[go: up one dir, main page]

JP2022060701A - Atomic reactor - Google Patents

Atomic reactor Download PDF

Info

Publication number
JP2022060701A
JP2022060701A JP2020168321A JP2020168321A JP2022060701A JP 2022060701 A JP2022060701 A JP 2022060701A JP 2020168321 A JP2020168321 A JP 2020168321A JP 2020168321 A JP2020168321 A JP 2020168321A JP 2022060701 A JP2022060701 A JP 2022060701A
Authority
JP
Japan
Prior art keywords
flow path
coolant
partition plate
descending flow
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020168321A
Other languages
Japanese (ja)
Other versions
JP7394041B2 (en
Inventor
博紀 中村
Hironori Nakamura
一洋 的場
Kazuhiro Matoba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020168321A priority Critical patent/JP7394041B2/en
Publication of JP2022060701A publication Critical patent/JP2022060701A/en
Application granted granted Critical
Publication of JP7394041B2 publication Critical patent/JP7394041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide an atomic reactor capable of maintaining the soundness of a structure by suppressing the generation of spiral convection as a coolant descends a descending flow path.SOLUTION: The atomic reactor includes: a container; a coolant ascending flow path provided inside the container; a coolant descending flow path provided at the center side of the container than the coolant ascending flow path, an upper end of which communicates with an upper end of the coolant ascending flow path; and a convection suppression member provided on the coolant descending flow path for suppressing the generation of convection.SELECTED DRAWING: Figure 1

Description

本開示は、例えば、高速炉として使用される原子炉に関するものである。 The present disclosure relates to, for example, a nuclear reactor used as a fast reactor.

高速炉は、主容器の内部に炉心とポンプと中間熱交換器と炉壁冷却部などが配置されて構成される。炉壁冷却部は、ホットプールから主容器への熱の伝達を抑制するためのものである。炉壁冷却部は、主容器の内面に沿って設けられる外側仕切板および内側仕切板を有する。炉壁冷却部として、主容器と外側仕切板との間に設けられる上昇流路と、外側仕切板と内側仕切板との間に設けられる下降流路とが設けられる。そのため、冷却材は、上昇流路を上昇し、外側仕切板を超えて下降流路に移行して下降する。このとき、冷却材により主容器の内壁面が冷却される。 A fast reactor is configured by arranging a core, a pump, an intermediate heat exchanger, a furnace wall cooling unit, and the like inside the main container. The furnace wall cooling unit is for suppressing heat transfer from the hot pool to the main container. The furnace wall cooling unit has an outer partition plate and an inner partition plate provided along the inner surface of the main container. As the furnace wall cooling unit, an ascending flow path provided between the main container and the outer partition plate and a descending flow path provided between the outer partition plate and the inner partition plate are provided. Therefore, the coolant rises in the ascending flow path, passes through the outer partition plate, moves to the descending flow path, and descends. At this time, the inner wall surface of the main container is cooled by the coolant.

炉壁冷却部を有する高速炉としては、例えば、下記特許文献に記載されたものがある。特許文献1は、炉容器の内側に外側ライナおよび内側ライナを配置して上降流路となる外側アニュラス部と下降流路となる内側アニュラス部を設け、内側アニュラス部の上部に仕切壁を配置したものである。また、特許文献2は、原子炉容器の内側に複数の壁を配置して上降流路および下降流路となる複数の冷却流路を設け、下降流路となる冷却流路に仕切りを配置したものである。 Examples of the fast reactor having a furnace wall cooling unit include those described in the following patent documents. In Patent Document 1, an outer liner and an inner liner are arranged inside the furnace vessel to provide an outer annulus portion as an upper / descending flow path and an inner annulus portion as a descending flow path, and a partition wall is arranged above the inner annulus portion. It was done. Further, in Patent Document 2, a plurality of walls are arranged inside the reactor vessel to provide a plurality of cooling flow paths as an upper / descending flow path and a descending flow path, and a partition is arranged in the cooling flow path which is a descending flow path. It was done.

特許第2972162号公報Japanese Patent No. 2972162 特開平08-160178号公報Japanese Unexamined Patent Publication No. 08-160178

高速炉は、主容器に貯留される冷却材の自由液面の近傍の温度が大きく変化するため、液面と接する主容器に大きな熱応力が作用する。主容器の構造上の健全性を確保するため、高速炉は、上述した炉壁冷却部が設けられる。すなわち、炉壁冷却部にて、冷却材が上昇流路を上昇して主容器を冷却した後、外側仕切板を超えて下降流路に移行して下降する。ところが、冷却材が下降する下降流路は、外側仕切板が非加熱面となり、内側仕切板が加熱面となる。そのため、冷却材が下降流路を下降するとき、冷却材が加熱面である内側仕切板に加熱されて高温となり、一部が浮力によって上昇し、渦状の対流が発生する。すると、外側仕切板や内側仕切板などが低温の下降流と高温の上昇流に交互にさらされることとなり、熱疲労により構造上の健全性が脅かされるおそれがある。 In a fast reactor, the temperature near the free liquid level of the coolant stored in the main container changes significantly, so that a large thermal stress acts on the main container in contact with the liquid level. In order to ensure the structural soundness of the main container, the fast reactor is provided with the above-mentioned furnace wall cooling unit. That is, in the furnace wall cooling unit, the coolant rises in the ascending flow path to cool the main container, and then moves beyond the outer partition plate to the descending flow path and descends. However, in the descending flow path from which the coolant descends, the outer partition plate serves as a non-heated surface, and the inner partition plate serves as a heated surface. Therefore, when the coolant descends from the descending flow path, the coolant is heated by the inner partition plate, which is a heating surface, to a high temperature, and a part of the coolant rises due to buoyancy, and vortex-shaped convection occurs. Then, the outer partition plate, the inner partition plate, and the like are alternately exposed to the low-temperature downward flow and the high-temperature upward flow, and thermal fatigue may threaten the structural soundness.

上述した特許文献1では、下降流路となる内側アニュラス部の上部に仕切壁を配置することで、冷却材が上昇流路から下降流路へ移行するときの流動を安定化させるものである。また、特許文献2では、下降流路となる冷却流路に仕切りを配置することで、冷却材が上昇流路から下降流路へ落下するときの圧力波の発生を防止すると共に、圧力波の伝播を防止するものである。特許文献1,2は、冷却材が上昇流路から下降流路へ移行するときの課題を解決するものである。そのため、冷却材が下降流路を下降するときに発生する渦状の対流を抑制することは困難である。 In the above-mentioned Patent Document 1, by arranging the partition wall on the upper part of the inner annulus portion which becomes the descending flow path, the flow when the coolant moves from the ascending flow path to the descending flow path is stabilized. Further, in Patent Document 2, by arranging a partition in the cooling flow path serving as the descending flow path, it is possible to prevent the generation of a pressure wave when the coolant falls from the ascending flow path to the descending flow path and to prevent the pressure wave from being generated. It prevents propagation. Patent Documents 1 and 2 solve the problem when the coolant moves from the ascending flow path to the descending flow path. Therefore, it is difficult to suppress the vortex-shaped convection that occurs when the coolant descends the descending flow path.

本開示は、上述した課題を解決するものであり、冷却材が下降流路を下降するときの渦状の対流の発生を抑制することで構造物の健全性を維持する原子炉を提供することを目的とする。 The present disclosure solves the above-mentioned problems, and provides a nuclear reactor that maintains the soundness of a structure by suppressing the generation of spiral convection when the coolant descends the descending flow path. The purpose.

上記の目的を達成するための本開示の原子炉は、容器と、前記容器の内部に設けられる冷却材上昇流路と、前記冷却材上昇流路より前記容器の中心側に設けられて上端部が前記冷却材上昇流路の上端部に連通する冷却材下降流路と、前記冷却材下降流路に設けられて対流の発生を抑制する対流発生抑制部材とを備える。 The reactor of the present disclosure for achieving the above object is provided in a container, a coolant ascending flow path provided inside the container, and an upper end portion provided on the center side of the container from the coolant ascending flow path. Is provided with a coolant descending flow path communicating with the upper end of the coolant ascending flow path and a convection generation suppressing member provided in the coolant descending flow path to suppress the generation of convection.

本開示の原子炉によれば、冷却材が下降流路を下降するときの渦状の対流の発生を抑制することで、構造物の健全性を維持することができる。 According to the reactor of the present disclosure, the soundness of the structure can be maintained by suppressing the generation of spiral convection when the coolant descends the descending flow path.

