[go: up one dir, main page]

JP2022053799A - Valve abnormality determination device and method - Google Patents

Valve abnormality determination device and method Download PDF

Info

Publication number
JP2022053799A
JP2022053799A JP2020160620A JP2020160620A JP2022053799A JP 2022053799 A JP2022053799 A JP 2022053799A JP 2020160620 A JP2020160620 A JP 2020160620A JP 2020160620 A JP2020160620 A JP 2020160620A JP 2022053799 A JP2022053799 A JP 2022053799A
Authority
JP
Japan
Prior art keywords
valve
pressure
abnormality
tank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020160620A
Other languages
Japanese (ja)
Other versions
JP7338597B2 (en
Inventor
和男 山本
Kazuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020160620A priority Critical patent/JP7338597B2/en
Priority to CN202110779619.7A priority patent/CN114323631B/en
Publication of JP2022053799A publication Critical patent/JP2022053799A/en
Application granted granted Critical
Publication of JP7338597B2 publication Critical patent/JP7338597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Details Of Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

To suppress erroneous determination of abnormality of a tank valve without increasing gas discharge force.SOLUTION: A pressure of a closed space is detected by a sensor provided with the closed space formed at a downstream side from a tank valve as a first valve, the pressure of the closed space is increased by a pressure of gas charged into the tank, the gas of the closed space is released into the external by temporarily opening a second valve from a first state of closing the first valve, thus the pressure of the closed space is lowered with respect to the pressure in the first state, and a second state in which the second valve is closed is made. Then, presence or absence of valve closing abnormality of the first valve is determined by a predetermined first determination method when a pressure reduction amount to the second state is less than a predetermined threshold value, and determined by a second determination method having accuracy higher than that of the first determination method when the pressure in the second state is the threshold value or more.SELECTED DRAWING: Figure 2

Description

本開示は、ガスを充填されるタンクに設けられたバルブの閉弁異常を判定する技術に関する。 The present disclosure relates to a technique for determining a valve closing abnormality of a valve provided in a tank filled with gas.

燃料電池車両などでは搭載した燃料ガスタンクの出口に、電気的に開閉弁される電磁弁などのタンクバルブが設けられている。燃料ガスを使用しない場合には、このタンクバルブを電気信号によって閉弁し、ガスの放出を止めている。こうしたタンクバルブでは、閉弁状態にされたバルブを通り抜けるガス(以下、閉弁時通過ガスという)が、許容値以下であることが要請される。閉弁時通過ガスが許容値より大きい場合には、タンクバルブに異常が生じたとして、通常、これをインスツルメントバネルなどに表示し報知する。 In fuel cell vehicles and the like, a tank valve such as a solenoid valve that is electrically opened and closed is provided at the outlet of the installed fuel gas tank. When fuel gas is not used, this tank valve is closed by an electric signal to stop the outgassing. In such a tank valve, it is required that the gas passing through the valve closed (hereinafter referred to as the gas passing through when the valve is closed) is equal to or less than the allowable value. If the gas passing through when the valve is closed is larger than the permissible value, it is usually indicated on the instrument panel or the like as an abnormality in the tank valve and notified.

下記特許文献1には、こうしたバルブの閉弁時通過ガスを検出する手法が開示されている。具体的には、燃料ガスを充填したタンクからタンクバルブを通過して燃料電池に至るまでの流路に設けられた各種電磁弁を制御して、閉空間を作り出し、この閉空間からガスを放出させてその内部の圧力を一旦下げる。そのあとで、再び閉空間にし、この状態おける閉空間の圧力変動を計測することで、タンクバルブの閉弁時通過ガス量を測定している。 The following Patent Document 1 discloses a method for detecting a gas passing through such a valve when the valve is closed. Specifically, various solenoid valves provided in the flow path from the tank filled with fuel gas to the fuel cell through the tank valve are controlled to create a closed space, and gas is released from this closed space. Let it lower the pressure inside it. After that, the closed space is set again, and the pressure fluctuation in the closed space in this state is measured to measure the amount of gas passing through the tank valve when the valve is closed.

国際公開WO2005/088756A1公報International Publication WO2005 / 088756A1 Gazette

この特許文献1に記載の技術は、閉弁時通過ガス量を広い範囲に亘って精度良く検出する優れたものであるが、測定時に、閉空間のガスを放出して内部の圧力を下げているため、閉弁時通過ガス量の測定のために減圧量を大きくすると、外部に放出されるガス量が増えてしまう。他方、ガスの放出量を抑制すると、閉空間の圧力を十分に、例えば複数回の測定が可能な圧力まで低下することができない。かかる問題は、トレードオフの関係にあり、燃料電池車両に限らず、ガスタンクの出口に設けられたタンクバルブの閉弁時通過ガス量が許容値以上となった場合にタンクバルブに閉弁異常があると判定するものに共通している。 The technique described in Patent Document 1 is excellent in detecting the amount of gas passing through when the valve is closed with high accuracy over a wide range, but at the time of measurement, the gas in the closed space is released to reduce the internal pressure. Therefore, if the depressurized amount is increased to measure the amount of gas passing through when the valve is closed, the amount of gas released to the outside increases. On the other hand, if the amount of gas released is suppressed, the pressure in the closed space cannot be sufficiently reduced, for example, to a pressure that allows multiple measurements. This problem is related to a trade-off, and not only for fuel cell vehicles, but also when the amount of gas passing through the tank valve provided at the outlet of the gas tank exceeds the permissible value, the tank valve has a valve closing abnormality. It is common to those that are judged to exist.

本開示は、以下の形態又は適用例として実現することが可能である。 The present disclosure can be realized as the following forms or application examples.

(1)本開示の第1の態様は、バルブ異常判定装置としての態様である。このバルブ異常判定装置は、ガスが外気より高い圧力で充填されるタンクと、前記タンクの出口に設けられ、外部からの指示に応じてガス流路を開閉する第1バルブと、前記第1バルブから下流側の流路に設けられ、開弁することで、前記第1バルブとの間に閉空間を形成し、開弁することで、前記閉空間のガスを外部に放出する第2バルブと、前記閉空間の圧力を検出するセンサと、前記第1,第2バルブの開閉を制御する制御部であって、前記閉空間が前記タンクに充填されたガスの圧力によって圧力を高められた状態で、かつ前記第1バルブが閉弁された第1状態から、前記第2バルブを一時的に開弁することによって、前記閉空間内のガスを外部に放出し、前記閉空間が前記第1状態の圧力より低い圧力で、かつ前記第2バルブが閉弁された第2状態とする制御部と、前記第1バルブおよび前記第2バルブの動作に伴って、前記センサにより検出された前記閉空間の圧力の変化から、前記第1バルブの閉弁時通過ガス量を評価して、前記第1バルブの閉弁異常の有無を判定する異常判定部と、を備える。ここで、前記異常判定部は、前記第1状態から前記第2状態への前減圧量が予め定めた閾値未満の場合には、前記第2バルブの前記閉弁後に前記センサにより検出された圧力の変化により前記第1バルブの閉弁異常を判定する手法のうち、予め定めた第1の判断手法で前記第1バルブの閉弁異常の有無の判定を行ない、前記第2状態への前記減圧量が前記閾値以上の場合には、前記第1の判断手法よりも精度が高い第2の判断手法で前記閉弁異常の有無の判定を行なう。
こうすれば、第1状態から第2状態への減圧量が前記閾値以上の場合には、前記第1の判断手法よりも精度が高い第2の判断手法で前記閉弁異常の有無の判定を行なうので、第1バルブの異常判定において、誤判定する可能性を低減できる。しかも、閉空間からのガスの放出量の増加を抑制できる。
(2)こうしたバルブ異常判定装置において、前記第2の判断手法は、前記第1の判断手法よりも、前記圧力の変化による前記判断の回数が多い手法であるものとしてもよい。こうすれば、第2の判断手法は判断回数が多いので、誤判定の可能性を低減できる。
(3)こうしたバルブ異常判定装置において、前記第2の判断手法は、前記第2バルブの前記閉弁後に前記センサにより検出された圧力の変化により前記第1バルブの閉弁異常を判断する処理を1回行なった後で、前記閉空間の圧力が、前記第1状態の圧力に対して所定の圧力範囲に入っているとき、前記第1バルブに閉弁異常があると判定するものとしてもよい。こうすれば、閉空間の圧力が閉弁時通過ガス量が多く、1回の異常判断の処理で、閉空間の圧力が第1状態に近づいてしまうような場合でも、第1バルブの異常の誤判定を回避できる。
(4)こうしたバルブ異常判定装置において、前記第2の判断手法は、前記第1の判断手法より、前記圧力の変化を検出するための時間が長い手法であるものとしてもよい。こうすれば、第2の判断手法は判断回数を維持しやすいので、誤判定の可能性を低減できる。
(5)こうしたバルブ異常判定装置において、前記タンクは燃料電池に供給される燃料ガスが充填されるガスタンクであり、前記第2バルブは、前記燃料ガスを燃料電池に供給するインジェクタであるものとしてもよい。こうすれば、燃料電池に燃料ガスを供給するタンクに設けられたバルブの閉弁異常を、既存の装置を利用して、容易に判定できる。
(6)本開示の第2の態様は、バルブの異常判定方法としての態様である。このバルブの異常判定方法は、前記タンクバルブから下流側の流路に設けられ、前記タンクバルブより下流側に形成される閉空間に設けられたセンサにより、前記閉空間の圧力を検出し、前記閉空間の圧力を、前記タンクに充填されたガスの圧力によって高め、かつ前記タンクバルブを閉弁した第1状態とし、前記第1状態から、前記流路に設けられた放出バルブを一時的に開弁することで、前記閉空間の前記ガスを外部に放出して、前記閉空間の圧力を、前記第1状態の圧力より減圧し、かつ前記放出バルブが閉弁された第2状態とし、前記第1状態から前記第2状態への減圧量が予め定めた閾値未満の場合には、前記放出バルブの前記閉弁後に前記センサにより検出された圧力の変化により前記タンクバルブの閉弁異常を判定する手法のうち、予め定めた第1の判断手法で前記タンクバルブの閉弁異常の有無の判定を行ない、前記第2状態への前記減圧量が前記閾値以上の場合には、前記第1の判断手法よりも精度が高い第2の判断手法で前記閉弁異常の有無の判定を行なう。
この異常判定方法によれば、前記第1状態から前記第2状態の減圧量が前記閾値以上の場合には、前記第1の判断手法よりも精度が高い第2の判断手法で前記閉弁異常の有無の判定を行なうので、タンクバルブの異常判定において、誤判定する可能性を低減できる。しかも、閉空間からのガスの放出量の増加を抑制できる。
(1) The first aspect of the present disclosure is an aspect as a valve abnormality determination device. This valve abnormality determination device includes a tank filled with gas at a pressure higher than that of the outside air, a first valve provided at the outlet of the tank and opening and closing the gas flow path in response to an external instruction, and the first valve. A second valve that is provided in the flow path on the downstream side from the valve to form a closed space between the valve and the first valve by opening the valve, and releases the gas in the closed space to the outside by opening the valve. A sensor that detects the pressure in the closed space and a control unit that controls the opening and closing of the first and second valves, in which the closed space is increased in pressure by the pressure of the gas filled in the tank. By temporarily opening the second valve from the first state in which the first valve is closed, the gas in the closed space is released to the outside, and the closed space becomes the first valve. The closing detected by the sensor with the operation of the control unit in which the pressure is lower than the pressure of the state and the second valve is closed and the first valve and the second valve are operated. It is provided with an abnormality determination unit that evaluates the amount of gas passing through the first valve when the valve is closed from the change in the pressure in the space and determines the presence or absence of an abnormality in the valve closing of the first valve. Here, when the pre-decompression amount from the first state to the second state is less than a predetermined threshold value, the abnormality determination unit determines the pressure detected by the sensor after the second valve is closed. Of the methods for determining the valve closing abnormality of the first valve based on the change in the above, the presence or absence of the valve closing abnormality of the first valve is determined by the predetermined first determination method, and the depressurization to the second state is performed. When the amount is equal to or greater than the threshold value, the presence or absence of the valve closing abnormality is determined by the second determination method, which is more accurate than the first determination method.
In this way, when the amount of decompression from the first state to the second state is equal to or greater than the threshold value, the presence or absence of the valve closing abnormality is determined by the second determination method, which is more accurate than the first determination method. Therefore, it is possible to reduce the possibility of erroneous determination in the abnormality determination of the first valve. Moreover, it is possible to suppress an increase in the amount of gas released from the closed space.
(2) In such a valve abnormality determination device, the second determination method may be a method in which the number of determinations due to a change in pressure is larger than that of the first determination method. By doing so, since the second determination method has a large number of determinations, the possibility of erroneous determination can be reduced.
(3) In such a valve abnormality determination device, the second determination method performs a process of determining a valve closing abnormality of the first valve based on a change in pressure detected by the sensor after the valve closing of the second valve. After performing once, when the pressure in the closed space is within a predetermined pressure range with respect to the pressure in the first state, it may be determined that the first valve has a valve closing abnormality. .. By doing so, even if the pressure in the closed space has a large amount of gas passing through when the valve is closed and the pressure in the closed space approaches the first state by one process of determining an abnormality, the abnormality of the first valve is abnormal. You can avoid erroneous judgment.
(4) In such a valve abnormality determination device, the second determination method may be a method in which the time for detecting the change in pressure is longer than that of the first determination method. By doing so, since the second determination method can easily maintain the number of determinations, the possibility of erroneous determination can be reduced.
(5) In such a valve abnormality determination device, the tank may be a gas tank filled with fuel gas supplied to the fuel cell, and the second valve may be an injector for supplying the fuel gas to the fuel cell. good. By doing so, it is possible to easily determine the valve closing abnormality of the valve provided in the tank that supplies the fuel gas to the fuel cell by using the existing device.
(6) The second aspect of the present disclosure is an aspect as a valve abnormality determination method. In this valve abnormality determination method, the pressure in the closed space is detected by a sensor provided in the flow path on the downstream side of the tank valve and provided in the closed space formed on the downstream side of the tank valve, and the pressure in the closed space is detected. The pressure in the closed space is increased by the pressure of the gas filled in the tank, and the tank valve is closed in the first state. From the first state, the discharge valve provided in the flow path is temporarily released. By opening the valve, the gas in the closed space is discharged to the outside, the pressure in the closed space is reduced from the pressure in the first state, and the release valve is closed in the second state. When the amount of decompression from the first state to the second state is less than a predetermined threshold value, the valve closing abnormality of the tank valve is caused by the change in pressure detected by the sensor after the valve closing of the release valve. Among the determination methods, the presence or absence of a valve closing abnormality of the tank valve is determined by a predetermined first determination method, and when the depressurization amount to the second state is equal to or greater than the threshold value, the first determination method is used. The presence or absence of the valve closing abnormality is determined by the second determination method, which is more accurate than the determination method of.
According to this abnormality determination method, when the decompression amount from the first state to the second state is equal to or greater than the threshold value, the valve closing abnormality is performed by the second determination method having higher accuracy than the first determination method. Since it is determined whether or not there is an abnormality, the possibility of erroneous determination in the abnormality determination of the tank valve can be reduced. Moreover, it is possible to suppress an increase in the amount of gas released from the closed space.

