化物を含有する。反射防止膜12bは、例えば、蒸着膜又はスパッタリング膜である。 The antireflection film 12b may have a single-layer structure or a multi-layer structure. The antireflection film 12b contains, for example, a metal or a metal oxide. The antireflection film 12b is, for example, a vapor deposition film or a sputtering film.

反射防止膜12bの厚さとしては、200nm以上400nm以下が好ましい。反射防止膜12bの厚さが200nm未満の場合、十分な反射防止効果が得られない傾向がある。反射防止膜12bの厚さが400nm超の場合、光学部材1の生産性が低下する傾向がある。 The thickness of the antireflection film 12b is preferably 200 nm or more and 400 nm or less. When the thickness of the antireflection film 12b is less than 200 nm, a sufficient antireflection effect tends not to be obtained. When the thickness of the antireflection film 12b exceeds 400 nm, the productivity of the optical member 1 tends to decrease.

<変形例2>
次に、図3を参照して光学部材1の変形例2に係る光学部材21を説明する。光学部材21は、透光性部材22と、透光性部材22を被覆する機能膜23とを備える。機能膜23は、光触媒二次粒子24及びバインダ層25を備える。光触媒二次粒子24は、一部はバインダ層25に部分的に埋もれていて、残りの一部はバインダ層25に完全に埋もれている。具体的には、機能膜23の表層付近に存在する光触媒二次粒子24は、バインダ層25に部分的に埋もれている。機能膜23の表層付近以外の部位に存在する光触媒二次粒子24は、バインダ層25に完全に埋もれている。
<Modification 2>
Next, the optical member 21 according to the second modification of the optical member 1 will be described with reference to FIG. The optical member 21 includes a translucent member 22 and a functional film 23 that covers the translucent member 22. The functional film 23 includes a photocatalytic secondary particle 24 and a binder layer 25. Part of the photocatalyst secondary particles 24 is partially buried in the binder layer 25, and the remaining part is completely buried in the binder layer 25. Specifically, the photocatalytic secondary particles 24 existing near the surface layer of the functional film 23 are partially buried in the binder layer 25. The photocatalytic secondary particles 24 existing in a portion other than the vicinity of the surface layer of the functional film 23 are completely buried in the binder layer 25.

変形例2に係る光学部材21は、図1の光学部材1と比較し、全ての光触媒二次粒子24がバインダ層25に部分的又は完全に埋もれているという点が相違する。変形例2に係る光学部材21の機能膜23は、図1の光学部材1の機能膜3と比較し、最大厚さは同程度であるが、平均厚さは大きい。図1の光学部材1の機能膜3は比較的凹凸が大きいのに対し、変形例2に係る光学部材21の機能膜23は比較的平坦であるためである。変形例2に係る光学部材21において、光学部材1と重複する説明については省略する。光学部材21は、図1の光学部材1よりも機能膜23の耐摩耗性に優れる。 The optical member 21 according to the second modification is different from the optical member 1 in FIG. 1 in that all the photocatalytic secondary particles 24 are partially or completely buried in the binder layer 25. The functional film 23 of the optical member 21 according to the second modification has a maximum thickness similar to that of the functional film 3 of the optical member 1 of FIG. 1, but has a large average thickness. This is because the functional film 3 of the optical member 1 in FIG. 1 has relatively large irregularities, whereas the functional film 23 of the optical member 21 according to the second modification is relatively flat. In the optical member 21 according to the modification 2, the description overlapping with the optical member 1 will be omitted. The optical member 21 is superior to the optical member 1 in FIG. 1 in the wear resistance of the functional film 23.

[その他の変形例]
以上、第1実施形態に係る光学部材について、図面を参照しつつ説明した。しかし、第1実施形態に係る光学部材は、図1の光学部材1、図2の光学部材11、及び図3の光学部材21に限定されない。具体的には、第1実施形態に係る光学部材は、機能膜が他の成分を更に含有していてもよい。
[Other variants]
The optical member according to the first embodiment has been described above with reference to the drawings. However, the optical member according to the first embodiment is not limited to the optical member 1 of FIG. 1, the optical member 11 of FIG. 2, and the optical member 21 of FIG. Specifically, in the optical member according to the first embodiment, the functional film may further contain other components.

<第2実施形態:光学部材の製造方法>
本発明の第2実施形態に係る光学部材の製造方法について説明する。光学部材の製造方法は、紫外線により活性化される光触媒粒子及びバインダ原料を含有する塗布液を、ウェットプロセスにより透光性部材の表面に塗布することで機能膜を形成する塗布工程を備える。機能膜は、透光性部材を被覆するバインダ層と、光触媒粒子とを含む。光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成する。光触媒二次粒子のうち少なくとも一部は、バインダ層に部分的に埋もれている。機能膜の厚さは、15nm以上200nm以下である。光学部材の製造方法は、第1実施形態に係る光学部材を容易かつ確実に製造できる。特に、塗布液の塗布にウェットプロセスを用いることで、上述の層構造を有する機能膜を容易かつ確実に形成できる。
<Second Embodiment: Manufacturing Method of Optical Member>
A method for manufacturing an optical member according to a second embodiment of the present invention will be described. The method for manufacturing an optical member includes a coating step of forming a functional film by applying a coating liquid containing photocatalytic particles activated by ultraviolet rays and a binder raw material to the surface of the translucent member by a wet process. The functional film includes a binder layer covering a translucent member and photocatalytic particles. At least a part of the photocatalytic particles constitutes photocatalytic secondary particles. At least a part of the photocatalytic secondary particles is partially buried in the binder layer. The thickness of the functional film is 15 nm or more and 200 nm or less. As a method for manufacturing an optical member, the optical member according to the first embodiment can be easily and surely manufactured. In particular, by using a wet process for applying the coating liquid, a functional film having the above-mentioned layer structure can be easily and surely formed.