図1は、第1実施形態のタンク型原子炉の内部構造を模式的に表す概略図である。FIG. 1 is a schematic view schematically showing the internal structure of the tank-type nuclear reactor of the first embodiment. 図2は、炉壁冷却部を表す断面図である。FIG. 2 is a cross-sectional view showing a furnace wall cooling unit. 図3は、炉壁冷却部における一次冷却材の流れを表す概略図である。FIG. 3 is a schematic view showing the flow of the primary coolant in the furnace wall cooling section. 図4は、第1実施形態のタンク型原子炉における炉壁冷却部の変形例を表す断面図である。FIG. 4 is a cross-sectional view showing a modified example of the furnace wall cooling portion in the tank type reactor of the first embodiment. 図5は、第2実施形態のタンク型原子炉における炉壁冷却部を表す断面図である。FIG. 5 is a cross-sectional view showing a furnace wall cooling unit in the tank type reactor of the second embodiment. 図6は、図5のVI-VI断面図である。FIG. 6 is a sectional view taken along line VI-VI of FIG. 図7は、炉壁冷却部における一次冷却材の流れを表す概略図である。FIG. 7 is a schematic view showing the flow of the primary coolant in the furnace wall cooling unit. 図8は、第3実施形態のタンク型原子炉における炉壁冷却部を表す断面図である。FIG. 8 is a cross-sectional view showing a furnace wall cooling unit in the tank type reactor of the third embodiment.

以下に図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。 Preferred embodiments of the present disclosure will be described in detail below with reference to the drawings. It should be noted that the present disclosure is not limited to this embodiment, and when there are a plurality of embodiments, the present embodiment also includes a combination of the respective embodiments. Further, the components in the embodiment include those that can be easily assumed by those skilled in the art, those that are substantially the same, that are, those in a so-called equal range.

[第1実施形態]
<原子炉の構成>
図1は、第1実施形態のタンク型原子炉の内部構造を模式的に表す概略図である。
[First Embodiment]
<Reactor configuration>
FIG. 1 is a schematic view schematically showing the internal structure of the tank-type nuclear reactor of the first embodiment.

第1実施形態において、図1に示すように、タンク型原子炉10は、高速中性子による核分裂連鎖反応を用いてエネルギを発生させる高速炉である。高速炉は、冷却材として液体金属を使用しており、ここでは、金属ナトリウムを使用している。なお、液体金属としては、金属ナトリウム以外に、例えば、鉛、ビスマス、鉛とビスマスの合金、水銀、カリウム、NaK(ナトリウムカリウム合金)などが使用可能である。 In the first embodiment, as shown in FIG. 1, the tank-type nuclear reactor 10 is a fast reactor that generates energy by using a fission chain reaction with fast neutrons. The fast reactor uses liquid metal as a coolant, and here, metallic sodium is used. As the liquid metal, for example, lead, bismuth, an alloy of lead and bismuth, mercury, potassium, NaK (sodium-potassium alloy) and the like can be used in addition to metallic sodium.

タンク型原子炉10は、主容器11を有する。主容器11は、下部が半球状に閉塞された円筒形状をなし、内部に一次冷却材が貯留される。主容器11は、上部にルーフデッキ12が設けられる。主容器11は、内部にストロングバック13と、ダイヤグリッド14と、炉心を有する炉心槽15とが配置される。ストロングバック13は、主容器11の下部に設けられ、ストロングバック13の上部にダイヤグリッド14が配置され、ダイヤグリッド14の上部に炉心槽15が配置される。炉心槽15は、炉心を構成する複数の燃料集合体16が配置される。 The tank reactor 10 has a main container 11. The main container 11 has a cylindrical shape in which the lower portion is closed in a hemispherical shape, and the primary coolant is stored inside. The main container 11 is provided with a roof deck 12 at the top. In the main container 11, a strong back 13, a diamond grid 14, and a core tank 15 having a core are arranged inside. The strong back 13 is provided in the lower part of the main container 11, the diamond grid 14 is arranged in the upper part of the strong back 13, and the core tank 15 is arranged in the upper part of the diamond grid 14. In the core tank 15, a plurality of fuel assemblies 16 constituting the core are arranged.

主容器11は、内部に炉心上部構造18と、ポンプ19と、中間熱交換器20とが配置される。炉心上部構造18は、主容器11における径方向の中心部に配置され、上部がルーフデッキ12に支持される。ポンプ19と中間熱交換器20は、主容器11における径方向の外周部側に配置され、上部がルーフデッキ12に支持される。ポンプ19は、下部に図示しない吸込口と吐出口が設けられ、吐出口が炉内配管21によりダイヤグリッド14に連結される。 In the main container 11, a core superstructure 18, a pump 19, and an intermediate heat exchanger 20 are arranged inside. The core superstructure 18 is arranged at the radial center of the main container 11, and the upper part is supported by the roof deck 12. The pump 19 and the intermediate heat exchanger 20 are arranged on the outer peripheral side in the radial direction of the main container 11, and the upper portion is supported by the roof deck 12. The pump 19 is provided with a suction port and a discharge port (not shown) at the lower part, and the discharge port is connected to the diamond grid 14 by the in-core pipe 21.

中間熱交換器20は、図示しない蒸気発生器から二次冷却材が供給される供給配管22が連結されると共に、熱交換して温度上昇した二次冷却材を蒸気発生器に排出する排出配管23が連結される。中間熱交換器20は、上部に流入口24が設けられ、下部に流出口25が設けられる。中間熱交換器20は、主容器11の一次冷却材が流入口24から流入し、流出口25から流出する。このとき、中間熱交換器20は、高温の一次冷却材と低温の二次冷却材との間で熱交換を行う。 The intermediate heat exchanger 20 is connected to a supply pipe 22 to which a secondary coolant is supplied from a steam generator (not shown), and is a discharge pipe that discharges the secondary coolant whose temperature has risen due to heat exchange to the steam generator. 23 are connected. The intermediate heat exchanger 20 is provided with an inflow port 24 at the upper part and an outflow port 25 at the lower part. In the intermediate heat exchanger 20, the primary coolant of the main container 11 flows in from the inflow port 24 and flows out from the outflow port 25. At this time, the intermediate heat exchanger 20 exchanges heat between the high-temperature primary coolant and the low-temperature secondary coolant.

主容器11は、外周部に炉壁冷却部30が設けられる。炉壁冷却部30は、ホットプール41から主容器11への熱の伝達を抑制するものである。 The main container 11 is provided with a furnace wall cooling unit 30 on the outer peripheral portion. The furnace wall cooling unit 30 suppresses heat transfer from the hot pool 41 to the main container 11.

炉壁冷却部30は、内側仕切板32と、外側仕切板33と、炉壁冷却用配管34とを有する。 The furnace wall cooling unit 30 has an inner partition plate 32, an outer partition plate 33, and a furnace wall cooling pipe 34.

主容器11は、内容器31によりホットプール41とコールドプール42に区画される。内容器31は、略円筒形状をなし、鉛直方向の上方から下方に向けて配置される鉛直仕切板31aと、水平仕切板31bとを有する。鉛直仕切板31aは、外径が主容器11の内径より若干小さい。水平仕切板31bは、鉛直仕切板31aと炉心槽15とを接続し、鉛直仕切板31aから炉心槽15側に向けて若干下方に向けて傾斜する。なお、水平仕切板31bは、傾斜せずに水平であってもよい。鉛直仕切板31aは、下部が水平仕切板31bの外径部に一体に連結され、水平仕切板31bは、内径部が炉心槽15の上部に連結される。ホットプール41は、鉛直仕切板31aの内側で、水平仕切板31bより上方の領域である。コールドプール42は、鉛直仕切板31aの外側で、水平仕切板31bより下方の領域である。 The main container 11 is divided into a hot pool 41 and a cold pool 42 by an inner container 31. The inner container 31 has a substantially cylindrical shape and has a vertical partition plate 31a and a horizontal partition plate 31b arranged from above to below in the vertical direction. The outer diameter of the vertical partition plate 31a is slightly smaller than the inner diameter of the main container 11. The horizontal partition plate 31b connects the vertical partition plate 31a and the core tank 15, and is slightly inclined downward from the vertical partition plate 31a toward the core tank 15. The horizontal partition plate 31b may be horizontal without being inclined. The lower portion of the vertical partition plate 31a is integrally connected to the outer diameter portion of the horizontal partition plate 31b, and the inner diameter portion of the horizontal partition plate 31b is connected to the upper portion of the core tank 15. The hot pool 41 is a region inside the vertical partition plate 31a and above the horizontal partition plate 31b. The cold pool 42 is a region outside the vertical partition plate 31a and below the horizontal partition plate 31b.

内側仕切板32は、円筒形状をなす。内側仕切板32は、内径が内容器31の鉛直仕切板31aの外径より大きい。内側仕切板32は、内容器31の鉛直仕切板31aの外側に配置される。内容器31の鉛直仕切板31aと内側仕切板32は、鉛直方向の上方における高さがほぼ同じ高さであり、内容器31の鉛直仕切板31aと内側仕切板32は、鉛直方向の下方における高さがほぼ同じ高さである。外側仕切板33は、円筒形状をなす。外側仕切板33は、内径が内側仕切板32の外径より大きい。外側仕切板33は、内側仕切板32の外側に配置される。外側仕切板33は、鉛直方向の上方における高さが内側仕切板32より低く、鉛直方向の下方における高さは内側仕切板32と同じ高さである。 The inner partition plate 32 has a cylindrical shape. The inner diameter of the inner partition plate 32 is larger than the outer diameter of the vertical partition plate 31a of the inner container 31. The inner partition plate 32 is arranged outside the vertical partition plate 31a of the inner container 31. The vertical partition plate 31a and the inner partition plate 32 of the inner container 31 have substantially the same height in the upper part in the vertical direction, and the vertical partition plate 31a and the inner partition plate 32 in the inner container 31 are in the lower part in the vertical direction. The height is almost the same. The outer partition plate 33 has a cylindrical shape. The inner diameter of the outer partition plate 33 is larger than the outer diameter of the inner partition plate 32. The outer partition plate 33 is arranged outside the inner partition plate 32. The height of the outer partition plate 33 in the upper part in the vertical direction is lower than that of the inner partition plate 32, and the height in the lower part in the vertical direction is the same as that of the inner partition plate 32.