実施形態のバルブ異常判定装置の概略構成図。The schematic block diagram of the valve abnormality determination apparatus of an embodiment. 第1実施形態におけるタンクバルブ異常判定処理を示すフローチャート。The flowchart which shows the tank valve abnormality determination processing in 1st Embodiment. 第1実施形態において、閉空間の圧力が十分に低下できた場合の判定の様子を示す説明図。An explanatory diagram showing a state of determination when the pressure in a closed space can be sufficiently reduced in the first embodiment. 第1実施形態において、閉空間の圧力の低下が不十分な場合の判定の様子を示す説明図。An explanatory diagram showing a state of determination when the pressure drop in a closed space is insufficient in the first embodiment. 第2実施形態におけるタンクバルブ異常判定処理を示すフローチャート。The flowchart which shows the tank valve abnormality determination processing in 2nd Embodiment. 第3実施形態におけるタンクバルブ異常判定処理を示すフローチャート。The flowchart which shows the tank valve abnormality determination processing in 3rd Embodiment. 第3実施形態における判定の様子を示す説明図。Explanatory drawing which shows the state of determination in 3rd Embodiment.

第1実施形態:
(1)ハードウェア構成:
燃料電池システムにおけるバルブ異常判定装置20の概略構成を、図1に示す。図示するように、第1バルブに相当するタンクバルブ53は、燃料電池システムに用いられるガスタンク(以下、単にタンクという)51に設けられている。まず、燃料電池システムの概略構成について簡単に説明する。燃料電池システムは、燃料電池30と、酸素を含有する大気を供給し排気するエア給排気系40と、水素を供給し排出する水素給排気系50と、図示しない冷却水循環系とが設けられている。
First Embodiment:
(1) Hardware configuration:
FIG. 1 shows a schematic configuration of a valve abnormality determination device 20 in a fuel cell system. As shown in the figure, the tank valve 53 corresponding to the first valve is provided in the gas tank (hereinafter, simply referred to as a tank) 51 used in the fuel cell system. First, the schematic configuration of the fuel cell system will be briefly described. The fuel cell system includes a fuel cell 30, an air supply / exhaust system 40 that supplies and exhausts an atmosphere containing oxygen, a hydrogen supply / exhaust system 50 that supplies and discharges hydrogen, and a cooling water circulation system (not shown). There is.

燃料電池30は、燃料ガスと酸化ガスとを電気化学的に反応させて電力を取り出すための発電装置であり、単セルが複数積層されたスタック構成を有している。本実施形態の燃料電池30は、固体高分子形燃料電池であるが、他種の燃料電池を用いてもよい。燃料電池30を構成する各単セルでは、電解質膜を間に介して、アノード側に燃料ガスである水素が流れる流路(以後、アノード側流路とも呼ぶ)が形成され、カソード側に酸化ガスである空気が流れる流路(以後、カソード側流路とも呼ぶ)が形成されている。 The fuel cell 30 is a power generation device for electrochemically reacting a fuel gas and an oxidation gas to extract electric power, and has a stack configuration in which a plurality of single cells are stacked. The fuel cell 30 of the present embodiment is a polymer electrolyte fuel cell, but other types of fuel cells may be used. In each single cell constituting the fuel cell 30, a flow path (hereinafter, also referred to as an anode side flow path) through which hydrogen, which is a fuel gas flows, is formed on the anode side via an electrolyte membrane, and an oxidation gas is formed on the cathode side. A flow path through which air flows (hereinafter, also referred to as a cathode side flow path) is formed.

エア給排気系40は、図示しないコンプレッサにより供給される空気を、燃料電池30内のカソード側流路に導くエア供給管41と、燃料電池30で酸素の一部が消費された空気が排気されるエア排気管43とを備える。エア排気管43は、希釈器67に接続されている。 In the air supply / exhaust system 40, the air supply pipe 41 that guides the air supplied by the compressor (not shown) to the cathode side flow path in the fuel cell 30 and the air that has consumed a part of oxygen in the fuel cell 30 are exhausted. The air exhaust pipe 43 is provided. The air exhaust pipe 43 is connected to the diluter 67.

水素給排気系50は、タンク51に貯蔵された水素を燃料電池30のアノード側流路に供給するためのものであり、タンク51から燃料電池30のアノード側流路入口までの管路52に、タンク51から順に下流側に向けて、タンクバルブ53、調圧バルブ55,第2バルブ(放出バルブ)に相当するインジェクタ57が設けられている。また、燃料電池30のアノード側流路出口には、気液分離器65を介して、アノード排ガスをアノード側流路入口に接続する循環管路64が設けられ、ここに、水素循環ポンプ63が設けられている。気液分離機65で水分を分離された後のアノード排ガスは、希釈器67で空気により希釈され、システムの外部に放出される。 The hydrogen supply / exhaust system 50 is for supplying the hydrogen stored in the tank 51 to the anode side flow path of the fuel cell 30, and is connected to the pipeline 52 from the tank 51 to the anode side flow path inlet of the fuel cell 30. , A tank valve 53, a pressure regulating valve 55, and an injector 57 corresponding to a second valve (discharge valve) are provided in order from the tank 51 toward the downstream side. Further, a circulation pipe 64 for connecting the anode exhaust gas to the anode side flow path inlet is provided at the anode side flow path outlet of the fuel cell 30 via the gas-liquid separator 65, and the hydrogen circulation pump 63 is provided therein. It is provided. The anode exhaust gas after the water is separated by the gas-liquid separator 65 is diluted with air by the diluter 67 and discharged to the outside of the system.

水素給排気系50の管路52には、高圧用、中圧用、低圧用の圧力計が設けられている。タンクバルブ53と調圧バルブ55との間には第1圧力計71が、調圧バルブ55とインジェクタ57との間には第2圧力計72が、インジェクタ57の下流には第3圧力計73が、それぞれ設けられている。また、タンク51の口金には、タンク51から取り出されたガスの温度Tを検出する温度センサ75が設けられている。 The pipeline 52 of the hydrogen supply / exhaust system 50 is provided with pressure gauges for high pressure, medium pressure, and low pressure. A first pressure gauge 71 is between the tank valve 53 and the pressure regulating valve 55, a second pressure gauge 72 is located between the pressure regulating valve 55 and the injector 57, and a third pressure gauge 73 is downstream of the injector 57. However, each is provided. Further, the base of the tank 51 is provided with a temperature sensor 75 that detects the temperature T of the gas taken out from the tank 51.