[塗布工程]
塗布工程で用いる塗布液は、溶剤を更に含有することが好ましい。溶剤としては、水系溶剤が好ましい。水系溶剤は、水及び添加物を含有する。添加物としては、例えば、有機酸、アルコール化合物及びアンモニアが挙げられる。水系溶剤における添加物の含有割合としては、0質量%超20質量%以下が好ましい。有機酸としては、ギ酸、酢酸、プロピオン酸、コハク酸、クエン酸及びリンゴ酸が挙げられる。アルコール化合物としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール及びブタノールが挙げられる。
[Applying process]
The coating liquid used in the coating step preferably further contains a solvent. As the solvent, an aqueous solvent is preferable. The water-based solvent contains water and additives. Additives include, for example, organic acids, alcohol compounds and ammonia. The content ratio of the additive in the aqueous solvent is preferably more than 0% by mass and 20% by mass or less. Examples of organic acids include formic acid, acetic acid, propionic acid, succinic acid, citric acid and malic acid. Examples of the alcohol compound include methanol, ethanol, isopropyl alcohol, n-propyl alcohol and butanol.

ウェットプロセスとしては、例えば、スピンコート法、ロールコート法、バーコート法、ディップコート法、スプレーコート法及びこれらを組み合わせた方法(例えば、ディップスピンコート法)が挙げられる。ウェットプロセスとしては、厚さ15nm以上200nm以下の比較的薄い機能膜を容易かつ確実に形成する観点から、スピンコート法、ディップコート法又はディップスピンコート法が好ましい。 Examples of the wet process include a spin coating method, a roll coating method, a bar coating method, a dip coating method, a spray coating method, and a method in which these are combined (for example, a dip spin coating method). As the wet process, a spin coating method, a dip coating method or a dip spin coating method is preferable from the viewpoint of easily and surely forming a relatively thin functional film having a thickness of 15 nm or more and 200 nm or less.

なお、光学部材の製造方法は、塗布工程前、透光性部材の表面を処理する表面処理工程を更に備えることが好ましい。表面処理としては、例えば、プラズマ処理、電子ビーム処理、コロナ処理及びフレーム処理が挙げられる。プラズマ処理としては、例えば、高周波放電プラズマ処理又は大気圧グロー放電プラズマ処理が挙げられる。これらの表面処理は、複数を組み合わせて用いることもできる。 It is preferable that the method for manufacturing the optical member further includes a surface treatment step for treating the surface of the translucent member before the coating step. Examples of the surface treatment include plasma treatment, electron beam treatment, corona treatment and frame treatment. Examples of the plasma treatment include high frequency discharge plasma treatment and atmospheric pressure glow discharge plasma treatment. A plurality of these surface treatments can be used in combination.

(バインダ原料)
塗布液が含有するバインダ原料としては、例えば、シラン化合物及びシリカ粒子が挙げられる。シラン化合物としては、例えば、アルコキシシラン、シラザン、及びこれらを原料とするオリゴマー(以下、シリケートオリゴマーと記載することがある)が挙げられる。アルコキシシランは、一般式「Si(R14-X(OR2X」で表される化合物である。一般式中、R1は、水素原子、炭素原子数1以上10以下のアルキル基又は炭素原子数1以上10以下のアリール基を表す。R2は、炭素原子数1以上3以下のアルキル基を表す。R2は、メチル基又はエチル基を表すことが好ましい。一般式中、Xは、1以上4以下の整数を表し、4を表すことが好ましい。アルコキシシランとしては、テトラメトキシシラン及びテトラエトキシシランが挙げられる。バインダ原料としては、シラン化合物が好ましく、シリケートオリゴマーがより好ましく、アルコキシシランを原料とするシリケートオリゴマーが更に好ましい。
(Binder raw material)
Examples of the binder raw material contained in the coating liquid include silane compounds and silica particles. Examples of the silane compound include alkoxysilane, silazane, and oligomers made from these (hereinafter, may be referred to as silicate oligomers). Alkoxysilane is a compound represented by the general formula "Si (R 1 ) 4-X (OR 2 ) X ". In the general formula, R 1 represents a hydrogen atom, an alkyl group having 1 or more and 10 or less carbon atoms, or an aryl group having 1 or more and 10 or less carbon atoms. R 2 represents an alkyl group having 1 or more carbon atoms and 3 or less carbon atoms. R 2 preferably represents a methyl group or an ethyl group. In the general formula, X represents an integer of 1 or more and 4 or less, and preferably represents 4. Examples of the alkoxysilane include tetramethoxysilane and tetraethoxysilane. As the binder raw material, a silane compound is preferable, a silicate oligomer is more preferable, and a silicate oligomer made from an alkoxysilane as a raw material is further preferable.

塗布液における光触媒粒子の含有割合としては、0.01質量%以上50質量%以下が好ましい。塗布液をスピンコート法又はディップスピンコート法で塗布する場合、回転速度としては、500rpm以上10000rpm以下が好ましい。塗布液の固形分濃度としては、0.1質量%以上10質量%以下が好ましい。 The content ratio of the photocatalyst particles in the coating liquid is preferably 0.01% by mass or more and 50% by mass or less. When the coating liquid is applied by the spin coating method or the dip spin coating method, the rotation speed is preferably 500 rpm or more and 10000 rpm or less. The solid content concentration of the coating liquid is preferably 0.1% by mass or more and 10% by mass or less.

本工程では、塗布後に塗布液を加熱処理することが好ましい。加熱処理により、塗布液中の揮発性成分の除去が促進される。また、塗布液がバインダ原料としてシラン化合物を含有する場合、加熱処理によりシラン化合物の化学反応(例えば、加水分解縮合反応)が促進される。加熱条件としては、例えば、処理温度60℃以上200℃以下、処理時間10分以上10時間以下とすることができる。 In this step, it is preferable to heat-treat the coating liquid after coating. The heat treatment promotes the removal of volatile components in the coating liquid. When the coating liquid contains a silane compound as a binder raw material, the heat treatment promotes a chemical reaction of the silane compound (for example, a hydrolysis condensation reaction). As the heating conditions, for example, the treatment temperature may be 60 ° C. or higher and 200 ° C. or lower, and the treatment time may be 10 minutes or longer and 10 hours or shorter.