主容器11は、主容器11の内面と外側仕切板33の外面との間に冷却材上昇流路43が設けられる。主容器11は、外側仕切板33の内面と内側仕切板32の外面との間に冷却材下降流路44が設けられる。また、主容器11は、内側仕切板32の内面と内容器31の鉛直仕切板31aの外面との間にスタグナント部45が設けられる。冷却材上昇流路43と冷却材下降流路44とスタグナント部45は、リング形状をなす空間部である。 The main container 11 is provided with a coolant rising flow path 43 between the inner surface of the main container 11 and the outer surface of the outer partition plate 33. The main container 11 is provided with a coolant descending flow path 44 between the inner surface of the outer partition plate 33 and the outer surface of the inner partition plate 32. Further, the main container 11 is provided with a stagnant portion 45 between the inner surface of the inner partition plate 32 and the outer surface of the vertical partition plate 31a of the inner container 31. The coolant ascending flow path 43, the coolant descending flow path 44, and the stagnant portion 45 are ring-shaped space portions.

冷却材上昇流路43は、上部が開放され、下部が閉塞板35により閉塞される。閉塞板35は、主容器11と外側仕切板33の下部に固定される。炉壁冷却用配管34は、一端部が閉塞板35に連結され、他端部がストロングバック13に連結される。冷却材上昇流路43は、炉壁冷却用配管34によりストロングバック13に連通する。冷却材下降流路44は、上部および下部が開放される。外側仕切板33と内側仕切板32の下部に多孔板36が固定される。冷却材上昇流路43と冷却材下降流路44は、上方で連通しており、冷却材下降流路44は、多孔板36を介してコールドプール42に連通する。主容器11は、一次冷却材が貯留される。一次冷却材は、液面Sが内容器31および内側仕切板32の上端部より下方で、外側仕切板33の上端部より上方に維持される。すなわち、炉壁冷却部30は、冷却材上昇流路43および冷却材下降流路44の上端部が一次冷却材の液面Sより下方で連通する潜り堰方式である。 The upper part of the coolant ascending flow path 43 is opened, and the lower part is closed by the closing plate 35. The closing plate 35 is fixed to the lower part of the main container 11 and the outer partition plate 33. One end of the furnace wall cooling pipe 34 is connected to the closing plate 35, and the other end is connected to the strong back 13. The coolant ascending flow path 43 communicates with the strong back 13 by the furnace wall cooling pipe 34. The upper and lower portions of the coolant descending flow path 44 are opened. The perforated plate 36 is fixed to the lower part of the outer partition plate 33 and the inner partition plate 32. The coolant ascending flow path 43 and the coolant descending flow path 44 communicate with each other upward, and the coolant descending flow path 44 communicates with the cold pool 42 via the perforated plate 36. The primary coolant is stored in the main container 11. In the primary cooling material, the liquid level S is maintained below the upper end portion of the inner container 31 and the inner partition plate 32 and above the upper end portion of the outer partition plate 33. That is, the furnace wall cooling unit 30 is a diving weir system in which the upper ends of the cooling material ascending flow path 43 and the cooling material descending flow path 44 communicate with each other below the liquid level S of the primary cooling material.

<原子炉の作動>
ポンプ19が作動すると、コールドプール42に貯留されている低温の一次冷却材がポンプ19の下部の吸込口から吸い込まれ、吐出口から炉内配管21を通してダイヤグリッド14に供給される。ダイヤグリッド14に供給された一次冷却材は、炉心槽15で加熱されて高温となって上昇する。高温の一次冷却材は、流入口24から中間熱交換器20に流入する。このとき、中間熱交換器20は、高温の一次冷却材と供給配管22から供給された二次冷却材との間で熱交換を行う。熱交換により高温となった二次冷却材は、排出配管23から蒸気発生器に送られる。一方、熱交換により低温となった一次冷却材は、流出口25からコールドプール42に流出される。
<Reactor operation>
When the pump 19 is operated, the low-temperature primary coolant stored in the cold pool 42 is sucked from the suction port at the lower part of the pump 19 and is supplied from the discharge port to the diamond grid 14 through the in-core pipe 21. The primary coolant supplied to the diamond grid 14 is heated in the core tank 15 and rises to a high temperature. The high temperature primary coolant flows into the intermediate heat exchanger 20 from the inflow port 24. At this time, the intermediate heat exchanger 20 exchanges heat between the high-temperature primary coolant and the secondary coolant supplied from the supply pipe 22. The secondary coolant that has become hot due to heat exchange is sent from the discharge pipe 23 to the steam generator. On the other hand, the primary coolant whose temperature has become low due to heat exchange flows out from the outlet 25 to the cold pool 42.

また、ダイヤグリッド14の一次冷却材は、一部がストロングバック13に流れ、炉壁冷却用配管34により冷却材上昇流路43に供給される。一次冷却材は、冷却材上昇流路43を上昇し、上端部から冷却材下降流路44に流れ、冷却材下降流路44を下降し、コールドプール42に流出される。このとき、一次冷却材が冷却材上昇流路43および冷却材下降流路44を流動することで、主容器11の内壁面が冷却される。 A part of the primary coolant of the diamond grid 14 flows to the strong back 13, and is supplied to the coolant ascending flow path 43 by the furnace wall cooling pipe 34. The primary coolant rises in the coolant ascending flow path 43, flows from the upper end portion to the coolant descending flow path 44, descends in the coolant descending flow path 44, and flows out to the cold pool 42. At this time, the primary coolant flows through the coolant ascending flow path 43 and the coolant descending flow path 44, so that the inner wall surface of the main container 11 is cooled.

<対流発生抑制部材の構成>
図2は、炉壁冷却部を表す断面図である。
<Convection generation suppression member configuration>
FIG. 2 is a cross-sectional view showing a furnace wall cooling unit.

図2に示すように、第1実施形態のタンク型原子炉10は、対流発生抑制部材50を有する。対流発生抑制部材50は、炉壁冷却部30の冷却材下降流路44に設けられる。対流発生抑制部材50は、冷却材下降流路44を下降する一次冷却材における対流の発生を抑制するものである。 As shown in FIG. 2, the tank-type reactor 10 of the first embodiment has a convection generation suppressing member 50. The convection generation suppressing member 50 is provided in the coolant descending flow path 44 of the furnace wall cooling unit 30. The convection generation suppressing member 50 suppresses the generation of convection in the primary coolant descending the coolant descending flow path 44.

対流発生抑制部材50は、冷却材下降流路44の下部に設けられる。ここで、冷却材下降流路44の下部とは、冷却材下降流路44の長手方向(鉛直方向)における中間位置より下方側の領域である。すなわち、冷却材下降流路44の全長L、全長Lの1/2の中間位置Mとしたとき、冷却材下降流路44は、中間位置Mより上方側の上方領域A1と、中間位置Mより下方側の下方領域A2とに区画される。対流発生抑制部材50は、下方領域A2だけに配置され、上方領域A1には配置されない。 The convection generation suppressing member 50 is provided at the lower part of the coolant descending flow path 44. Here, the lower part of the coolant descending flow path 44 is a region below the intermediate position in the longitudinal direction (vertical direction) of the coolant descending flow path 44. That is, when the total length L of the coolant descending flow path 44 and the intermediate position M which is 1/2 of the total length L are set, the coolant descending flow path 44 is located above the intermediate position M and above the upper region A1 and from the intermediate position M. It is partitioned into the lower region A2 on the lower side. The convection generation suppressing member 50 is arranged only in the lower region A2 and not in the upper region A1.

対流発生抑制部材50は、冷却材下降流路44の通路面積を減少させて隙間通路44aを設ける抵抗板51を有する。抵抗板51は、冷却材下降流路44の下方領域A2に長手方向に所定間隔を空けて複数(本実施形態では、3枚)配置される。抵抗板51の枚数は、本実施形態に限定されるものではなく、冷却材下降流路44の全長に応じて適宜設定される。 The convection generation suppressing member 50 has a resistance plate 51 that reduces the passage area of the coolant descending flow path 44 to provide the gap passage 44a. A plurality of resistance plates 51 (three in the present embodiment) are arranged in the lower region A2 of the coolant descending flow path 44 at predetermined intervals in the longitudinal direction. The number of resistance plates 51 is not limited to this embodiment, and is appropriately set according to the total length of the coolant descending flow path 44.