バルブ異常判定装置20には、燃料電池制御用ECU80が含まれている。この燃料電池制御用ECU80は、周知のCPUやROM,RAMなどを内蔵しており、ROMに記憶したプログラムを実行することにより、燃料電池30の運転の制御とタンクバルブ53の異常判定とを行なう。図では、燃料電池制御用ECU80の内部のうち、タンクバルブ53の異常判定に関与する部分、すなわち異常判定部81,制御部82,出力部83のみを示した。また、燃料電池制御用ECU80は、既に説明した各種センサやアクチュエータと接続され、タンクバルブ53の異常の判定を行なうための検出信号の入力や制御信号の出力などを行なう。燃料電池制御用ECU80に異常判定に関して入力される信号は、第1圧力計71からの圧力検出信号P1、第2圧力計72からの圧力検出信号P2、第3圧力計73からの圧力検出信号P3、温度センサ75からの温度検出信号Tなどである。また、燃料電池制御用ECU80が異常判定に関して出力する制御信号は、第1バルブであるタンクバルブ53の開閉を指示する制御信号S1、第2バルブであるインジェクタ57を駆動する制御信号S2、などである。燃料電池制御用ECU80は、燃料電池30の運転の際には、水素循環ポンプ63に対して制御信号を出力するなど、他の部品にも信号を出力し、あるいは信号を入力しているが、これらの信号については、タンクバルブ53の異常判定には直接関わらないので、図示および説明を省略した。 The valve abnormality determination device 20 includes a fuel cell control ECU 80. The fuel cell control ECU 80 has a well-known CPU, ROM, RAM, and the like built-in, and by executing a program stored in the ROM, the operation of the fuel cell 30 is controlled and the abnormality of the tank valve 53 is determined. .. In the figure, only the portion of the inside of the fuel cell control ECU 80 that is involved in the abnormality determination of the tank valve 53, that is, the abnormality determination unit 81, the control unit 82, and the output unit 83 is shown. Further, the fuel cell control ECU 80 is connected to various sensors and actuators already described, and inputs a detection signal and outputs a control signal for determining an abnormality of the tank valve 53. The signals input to the fuel cell control ECU 80 regarding the abnormality determination are the pressure detection signal P1 from the first pressure gauge 71, the pressure detection signal P2 from the second pressure gauge 72, and the pressure detection signal P3 from the third pressure gauge 73. , The temperature detection signal T from the temperature sensor 75, and the like. Further, the control signal output by the fuel cell control ECU 80 regarding the abnormality determination is a control signal S1 for instructing opening / closing of the tank valve 53 which is the first valve, a control signal S2 for driving the injector 57 which is the second valve, and the like. be. When the fuel cell 30 is operated, the fuel cell control ECU 80 outputs a signal to other parts such as outputting a control signal to the hydrogen circulation pump 63, or inputs a signal. Since these signals are not directly related to the abnormality determination of the tank valve 53, the illustration and description are omitted.

(2)タンクバルブの閉弁異常の判定手法:
バルブ異常判定装置20は、タンクバルブ53の閉弁異常を判定するが、これは以下のようにして行なわれる。燃料電池30の運転時にはタンクバルブ53は、開弁されている。この場合、インジェクタ57が閉じていれば、タンクバルブ53からインジェクタ57までの管路52の内部は、タンク51内の圧力と等しくなる。この状態を、第1状態と呼ぶ。この状態からタンクバルブ53を閉弁すると、タンクバルブ53からインジェクタ57までの管路52から水素は流出しないので、この間が閉空間60となる。この閉空間60の圧力は、第1圧力計71または第2圧力計72により検出することができる。以下の説明では、第1圧力計71を用いるものとして説明する。
(2) Method for determining tank valve closing abnormality:
The valve abnormality determination device 20 determines the valve closing abnormality of the tank valve 53, which is performed as follows. The tank valve 53 is opened when the fuel cell 30 is in operation. In this case, if the injector 57 is closed, the inside of the pipeline 52 from the tank valve 53 to the injector 57 becomes equal to the pressure in the tank 51. This state is called the first state. When the tank valve 53 is closed from this state, hydrogen does not flow out from the pipeline 52 from the tank valve 53 to the injector 57, so that a closed space 60 is formed during this period. The pressure in the closed space 60 can be detected by the first pressure gauge 71 or the second pressure gauge 72. In the following description, it is assumed that the first pressure gauge 71 is used.

次に、インジェクタ57を一時的に、つまり所定時間だけ開弁すると、閉空間60内の圧力は、燃料電池30のアノード側流路の圧力より高いから、閉空間60の水素はインジェクタ57から噴出し、閉空間60の圧力は、その分低下する。これを減圧量ΔPと呼ぶ。インジェクタ57が指定時間後に閉弁すると、閉空間60の圧力の低下は止まり、閉空間60の圧力は維持される。この状態を第2状態と呼ぶ。このとき、閉弁しているタンクバルブ53をタンク51側から通過する閉弁時通過ガスが存在すると、閉空間60の圧力は上昇する。この上昇の際の圧力の変化を検出すれば、タンクバルブ53の閉弁時通過ガスの流量が許容値以下である正常な状態か、閉弁時通過ガスの流量が許容値を超えており、タンクバルブ53が閉弁異常であるかを判定することができる。なぜなら、閉空間60の体積V、閉空間60の圧力P、閉空間60内のガスの温度T、閉空間60内のガスの質量(モル数)nの間には、気体定数Rを用いて、以下の状態方程式、
P=nRT/V
が成り立つから、閉弁されているタンクバルブ53を介してタンク51側からガスが流入すると、閉空間60内のガスの質量は増加し、結果的に閉空間60の圧力Pも上昇するからである。
Next, when the injector 57 is temporarily opened, that is, for a predetermined time, the pressure in the closed space 60 is higher than the pressure in the anode side flow path of the fuel cell 30, so hydrogen in the closed space 60 is ejected from the injector 57. However, the pressure in the closed space 60 is reduced by that amount. This is called the decompression amount ΔP. When the injector 57 closes after a designated time, the pressure drop in the closed space 60 stops and the pressure in the closed space 60 is maintained. This state is called the second state. At this time, if there is a gas passing through the closed tank valve 53 from the tank 51 side at the time of valve closing, the pressure in the closed space 60 rises. If the change in pressure at the time of this rise is detected, the flow rate of the gas passing through the tank valve 53 when the valve is closed is in the normal state of being less than the permissible value, or the flow rate of the gas passing through when the valve is closed exceeds the permissible value. It can be determined whether the tank valve 53 has a valve closing abnormality. This is because the gas constant R is used between the volume V of the closed space 60, the pressure P of the closed space 60, the temperature T of the gas in the closed space 60, and the mass (number of moles) n of the gas in the closed space 60. , The following equation of state,
P = nRT / V
Therefore, when gas flows in from the tank 51 side through the closed tank valve 53, the mass of the gas in the closed space 60 increases, and as a result, the pressure P in the closed space 60 also rises. be.

閉空間60の圧力の上昇は、閉弁されているタンクバルブ53の閉弁時通過ガスの流量により生じるので、圧力の変化はタンクバルブ53の閉弁時通過ガスの流量に比例する。これを精度良く検出するには、ある程度の時間を要するから、インジェクタ57が閉弁した直後の閉空間60の圧力とそれから検出時間Tppが経過した時点の閉空間60の圧力との差から、タンクバルブ53の閉弁時通過ガスの流量Qを求めることができる。この閉弁時通過ガスの流量を評価して、流量が許容値を超えていれば、タンクバルブ53は閉弁異常を起こしていると判定する。 Since the increase in pressure in the closed space 60 is caused by the flow rate of the gas passing through the closed tank valve 53 when the valve is closed, the change in pressure is proportional to the flow rate of the gas passing through the tank valve 53 when the valve is closed. Since it takes a certain amount of time to detect this accurately, the tank is based on the difference between the pressure in the closed space 60 immediately after the injector 57 is closed and the pressure in the closed space 60 when the detection time Tpp has elapsed. The flow rate Q of the passing gas when the valve 53 is closed can be obtained. The flow rate of the gas passing through when the valve is closed is evaluated, and if the flow rate exceeds the permissible value, it is determined that the tank valve 53 has a valve closing abnormality.

以上説明した判定原理に基づいて、バルブ異常判定装置20が行なうタンクバルブ異常判定処理について、図2のフローチャートおよび図3の説明図を参照して説明する。図3は、閉空間60の圧力の時間的な変化を示す。図2に示す処理は、燃料電池30への燃料ガス等の供給を停止し、燃料電池30の運転を終了する際に実行される。燃料電池制御用ECU80は、燃料電池30の運転を停止すると共に、図2に示した異常判定処理を開始する。燃料電池30の運転を終了することから、この処理の開始より前に、タンクバルブ53は、既に閉弁されている。なお、この処理を開始する際、何回目の異常判断であるかを示す変数Nは初期化され、値1に設定される。 The tank valve abnormality determination process performed by the valve abnormality determination device 20 based on the determination principle described above will be described with reference to the flowchart of FIG. 2 and the explanatory diagram of FIG. FIG. 3 shows the temporal change of the pressure in the closed space 60. The process shown in FIG. 2 is executed when the supply of the fuel gas or the like to the fuel cell 30 is stopped and the operation of the fuel cell 30 is terminated. The fuel cell control ECU 80 stops the operation of the fuel cell 30 and starts the abnormality determination process shown in FIG. Since the operation of the fuel cell 30 is terminated, the tank valve 53 has already been closed before the start of this process. When starting this process, the variable N indicating the number of times the abnormality is determined is initialized and set to the value 1.

タンクバルブ異常判定処理を開始すると、まず減圧処理を行なう(ステップS100)。減圧処理は、インジェクタ57を所定時間開弁することにより行なう。インジェクタ57を開くと、閉空間60内の高圧のガスは燃料電池30向かって放出され、閉空間60の圧力は低下する。この様子を、図3に示した。図示するように、インジェクタ57が時刻t1からt2までの時間開弁すると、その間に、閉空間60の圧力は、第1状態である圧力PP1から、第2状態である圧力PP2まで低下する。これらの圧力は、所定のサンプリングタイムで、第1圧力計71または第2圧力計72の出力を読み取ることにより、検出できる。 When the tank valve abnormality determination process is started, the depressurization process is first performed (step S100). The depressurization treatment is performed by opening the injector 57 for a predetermined time. When the injector 57 is opened, the high-pressure gas in the closed space 60 is discharged toward the fuel cell 30, and the pressure in the closed space 60 decreases. This situation is shown in FIG. As shown in the figure, when the injector 57 opens the valve for a time from time t1 to t2, the pressure in the closed space 60 drops from the pressure PP1 in the first state to the pressure PP2 in the second state during that time. These pressures can be detected by reading the output of the first pressure gauge 71 or the second pressure gauge 72 at a predetermined sampling time.