本工程により、図1に示すように、塗布液中のバインダ原料からバインダ層5が形成される。バインダ層5は、透光性部材2を被覆する。光触媒粒子のうち少なくとも一部は、光触媒二次粒子4を構成する。光触媒二次粒子4のうち少なくとも一部は、バインダ層5に部分的に埋もれている。 By this step, as shown in FIG. 1, the binder layer 5 is formed from the binder raw material in the coating liquid. The binder layer 5 covers the translucent member 2. At least a part of the photocatalyst particles constitutes the photocatalyst secondary particles 4. At least a part of the photocatalytic secondary particles 4 is partially buried in the binder layer 5.

[光学部材(A-3)]
以下の方法により、光学部材(A-3)を製造した。光学部材(A-3)は、図2に示す光学部材11に類似する構造を有していた。
[Optical member (A-3)]
The optical member (A-3) was manufactured by the following method. The optical member (A-3) had a structure similar to that of the optical member 11 shown in FIG.

(透光性部材)
基材として、レンズ(HOYA株式会社製「TAFD-5G」、組成:ガラス、レンズ面の曲率半径12mm)を用意した。次に、レンズ上に反射防止膜(組成:SiO2層、TiO2層、及びTa25層)を形成した。反射防止膜の合計厚さは、約300nmであった。これにより、透光性部材を得た。次に、透光性部材の反射防止膜の表面に対して表面処理を行った。表面処理は、プラズマ表面改質装置を用いたプラズマ処理を行った。
(Translucent member)
As a base material, a lens (“TAFD-5G” manufactured by HOYA Corporation, composition: glass, radius of curvature of the lens surface of 12 mm) was prepared. Next, an antireflection film (composition: SiO 2 layer, TiO 2 layer, and Ta 2 O 5 layer) was formed on the lens. The total thickness of the antireflection film was about 300 nm. As a result, a translucent member was obtained. Next, the surface of the antireflection film of the translucent member was surface-treated. As the surface treatment, plasma treatment using a plasma surface modifier was performed.

(塗布液)
塗布液として、コーティング剤(石原産業株式会社製「ST-K50」)100gを準備した。このコーティング剤は、酸化チタン粒子(一次粒径5~7nm、二次粒径20~85nm)0.3gと、バインダ原料(シリケート)0.3gと、溶剤99.4gとを含有していた。溶剤は、水、イソプロピルアルコール及びエタノールの混合溶剤であった。
(Coating liquid)
As a coating liquid, 100 g of a coating agent (“ST-K50” manufactured by Ishihara Sangyo Co., Ltd.) was prepared. This coating agent contained 0.3 g of titanium oxide particles (primary particle size 5 to 7 nm, secondary particle size 20 to 85 nm), 0.3 g of a binder raw material (silicate), and 99.4 g of a solvent. The solvent was a mixed solvent of water, isopropyl alcohol and ethanol.

透光性部材の反射防止膜の表面に、上述の塗布液を塗布した。塗布液の塗布は、スピンコーター(ミカサ株式会社製「MS-B100」)を用い、回転速度3000rpmで行った。塗布後、85℃、30分間の加熱処理を行った。これにより、光学部材(A-3)を得た。 The above-mentioned coating liquid was applied to the surface of the antireflection film of the translucent member. The coating liquid was applied using a spin coater (“MS-B100” manufactured by Mikasa Co., Ltd.) at a rotation speed of 3000 rpm. After coating, heat treatment was performed at 85 ° C. for 30 minutes. As a result, an optical member (A-3) was obtained.

光学部材(A-3)の断面を、TEM(透過型電子顕微鏡)で観察した。光学部材(A-3)は、光触媒二次粒子の平均粒径が約40nmであった。 The cross section of the optical member (A-3) was observed with a TEM (transmission electron microscope). In the optical member (A-3), the average particle size of the photocatalytic secondary particles was about 40 nm.

光学部材(A-3)の機能膜の厚さを、接触式膜厚測定器(Bruker社製「DekTakXT-S」)を用いて測定した。 The thickness of the functional film of the optical member (A-3) was measured using a contact type film thickness measuring device (“DekTakXT-S” manufactured by Bruker).

光学部材(A-3)に機能膜側から蛍光X線を照射し、チタン原子の積分強度を測定した。測定には、蛍光X線測定機(日本電子株式会社製「JSX-3202EV」)を用いた。測定領域は、7mmφとした。 The optical member (A-3) was irradiated with fluorescent X-rays from the functional film side, and the integrated intensity of titanium atoms was measured. A fluorescent X-ray measuring machine (“JSX-3202EV” manufactured by JEOL Ltd.) was used for the measurement. The measurement area was 7 mmφ.

[光学部材(A-1)~(A-2)及び(A-4)~(A-6)]
塗布液を塗布する際のスピンコーターの回転速度を下記表1に示す通りに変更した以外は、光学部材(A-3)の製造と同様の方法により、光学部材(A-1)~(A-2)及び(A-4)~(A-6)を製造した。光学部材(A-1)~(A-2)及び(A-3)~(A-6)について、光学部材(A-3)と同様の方法により、機能膜の厚さと、チタン原子の積分強度とを測定した。測定結果を下記表1及び図4に示す。
[Optical members (A-1) to (A-2) and (A-4) to (A-6)]
The optical members (A-1) to (A) were manufactured by the same method as the optical member (A-3) except that the rotation speed of the spin coater when applying the coating liquid was changed as shown in Table 1 below. -2) and (A-4) to (A-6) were produced. For the optical members (A-1) to (A-2) and (A-3) to (A-6), the thickness of the functional film and the integral of the titanium atom are obtained by the same method as that of the optical member (A-3). The intensity was measured. The measurement results are shown in Table 1 and FIG. 4 below.

Figure 2022078385000002
Figure 2022078385000002

表1及び図4に示すように、機能膜の形成に同一組成の塗布液を用いた場合、形成される機能膜の厚さと、光学部材の積分強度とは、概ね比例していた。 As shown in Table 1 and FIG. 4, when a coating liquid having the same composition was used for forming the functional film, the thickness of the formed functional film and the integrated strength of the optical member were generally proportional to each other.