抵抗板51は、中央部に円形の孔が設けられたリングの円板形状をなす。抵抗板51は、外径が外側仕切板33の内径と同径である。また、抵抗板51は、内径が内側仕切板32の外径より大きい。抵抗板51は、外周部51aが外側仕切板33の内面に固定され、内周部51bが内側仕切板32の外面と所定隙間を空けて対向する。すなわち、抵抗板51の内周部51bと内側仕切板32の外面との間に隙間通路44aが設けられる。隙間通路44aは、内側仕切板32の外面の周方向に沿って連続する。 The resistance plate 51 has a disk shape of a ring provided with a circular hole in the center. The outer diameter of the resistance plate 51 is the same as the inner diameter of the outer partition plate 33. Further, the inner diameter of the resistance plate 51 is larger than the outer diameter of the inner partition plate 32. In the resistance plate 51, the outer peripheral portion 51a is fixed to the inner surface of the outer partition plate 33, and the inner peripheral portion 51b faces the outer surface of the inner partition plate 32 with a predetermined gap. That is, a gap passage 44a is provided between the inner peripheral portion 51b of the resistance plate 51 and the outer surface of the inner partition plate 32. The gap passage 44a is continuous along the circumferential direction of the outer surface of the inner partition plate 32.

<対流発生抑制部材の作用>
図3は、炉壁冷却部における一次冷却材の流れを表す概略図である。
<Action of convection suppression member>
FIG. 3 is a schematic view showing the flow of the primary coolant in the furnace wall cooling section.

図2および図3に示すように、一次冷却材は、冷却材上昇流路43を上昇し、上端部から冷却材下降流路44に流れ、冷却材下降流路44を下降する。冷却材下降流路44は、外側仕切板33の内面が非加熱面となり、内側仕切板32の外面が加熱面となる。このとき、冷却材下降流路44を下降する一次冷却材は、加熱面である内側仕切板32に加熱されて高温となり、一部が浮力によって上昇し、渦状の対流が発生しやすい。 As shown in FIGS. 2 and 3, the primary coolant rises in the coolant ascending flow path 43, flows from the upper end portion to the coolant descending flow path 44, and descends in the coolant descending flow path 44. In the coolant descending flow path 44, the inner surface of the outer partition plate 33 is a non-heated surface, and the outer surface of the inner partition plate 32 is a heated surface. At this time, the primary coolant descending the coolant descending flow path 44 is heated by the inner partition plate 32, which is a heating surface, to a high temperature, and a part of the primary coolant rises due to buoyancy, and vortex-shaped convection is likely to occur.

そこで、本実施形態では、冷却材下降流路44に対流発生抑制部材50としての複数の抵抗板51が配置されている。そのため、内側仕切板32に沿って下降する高温の一次冷却材C1は、隙間通路44aに流れる。また、外側仕切板33に沿って下降する低温の一次冷却材C2は、抵抗板51により隙間通路44a側に流れる。すると、高温の一次冷却材C1と低温の一次冷却材C2が隙間通路44aの近傍で混合して一次冷却材C3の下降流となり、混合しなかった場合と比較して一次冷却材C1の温度が抑制されるため、低温の一次冷却材と高温の一次冷却材の温度差が小さくなり、浮力による対流を抑制できる。また、一次冷却材C3の下降流は、隙間通路44aの通過時に流速が増加する。すると、渦状の対流が発生することで上昇する高温の一次冷却材C4の上昇流は、高速で下降する一次冷却材C3の下降流により抑え込まれる。そのため、内側仕切板32や外側仕切板33などが下降する低温の一次冷却材C2と上昇する高温の一次冷却材C4に交互にさらされることはなく、熱疲労により構造上の健全性が脅かされることもない。 Therefore, in the present embodiment, a plurality of resistance plates 51 as convection generation suppressing members 50 are arranged in the coolant descending flow path 44. Therefore, the high-temperature primary coolant C1 descending along the inner partition plate 32 flows into the gap passage 44a. Further, the low-temperature primary coolant C2 descending along the outer partition plate 33 flows to the gap passage 44a side by the resistance plate 51. Then, the high-temperature primary coolant C1 and the low-temperature primary coolant C2 are mixed in the vicinity of the gap passage 44a to form a downward convection of the primary coolant C3, and the temperature of the primary coolant C1 is higher than that in the case where they are not mixed. Since it is suppressed, the temperature difference between the low temperature primary coolant and the high temperature primary coolant becomes small, and convection due to buoyancy can be suppressed. Further, the flow velocity of the downward flow of the primary coolant C3 increases when it passes through the gap passage 44a. Then, the ascending current of the high-temperature primary coolant C4 that rises due to the generation of vortex-shaped convection is suppressed by the descending flow of the primary coolant C3 that descends at high speed. Therefore, the inner partition plate 32, the outer partition plate 33, and the like are not alternately exposed to the lowering low-temperature primary coolant C2 and the rising high-temperature primary coolant C4, and the structural soundness is threatened by thermal fatigue. There is no such thing.

<変形例>
なお、本発明の対流発生抑制部材は、上述した構成に限定されるものではない。図4は、第1実施形態のタンク型原子炉における炉壁冷却部の変形例を表す断面図である。
<Modification example>
The convection generation suppressing member of the present invention is not limited to the above-mentioned configuration. FIG. 4 is a cross-sectional view showing a modified example of the furnace wall cooling portion in the tank type reactor of the first embodiment.

第1実施形態の変形例において、図4に示すように、対流発生抑制部材50Aは、炉壁冷却部30の冷却材下降流路44に設けられる。対流発生抑制部材50Aは、冷却材下降流路44を下降する一次冷却材における対流の発生を抑制するものである。 In the modified example of the first embodiment, as shown in FIG. 4, the convection generation suppressing member 50A is provided in the coolant descending flow path 44 of the furnace wall cooling unit 30. The convection generation suppressing member 50A suppresses the generation of convection in the primary coolant descending the coolant descending flow path 44.

対流発生抑制部材50Aは、冷却材下降流路44の全長にわたって設けられる。対流発生抑制部材50Aは、冷却材下降流路44の通路面積を減少させて隙間通路44aを設ける抵抗板51を有する。抵抗板51は、冷却材下降流路44の全長に渡って長手方向に所定間隔を空けて複数(本実施形態では、6枚)配置される。抵抗板51の枚数は、本実施形態に限定されるものではなく、冷却材下降流路44の全長に応じて適宜設定される。 The convection generation suppressing member 50A is provided over the entire length of the coolant descending flow path 44. The convection generation suppressing member 50A has a resistance plate 51 that reduces the passage area of the coolant descending flow path 44 to provide the gap passage 44a. A plurality of resistance plates 51 (six in the present embodiment) are arranged at predetermined intervals in the longitudinal direction over the entire length of the coolant descending flow path 44. The number of resistance plates 51 is not limited to this embodiment, and is appropriately set according to the total length of the coolant descending flow path 44.

対流発生抑制部材50Aであっても、対流発生抑制部材50と同様に、内側仕切板32に沿って下降する高温の一次冷却材と、外側仕切板33に沿って下降する低温の一次冷却材とが、隙間通路44aで混合して流速が増加して下降する。そのため、高速で下降する一次冷却材により渦状の対流が発生することで上昇する高温の一次冷却材を抑え込むことができる。 Even in the convection generation suppressing member 50A, similarly to the convection generation suppressing member 50, the high temperature primary coolant descending along the inner partition plate 32 and the low temperature primary coolant descending along the outer partition plate 33. However, the mixture is mixed in the gap passage 44a, and the flow velocity increases and descends. Therefore, it is possible to suppress the high-temperature primary coolant that rises due to the generation of vortex-shaped convection due to the primary coolant that descends at high speed.

[第2実施形態]
図5は、第2実施形態のタンク型原子炉における炉壁冷却部を表す断面図、図6は、図5のVI-VI断面図、図7は、炉壁冷却部における一次冷却材の流れを表す概略図である。なお、第2実施形態の基本的な構成は、上述した第1実施形態と同様であり、図1を用いて説明し、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 5 is a cross-sectional view showing a furnace wall cooling section in the tank-type reactor of the second embodiment, FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5, and FIG. 7 is a flow of the primary coolant in the furnace wall cooling section. It is a schematic diagram which shows. The basic configuration of the second embodiment is the same as that of the first embodiment described above, and the members having the same functions as those of the first embodiment described above will be described with reference to FIG. Reference numerals are given and detailed description thereof will be omitted.

第2実施形態において、図5および図6に示すように、対流発生抑制部材50Bは、炉壁冷却部30の冷却材下降流路44に設けられる。対流発生抑制部材50Bは、冷却材下降流路44を下降する一次冷却材における対流の発生を抑制するものである。対流発生抑制部材50Bは、冷却材下降流路44の下部に設けられる。 In the second embodiment, as shown in FIGS. 5 and 6, the convection generation suppressing member 50B is provided in the coolant descending flow path 44 of the furnace wall cooling unit 30. The convection generation suppressing member 50B suppresses the generation of convection in the primary coolant descending the coolant descending flow path 44. The convection generation suppressing member 50B is provided at the lower part of the coolant descending flow path 44.