そこで、次に減圧量ΔPを演算する(ステップS110)。減圧量ΔPは、
ΔP=PP1-PP2
として求めることができる。減圧量ΔPを求めると、この減圧量ΔPが、予め定めた減圧閾値TDpより小さいか否かの判断を行なう(ステップS120)。この減圧閾値TDpは、その後に行なわれる2回の異常判断に必要な減圧が行なわれたか否かを判断する閾値である。減圧量ΔPが減圧閾値TDpより小さければ(ステップS120:「YES」)、異常判断を行なう回数を示す設定値Mに値1を代入し(ステップS130)、減圧量ΔPが減圧閾値TDp以上であれば(ステップS130:「NO」)、設定値Mに値2を代入する(ステップS135)。
Therefore, next, the decompression amount ΔP is calculated (step S110). The decompression amount ΔP is
ΔP = PP1-PP2
Can be obtained as. When the decompression amount ΔP is obtained, it is determined whether or not the decompression amount ΔP is smaller than the predetermined decompression threshold value TDp (step S120). This decompression threshold value TDp is a threshold value for determining whether or not the decompression required for the subsequent two abnormality determinations has been performed. If the decompression amount ΔP is smaller than the decompression threshold TDp (step S120: “YES”), the value 1 is substituted into the set value M indicating the number of times of abnormality determination (step S130), and the decompression amount ΔP is equal to or more than the decompression threshold TDp. If (step S130: "NO"), the value 2 is assigned to the set value M (step S135).

その後、予め設定された時間Tppが経過するまで待って、閉弁時通過ガス量Q(N)を検出する。ここで、閉弁時通過ガス量Q(N)とは、時間当たりの流量を言う。閉弁時通過ガス量Q(N)は、時間Tppの間に生じた圧力差P(N)に、閉空間60の体積Vと温度Tとから求められる係数kを乗じることにより検出できる。式で表わせば、
Q(N)=k・P(N)/Tpp
である。つまり、1回目の異常判断の際には、時間Tppの間に生じた圧力の上昇による圧力差P(1)を用いて、
Q(1)=k・P(1)/Tpp=k・(PP3-PP2)/Tpp
として、閉弁時通過ガス量Q(1)が求められる。
After that, it waits until the preset time Tpp elapses, and detects the passing gas amount Q (N) at the time of valve closing. Here, the amount of gas passing through when the valve is closed Q (N) means the flow rate per hour. The amount of gas Q (N) passing through when the valve is closed can be detected by multiplying the pressure difference P (N) generated during the time Tpp by the coefficient k obtained from the volume V of the closed space 60 and the temperature T. Expressed in a formula,
Q (N) = k ・ P (N) / Tpp
Is. That is, at the time of the first abnormality determination, the pressure difference P (1) due to the increase in pressure generated during the time Tpp is used.
Q (1) = k · P (1) / Tpp = k · (PP3-PP2) / Tpp
As a result, the amount of gas Q (1) passing through when the valve is closed is obtained.

次に、こうして求めた異常判断1回目の閉弁時通過流量Q(N)が、予め定めた許容値TQを超えているかを判断する(ステップS150)。閉弁時通過流量Q(N)が許容値TQを超えていれば(ステップS150:「YES」)、タンクバルブ53に閉弁異常が生じている可能性があるとして、フラグF(N)に値1を設定し(ステップS160)、閉弁時通過流量Q(N)が許容値TQを超えていなければ(ステップS150:「NO」)、タンクバルブ53に閉弁異常は認められないとして、フラグF(N)に値0を設定する(ステップS165)。続いて、何回目の異常判断かを示す変数Nを値1だけインクリメントし(ステップS170)、変数Nが、ステップS130またはS135で設定した設定値Mより大きいかを判定する(ステップS180)。設定値Mが値1に設定されていれば、異常判断の処理回数を示す変数Nは、ステップS170でインクリメントしたことにより設定値Mを超えるので、ステップS180での判断は「YES」となり、上述したステップS140からS165の処理を1回行なったところで、ステップS200の異常判断に移行する。他方、設定値Mが値2に設定されていれば、ステップS170での判断は「NO」となり、上記ステップS140に戻って、2回目の異常判断の処理を行なう。 Next, it is determined whether or not the flow rate Q (N) passed through for the first abnormality determination obtained in this way exceeds the predetermined allowable value TQ (step S150). If the flow rate Q (N) passing through when the valve is closed exceeds the permissible value TQ (step S150: “YES”), it is considered that a valve closing abnormality may have occurred in the tank valve 53, and the flag F (N) is set. If the value 1 is set (step S160) and the flow rate Q (N) passing through when the valve is closed does not exceed the allowable value TQ (step S150: "NO"), it is assumed that the tank valve 53 has no valve closing abnormality. The value 0 is set in the flag F (N) (step S165). Subsequently, the variable N indicating the number of times of abnormality determination is incremented by the value 1 (step S170), and it is determined whether the variable N is larger than the set value M set in step S130 or S135 (step S180). If the set value M is set to the value 1, the variable N indicating the number of processing of the abnormality determination exceeds the set value M by incrementing in step S170, so that the determination in step S180 becomes “YES” and described above. When the processing of steps S140 to S165 is performed once, the process proceeds to the abnormality determination of step S200. On the other hand, if the set value M is set to the value 2, the determination in step S170 becomes "NO", and the process returns to step S140 to perform the second abnormality determination process.

図3に示した例は、減圧処理(ステップS100)により閉空間60の圧力PPが十分に低下でき(ΔP≧TDp)、異常判断の時間Tppを2回とっても、異常判断が正しく行なえる場合を示している。図2おいて、破線B1は、タンクバルブ53の閉弁時通過ガスの流量Qが許容値であるの場合を示し、実線J1は、閉弁時通過ガスの流量Qが許容値より大きい場合を示す。図示から分かるように、流量Q(1)は1回目の異常判断で検出された流量であり、第1圧力計71により検出された圧力PP3と圧力PP2との差圧P(1)から求められる。同様に、流量Q(2)は2回目の異常判断で検出された流量であり、第1圧力計71により検出された圧力PP4と圧力PP3との差圧P(2)から求められる。 In the example shown in FIG. 3, the pressure PP in the closed space 60 can be sufficiently reduced by the decompression treatment (step S100) (ΔP ≧ TDp), and the abnormality determination can be performed correctly even if the abnormality determination time Tpp is set twice. Shows. In FIG. 2, the broken line B1 indicates the case where the flow rate Q of the gas passing through when the tank valve 53 is closed is an allowable value, and the solid line J1 indicates the case where the flow rate Q of the passing gas when closing the valve is larger than the allowable value. show. As can be seen from the figure, the flow rate Q (1) is the flow rate detected in the first abnormality determination, and is obtained from the differential pressure P (1) between the pressure PP3 and the pressure PP2 detected by the first pressure gauge 71. .. Similarly, the flow rate Q (2) is the flow rate detected in the second abnormality determination, and is obtained from the differential pressure P (2) between the pressure PP4 and the pressure PP3 detected by the first pressure gauge 71.

設定値Mが値2の場合には、二度目の異常判断を行なったところで、ステップS180の判断は「YES」となり、異常判定(ステップS200)に移行する。異常判定(ステップS200)では、テーブルTB1にしたがって、異常判定を行なう。すなわち、1回目の異常判断と2回目の異常判断との結果を組み合わせ、2回の判断が行なえた場合には、いずれか1回でもフラグF(N)に値0が設定されていれば、つまり1回でも、タンクバルブ53に閉弁異常がないと判断されていれば、「正常」と判定する。2回の異常判断において、フラグF(1)もF(2)も値1に設定された場合には、「異常」と判定する。他方、減圧量ΔPが減圧閾値TDpより小さいために異常判断が1回しか行なえなかった場合には、その1回の異常判断の結果にしたがって、「正常」または「異常」と判定する。異常判断が1回しか行なえなかった場合を、テーブルTB1では、F(2)について「N/A」として示した。 When the set value M is a value 2, the determination in step S180 becomes “YES” when the second abnormality determination is performed, and the process proceeds to the abnormality determination (step S200). In the abnormality determination (step S200), the abnormality determination is performed according to the table TB1. That is, if the results of the first abnormality judgment and the second abnormality judgment are combined and the judgment can be made twice, if the value 0 is set in the flag F (N) even once, the value 0 is set. That is, if it is determined that the tank valve 53 has no valve closing abnormality even once, it is determined to be "normal". When both the flags F (1) and F (2) are set to the value 1 in the two abnormality determinations, it is determined to be "abnormal". On the other hand, when the decompression amount ΔP is smaller than the decompression threshold value TDp and the abnormality determination can be performed only once, it is determined as “normal” or “abnormal” according to the result of the one abnormality determination. In the table TB1, the case where the abnormality judgment can be made only once is shown as "N / A" for F (2).

他方、ステップS120において減圧量ΔPが減圧閾値TDp未満であると判断された場合には、設定値Mは値1に設定されるから、異常判断(ステップS140、S150)は1回しか行なわれない。この様子を、図4に示した。図3と同じく、破線B2は、タンクバルブ53の閉弁時通過ガスの流量Qが許容値であるの場合を示し、実線J2は、閉弁時通過ガスの流量Qが許容値より大きい場合を示す。この例では、減圧量ΔPが減圧閾値TDp未満なので、2回の検出時間Tpp×2が経過する前に、閉空間60の圧力は減圧前の圧力に戻ってしまう可能性がある。こうした可能性がある場合には、2回目の判断を行なわないので、誤ってタンクバルブ53の閉弁時通過ガス量Q(N)が許容値以下と判断して、フラグF(N)を値0に設定することがない。 On the other hand, when it is determined in step S120 that the decompression amount ΔP is less than the decompression threshold TDp, the set value M is set to the value 1, so that the abnormality determination (steps S140 and S150) is performed only once. .. This situation is shown in FIG. As in FIG. 3, the broken line B2 indicates the case where the flow rate Q of the gas passing through when the tank valve 53 is closed is an allowable value, and the solid line J2 indicates the case where the flow rate Q of the passing gas when closing the valve is larger than the allowable value. show. In this example, since the decompression amount ΔP is less than the decompression threshold value TDp, the pressure in the closed space 60 may return to the pressure before decompression before the two detection times Tpp × 2 elapse. If there is such a possibility, since the second judgment is not performed, it is erroneously determined that the gas amount Q (N) passing through when the tank valve 53 is closed is equal to or less than the allowable value, and the flag F (N) is set to a value. Never set to 0.