[光学部材(B-1)~(B-6)]
次に、塗布液を塗布する際のスピンコーターの回転速度を下記表2に示す通りに変更した以外は、光学部材(A-3)の製造と同様の方法により、光学部材(B-1)~(B-6)を製造した。光学部材(B-1)~(B-6)について、光学部材(A-3)と同様の方法により、機能膜の厚さと、チタン原子の積分強度とを測定した。測定結果を下記表2に示す。
[Optical members (B-1) to (B-6)]
Next, the optical member (B-1) was manufactured by the same method as that for the optical member (A-3), except that the rotation speed of the spin coater when applying the coating liquid was changed as shown in Table 2 below. ... (B-6) was manufactured. For the optical members (B-1) to (B-6), the thickness of the functional film and the integrated strength of the titanium atom were measured by the same method as that of the optical member (A-3). The measurement results are shown in Table 2 below.

Figure 2022078385000003
Figure 2022078385000003

[加速劣化試験]
次に、光学部材(B-1)~(B-6)の機能膜の光触媒活性について評価した。まず、光学部材(B-1)~(B-6)を120℃、30分間加熱し、機能膜の表面の親水性を低下させた(加速劣化試験)。次に、加速劣化試験直後の光学部材(B-1)~(B-6)の機能膜の表面の接触角を測定した。得られた結果を「照射時間0時間」における接触角とした。接触角の測定は、試料として純水を用い、測定機器として自動接触角計(協和界面科学株式会社製「DMo-601」)を用いた。なお、本実施例では、以降の各接触角の測定についても上述の自動接触角計で行った。本実施例では、機能膜の表面の接触角は、30度以下を良好、20度以下をより良好、15度以下を特に良好と判定される。
[Accelerated deterioration test]
Next, the photocatalytic activity of the functional films of the optical members (B-1) to (B-6) was evaluated. First, the optical members (B-1) to (B-6) were heated at 120 ° C. for 30 minutes to reduce the hydrophilicity of the surface of the functional film (accelerated deterioration test). Next, the contact angle of the surface of the functional film of the optical members (B-1) to (B-6) immediately after the accelerated deterioration test was measured. The obtained result was taken as the contact angle at "irradiation time 0 hours". For the measurement of the contact angle, pure water was used as a sample, and an automatic contact angle meter (“DMo-601” manufactured by Kyowa Interface Science Co., Ltd.) was used as a measuring device. In this embodiment, the subsequent measurement of each contact angle was also performed by the above-mentioned automatic contact angle meter. In this embodiment, the contact angle of the surface of the functional film is determined to be good when it is 30 degrees or less, better when it is 20 degrees or less, and particularly good when it is 15 degrees or less.

次に、光学部材(B-1)~(B-6)の機能膜の表面に紫外線を照射した。紫外線の照射条件は、波長352nm、放射時間75時間、放射照度1mW/cm2とした。そして、紫外線の照射時間が下記表3に示す一定時間(1時間、2時間、3時間、4時間、6時間、24時間、48時間、72時間又は75時間)に達した際に、各光学部材機能膜の表面の接触角を測定した。測定結果を下記表3、図5及び図6に示す。なお、下記表3において、「-」は、該当する時間に接触角を測定しなかったことを示す。 Next, the surfaces of the functional films of the optical members (B-1) to (B-6) were irradiated with ultraviolet rays. The irradiation conditions of ultraviolet rays were a wavelength of 352 nm, a radiation time of 75 hours, and an irradiance of 1 mW / cm 2 . Then, when the irradiation time of ultraviolet rays reaches a certain time (1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 24 hours, 48 hours, 72 hours or 75 hours) shown in Table 3 below, each optical device is used. The contact angle on the surface of the member functional film was measured. The measurement results are shown in Table 3, FIG. 5 and FIG. 6 below. In Table 3 below, "-" indicates that the contact angle was not measured at the corresponding time.

Figure 2022078385000004
Figure 2022078385000004

表3、図5及び図6に示すように、加速劣化試験直後(照射時間0時間)の各光学部材は、機能膜の接触角が比較的高かった。また、光学部材(B-1)は、紫外線を72時間照射しても機能膜の接触角が高いままであった。即ち、光学部材(B-1)の機能膜は光触媒活性をほとんど発揮しなかった。これに対し、光学部材(B-2)~(B-6)は、紫外線を照射することで機能膜の接触角が30度以下に低下した。即ち、光学部材(B-2)~(B-6)の機能膜は、光触媒活性を発揮した。このことから、機能膜の光触媒活性を十分に発揮させるためには、機能膜の厚さは15nm以上が好ましいと判断される。 As shown in Tables 3, 5 and 6, each optical member immediately after the accelerated deterioration test (irradiation time 0 hours) had a relatively high contact angle of the functional film. Further, the optical member (B-1) remained at a high contact angle of the functional film even after being irradiated with ultraviolet rays for 72 hours. That is, the functional film of the optical member (B-1) exhibited almost no photocatalytic activity. On the other hand, in the optical members (B-2) to (B-6), the contact angle of the functional film was reduced to 30 degrees or less by irradiating with ultraviolet rays. That is, the functional films of the optical members (B-2) to (B-6) exhibited photocatalytic activity. From this, it is judged that the thickness of the functional film is preferably 15 nm or more in order to fully exert the photocatalytic activity of the functional film.

また、光学部材(B-2)~(B-4)は、機能膜が厚い(積分強度が高い)ほど機能膜の接触角の低下速度が速くなる傾向があった。しかし、光学部材(B-4)~(B-6)は、機能膜の接触角の低下速度が同程度であった。以上から、機能膜の光触媒活性は、機能膜が厚いほど向上するが、機能膜が一定以上に厚くなると頭打ちになると判断される。 Further, in the optical members (B-2) to (B-4), the thicker the functional film (higher integrated strength), the faster the rate of decrease in the contact angle of the functional film tends to be. However, in the optical members (B-4) to (B-6), the rate of decrease in the contact angle of the functional film was about the same. From the above, it is judged that the photocatalytic activity of the functional film improves as the functional film becomes thicker, but reaches a plateau when the functional film becomes thicker than a certain level.

[払拭試験]
光学部材(B-1)~(B-6)について、機能膜の耐摩耗性を測定した。まず、各光学部材の機能膜の表面の接触角を測定した。得られた結果を初期の接触角(A)とした。
[Wipe test]
The wear resistance of the functional film was measured for the optical members (B-1) to (B-6). First, the contact angle on the surface of the functional film of each optical member was measured. The obtained result was taken as the initial contact angle (A).