対流発生抑制部材50Bは、冷却材下降流路44の通路面積を減少させて隙間通路44aを設ける抵抗板52を有する。抵抗板52は、冷却材下降流路44の下部に長手方向に所定間隔を空けて複数(本実施形態では、3枚)配置される。 The convection generation suppressing member 50B has a resistance plate 52 that reduces the passage area of the coolant descending flow path 44 to provide the gap passage 44a. A plurality of resistance plates 52 (three in the present embodiment) are arranged below the coolant descending flow path 44 at predetermined intervals in the longitudinal direction.

抵抗板52は、中央部に円形の孔が設けられたリング状の円板形状をなす。抵抗板52は、外周部52aが外側仕切板33の内面に固定され、内周部52bが内側仕切板32の外面と所定隙間を空けて対向する。すなわち、抵抗板52の内周部52bと内側仕切板32の外面との間に隙間通路44aが設けられる。隙間通路44aは、内側仕切板32の外面の周方向に沿って連続する。 The resistance plate 52 has a ring-shaped disk shape with a circular hole in the center. In the resistance plate 52, the outer peripheral portion 52a is fixed to the inner surface of the outer partition plate 33, and the inner peripheral portion 52b faces the outer surface of the inner partition plate 32 with a predetermined gap. That is, a gap passage 44a is provided between the inner peripheral portion 52b of the resistance plate 52 and the outer surface of the inner partition plate 32. The gap passage 44a is continuous along the circumferential direction of the outer surface of the inner partition plate 32.

抵抗板52は、複数の貫通孔53が設けられる。貫通孔53は、円形であるが、楕円形状、多角形状、スリット形状などであってもよい。また、複数の貫通孔53は、千鳥格子状に配置されるが、格子状やランダム状であってもよい。さらに、複数の貫通孔53は、抵抗板52の全域に設けたが、外周部52a側だけに設けたり、内周部52b側だけに設けたり、外周部52aと内周部52bとの間だけに設けたりしてもよい。なお、複数の貫通孔53のうちの1つの貫通孔53の開口面積は、隙間通路44aの開口面積より小さいことが好ましい。また、貫通孔53の開口面積を合計した複数の貫通孔53の合計の開口面積は、隙間通路44aの開口面積より小さくしてもよい。 The resistance plate 52 is provided with a plurality of through holes 53. The through hole 53 is circular, but may have an elliptical shape, a polygonal shape, a slit shape, or the like. Further, although the plurality of through holes 53 are arranged in a houndstooth pattern, they may be in a lattice pattern or a random pattern. Further, although the plurality of through holes 53 are provided in the entire area of the resistance plate 52, they are provided only on the outer peripheral portion 52a side, only on the inner peripheral portion 52b side, or only between the outer peripheral portion 52a and the inner peripheral portion 52b. It may be provided in. The opening area of one of the through holes 53 is preferably smaller than the opening area of the gap passage 44a. Further, the total opening area of the plurality of through holes 53, which is the total opening area of the through holes 53, may be smaller than the opening area of the gap passage 44a.

図7は、炉壁冷却部における一次冷却材の流れを表す概略図である。 FIG. 7 is a schematic view showing the flow of the primary coolant in the furnace wall cooling section.

図5および図7に示すように、一次冷却材は、冷却材上昇流路43を上昇し、上端部から冷却材下降流路44に流れ、冷却材下降流路44を下降する。このとき、内側仕切板32に沿って下降する高温の一次冷却材C1は、隙間通路44aに流れる。また、外側仕切板33に沿って下降する低温の一次冷却材C2は、抵抗板52により隙間通路44a側に流れる。すると、高温の一次冷却材C1と低温の一次冷却材C2が隙間通路44aで混合して一次冷却材C3の下降流となり、混合しなかった場合と比較して一次冷却材C1の温度が抑制されるため、低温の一次冷却材と高温の一次冷却材の温度差が小さくなり、浮力による対流を抑制できる。また、一次冷却材C3の下降流は、隙間通路44aの通過時に流速が増加する。すると、渦状の対流が発生することで上昇する高温の一次冷却材C4の上昇流は、高速で下降する一次冷却材C3の下降流により抑え込まれる。そのため、内側仕切板32や外側仕切板33などが下降する低温の一次冷却材C2と上昇する高温の一次冷却材C4に交互にさらされることはなく、熱疲労により構造上の健全性が脅かされることもない。 As shown in FIGS. 5 and 7, the primary coolant rises in the coolant ascending flow path 43, flows from the upper end portion to the coolant descending flow path 44, and descends in the coolant descending flow path 44. At this time, the high-temperature primary coolant C1 descending along the inner partition plate 32 flows into the gap passage 44a. Further, the low-temperature primary coolant C2 descending along the outer partition plate 33 flows to the gap passage 44a side by the resistance plate 52. Then, the high-temperature primary coolant C1 and the low-temperature primary coolant C2 are mixed in the gap passage 44a to form a downward convection of the primary coolant C3, and the temperature of the primary coolant C1 is suppressed as compared with the case where they are not mixed. Therefore, the temperature difference between the low-temperature primary coolant and the high-temperature primary coolant becomes small, and convection due to buoyancy can be suppressed. Further, the flow velocity of the downward flow of the primary coolant C3 increases when it passes through the gap passage 44a. Then, the ascending current of the high-temperature primary coolant C4 that rises due to the generation of vortex-shaped convection is suppressed by the descending flow of the primary coolant C3 that descends at high speed. Therefore, the inner partition plate 32, the outer partition plate 33, and the like are not alternately exposed to the lowering low-temperature primary coolant C2 and the rising high-temperature primary coolant C4, and the structural soundness is threatened by thermal fatigue. There is no such thing.

また、一次冷却材C3が隙間通路44aを通って下降することから、抵抗板52の外周部52aの下方側の領域で一次冷却材のよどみが発生しやすい。そこで、本実施形態では、抵抗板52に複数の貫通孔53を設けている。そのため、外側仕切板33に沿って下降する低温の一次冷却材C2の一部は、複数の貫通孔53を通過する一次冷却材C5の下降流となる。すると、抵抗板52の外周部52aの下方側の領域は、複数の貫通孔53を通過した一次冷却材C5の下降流により一次冷却材の流れが生成され、一次冷却材のよどみが解消される。 Further, since the primary coolant C3 descends through the gap passage 44a, the primary coolant tends to stagnate in the region on the lower side of the outer peripheral portion 52a of the resistance plate 52. Therefore, in the present embodiment, the resistance plate 52 is provided with a plurality of through holes 53. Therefore, a part of the low-temperature primary coolant C2 descending along the outer partition plate 33 becomes a downward flow of the primary coolant C5 passing through the plurality of through holes 53. Then, in the region on the lower side of the outer peripheral portion 52a of the resistance plate 52, the flow of the primary coolant is generated by the downward flow of the primary coolant C5 that has passed through the plurality of through holes 53, and the stagnation of the primary coolant is eliminated. ..

[第3実施形態]
図8は、第3実施形態のタンク型原子炉における炉壁冷却部を表す断面図である。なお、第3実施形態の基本的な構成は、上述した第1実施形態と同様であり、図1を用いて説明し、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 8 is a cross-sectional view showing a furnace wall cooling unit in the tank type reactor of the third embodiment. The basic configuration of the third embodiment is the same as that of the first embodiment described above, and will be described with reference to FIG. 1. The members having the same functions as those of the first embodiment described above are the same. Reference numerals are given and detailed description thereof will be omitted.

第3実施形態において、図8に示すように、対流発生抑制部材50Cは、炉壁冷却部30の冷却材下降流路44に設けられる。対流発生抑制部材50Cは、冷却材下降流路44を下降する一次冷却材における対流の発生を抑制するものである。対流発生抑制部材50Cは、冷却材下降流路44の下部に設けられる。 In the third embodiment, as shown in FIG. 8, the convection generation suppressing member 50C is provided in the coolant descending flow path 44 of the furnace wall cooling unit 30. The convection generation suppressing member 50C suppresses the generation of convection in the primary coolant descending the coolant descending flow path 44. The convection generation suppressing member 50C is provided at the lower part of the coolant descending flow path 44.

対流発生抑制部材50Cは、冷却材下降流路44の通路面積を減少させて隙間通路44aを設ける抵抗板54を有する。抵抗板54は、冷却材下降流路44の下部に長手方向に所定間隔を空けて複数(本実施形態では、3枚)配置される。抵抗板54は、中央部に円形の孔が設けられた円板形状をなす。抵抗板54は、外側仕切板33の内面に固定され、内側仕切板32側に隙間通路44aが設けられる。隙間通路44aは、内側仕切板32の外面の周方向に沿って連続する。抵抗板54は、複数の貫通孔55が設けられる。 The convection generation suppressing member 50C has a resistance plate 54 that reduces the passage area of the coolant descending flow path 44 to provide the gap passage 44a. A plurality of resistance plates 54 (three in the present embodiment) are arranged below the coolant descending flow path 44 at predetermined intervals in the longitudinal direction. The resistance plate 54 has a disk shape with a circular hole in the center. The resistance plate 54 is fixed to the inner surface of the outer partition plate 33, and a gap passage 44a is provided on the inner partition plate 32 side. The gap passage 44a is continuous along the circumferential direction of the outer surface of the inner partition plate 32. The resistance plate 54 is provided with a plurality of through holes 55.