以上説明した本実施形態では、タンクバルブ53の閉弁異常の検出を行なうための減圧処理(ステップS100)において、減圧量ΔPが減圧閾値より小さいか否かにより、異常判断の回数を変更することで、異常判断の精度の確保とガス放出量の抑制とを両立させている。つまり、減圧量ΔPが減圧閾値TDp未満の場合には、第1の判断手法として異常判断を1回だけ行なうものとし、減圧量ΔPが減圧閾値TDp異常の場合には、第2の判断手法として異常判断を2回行なうものとして、後者での異常判断の精度を高めている。このように、減圧量ΔPによって異常判断の精度を異ならせることで、2回の異常判断が必ず行なえるだけの大きなマージンを見込んで圧力を低下する必要がない。減圧は、つまるところ閉空間60に確保された燃料ガス、ここでは水素を外部に放出することなので、こうした放出量を抑制できる。特に、調圧バルブ55を備え、タンクバルブ53から調圧バルブ55までの高圧部と、調圧バルブ55からインジェクタ57までの中圧部を有する燃料電池システムでは、閉空間60の体積が大きくなりやすい。こうした場合、十分な減圧量ΔPを確保しようとして増加しがちな放出ガス量を抑制できる効果は大きい。 In the present embodiment described above, in the depressurization process (step S100) for detecting the valve closing abnormality of the tank valve 53, the number of abnormality determinations is changed depending on whether or not the decompression amount ΔP is smaller than the decompression threshold value. Therefore, both ensuring the accuracy of abnormality judgment and suppressing the amount of gas released are achieved. That is, when the decompression amount ΔP is less than the decompression threshold TDp, the abnormality determination is performed only once as the first determination method, and when the decompression amount ΔP is the decompression threshold TDp abnormality, the second determination method is used. The accuracy of the abnormality judgment in the latter is improved by performing the abnormality judgment twice. In this way, by making the accuracy of the abnormality determination different depending on the decompression amount ΔP, it is not necessary to reduce the pressure in anticipation of a large margin that allows the abnormality determination to be performed twice. Since the depressurization is to release the fuel gas secured in the closed space 60, here hydrogen, to the outside, such a release amount can be suppressed. In particular, in a fuel cell system provided with a pressure regulating valve 55 and having a high pressure portion from the tank valve 53 to the pressure regulating valve 55 and a medium pressure portion from the pressure regulating valve 55 to the injector 57, the volume of the closed space 60 becomes large. Cheap. In such a case, the effect of suppressing the amount of released gas, which tends to increase in an attempt to secure a sufficient decompression amount ΔP, is great.

上記実施形態では、減圧量ΔPが減圧閾値TDpより大きければ、異常判断を2回行ない、いずれか一回でも閉弁時通過ガス量Q(N)が許容値以下であれば、タンクバルブ53は「正常」と判定したが、1回目の判断で、許容値以下と判断すれば、2回目の判断を行なわないものとしてもよい。あるいは、2回とも許容値以下でなければ「異常」と判定するものとしてもよい。また、上記実施形態では、判断の最大回数を2回としたが、3回以上としても良い。 In the above embodiment, if the decompression amount ΔP is larger than the decompression threshold value TDp, the abnormality determination is performed twice, and if the gas amount Q (N) passing through when the valve is closed is equal to or less than the allowable value even once, the tank valve 53 is set. Although it is determined to be "normal", if it is determined that the value is equal to or less than the allowable value in the first determination, the second determination may not be performed. Alternatively, it may be determined as "abnormal" if it is not equal to or less than the allowable value both times. Further, in the above embodiment, the maximum number of judgments is set to 2, but it may be set to 3 or more.

第2実施形態:
次に第2実施形態について説明する。第2実施形態では、第1実施形態と同様のハードウェア構成を用い、タンクバルブ異常判定処理が異なる。図5に第2実施形態における異常判定処理のフローチャートを示す。第1実施形態と同じ処理には同じステップ番号を付し、説明は省略または簡略なものに留める。
Second embodiment:
Next, the second embodiment will be described. In the second embodiment, the same hardware configuration as in the first embodiment is used, and the tank valve abnormality determination process is different. FIG. 5 shows a flowchart of the abnormality determination process in the second embodiment. The same process as in the first embodiment is assigned the same step number, and the description is omitted or simplified.

第2実施形態では、減圧量ΔPと減圧閾値TDpとの大小にかかわらず、異常判断の回数は2回とし、検出時間Tppを変更している。つまり、減圧処理(ステップS100)によって生じた減圧量ΔPを検出し(ステップS110)、減圧量ΔPと減圧閾値TDpとの大小関係を判定する(ステップS120)。減圧量ΔPが減圧閾値TDp未満であれば、検出時間Tppを基準時間Tdから時間t0だけ短くする(ステップS130A)。他方、減圧量ΔPが減圧閾値TDp以上であれば、検出時間Tppを基準時間Tdに設定する(ステップS135A)。 In the second embodiment, regardless of the magnitude of the decompression amount ΔP and the decompression threshold value TDp, the number of times of abnormality determination is set to 2, and the detection time Tpp is changed. That is, the reduced pressure amount ΔP generated by the reduced pressure treatment (step S100) is detected (step S110), and the magnitude relationship between the reduced pressure amount ΔP and the reduced pressure threshold value TDp is determined (step S120). If the decompression amount ΔP is less than the decompression threshold value TDp, the detection time Tpp is shortened from the reference time Td by the time t0 (step S130A). On the other hand, if the decompression amount ΔP is equal to or greater than the decompression threshold value TDp, the detection time Tpp is set to the reference time Td (step S135A).

その後の処理(ステップS140からS170)は、第1実施形態と同じである。その後、異常判断の回数を示す変数Nが値2より大きくなったかを判断し(ステップS180A)、異常判断が2回行なわれるまで、上記の処理を繰り返す。異常判断を2回行なうと(ステップS180A:「YES」)、異常判定を行なう(ステップS200A)。第2実施形態では、2回の異常判断が行なわれるので、2回の異常判断の組合わせにより、タンクバルブ53の閉弁異常を判定する。この判定の一例をテーブルTB2として示した。第1実施形態と同様、テーブルTB2に示した判定は、2回の異常判断のうち1回でも、タンクバルブ53の閉弁時通過ガス量Q(N)が許容値以下であれば、タンクバルブ53は「正常」と判定するが、2回とも許容値以下でなければ「異常」と判断するものとしてもよい。 Subsequent processing (steps S140 to S170) is the same as in the first embodiment. After that, it is determined whether the variable N indicating the number of times of abnormality determination is larger than the value 2 (step S180A), and the above processing is repeated until the abnormality determination is performed twice. When the abnormality determination is performed twice (step S180A: "YES"), the abnormality determination is performed (step S200A). In the second embodiment, since the abnormality determination is performed twice, the valve closing abnormality of the tank valve 53 is determined by the combination of the two abnormality determinations. An example of this determination is shown as table TB2. Similar to the first embodiment, the determination shown in the table TB2 is a tank valve if the gas amount Q (N) passing through when the tank valve 53 is closed is equal to or less than the allowable value even once out of the two abnormality determinations. Although 53 is determined to be "normal", it may be determined to be "abnormal" if it is not equal to or less than the allowable value both times.

第2実施形態では、減圧処理による減圧量がΔPが減圧閾値TDp未満の場合、第1の判断手法として、検出時間Tppを基準時間Tdより短く設定している。このように検出時間を短くしているので、減圧量ΔPが減圧閾値TDpより小さい場合でも、2回の異常判断を行なうことが可能となる。しかも、減圧処理による減圧量がΔPが減圧閾値TDp以上の場合には、第2の判断手法として、検出時間Tppを基準時間Tdとしているので、この場合の異常判断の精度は、減圧処理による減圧量がΔPが減圧閾値TDp未満の場合より高い。なお、検出時間Tppを変更する場合、閉弁時通過ガス量Q(N)が許容値TQを上回るかの判定(ステップS150)における許容値TQを、検出時間Tppに比例して低減する。また、上記実施形態では、減圧量ΔPが減圧閾値TDp未満の場合に検出時間Tppを基準時間Tdより短くする時間t0は固定値としたが、減圧量ΔPに応じて、例えば反比例する値とするようにしてもよい。こうすれば、減圧量ΔPが小さいほど検出時間は短くなり、閉空間60の圧力が減圧前の圧力に戻る前に2回の異常判断を完了できる可能性は高まる。 In the second embodiment, when the decompression amount by the depressurization treatment is less than the decompression threshold TDp, the detection time Tpp is set shorter than the reference time Td as the first determination method. Since the detection time is shortened in this way, even when the decompression amount ΔP is smaller than the decompression threshold value TDp, it is possible to perform the abnormality determination twice. Moreover, when the decompression amount by the decompression treatment is ΔP equal to or more than the decompression threshold value TDp, the detection time Tpp is set as the reference time Td as the second determination method. The amount is higher than when ΔP is less than the decompression threshold TDp. When the detection time Tpp is changed, the permissible value TQ in the determination (step S150) of determining whether the gas passing gas amount Q (N) at the time of valve closing exceeds the permissible value TQ is reduced in proportion to the detection time Tpp. Further, in the above embodiment, when the decompression amount ΔP is less than the decompression threshold value TDp, the time t0 for shortening the detection time Tpp to the reference time Td is set to a fixed value, but it is set to, for example, an inversely proportional value according to the decompression amount ΔP. You may do so. In this way, the smaller the decompression amount ΔP, the shorter the detection time, and the higher the possibility that the two abnormality determinations can be completed before the pressure in the closed space 60 returns to the pressure before the decompression.

第3実施形態:
次に、第3実施形態について説明する。第3実施形態も第1,第2実施形態と同様にハードウェア構成を用い、タンクバルブ異常判定処理が異なる。第3実施形態における異常判定処理の一例を、図6に示す。またこの場合、閉空間60の圧力の変化の様子を、図7に示す。図6において、第1,第2実施形態と同じ処理には同じステップ番号を付し、説明は省略または簡略なものとする。
Third embodiment:
Next, the third embodiment will be described. The third embodiment also uses the hardware configuration as in the first and second embodiments, and the tank valve abnormality determination process is different. FIG. 6 shows an example of the abnormality determination process in the third embodiment. Further, in this case, the state of the pressure change in the closed space 60 is shown in FIG. In FIG. 6, the same processing as in the first and second embodiments is assigned the same step number, and the description is omitted or simplified.