次に、紙ワイパー(日本製紙クレシア株式会社製「ケイドライ(登録商標)」)を用い、各光学部材の機能膜の表面を10往復軽くこすった。その後、各光学部材の機能膜の表面の接触角を測定した。得られた結果を払拭処理1回目の接触角(B)とした。 Next, using a paper wiper (“Kay Dry (registered trademark)” manufactured by Nippon Paper Crecia Co., Ltd.), the surface of the functional film of each optical member was lightly rubbed 10 times back and forth. Then, the contact angle on the surface of the functional film of each optical member was measured. The obtained result was used as the contact angle (B) for the first wiping treatment.

次に、各光学部材の機能膜の表面に紫外線を照射した。紫外線の照射条件は、波長352nm、4時間、放射照度1mW/cm2とした。紫外線の照射の際、照射開始から1時間、2時間、3時間又は4時間経過後に各光学部材の機能膜の表面の接触角を測定した。得られた結果を、それぞれ、紫外線照射1回目(1時間)の接触角(C)、紫外線照射1回目(2時間)の接触角(D)、紫外線照射1回目(3時間)の接触角(E)及び紫外線照射1回目(4時間)の接触角(F)とした。 Next, the surface of the functional film of each optical member was irradiated with ultraviolet rays. The irradiation conditions of ultraviolet rays were a wavelength of 352 nm, 4 hours, and an irradiance of 1 mW / cm 2 . When irradiating with ultraviolet rays, the contact angle on the surface of the functional film of each optical member was measured 1 hour, 2 hours, 3 hours or 4 hours after the start of irradiation. The obtained results are shown in the contact angle (C) of the first UV irradiation (1 hour), the contact angle (D) of the first UV irradiation (2 hours), and the contact angle of the first UV irradiation (3 hours), respectively. The contact angle (F) was set to E) and the first UV irradiation (4 hours).

次に、紙ワイパー(日本製紙クレシア株式会社製「ケイドライ(登録商標)」)を用い、各光学部材の機能膜の表面を20往復軽くこすった。その後、各光学部材の機能膜の表面の静止接触角を測定した。得られた結果を払拭処理2回目の接触角(G)とした。 Next, using a paper wiper (“Kay Dry (registered trademark)” manufactured by Nippon Paper Crecia Co., Ltd.), the surface of the functional film of each optical member was lightly rubbed 20 times back and forth. Then, the static contact angle on the surface of the functional film of each optical member was measured. The obtained result was used as the contact angle (G) for the second wiping treatment.

次に、各光学部材の機能膜の表面に紫外線を照射した。紫外線の照射条件は、波長352nm、24時間、放射照度1mW/cm2とした。紫外線の照射の際、照射開始から1時間、2時間、3時間、4時間、8時間又は24時間経過後に各光学部材の機能膜の表面の接触角を測定した。得られた結果を、それぞれ、紫外線照射2回目(1時間)の接触角(H)、紫外線照射2回目(2時間)の接触角(I)、紫外線照射2回目(3時間)の接触角(J)、紫外線照射2回目(4時間)の接触角(K)、紫外線照射2回目(8時間)の接触角(L)、紫外線照射2回目(24時間)の接触角(M)とした。 Next, the surface of the functional film of each optical member was irradiated with ultraviolet rays. The irradiation conditions of ultraviolet rays were a wavelength of 352 nm, 24 hours, and an irradiance of 1 mW / cm 2 . At the time of irradiation with ultraviolet rays, the contact angle of the surface of the functional film of each optical member was measured 1 hour, 2 hours, 3 hours, 4 hours, 8 hours or 24 hours after the start of irradiation. The obtained results are shown in the contact angle (H) of the second UV irradiation (1 hour), the contact angle (I) of the second UV irradiation (2 hours), and the contact angle of the second UV irradiation (3 hours), respectively. J), the contact angle (K) of the second UV irradiation (4 hours), the contact angle (L) of the second UV irradiation (8 hours), and the contact angle (M) of the second UV irradiation (24 hours).

なお、光学部材(B-1)は、払拭処理2回目の段階で機能膜の接触角が著しく高く、かつ紫外線を照射しても接触角が低下しなかった。このため、光学部材(B-1)は、機能膜の耐摩耗性が不十分であると判断し、以降の試験は省略した。 The contact angle of the functional film of the optical member (B-1) was remarkably high at the second stage of the wiping treatment, and the contact angle did not decrease even when irradiated with ultraviolet rays. Therefore, the optical member (B-1) was judged to have insufficient wear resistance of the functional film, and the subsequent tests were omitted.

次に、紙ワイパー(日本製紙クレシア株式会社製「ケイドライ(登録商標)」)を用い、各光学部材の機能膜の表面を30往復軽くこすった。その後、各光学部材の機能膜の表面の接触角を測定した。得られた結果を払拭処理3回目の接触角(N)とした。 Next, using a paper wiper (“Kay Dry (registered trademark)” manufactured by Nippon Paper Crecia Co., Ltd.), the surface of the functional film of each optical member was lightly rubbed 30 times back and forth. Then, the contact angle on the surface of the functional film of each optical member was measured. The obtained result was used as the contact angle (N) for the third wiping treatment.

次に、各光学部材の機能膜の表面に紫外線を照射した。紫外線の照射条件は、波長352nm、96時間、放射照度1mW/cm2とした。紫外線の照射の際、照射開始から1時間、2時間、3時間、4時間、20時間又は96時間経過後に各光学部材の機能膜の表面の接触角を測定した。得られた結果を、それぞれ、紫外線照射3回目(1時間)の接触角(O)、紫外線照射3回目(2時間)の接触角(P)、紫外線照射3回目(3時間)の接触角(Q)、紫外線照射3回目(4時間)の接触角(R)、紫外線照射3回目(20時間)の接触角(S)、紫外線照射3回目(96時間)の接触角(T)とした。 Next, the surface of the functional film of each optical member was irradiated with ultraviolet rays. The irradiation conditions of ultraviolet rays were a wavelength of 352 nm, 96 hours, and an irradiance of 1 mW / cm 2 . At the time of irradiation with ultraviolet rays, the contact angle on the surface of the functional film of each optical member was measured 1 hour, 2 hours, 3 hours, 4 hours, 20 hours or 96 hours after the start of irradiation. The obtained results are shown in the contact angle (O) of the third UV irradiation (1 hour), the contact angle (P) of the third UV irradiation (2 hours), and the contact angle of the third UV irradiation (3 hours), respectively. Q), the contact angle (R) of the third UV irradiation (4 hours), the contact angle (S) of the third UV irradiation (20 hours), and the contact angle (T) of the third UV irradiation (96 hours).