抵抗板54は、主容器11の径方向の一端部が冷却材下降流路44の流れ方向の下流側に向けて傾斜して配置される。すなわち、抵抗板54は、外周部が外側仕切板33の内面に固定され、内周部側が内側仕切板32側に向けて鉛直方向の下方に所定の傾斜角度θだけ傾斜するように延出される。抵抗板54は、水平方向に対して傾斜角度θだけ傾斜している。 The resistance plate 54 is arranged so that one end in the radial direction of the main container 11 is inclined toward the downstream side in the flow direction of the coolant descending flow path 44. That is, the outer peripheral portion of the resistance plate 54 is fixed to the inner surface of the outer partition plate 33, and the inner peripheral portion side is extended downward in the vertical direction toward the inner partition plate 32 side by a predetermined inclination angle θ. .. The resistance plate 54 is inclined by an inclination angle θ with respect to the horizontal direction.

なお、抵抗板54を、主容器11の径方向の一端部が冷却材下降流路44の流れ方向の下流側に向けて傾斜して配置したが、抵抗板54を、主容器11の径方向の一端部が冷却材下降流路44の流れ方向の上流側に向けて傾斜して配置してもよい。すなわち、抵抗板54を、内周部側が内側仕切板32側に向けて鉛直方向の上方に傾斜角度θだけ傾斜するように延出してもよい。 The resistance plate 54 was arranged so that one end in the radial direction of the main container 11 was inclined toward the downstream side in the flow direction of the coolant descending flow path 44, but the resistance plate 54 was arranged in the radial direction of the main container 11. One end of the coolant may be inclined toward the upstream side in the flow direction of the coolant descending flow path 44. That is, the resistance plate 54 may be extended so that the inner peripheral portion side is inclined upward by the inclination angle θ toward the inner partition plate 32 side in the vertical direction.

一次冷却材は、冷却材上昇流路43を上昇し、上端部から冷却材下降流路44に流れ、冷却材下降流路44を下降する。このとき、内側仕切板32に沿って下降する高温の一次冷却材C1は、隙間通路44aに流れる。また、外側仕切板33に沿って下降する低温の一次冷却材C2は、抵抗板51により隙間通路44a側に流れる。このとき、抵抗板54は、隙間通路44a側が下方に傾斜していることから、低温の一次冷却材C2が隙間通路44aに流れやすくなる。すると、高温の一次冷却材C1と低温の一次冷却材C2が隙間通路44aで混合して一次冷却材C3の下降流となり、混合しなかった場合と比較して一次冷却材C1の温度が抑制されるため、低温の一次冷却材と高温の一次冷却材の温度差が小さくなり、浮力による対流を抑制できる。また、一次冷却材C3の下降流は、隙間通路44aの通過時に流速が増加する。すると、渦状の対流が発生することで上昇する高温の一次冷却材C4の上昇流は、高速で下降する一次冷却材C3の下降流により抑え込まれる。そのため、内側仕切板32や外側仕切板33などが下降する低温の一次冷却材C2と上昇する高温の一次冷却材C4に交互にさらされることはなく、熱疲労により構造上の健全性が脅かされることもない。 The primary coolant rises in the coolant ascending flow path 43, flows from the upper end portion to the coolant descending flow path 44, and descends in the coolant descending flow path 44. At this time, the high-temperature primary coolant C1 descending along the inner partition plate 32 flows into the gap passage 44a. Further, the low-temperature primary coolant C2 descending along the outer partition plate 33 flows to the gap passage 44a side by the resistance plate 51. At this time, since the resistance plate 54 is inclined downward on the gap passage 44a side, the low-temperature primary coolant C2 easily flows into the gap passage 44a. Then, the high-temperature primary coolant C1 and the low-temperature primary coolant C2 are mixed in the gap passage 44a to form a downward convection of the primary coolant C3, and the temperature of the primary coolant C1 is suppressed as compared with the case where they are not mixed. Therefore, the temperature difference between the low-temperature primary coolant and the high-temperature primary coolant becomes small, and convection due to buoyancy can be suppressed. Further, the flow velocity of the downward flow of the primary coolant C3 increases when it passes through the gap passage 44a. Then, the ascending current of the high-temperature primary coolant C4 that rises due to the generation of vortex-shaped convection is suppressed by the descending flow of the primary coolant C3 that descends at high speed. Therefore, the inner partition plate 32, the outer partition plate 33, and the like are not alternately exposed to the lowering low-temperature primary coolant C2 and the rising high-temperature primary coolant C4, and the structural soundness is threatened by thermal fatigue. There is no such thing.

なお、抵抗板54が傾斜していることから、抵抗板54の外周部の下方側の領域で一次冷却材のよどみが発生しやすい。そこで、本実施形態では、抵抗板54に複数の貫通孔が設けられている。そのため、一次冷却材の一部が複数の貫通孔を通って下降することから、抵抗板54の外周部の下方側の領域でのよどみが解消される。 Since the resistance plate 54 is inclined, the primary coolant tends to stagnate in the lower region of the outer peripheral portion of the resistance plate 54. Therefore, in the present embodiment, the resistance plate 54 is provided with a plurality of through holes. Therefore, since a part of the primary coolant descends through the plurality of through holes, the stagnation in the lower region of the outer peripheral portion of the resistance plate 54 is eliminated.

[本実施形態の作用効果]
第1の態様に係る原子炉は、主容器11と、主容器11の内部に設けられる冷却材上昇流路43と、冷却材上昇流路43より主容器11の中心側に設けられて上端部が冷却材上昇流路43の上端部に連通する冷却材下降流路44と、冷却材下降流路44に設けられて対流の発生を抑制する対流発生抑制部材50,50A,50B,50Cとを備える。
[Action and effect of this embodiment]
The reactor according to the first aspect has a main container 11, a coolant rising flow path 43 provided inside the main container 11, and an upper end portion provided on the center side of the main container 11 from the coolant rising flow path 43. The coolant descending flow path 44 communicating with the upper end of the coolant ascending flow path 43 and the convection generation suppressing members 50, 50A, 50B, 50C provided in the coolant descending flow path 44 to suppress the generation of convection. Be prepared.

第1の態様に係る原子炉は、冷却材下降流路44に対流の発生を抑制する対流発生抑制部材50,50A,50B,50Cが設けられる。一次冷却材は、冷却材上昇流路43を上昇し、上端部から冷却材下降流路44に流れ、冷却材下降流路44を下降する。このとき、冷却材下降流路44を下降する一次冷却材は、加熱面である内側仕切板32に加熱されて高温となり、一部が浮力によって上昇し、渦状の対流が発生しやすい。しかし、冷却材下降流路44を下降する一次冷却材は、対流発生抑制部材50,50A,50B,50Cにより対流の発生が抑制される。そのため、主容器11、内側仕切板32、外側仕切板33などの構造物の健全性を維持することができる。 In the reactor according to the first aspect, convection generation suppressing members 50, 50A, 50B, 50C for suppressing the generation of convection are provided in the coolant descending flow path 44. The primary coolant rises in the coolant ascending flow path 43, flows from the upper end portion to the coolant descending flow path 44, and descends in the coolant descending flow path 44. At this time, the primary coolant descending the coolant descending flow path 44 is heated by the inner partition plate 32, which is a heating surface, to a high temperature, and a part of the primary coolant rises due to buoyancy, and vortex-shaped convection is likely to occur. However, in the primary coolant descending the coolant descending flow path 44, the generation of convection is suppressed by the convection generation suppressing members 50, 50A, 50B, 50C. Therefore, the soundness of structures such as the main container 11, the inner partition plate 32, and the outer partition plate 33 can be maintained.

また、冷却材下降流路44に対流発生抑制部材50,50A,50B,50Cが設けられていることから、冷却材下降流路44を形成する内側仕切板32や外側仕切板33が互いに接近する方向に熱変形しようとするとき、対流発生抑制部材50,50A,50B,50Cがサポート部材として機能することで、内側仕切板32や外側仕切板33の大きな変形を抑制することができる。 Further, since the convection generation suppressing members 50, 50A, 50B, and 50C are provided in the coolant descending flow path 44, the inner partition plate 32 and the outer partition plate 33 forming the coolant descending flow path 44 approach each other. When the convection generation suppressing members 50, 50A, 50B, and 50C function as support members when attempting to thermally deform in the direction, large deformation of the inner partition plate 32 and the outer partition plate 33 can be suppressed.