第3実施形態では、減圧処理(ステップS100)によって生じた減圧量ΔPを検出し(ステップS110)、減圧量ΔPと減圧閾値TDpとの大小関係を判定する(ステップS120)。その上で、減圧量ΔPと減圧閾値TDpとの大小によって、異常判断の回数は2回または1回とし、2回の場合には、後述する元圧判定の処理(ステップS218)を行なう。図6では、1回目の異常判断をステップS210として、2回目の異常判断をステップS220として示した。第3実施形態でも、異常判断の回数を変更しており、第1の判断手法として、異常判断の回数を1回とする場合よりも、第2の判断手法として、異常判断の回数を2回とする場合の方が、判定の精度が高い。 In the third embodiment, the reduced pressure amount ΔP generated by the reduced pressure treatment (step S100) is detected (step S110), and the magnitude relationship between the reduced pressure amount ΔP and the reduced pressure threshold value TDp is determined (step S120). Then, depending on the magnitude of the decompression amount ΔP and the decompression threshold value TDp, the number of abnormality determinations is set to 2 or 1, and in the case of 2 times, the original pressure determination process (step S218) described later is performed. In FIG. 6, the first abnormality determination is shown as step S210, and the second abnormality determination is shown as step S220. Also in the third embodiment, the number of times of abnormality judgment is changed, and the number of times of abnormality judgment is twice as the second judgment method, as compared with the case where the number of times of abnormality judgment is once as the first judgment method. The accuracy of the judgment is higher in the case of.

減圧量ΔPが減圧閾値TDp未満の場合には、判断回数を示すフラグFFNに値1を設定し(ステップS190)、減圧量ΔPが減圧閾値TDp以上の場合には、判断回数を示すフラグFFNに値2を設定する(ステップS195)。そして、1回目の異常判断の処理(ステップS210)を開始する。 When the decompression amount ΔP is less than the decompression threshold TDp, a value 1 is set in the flag FFN indicating the number of determinations (step S190), and when the decompression amount ΔP is equal to or more than the decompression threshold TDp, the flag FFN indicating the number of determinations is set. The value 2 is set (step S195). Then, the first abnormality determination process (step S210) is started.

1回目の異常判断では、予め定めた時間Tpp経過後の閉空間60の圧力PP3を、第1圧力計71により検出する(ステップS212)。検出した圧力PP3から、検出時間Tppの間の圧力差P(1)を求め、これからタンクバルブ53の閉弁時通過ガス量Q(1)を求めることができるので、この閉弁時通過ガス量Q(1)が許容値TQ以下であるか否かを判断する(ステップS214)。閉弁時通過ガス量Q(1)が許容値TQ以下であれば(ステップS214:「YES」)、タンクバルブ53は「正常」であると判定する(ステップS270)。この様子を、図7に示した。図示するように、1回目の検出時間Tppが経過した時点の閉空間60の圧力PP3から求めた圧力差P(1)が、閉弁時通過ガス量が許容値である場合(破線B3)の圧力変化より小さければ、この時点でタンクバルブ53は「正常」であると判定し、「END」に抜けて、本処理ルーチンを終了する。 In the first abnormality determination, the pressure PP3 in the closed space 60 after the lapse of a predetermined time Tpp is detected by the first pressure gauge 71 (step S212). From the detected pressure PP3, the pressure difference P (1) during the detection time Tpp can be obtained, and from this, the gas amount Q (1) passing through when the tank valve 53 is closed can be obtained. It is determined whether or not Q (1) is equal to or less than the allowable value TQ (step S214). If the amount of gas passing through when the valve is closed Q (1) is equal to or less than the allowable value TQ (step S214: "YES"), it is determined that the tank valve 53 is "normal" (step S270). This situation is shown in FIG. As shown in the figure, when the pressure difference P (1) obtained from the pressure PP3 in the closed space 60 at the time when the first detection time Tpp has elapsed is the allowable value for the amount of gas passing through when the valve is closed (broken line B3). If it is smaller than the pressure change, the tank valve 53 is determined to be "normal" at this point, exits to "END", and the processing routine ends.

他方、1回目の異常判断(ステップS210)において、1回目の検出時間Tppが経過した時点の閉空間60の圧力PP3から求めた圧力差P(1)が、閉弁時通過ガス量が許容値の場合(破線B3)の圧力変化以上であれば、実線J3として示したように、タンクバルブ53の閉弁時通過ガス量Q(1)が許容値TQより大きいと判断され(ステップS214:「NO」)、この時点でタンクバルブ53は「正常」であると判定できない。そこで、この場合には、ステップS216に進み、ステップS190またはS195で設定されたフラグFFNの値について判別する。 On the other hand, in the first abnormality determination (step S210), the pressure difference P (1) obtained from the pressure PP3 in the closed space 60 at the time when the first detection time Tpp has elapsed is the allowable value of the amount of gas passing through when the valve is closed. In the case of (dashed line B3) or more, as shown by the solid line J3, it is determined that the gas amount Q (1) passing through when the tank valve 53 is closed is larger than the allowable value TQ (step S214: ". NO "), at this point, the tank valve 53 cannot be determined to be" normal ". Therefore, in this case, the process proceeds to step S216, and the value of the flag FFN set in step S190 or S195 is determined.

フラグFFNが値1であれば(ステップS216)、減圧量ΔPが減圧閾値TDp未満であり、もう一度異常判断を行なうことができるほどの圧力差がないと判断されていたので、ステップS214の結果(Q(1)>TQ)から、タンクバルブ53は閉弁異常であると判定する(ステップS280)。 If the flag FFN has a value of 1 (step S216), it is determined that the decompression amount ΔP is less than the decompression threshold TDp and there is no pressure difference sufficient to make an abnormality determination again. Therefore, the result of step S214 (step S214). From Q (1)> TQ), it is determined that the tank valve 53 has a valve closing abnormality (step S280).

他方、フラグFFNが値2であれば(ステップS216)、減圧量ΔPが減圧閾値TDp以上であり、もう一度異常判断を行なうことができるほどの圧力差があったと判断されていたので、2回目の異常判断(ステップS220)を行なうが、その前に、元圧判定の処理(ステップS218)を行なう。この元圧判定の処理は、1回目の検出時間Tppが経過した時点での閉空間60の圧力PP3が、予め定めた閾値圧力TFPより大きいか否か判断である。 On the other hand, if the flag FFN has a value of 2 (step S216), it is determined that the decompression amount ΔP is equal to or greater than the decompression threshold TDp and there is a pressure difference sufficient to make another abnormality determination. The abnormality determination (step S220) is performed, but before that, the original pressure determination process (step S218) is performed. The process of determining the original pressure is to determine whether or not the pressure PP3 of the closed space 60 at the time when the first detection time Tpp has elapsed is larger than the predetermined threshold pressure TFP.

図7に例示したように、タンクバルブ53の閉弁時通過ガス量が大きければ、減圧量ΔPが減圧閾値TDpより大きくても、破線D1に示したように、検出時間Tpp経過後に閉空間60の圧力が大幅に低下して、閾値圧力TFPより高くなってしまうことがあり得る。この場合、二度目の異常判断を行なうと、二度目の検出時間Tppの経過後の圧力は、減圧処理(ステップS100)前の圧力に戻ってしまい、圧力差P(2)が小さな値になってしまうことがある。 As illustrated in FIG. 7, if the amount of gas passing through when the tank valve 53 is closed is large, even if the decompression amount ΔP is larger than the decompression threshold value TDp, as shown by the broken line D1, the closed space 60 is after the detection time Tpp has elapsed. It is possible that the pressure of the pressure drops significantly and becomes higher than the threshold pressure TFP. In this case, when the second abnormality determination is performed, the pressure after the lapse of the second detection time Tpp returns to the pressure before the depressurization treatment (step S100), and the pressure difference P (2) becomes a small value. It may end up.

そこで、ステップS218で、1回目の検出時間Tppが経過した時点での閉空間60の圧力PP3が、予め定めた閾値圧力TFPより大きいと判断された場合には、2回目の異常判断は行なわず、ステップS80に移行して、タンクバルブ53には閉弁異常があると判断する。他方、ステップS218で、1回目の検出時間Tppが経過した時点での閉空間60の圧力PP3が、予め定めた閾値圧力TFP以下だと判断すれば、もう一回異常判断の処理が行なえるだけの減圧量が残っていると判断し、2回目の異常判断(ステップS220)を行なう。 Therefore, if it is determined in step S218 that the pressure PP3 in the closed space 60 at the time when the first detection time Tpp has elapsed is larger than the predetermined threshold pressure TFP, the second abnormality determination is not performed. , It is determined in step S80 that the tank valve 53 has a valve closing abnormality. On the other hand, if it is determined in step S218 that the pressure PP3 in the closed space 60 at the time when the first detection time Tpp has elapsed is equal to or less than the predetermined threshold pressure TFP, the abnormality determination process can be performed once more. It is determined that the decompressed amount of No. 1 remains, and the second abnormality determination (step S220) is performed.

2回目の異常判断では、1回目の異常判断と同様に、検出時間Tppの経過後の閉空間60の圧力PP4を検出する(ステップS222)。検出した圧力PP4から、検出時間Tppの間の圧力差P(2)を求め、これからタンクバルブ53の閉弁時通過ガス量Q(2)を求めることができるので、この閉弁時通過ガス量Q(2)が許容値TQ以下か否かを判断する(ステップS224)。閉弁時通過ガス量Q(2)が許容値TQ以下であれば(ステップS224:「YES」)、タンクバルブ53は「正常」であると判定する(ステップS270)。 In the second abnormality determination, the pressure PP4 in the closed space 60 after the detection time Tpp has elapsed is detected as in the first abnormality determination (step S222). From the detected pressure PP4, the pressure difference P (2) during the detection time Tpp can be obtained, and from this, the gas amount Q (2) passing through the tank valve 53 when the valve is closed can be obtained. It is determined whether or not Q (2) is equal to or less than the allowable value TQ (step S224). If the amount of gas passing through when the valve is closed Q (2) is equal to or less than the allowable value TQ (step S224: "YES"), it is determined that the tank valve 53 is "normal" (step S270).