測定結果を下記表4、図7及び図8に示す。 The measurement results are shown in Table 4, FIG. 7 and FIG. 8 below.

Figure 2022078385000005
Figure 2022078385000005

表4、図7及び図8に示すように、各光学部材は、払拭処理を行うことで機能膜の表面の接触角が増大した(親水性が低下した)。これは、払拭処理によって機能膜から光触媒二次粒子が脱離し、かつ機能膜の表面に有機物が付着したためと判断される。一方、各光学部材は、各々、紫外線照射によって光触媒活性を発揮し、接触角が低下した(親水性が回復した)。 As shown in Tables 4, 7 and 8, each optical member was subjected to a wiping treatment to increase the contact angle on the surface of the functional film (decreased hydrophilicity). It is determined that this is because the photocatalytic secondary particles were desorbed from the functional film by the wiping treatment and organic substances adhered to the surface of the functional film. On the other hand, each optical member exhibited photocatalytic activity by irradiation with ultraviolet rays, and the contact angle was lowered (hydrophilicity was restored).

光学部材(B-1)は、上述の通り、機能膜の耐摩耗性が不十分であった。これに対し、光学部材(B-2)~(B-6)は、払拭処理を3回行っても、その後に紫外線を照射することで機能膜の接触角が30度以下に低下した。即ち、光学部材(B-2)~(B-6)は、機能膜が十分な耐摩耗性を有していた。このことから、機能膜の耐摩耗性を確保するためには、機能膜の厚さは15nm以上が好ましいと判断される。 As described above, the optical member (B-1) has insufficient wear resistance of the functional film. On the other hand, in the optical members (B-2) to (B-6), the contact angle of the functional film was lowered to 30 degrees or less by irradiating the optical members with ultraviolet rays even after the wiping treatment was performed three times. That is, the functional films of the optical members (B-2) to (B-6) had sufficient wear resistance. From this, it is judged that the thickness of the functional film is preferably 15 nm or more in order to secure the wear resistance of the functional film.

[光学部材(C-1)~(C-4)]
次に、塗布液を塗布する際のスピンコーターの回転速度を下記表5に示す通りに変更した以外は、光学部材(A-3)の製造と同様の方法により、光学部材(C-1)~(C-4)を製造した。光学部材(C-1)~(C-4)について、光学部材(A-3)と同様の方法により、機能膜の厚さと、チタン原子の積分強度とを測定した。測定結果を下記表5に示す。
[Optical members (C-1) to (C-4)]
Next, the optical member (C-1) was manufactured by the same method as that for the optical member (A-3), except that the rotation speed of the spin coater when applying the coating liquid was changed as shown in Table 5 below. -(C-4) was manufactured. For the optical members (C-1) to (C-4), the thickness of the functional film and the integrated strength of the titanium atom were measured by the same method as that of the optical member (A-3). The measurement results are shown in Table 5 below.

Figure 2022078385000006
Figure 2022078385000006

[反射率]
光学部材(C-1)~(C-4)について、機能膜の表面側から入射する波長450nm以上780nm以下の入射光に対する最大反射率を測定した。測定には、反射率測定装置(オリンパス株式会社製「USPM-RU」)を用い、入射角0度で測定される反射率を測定した。測定では、まず波長380nm以上800nm以下の範囲における分光反射率のグラフを作成した。分光反射率のグラフを図9に示す。分光反射率のグラフに基づいて、波長450nm以上780nm以下の入射光に対する最大反射率を求めた。各光学部材について、最大反射率と、最大反射率が測定された際の入射光の波長とを以下に示す。
[Reflectance]
For the optical members (C-1) to (C-4), the maximum reflectance with respect to the incident light having a wavelength of 450 nm or more and 780 nm or less incident from the surface side of the functional film was measured. For the measurement, a reflectance measuring device (“USPM-RU” manufactured by Olympus Co., Ltd.) was used to measure the reflectance measured at an incident angle of 0 degrees. In the measurement, first, a graph of the spectral reflectance in the wavelength range of 380 nm or more and 800 nm or less was created. A graph of spectral reflectance is shown in FIG. Based on the spectral reflectance graph, the maximum reflectance for incident light having a wavelength of 450 nm or more and 780 nm or less was determined. For each optical member, the maximum reflectance and the wavelength of the incident light when the maximum reflectance is measured are shown below.

光学部材(C-1):最大反射率0.8%(波長656nm)
光学部材(C-2):最大反射率1.2%(波長655nm)
光学部材(C-3):最大反射率1.7%(波長655nm)
光学部材(C-4):最大反射率2.3%(波長655nm)
Optical member (C-1): Maximum reflectance 0.8% (wavelength 656 nm)
Optical member (C-2): Maximum reflectance 1.2% (wavelength 655 nm)
Optical member (C-3): Maximum reflectance 1.7% (wavelength 655 nm)
Optical member (C-4): Maximum reflectance 2.3% (wavelength 655 nm)

光学部材の最大反射率は、5.0%以下であれば十分に実用性に耐えるが、製造誤差を考慮すると2.5%以下が好ましい。光学部材(C-1)~(C-4)から明らかなように、機能膜が厚くなるほど光学部材の最大反射率が増大した。光学部材の最大反射率を抑制する観点から、機能膜の厚さは200nm以下が好ましいと判断される。 If the maximum reflectance of the optical member is 5.0% or less, it can sufficiently withstand practicality, but 2.5% or less is preferable in consideration of manufacturing error. As is clear from the optical members (C-1) to (C-4), the thicker the functional film, the higher the maximum reflectance of the optical member. From the viewpoint of suppressing the maximum reflectance of the optical member, it is judged that the thickness of the functional film is preferably 200 nm or less.