第2の態様に係る原子炉は、対流発生抑制部材50,50A,50B,50Cは、冷却材下降流路44における下部に設けられる。これにより、一次冷却材が冷却材下降流路44を下降するとき、渦状の対流が冷却材下降流路44の下部で発生する。そのため、対流発生抑制部材50,50A,50B,50Cを冷却材下降流路44の下部に配置することで、渦状の対流魔の発生を効果的に抑制することができる。 In the reactor according to the second aspect, the convection generation suppressing members 50, 50A, 50B, 50C are provided at the lower part in the coolant descending flow path 44. As a result, when the primary coolant descends the coolant descending flow path 44, vortex-shaped convection is generated at the lower part of the coolant descending flow path 44. Therefore, by arranging the convection generation suppressing members 50, 50A, 50B, 50C at the lower part of the coolant descending flow path 44, the generation of vortex-shaped convection magic can be effectively suppressed.

第3の態様に係る原子炉は、対流発生抑制部材50,50A,50B,50Cは、冷却材下降流路44の通路面積が減少する隙間通路44aを形成する抵抗板51,52,54を有する。これにより、冷却材下降流路44を下降する一次冷却材は、隙間通路44aの通過時に加速されることから、対流の発生による一次冷却材の上昇を適正に抑制することができる。 In the reactor according to the third aspect, the convection generation suppressing members 50, 50A, 50B, 50C have resistance plates 51, 52, 54 forming a gap passage 44a in which the passage area of the coolant descending flow path 44 is reduced. .. As a result, the primary coolant descending the coolant descending flow path 44 is accelerated when passing through the gap passage 44a, so that the rise of the primary coolant due to the generation of convection can be appropriately suppressed.

第4の態様に係る原子炉は、抵抗板51,52,54は、冷却材下降流路44の長手方向に所定間隔を空けて複数配置される。これにより、冷却材下降流路44における所定の区間で、抵抗板51,52,54により対流の発生を適正に抑制することができる。 In the reactor according to the fourth aspect, a plurality of resistance plates 51, 52, 54 are arranged at predetermined intervals in the longitudinal direction of the coolant descending flow path 44. As a result, the generation of convection can be appropriately suppressed by the resistance plates 51, 52, 54 in the predetermined section of the coolant descending flow path 44.

第5の態様に係る原子炉は、冷却材上昇流路43は、主容器11と主容器11の内側に配置される外側仕切板33との間に設けられ、冷却材下降流路44は、外側仕切板33と外側仕切板33の内側に配置される内側仕切板32との間に設けられ、抵抗板51,52,54は、主容器11の径方向における一端部が外側仕切板33と内側仕切板32のいずれか一方に固定され、主容器11の径方向における他端部と外側仕切板33と内側仕切板32のいずれか他方との間に隙間通路44aが設けられる。これにより、内側仕切板32に沿って下降する高温の一次冷却材C1と、外側仕切板33に沿って下降する低温の一次冷却材C2は、加熱面側にある隙間通路44aの近傍で合流し、隙間通路44aの追加時に加速される。そのため、加熱面側で発生しやすい渦状の対流の発生を効果的に抑制することができる。 In the reactor according to the fifth aspect, the coolant ascending flow path 43 is provided between the main container 11 and the outer partition plate 33 arranged inside the main container 11, and the coolant descending flow path 44 is provided. The resistance plates 51, 52, 54 are provided between the outer partition plate 33 and the inner partition plate 32 arranged inside the outer partition plate 33, and one end of the resistance plates 51, 52, 54 in the radial direction of the main container 11 is the outer partition plate 33. It is fixed to either one of the inner partition plates 32, and a gap passage 44a is provided between the other end of the main container 11 in the radial direction and between the outer partition plate 33 and any other of the inner partition plates 32. As a result, the high-temperature primary coolant C1 descending along the inner partition plate 32 and the low-temperature primary coolant C2 descending along the outer partition plate 33 merge in the vicinity of the gap passage 44a on the heating surface side. , Accelerates when the gap passage 44a is added. Therefore, it is possible to effectively suppress the generation of vortex-shaped convection that tends to occur on the heating surface side.

第6の態様に係る原子炉は、抵抗板52は、貫通孔53が設けられる。これにより、冷却材下降流路44を下降する一次冷却材は、隙間通路44a側に流れると共に、一部が複数の貫通孔53を通って下降することとなり、抵抗板52の外周部52aの下方側の領域で一次冷却材の流れが生成され、一次冷却材のよどみを解消することができる。 In the nuclear reactor according to the sixth aspect, the resistance plate 52 is provided with a through hole 53. As a result, the primary coolant that descends the coolant descending flow path 44 flows toward the gap passage 44a, and a part of the primary coolant descends through the plurality of through holes 53, which is below the outer peripheral portion 52a of the resistance plate 52. A flow of primary coolant is generated in the area on the side, and the stagnation of the primary coolant can be eliminated.

第7の態様に係る原子炉は、貫通孔53の開口面積は、隙間通路44aの開口面積より小さい。これにより、対流の発生を効果的に抑制することができると共に、一次冷却材のよどみを解消することができる。 In the reactor according to the seventh aspect, the opening area of the through hole 53 is smaller than the opening area of the gap passage 44a. As a result, the generation of convection can be effectively suppressed, and the stagnation of the primary coolant can be eliminated.

第8の態様に係る原子炉は、抵抗板54は、主容器11の径方向における一端部が冷却材下降流路44の流れ方向の上流側または下流側に向けて傾斜して配置される。これにより、冷却材下降流路44で一次冷却材をスムースに流すことができる。 In the reactor according to the eighth aspect, the resistance plate 54 is arranged so that one end in the radial direction of the main container 11 is inclined toward the upstream side or the downstream side in the flow direction of the coolant descending flow path 44. As a result, the primary coolant can be smoothly flowed in the coolant descending flow path 44.

第9の態様に係る原子炉は、冷却材上昇流路43および冷却材下降流路44は、上端部が一次冷却材の液面Sより下方で連通する。これにより、抵抗板51,52,54により対流の発生を適正に抑制することができる。 In the reactor according to the ninth aspect, the coolant ascending flow path 43 and the coolant descending flow path 44 communicate with each other at the upper end thereof below the liquid level S of the primary coolant. As a result, the generation of convection can be appropriately suppressed by the resistance plates 51, 52, 54.

なお、上述した実施形態では、抵抗板51,52,54を外側仕切板33に固定し、内側仕切板32との間に隙間通路44aを設けたが、この構成に限定されるものではない。例えば、抵抗板51,52,54を内側仕切板32に固定し、外側仕切板33との間に隙間通路44aを設けてもよい。 In the above-described embodiment, the resistance plates 51, 52, and 54 are fixed to the outer partition plate 33, and the gap passage 44a is provided between the resistance plates 51, 52, and 54 and the inner partition plate 32, but the configuration is not limited to this. For example, the resistance plates 51, 52, 54 may be fixed to the inner partition plate 32, and a gap passage 44a may be provided between the resistance plates 51, 52, and 54 and the outer partition plate 33.

また、上述した実施形態では、抵抗板51,52,54を内側仕切板32および外側仕切板33の周方向に連続したものとしたが、内側仕切板32および外側仕切板33の周方向に断続的に設けてもよい。 Further, in the above-described embodiment, the resistance plates 51, 52, 54 are continuous in the circumferential direction of the inner partition plate 32 and the outer partition plate 33, but are intermittent in the circumferential direction of the inner partition plate 32 and the outer partition plate 33. It may be provided as a target.

また、上述した実施形態にて、炉壁冷却部30は、冷却材上昇流路43および冷却材下降流路44の上端部が一次冷却材の液面Sより下方で連通する潜り堰方式であるが、冷却材上昇流路43および冷却材下降流路44の上端部が一次冷却材の液面Sより上方で連通するオーバーフロー方式であってもよい。 Further, in the above-described embodiment, the furnace wall cooling unit 30 is a diving weir system in which the upper ends of the cooling material ascending flow path 43 and the cooling material descending flow path 44 communicate with each other below the liquid level S of the primary cooling material. However, there may be an overflow method in which the upper ends of the cooling material ascending flow path 43 and the cooling material descending flow path 44 communicate with each other above the liquid level S of the primary cooling material.

また、上述した実施形態では、本発明の対流発生抑制部材をタンク型原子炉10の炉壁冷却部30に適用したが、一般的な原子炉にも適用することができる。すなわち、非加熱面と加熱面を有する下降流路であれば、適用箇所は限定されない。 Further, in the above-described embodiment, the convection generation suppressing member of the present invention is applied to the furnace wall cooling unit 30 of the tank type nuclear reactor 10, but it can also be applied to a general nuclear reactor. That is, the application location is not limited as long as it is a descending flow path having a non-heated surface and a heated surface.