他方、2回目の異常判断(ステップS220)において、2回目の検出時間Tppが経過した時点の閉空間60の圧力PP4から求めた圧力差P(2)が、閉弁時通過ガス量が許容値の場合(破線B3)の圧力変化以上であれば、タンクバルブ53の閉弁時通過ガス量Q(2)が許容値TQより大きいと判断され(ステップS224:「NO」)、この時点でタンクバルブ53は「正常」であると判定できない。そこで、この場合には、1回目の異常判断でも、2回目の異常判断でも、共に「正常」であると判断できなかったことから、タンクバルブ53には閉弁異常があると判定する(ステップS280)。これらの正常判定(ステップS270)、または異常判定(ステップS280)の処理の後、「END」に抜けて、本処理ルーチンを終了する。 On the other hand, in the second abnormality determination (step S220), the pressure difference P (2) obtained from the pressure PP4 in the closed space 60 at the time when the second detection time Tpp has elapsed is the allowable value for the amount of gas passing through when the valve is closed. If it is equal to or greater than the pressure change in the case of (dashed line B3), it is determined that the gas amount Q (2) passing through when the tank valve 53 is closed is larger than the allowable value TQ (step S224: “NO”), and the tank at this point. The valve 53 cannot be determined to be "normal". Therefore, in this case, since it was not possible to determine that both the first abnormality determination and the second abnormality determination were "normal", it was determined that the tank valve 53 had a valve closing abnormality (step). S280). After the processing of these normal determination (step S270) or abnormality determination (step S280), the process exits to "END" and the present processing routine is terminated.

以上説明した第3実施形態では、減圧量ΔPの大きさによって、異常判断の回数を1回または2回に設定して、第1実施形態と同様の作用効果を奏する上、2回の異常判断を行なうものとした場合に、タンクバルブ53の閉弁時通過ガス量が想定以上に大きく、閉空間60の圧力変化が大きくて減圧処理前の圧力に戻る、または近づいてしまった場合に、2回目の異常判断を行なわないので(ステップS218:「YES」)、2回目の異常判断において誤判断することがない。このため、2回の異常判断を行なう場合に、一度でも閉弁時通過ガス量Q(N)が許容値TQ以下であればタンクバルブ53は「正常」と判定するようにしても、誤判定する可能性を抑制できる。 In the third embodiment described above, the number of abnormality determinations is set to once or twice depending on the magnitude of the decompression amount ΔP, and the same action and effect as those of the first embodiment are obtained, and the abnormality determination is performed twice. When the amount of gas passing through the tank valve 53 when the valve is closed is larger than expected and the pressure change in the closed space 60 is large and the pressure returns to or approaches the pressure before the decompression process. Since the second abnormality judgment is not performed (step S218: “YES”), no erroneous judgment is made in the second abnormality judgment. For this reason, even if the tank valve 53 is determined to be "normal" if the amount of gas Q (N) passing through when the valve is closed is equal to or less than the allowable value TQ even once when the abnormality is determined twice, an erroneous determination is made. The possibility of doing so can be suppressed.

第3実施形態では、検出時間Tppは固定としたが、第2実施形態に示したように、減圧量ΔPに依存して可変するものとしてもよい。この場合には、2回の異常判断が試みられることになるが、1回目の異常判断の後に閉空間60の圧力が、減圧前の圧力に一致または近傍まで戻っていれば、2回目の異常判断を行なわず、タンクバルブは閉弁異常と判定すればよい。 In the third embodiment, the detection time Tpp is fixed, but as shown in the second embodiment, it may be variable depending on the decompression amount ΔP. In this case, two abnormality judgments will be attempted, but if the pressure in the closed space 60 matches or returns to the pressure before decompression after the first abnormality judgment, the second abnormality judgment will be made. The tank valve may be determined to be abnormal in closing without making a determination.

他の態様:
以上説明した第1から第3実施形態では、第1状態から第2状態への減圧量を予め定めた閾値と比較しているが、例えばタンクバルブ53よりタンク側に調圧弁があって、閉空間60の圧力が所定値に保たれている場合には、第2状態の圧力を直接閾値と比較することでも、同様の判断を行なうことができる。あるいは、第1状態の圧力に基づいて、閾値を定めるようにすれば、第2状態の圧力を閾値と比較することによって、同様の判断を行なうことができる。
Other aspects:
In the first to third embodiments described above, the amount of decompression from the first state to the second state is compared with a predetermined threshold value. For example, there is a pressure regulating valve on the tank side of the tank valve 53 and the pressure is closed. When the pressure in the space 60 is maintained at a predetermined value, the same determination can be made by directly comparing the pressure in the second state with the threshold value. Alternatively, if the threshold value is set based on the pressure in the first state, the same judgment can be made by comparing the pressure in the second state with the threshold value.

上記実施形態では、タンクバルブ53の閉弁異常の判断を、閉弁時通過ガス量Q(N)を求めて行なっているが、ガス量の評価は通過ガス量(流量)を算出せず、圧力変化P(1)やP(2)により行なってもよい。検出時間Tppが既知であれば、圧力変化によってガス流量を評価することができるからである。 In the above embodiment, the judgment of the valve closing abnormality of the tank valve 53 is performed by obtaining the passing gas amount Q (N) at the time of valve closing, but the evaluation of the gas amount does not calculate the passing gas amount (flow rate). It may be performed by the pressure change P (1) or P (2). This is because if the detection time Tpp is known, the gas flow rate can be evaluated by the pressure change.

第1バルブであるタンクバルブ53や第2バルブであるインジェクタ57はいずれも電気的に駆動される電動バルブを用いたが、油圧や空気圧などにより駆動されるタイプのバルブであっても差し支えない。これらのバブルでは、油圧弁や空気圧弁の開閉を指示することにより、結果的にバルブにより流路が開閉される。 The tank valve 53, which is the first valve, and the injector 57, which is the second valve, both use electric valves that are electrically driven, but they may be valves of a type that are driven by hydraulic pressure, pneumatic pressure, or the like. In these bubbles, by instructing the opening and closing of the hydraulic valve and the pneumatic valve, the flow path is opened and closed by the valve as a result.

上記実施形態では、「異常」との判定がなされた場合には、出力部83がこの判定結果をインスツルメントパネルのランプを点灯させるなどして、燃料電池システムの使用者に報知する。もとより、「正常」の場合を含めて、ダイアグノーシスコンピュータに結果を報知し、判定結果を記憶するようにしてもよい。なお、タンクバルブ53の閉弁時通過ガス量Q(N)が値0でないような場合でも、インジェクタ57が閉弁されているので、閉空間60のガス(水素)が燃料電池30側に漏れ出ることはない。 In the above embodiment, when the determination of "abnormality" is made, the output unit 83 notifies the user of the fuel cell system of the determination result by turning on the lamp of the instrument panel or the like. Of course, the result may be notified to the diagnosis computer and the determination result may be stored, including the case of "normal". Even when the value Q (N) of the gas passing through the tank valve 53 when the valve is closed is not 0, the gas (hydrogen) in the closed space 60 leaks to the fuel cell 30 side because the injector 57 is closed. It never comes out.

上記の実施形態では、閉空間60は、管路52の一部であって、タンクバルブ53からインジェクタ57までの管路としたが、タンクバルブ53からインジェクタ57までの間に水素ガスの循環路が接続されている場合などでも、循環路に循環路開閉バルブを設け、管路を遮断できれば、その循環路開閉バルブまでを含めて閉空間60とすることができる。これは水素ガスの循環路に限らず、他の流路などが設けられている場合も同様であり、遮断弁を設けて、閉空間60にできれば、どのような構成であっても差し支えない。 In the above embodiment, the closed space 60 is a part of the pipeline 52 and is a conduit from the tank valve 53 to the injector 57, but a hydrogen gas circulation path between the tank valve 53 and the injector 57. If a circulation path opening / closing valve is provided in the circulation path and the pipeline can be shut off, the closed space 60 can be formed including the circulation path opening / closing valve. This is not limited to the circulation path of hydrogen gas, and the same applies to the case where another flow path or the like is provided. Any configuration may be used as long as a shutoff valve is provided to create a closed space 60.

以上本開示の幾つかの実施形態について説明したが、本開示のバルブ異常判定装置20は、燃料電池システム以外であっても実施可能である。また、燃料電池システムに用いる場合、車載のシステムに限らず、例えば設置型の燃料電池システムのタンクに設けられたバルブの閉弁異常の判定に用いることも可能である。こうした場合に、対象となる燃料電池は固体高分子型に限らず、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)などであっても適用できる。第1電動弁は、電磁弁に限らず、モータを用いて弁体を駆動するタイプであってもよい。またロータリソレノイドを用いたものやピエゾ素子を用いたものであってもよい。また開弁、閉弁ともに電動のものに限らず、例えば閉弁はバネや磁力などで実現し、開弁時などに電気信号を必要とするもの、またその逆の構成なども採用可能である。 Although some embodiments of the present disclosure have been described above, the valve abnormality determination device 20 of the present disclosure can be implemented even if it is not a fuel cell system. Further, when used in a fuel cell system, it is not limited to an in-vehicle system, and can be used, for example, for determining a valve closing abnormality of a valve provided in a tank of an installed fuel cell system. In such a case, the target fuel cell is not limited to the solid polymer type, but may be a phosphoric acid type fuel cell (PAFC), a molten carbonate type fuel cell (MCFC), a solid oxide type fuel cell (SOFC), or the like. Can also be applied. The first electric valve is not limited to the solenoid valve, and may be a type that drives the valve body by using a motor. Further, the one using a rotary solenoid or the one using a piezo element may be used. In addition, both valve opening and valve closing are not limited to electric ones. For example, valve closing is realized by a spring or magnetic force, and an electric signal is required at the time of valve opening, and vice versa. ..

本開示は、ガスが外気より高い圧力で充填されるタンクの出口に設けられ、ガス流路を開閉するバルブであれば、燃料電池用の水素タンクのバルブに限らず、異常判定を行なうことができる。例えば、プロパンガスや窒素ガスなどのタンクに設けられたバルブの閉弁異常の判定に適用することができる。もとより、上述した各実施形態において説明した様に、バルブの異常判定方法としても実施可能である。 The present disclosure is not limited to the valve of a hydrogen tank for a fuel cell, as long as it is a valve provided at the outlet of a tank filled with gas at a pressure higher than that of the outside air and opens and closes the gas flow path, and abnormality determination can be performed. can. For example, it can be applied to the determination of a valve closing abnormality of a valve provided in a tank such as propane gas or nitrogen gas. Of course, as described in each of the above-described embodiments, it can also be implemented as a valve abnormality determination method.