[光学部材(D-1)]
透光性部材の反射防止膜の表面に、酸化チタンの蒸着膜を形成した。蒸着膜の形成には、蒸着装置を用いた。これにより、光学部材(D-1)を得た。
[Optical member (D-1)]
A titanium oxide vapor-deposited film was formed on the surface of the antireflection film of the translucent member. A thin-film deposition device was used to form the thin-film deposition film. As a result, an optical member (D-1) was obtained.

[光学部材(D-2)]
次に、塗布液を塗布する際のスピンコーターの回転速度を下記表6に示す通りに変更した以外は、光学部材(A-3)の製造と同様の方法により、光学部材(D-2)を製造した。
[Optical member (D-2)]
Next, the optical member (D-2) was manufactured by the same method as that for the optical member (A-3), except that the rotation speed of the spin coater when applying the coating liquid was changed as shown in Table 6 below. Manufactured.

光学部材(D-1)~(D-2)について、光学部材(A-3)と同様の方法により、機能膜の厚さと、チタン原子の積分強度とを測定した。測定結果を下記表5に示す。なお、光学部材(D-1)の機能膜は、酸化チタン粒子が密に詰まった膜であり、その表面は平滑であった。光学部材(D-1)の機能膜は、図1の機能膜3、図2の機能膜13及び図3の機能膜23と異なり、酸化チタン粒子間に隙間がほとんど存在していなかった。 For the optical members (D-1) to (D-2), the thickness of the functional film and the integrated strength of the titanium atom were measured by the same method as that of the optical member (A-3). The measurement results are shown in Table 5 below. The functional film of the optical member (D-1) was a film in which titanium oxide particles were densely packed, and its surface was smooth. Unlike the functional film 3 of FIG. 1, the functional film 13 of FIG. 2, and the functional film 23 of FIG. 3, the functional film of the optical member (D-1) had almost no gaps between the titanium oxide particles.

Figure 2022078385000007
Figure 2022078385000007

[反射率]
光学部材(D-1)~(D-2)について、機能膜の表面側から入射する波長450nm以上780nm以下の入射光に対する最大反射率を測定した。測定には、反射率測定装置(オリンパス株式会社製「USPM-RU」)を用い、入射角0度で測定される反射率を測定した。測定では、まず光学部材(D-1)については波長380nm以上780nm以下の範囲における分光反射率のグラフを作成した。光学部材(D-2)については波長380nm以上800nm以下の範囲における分光反射率のグラフを作成した。分光反射率のグラフを図10に示す。分光反射率のグラフに基づいて、波長450nm以上780nm以下の入射光に対する最大反射率を求めた。各光学部材について、最大反射率と、最大反射率が測定された際の入射光の波長とを以下に示す。
[Reflectance]
For the optical members (D-1) to (D-2), the maximum reflectance with respect to the incident light having a wavelength of 450 nm or more and 780 nm or less incident from the surface side of the functional film was measured. For the measurement, a reflectance measuring device (“USPM-RU” manufactured by Olympus Co., Ltd.) was used to measure the reflectance measured at an incident angle of 0 degrees. In the measurement, first, for the optical member (D-1), a graph of the spectral reflectance in the wavelength range of 380 nm or more and 780 nm or less was prepared. For the optical member (D-2), a graph of spectral reflectance in the wavelength range of 380 nm or more and 800 nm or less was created. A graph of spectral reflectance is shown in FIG. Based on the spectral reflectance graph, the maximum reflectance for incident light having a wavelength of 450 nm or more and 780 nm or less was determined. For each optical member, the maximum reflectance and the wavelength of the incident light when the maximum reflectance is measured are shown below.

光学部材(D-1):最大反射率22.6%(波長775nm)
光学部材(D-2):最大反射率0.7%(波長657nm)
Optical member (D-1): Maximum reflectance 22.6% (wavelength 775 nm)
Optical member (D-2): Maximum reflectance 0.7% (wavelength 657 nm)

光学部材(D-1)~(D-2)から明らかなように、蒸着により機能膜を形成した光学部材は、最大反射率が高かった。このことから、機能膜に含有される光触媒粒子は、光学部材の最大反射率を抑制する観点から、密に詰まった状態ではなく、二次粒子を構成して適度に分散した状態で存在することが好ましいと判断される。また、機能膜は、適度な凹凸が存在することが好ましいと判断される。 As is clear from the optical members (D-1) to (D-2), the optical member having the functional film formed by thin film deposition had a high maximum reflectance. From this, from the viewpoint of suppressing the maximum reflectance of the optical member, the photocatalytic particles contained in the functional film do not exist in a densely packed state, but exist in a state in which secondary particles are formed and appropriately dispersed. Is judged to be preferable. Further, it is judged that it is preferable that the functional film has appropriate unevenness.

本発明は、センサ又は撮影機器用の光学部材又はその製造方法として好適である。 The present invention is suitable as an optical member for a sensor or a photographing device or a method for manufacturing the same.

1、11、21 光学部材
2、12、22 透光性部材
12a 基材
12b 反射防止膜
3、13、23 機能膜
4、14、24 光触媒二次粒子
5、15、25 バインダ層
1,11,21 Optical member 2,12,22 Translucent member 12a Base material 12b Antireflection film 3,13,23 Functional film 4,14,24 Photocatalytic secondary particles 5,15,25 Binder layer

Claims (9)