10 タンク型原子炉(原子炉)
11 主容器
12 ルーフデッキ
13 ストロングバック
14 ダイヤグリッド
15 炉心槽
16 燃料集合体
18 炉心上部構造
19 ポンプ
20 中間熱交換器
21 炉内配管
22 供給配管
23 排出配管
24 流入口
25 流出口
30 炉壁冷却部
31 内容器
31a 鉛直仕切板
31b 水平仕切板
32 内側仕切板
33 外側仕切板
34 炉壁冷却用配管
35 閉塞板
36 多孔板
41 ホットプール
42 コールドプール
43 冷却材上昇流路
44 冷却材下降流路
44a 隙間通路
45 スタグナント部
50,50A,50B,50C 対流発生抑制部材
51,52,54 抵抗板
53 貫通孔
A1 上方領域
A2 下方領域
C1,C2,C3,C4,C5 一次冷却材
L 全長
M 中間位置
S 液面
θ 傾斜角度
10 Tank type nuclear reactor (reactor)
11 Main container 12 Roof deck 13 Strong back 14 Diamond grid 15 Core tank 16 Fuel assembly 18 Core superstructure 19 Pump 20 Intermediate heat exchanger 21 In-core piping 22 Supply piping 23 Discharge piping 24 Inflow port 25 Outlet 30 Reactor wall cooling Part 31 Inner container 31a Vertical partition plate 31b Horizontal partition plate 32 Inner partition plate 33 Outer partition plate 34 Reactor wall cooling piping 35 Blocking plate 36 Perforated plate 41 Hot pool 42 Cold pool 43 Coolant ascending flow path 44 Coolant descending flow path 44a Gap passage 45 Stagnanto part 50, 50A, 50B, 50C Convection generation suppression member 51, 52, 54 Resistance plate 53 Through hole A1 Upper area A2 Lower area C1, C2, C3, C4, C5 Primary cooling material L Overall length M Intermediate position S liquid level θ tilt angle

Claims (9)

容器と、
前記容器の内側に設けられる冷却材上昇流路と、
前記冷却材上昇流路より前記容器の中心側に設けられて上端部が前記冷却材上昇流路の上端部に連通する冷却材下降流路と、
前記冷却材下降流路に設けられて対流の発生を抑制する対流発生抑制部材と、
を備える原子炉。
With the container
The coolant ascending flow path provided inside the container and
A coolant descending flow path provided on the center side of the container from the coolant rising flow path and having an upper end communicating with the upper end portion of the coolant rising flow path.
A convection generation suppressing member provided in the coolant descending flow path and suppressing the generation of convection,
Reactor equipped with.
前記対流発生抑制部材は、前記冷却材下降流路における下部に設けられる、
請求項1に記載の原子炉。
The convection generation suppressing member is provided at the lower part of the coolant descending flow path.
The nuclear reactor according to claim 1.
前記対流発生抑制部材は、前記冷却材下降流路の通路面積が減少する隙間通路を形成する抵抗板を有する、
請求項1または請求項2に記載の原子炉。
The convection generation suppressing member has a resistance plate that forms a gap passage in which the passage area of the coolant descending flow path is reduced.
The nuclear reactor according to claim 1 or 2.
前記抵抗板は、前記冷却材下降流路の長手方向に所定間隔を空けて複数配置される、
請求項3に記載の原子炉。
A plurality of the resistance plates are arranged at predetermined intervals in the longitudinal direction of the coolant descending flow path.
The nuclear reactor according to claim 3.
前記冷却材上昇流路は、前記容器と前記容器の内側に配置される外側仕切板との間に設けられ、前記冷却材下降流路は、前記外側仕切板と外側仕切板の内側に配置される内側仕切板との間に設けられ、前記抵抗板は、前記容器の径方向における一端部が前記外側仕切板と前記内側仕切板のいずれか一方に固定され、前記容器の径方向における他端部と前記外側仕切板と前記内側仕切板のいずれか他方との間に前記隙間通路が設けられる、
請求項3または請求項4に記載の原子炉。
The coolant ascending flow path is provided between the container and the outer partition plate arranged inside the container, and the coolant descending flow path is arranged inside the outer partition plate and the outer partition plate. The resistance plate is provided between the inner partition plate and the inner partition plate, and one end of the resistance plate in the radial direction of the container is fixed to either the outer partition plate or the inner partition plate in the radial direction of the container. The gap passage is provided between the portion, the outer partition plate, and any one of the inner partition plates.
The nuclear reactor according to claim 3 or 4.
前記抵抗板は、貫通孔が設けられる、
請求項3から請求項5のいずれか一項に記載の原子炉。
The resistance plate is provided with a through hole.
The nuclear reactor according to any one of claims 3 to 5.
前記貫通孔の開口面積は、前記隙間通路の開口面積より小さい、
請求項6に記載の原子炉。
The opening area of the through hole is smaller than the opening area of the gap passage.
The nuclear reactor according to claim 6.
前記抵抗板は、前記容器の径方向における一端部が前記冷却材下降流路の流れ方向の上流側または下流側に向けて傾斜して配置される、
請求項3から請求項7のいずれか一項に記載の原子炉。
The resistance plate is arranged so that one end in the radial direction of the container is inclined toward the upstream side or the downstream side in the flow direction of the coolant descending flow path.
The nuclear reactor according to any one of claims 3 to 7.
前記冷却材上昇流路および前記冷却材下降流路は、上端部が冷却材液面より下方で連通する、
請求項1から請求項8のいずれか一項に記載の原子炉。
The upper end of the cooling material ascending flow path and the cooling material descending flow path communicate with each other below the cooling material liquid level.
The nuclear reactor according to any one of claims 1 to 8.
JP2020168321A 2020-10-05 2020-10-05 Reactor Active JP7394041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020168321A JP7394041B2 (en) 2020-10-05 2020-10-05 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168321A JP7394041B2 (en) 2020-10-05 2020-10-05 Reactor

Publications (2)

Publication Number Publication Date
JP2022060701A true JP2022060701A (en) 2022-04-15
JP7394041B2 JP7394041B2 (en) 2023-12-07

Family

ID=81125092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168321A Active JP7394041B2 (en) 2020-10-05 2020-10-05 Reactor

Country Status (1)

Country Link
JP (1) JP7394041B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547087A (en) * 1977-06-13 1979-01-19 Commissariat Energie Atomique Device for preventing overheat of nuclear reactor cooled by liquid metal
JPS5763484A (en) * 1980-10-03 1982-04-16 Tokyo Shibaura Electric Co Nuclear reactor
JPS58178292A (en) * 1982-04-12 1983-10-19 株式会社東芝 Tank type fast breeder
JPH08160178A (en) * 1994-12-01 1996-06-21 Hitachi Ltd Liquid metal cooled reactor
JP2012163414A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Reactor vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547087A (en) * 1977-06-13 1979-01-19 Commissariat Energie Atomique Device for preventing overheat of nuclear reactor cooled by liquid metal
US4298431A (en) * 1977-06-13 1981-11-03 Commissariat A L'energie Atomique Device for the thermal protection of an internal structure of a liquid metal cooled fast reactor
JPS5763484A (en) * 1980-10-03 1982-04-16 Tokyo Shibaura Electric Co Nuclear reactor
JPS58178292A (en) * 1982-04-12 1983-10-19 株式会社東芝 Tank type fast breeder
JPH08160178A (en) * 1994-12-01 1996-06-21 Hitachi Ltd Liquid metal cooled reactor
JP2012163414A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Reactor vessel

Also Published As

Publication number Publication date
JP7394041B2 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
RU2408094C2 (en) Nuclear reactor, namely nuclear reactor with liquid-metal cooling
KR100935089B1 (en) Passive safety grade residual heat removal system that eliminates the possibility of sodium solidification in the intermediate sodium loop for residual heat removal in sodium-cooled fast reactors
US20210272708A1 (en) Low power, fast spectrum molten fuel reactor
US20220005619A1 (en) Modified low power, fast spectrum molten fuel reactor designs having improved neutronics
EP4022650B1 (en) Molten fuel reactors and orifice ring plates for molten fuel reactors
JP2023538046A (en) Heat exchanger configuration for nuclear reactor
JP4825763B2 (en) Reflector-controlled fast reactor
WO2018071081A2 (en) Fuel-cooled neutron reflector
JP2019525161A (en) Reactor with ascending heat exchanger
JP2022060701A (en) Atomic reactor
JP7439263B2 (en) integrated reactor
EP2814039B1 (en) Water supply pipe for steam generator
KR20240035379A (en) Modified low-power, fast-spectrum molten fuel reactor design with improved neutron engineering.
JP2972162B2 (en) Furnace wall cooling protection structure of fast reactor
JP2554146B2 (en) Tank type fast breeder reactor
JP2005221491A (en) Supercritical water-cooled nuclear reactor
JP4220845B2 (en) Reactor internal structure
JP2002257971A (en) Nuclear reactor vessel
JPS62278485A (en) Nuclear reactor structure
JPH02222861A (en) Fast breeder reactor
JPS61237083A (en) Tank type fast breeder reactor
JPH0763868A (en) Fuel assembly for pressure tube reactor
JPH01217292A (en) Tank reactor
JPS6131440B2 (en)
JPH0231360B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7394041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150