透光性部材と、
前記透光性部材を被覆する機能膜と
を備え、
前記機能膜は、
紫外線により活性化される光触媒粒子と、前記透光性部材を被覆するバインダ層と
を含み、
前記光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成し、
前記光触媒二次粒子のうち少なくとも一部は、前記バインダ層に部分的に埋もれていて、
前記機能膜の厚さは、15nm以上200nm以下である、光学部材。
Translucent member and
A functional film that covers the translucent member is provided.
The functional membrane is
It contains photocatalytic particles activated by ultraviolet rays and a binder layer covering the translucent member.
At least a part of the photocatalytic particles constitutes photocatalytic secondary particles.
At least a part of the photocatalytic secondary particles is partially buried in the binder layer.
An optical member having a functional film having a thickness of 15 nm or more and 200 nm or less.
前記光触媒粒子は、酸化チタンを含有する、請求項1に記載の光学部材。 The optical member according to claim 1, wherein the photocatalytic particles contain titanium oxide. 蛍光X線により測定されるチタン原子の積分強度は、600以上35,000以下である、請求項2に記載の光学部材。 The optical member according to claim 2, wherein the integrated intensity of titanium atoms measured by fluorescent X-rays is 600 or more and 35,000 or less. 前記機能膜の平面視における前記光触媒粒子の占有面積割合は、5%以上100%以下である、請求項1から3のいずれかに記載の光学部材。 The optical member according to any one of claims 1 to 3, wherein the ratio of the occupied area of the photocatalytic particles in the plan view of the functional film is 5% or more and 100% or less. 前記光触媒二次粒子の平均粒径は、10nm以上50nm以下である、請求項1から4のいずれかに記載の光学部材。 The optical member according to any one of claims 1 to 4, wherein the average particle size of the photocatalytic secondary particles is 10 nm or more and 50 nm or less. 前記機能膜の表面側から入射する波長450nm以上780nm以下の入射光に対する最大反射率は、5.0%以下である、請求項1から5のいずれかに記載の光学部材。 The optical member according to any one of claims 1 to 5, wherein the maximum reflectance for incident light having a wavelength of 450 nm or more and 780 nm or less incident from the surface side of the functional film is 5.0% or less. 前記機能膜の厚さは、40nm以上である、請求項1から6のいずれかに記載の光学部材。 The optical member according to any one of claims 1 to 6, wherein the functional film has a thickness of 40 nm or more. 前記透光性部材は、
基材と、
前記基材を被覆する反射防止膜と
を備える、請求項1から7のいずれかに記載の光学部材。
The translucent member is
With the base material
The optical member according to any one of claims 1 to 7, further comprising an antireflection film covering the substrate.
紫外線により活性化される光触媒粒子及びバインダ原料を含有する塗布液を、ウェットプロセスにより透光性部材の表面に塗布することで機能膜を形成する塗布工程を備え、
前記機能膜は、
前記透光性部材を被覆するバインダ層と、前記光触媒粒子と
を含み、
前記光触媒粒子のうち少なくとも一部は、光触媒二次粒子を構成し、
前記光触媒二次粒子のうち少なくとも一部は、前記バインダ層に部分的に埋もれていて、
前記機能膜の厚さは、15nm以上200nm以下である、光学部材の製造方法。
It is provided with a coating step of forming a functional film by applying a coating liquid containing photocatalytic particles activated by ultraviolet rays and a binder raw material to the surface of a translucent member by a wet process.
The functional membrane is
The binder layer covering the translucent member and the photocatalytic particles are included.
At least a part of the photocatalytic particles constitutes photocatalytic secondary particles.
At least a part of the photocatalytic secondary particles is partially buried in the binder layer.
A method for manufacturing an optical member, wherein the thickness of the functional film is 15 nm or more and 200 nm or less.
JP2019068469A 2019-03-29 2019-03-29 Optical member and method for manufacturing the same Pending JP2022078385A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019068469A JP2022078385A (en) 2019-03-29 2019-03-29 Optical member and method for manufacturing the same
PCT/JP2020/006724 WO2020202875A1 (en) 2019-03-29 2020-02-20 Optical member and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068469A JP2022078385A (en) 2019-03-29 2019-03-29 Optical member and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2022078385A true JP2022078385A (en) 2022-05-25

Family

ID=72668656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068469A Pending JP2022078385A (en) 2019-03-29 2019-03-29 Optical member and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2022078385A (en)
WO (1) WO2020202875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024225162A1 (en) * 2023-04-28 2024-10-31 ニデック株式会社 Hydrophilic film and optical member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024158871A (en) * 2023-04-28 2024-11-08 ニデック株式会社 Optical member, lens unit, and method for manufacturing optical member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327050A (en) * 1998-05-14 1999-11-26 Matsushita Electric Ind Co Ltd Display device
JP2007275768A (en) * 2006-04-06 2007-10-25 Nikon Corp Photocatalyst body, optical member having photocatalyst body, and camera equipped with optical member
JP5886065B2 (en) * 2012-02-03 2016-03-16 日本板硝子株式会社 Glass article with photocatalytic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024225162A1 (en) * 2023-04-28 2024-10-31 ニデック株式会社 Hydrophilic film and optical member

Also Published As

Publication number Publication date
WO2020202875A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
EP0816466B1 (en) Use of material having ultrahydrophilic and photocatalytic surface
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
US6045903A (en) Hydrophilic article and method for producing same
US8545899B2 (en) Titanium dioxide coatings having roughened surfaces and methods of forming titanium dioxide coatings having roughened surfaces
EP1994205A1 (en) Stainless steel sheet coated with a self-cleaning coating
JP4665221B2 (en) Titanium dioxide photocatalyst carrier and production method thereof
WO2020202875A1 (en) Optical member and method for manufacturing same
US20040043210A1 (en) Reflection reducing coating, base material and photoelectric transducer with the reflection reducing coating
US10746902B2 (en) Mirror with improved durability
JP7499568B2 (en) Lens unit, optical unit, and method for forming hydrophilic film on lens
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
WO2007081025A1 (en) Glass plate with film for vehicle and process for producing the same
WO2020202874A1 (en) Optical member and method for manufacturing same
CN110709364A (en) Lens with hydrophilic anti-reflection film and method for manufacturing same
JP7525316B2 (en) Manufacturing method of optical member and optical member
JP2000119846A (en) Manufacture of thin film
JP4292992B2 (en) Composition for forming photocatalyst film and substrate with photocatalyst film
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JP7467058B2 (en) Optical member, optical unit, and method for manufacturing optical member
JP7153638B2 (en) Glass articles with low reflection coating
JP2006070141A (en) Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane
WO2007081045A1 (en) Glass plate for thin-film formation
JPH10297940A (en) Formation of hydrophilic coated film
KR20070108604A (en) Method for manufacturing hydrophilic reflector for vehicle