上記各実施形態において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよい。ソフトウェアによって実現されていた構成の少なくとも一部は、ディスクリートな回路構成により実現することも可能である。また、本開示の機能の一部または全部がソフトウェアで実現される場合には、そのソフトウェア(コンピュータプログラム)は、コンピュータ読み取り可能な記録媒体に格納された形で提供することができる。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスクやCD-ROMのような携帯型の記録媒体に限らず、各種のRAMやROM等のコンピュータ内の内部記憶装置や、ハードディスク等のコンピュータに固定されている外部記憶装置も含んでいる。すなわち、「コンピュータ読み取り可能な記録媒体」とは、データパケットを一時的ではなく固定可能な任意の記録媒体を含む広い意味を有している。 In each of the above embodiments, a part of the configuration realized by the hardware may be replaced with software. At least some of the configurations realized by software can also be realized by discrete circuit configurations. Further, when a part or all of the functions of the present disclosure are realized by software, the software (computer program) can be provided in a form stored in a computer-readable recording medium. The "computer-readable recording medium" is not limited to portable recording media such as flexible disks and CD-ROMs, but is fixed to internal storage devices in computers such as various RAMs and ROMs, and computers such as hard disks. It also includes external storage devices that have been installed. That is, the term "computer-readable recording medium" has a broad meaning including any recording medium on which data packets can be fixed rather than temporarily.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve the part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

20…バルブ異常判定装置、30…燃料電池、40…エア給排気系、41…エア供給管、43…エア排気管、50…水素給排気系、51…タンク、52…管路、53…タンクバルブ、55…調圧バルブ、57…インジェクタ、60…閉空間、63…水素循環ポンプ、64…循環管路、65…気液分離機、67…希釈器、71…第1圧力計、72…第2圧力計、73…第3圧力計、75…温度センサ、80…燃料電池制御用ECU、81…異常判定部、82…制御部、83…出力部、TB1,TB2…テーブル 20 ... Valve abnormality determination device, 30 ... Fuel cell, 40 ... Air supply / exhaust system, 41 ... Air supply pipe, 43 ... Air exhaust pipe, 50 ... Hydrogen supply / exhaust system, 51 ... Tank, 52 ... Pipe line, 53 ... Tank Valve, 55 ... Pressure regulating valve, 57 ... Injector, 60 ... Closed space, 63 ... Hydrogen circulation pump, 64 ... Circulation pipeline, 65 ... Gas-liquid separator, 67 ... Diluter, 71 ... First pressure gauge, 72 ... 2nd pressure gauge, 73 ... 3rd pressure gauge, 75 ... temperature sensor, 80 ... fuel cell control ECU, 81 ... abnormality determination unit, 82 ... control unit, 83 ... output unit, TB1, TB2 ... table

Claims (6)

ガスが外気より高い圧力で充填されるタンクと、
前記タンクの出口に設けられ、外部からの指示に応じてガス流路を開閉する第1バルブと、
前記第1バルブから下流側の流路に設けられ、開弁することで、前記第1バルブとの間に閉空間を形成し、開弁することで、前記閉空間のガスを外部に放出する第2バルブと、
前記閉空間の圧力を検出するセンサと、
前記第1,第2バルブの開閉を制御する制御部であって、前記閉空間が前記タンクに充填されたガスの圧力によって圧力を高められた状態で、かつ前記第1バルブが閉弁された第1状態から、前記第2バルブを一時的に開弁することによって、前記閉空間内のガスを外部に放出し、前記閉空間が前記第1状態の圧力より減圧された圧力で、かつ前記第2バルブが閉弁された第2状態とする制御部と、
前記第1バルブおよび前記第2バルブの動作に伴って、前記センサにより検出された前記閉空間の圧力の変化から、前記第1バルブの閉弁時通過ガス量を評価して、前記第1バルブの閉弁異常の有無を判定する異常判定部と、
を備え、
前記異常判定部は、
前記第1状態から前記第2状態への減圧量が予め定めた閾値未満の場合には、前記第2バルブの前記閉弁後に前記センサにより検出された圧力の変化により前記第1バルブの閉弁異常を判断する手法のうち、予め定めた第1の判断手法で前記第1バルブの閉弁異常の有無の判定を行ない、
前記第2状態への前記減圧量が前記閾値以上の場合には、前記第1の判断手法よりも精度が高い第2の判断手法で前記閉弁異常の有無の判定を行なう、
バルブ異常判定装置。
A tank filled with gas at a pressure higher than the outside air,
A first valve provided at the outlet of the tank that opens and closes the gas flow path in response to an external instruction.
It is provided in the flow path on the downstream side from the first valve, and by opening the valve, a closed space is formed between the first valve and the valve, and by opening the valve, the gas in the closed space is discharged to the outside. With the second valve
A sensor that detects the pressure in the closed space and
A control unit that controls the opening and closing of the first and second valves, in which the closed space is increased in pressure by the pressure of the gas filled in the tank, and the first valve is closed. By temporarily opening the second valve from the first state, the gas in the closed space is released to the outside, and the closed space is depressurized from the pressure in the first state, and the said. The control unit that puts the second valve in the second state when the valve is closed,
The amount of gas passing through the first valve when the first valve is closed is evaluated from the change in the pressure in the closed space detected by the sensor with the operation of the first valve and the second valve, and the first valve is used. Abnormality determination unit that determines the presence or absence of valve closing abnormality,
Equipped with
The abnormality determination unit is
When the amount of decompression from the first state to the second state is less than a predetermined threshold value, the valve of the first valve is closed due to the change in pressure detected by the sensor after the valve of the second valve is closed. Among the methods for determining an abnormality, the presence or absence of a valve closing abnormality of the first valve is determined by a predetermined first determination method.
When the decompression amount to the second state is equal to or greater than the threshold value, the presence or absence of the valve closing abnormality is determined by the second determination method, which is more accurate than the first determination method.
Valve abnormality determination device.
前記第2の判断手法は、前記第1の判断手法よりも、前記圧力の変化による前記判断の回数が多い手法である、請求項1記載のバルブ異常判定装置。 The valve abnormality determination device according to claim 1, wherein the second determination method is a method in which the number of determinations due to a change in pressure is larger than that of the first determination method. 前記第2の判断手法は、前記第2バルブの前記閉弁後に前記センサにより検出された圧力の変化により前記第1バルブの閉弁異常を判断する処理を1回行なった後で、前記閉空間の圧力が、前記第1状態の圧力に対して所定の圧力範囲に入っているとき、前記第1バルブに閉弁異常があると判定する、請求項2に記載のバルブ異常判定装置。 In the second determination method, after the process of determining the valve closing abnormality of the first valve by the change in pressure detected by the sensor after the valve closing of the second valve is performed once, the closed space. The valve abnormality determination device according to claim 2, wherein when the pressure of the first valve is within a predetermined pressure range with respect to the pressure of the first state, it is determined that the first valve has a valve closing abnormality. 前記第2の判断手法は、前記第1の判断手法より、前記圧力の変化を検出するための時間が長い手法である、請求項1記載のバルブ異常判定装置。 The valve abnormality determination device according to claim 1, wherein the second determination method is a method in which a time for detecting a change in pressure is longer than that of the first determination method. 前記タンクは燃料電池に供給される燃料ガスが充填されるガスタンクであり、
前記第2バルブは、前記燃料ガスを燃料電池に供給するインジェクタである、請求項1から請求項4のいずれか一項に記載のバルブ異常判定装置。
The tank is a gas tank filled with fuel gas supplied to the fuel cell.
The valve abnormality determination device according to any one of claims 1 to 4, wherein the second valve is an injector that supplies the fuel gas to the fuel cell.
ガスが外気より高い圧力で充填されるタンクの出口に設けられ、ガス流路を開閉するタンクバルブの異常を判定する方法であって、
前記タンクバルブから下流側の流路に設けられ、前記タンクバルブより下流側に形成される閉空間に設けられたセンサにより、前記閉空間の圧力を検出し、
前記閉空間の圧力を、前記タンクに充填されたガスの圧力によって高め、かつ前記タンクバルブを閉弁した第1状態とし、
前記第1状態から、前記流路に設けられた放出バルブを一時的に開弁することで、前記閉空間の前記ガスを外部に放出して、前記閉空間の圧力を、前記第1状態の圧力より減圧し、かつ前記放出バルブが閉弁された第2状態とし、
前記第1状態から前記第2状態への減圧量が予め定めた閾値未満の場合には、前記放出バルブの前記閉弁後に前記センサにより検出された圧力の変化により前記タンクバルブの閉弁異常を判定する手法のうち、予め定めた第1の判断手法で前記タンクバルブの閉弁異常の有無の判定を行ない、
前記第2状態への前記減圧量が前記閾値以上の場合には、前記第1の判断手法よりも精度が高い第2の判断手法で前記閉弁異常の有無の判定を行なう、
バルブ異常判定方法。
It is a method to determine the abnormality of the tank valve that opens and closes the gas flow path, which is provided at the outlet of the tank where the gas is filled with a pressure higher than the outside air.
The pressure in the closed space is detected by a sensor provided in the flow path on the downstream side of the tank valve and provided in the closed space formed on the downstream side of the tank valve.
The pressure in the closed space is increased by the pressure of the gas filled in the tank, and the tank valve is closed in the first state.
By temporarily opening the discharge valve provided in the flow path from the first state, the gas in the closed space is discharged to the outside, and the pressure in the closed space is applied to the pressure in the first state. The pressure is reduced from the pressure, and the release valve is closed in the second state.
When the amount of decompression from the first state to the second state is less than a predetermined threshold value, the valve closing abnormality of the tank valve is caused by the change in pressure detected by the sensor after the valve closing of the release valve. Among the determination methods, the presence or absence of a valve closing abnormality of the tank valve is determined by the first determination method determined in advance.
When the decompression amount to the second state is equal to or greater than the threshold value, the presence or absence of the valve closing abnormality is determined by the second determination method, which is more accurate than the first determination method.
Valve abnormality judgment method.
JP2020160620A 2020-09-25 2020-09-25 VALVE FAILURE DETERMINATION DEVICE AND METHOD THEREOF Active JP7338597B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020160620A JP7338597B2 (en) 2020-09-25 2020-09-25 VALVE FAILURE DETERMINATION DEVICE AND METHOD THEREOF
CN202110779619.7A CN114323631B (en) 2020-09-25 2021-07-09 Valve abnormality determination device and valve abnormality determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160620A JP7338597B2 (en) 2020-09-25 2020-09-25 VALVE FAILURE DETERMINATION DEVICE AND METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2022053799A true JP2022053799A (en) 2022-04-06
JP7338597B2 JP7338597B2 (en) 2023-09-05

Family

ID=80993944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160620A Active JP7338597B2 (en) 2020-09-25 2020-09-25 VALVE FAILURE DETERMINATION DEVICE AND METHOD THEREOF

Country Status (2)

Country Link
JP (1) JP7338597B2 (en)
CN (1) CN114323631B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291932U (en) * 1988-12-29 1990-07-20
JP2007134063A (en) * 2005-11-08 2007-05-31 Toyota Motor Corp FUEL CELL SYSTEM, GAS LEAK DETECTING METHOD, AND MOBILE BODY
KR20180013255A (en) * 2016-07-29 2018-02-07 현대자동차주식회사 The method for removing a leak of fuel tank valve
JP2018092737A (en) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 Fuel cell system
JP2019149234A (en) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 Fuel cell system
US20200119378A1 (en) * 2018-10-15 2020-04-16 Hyundai Motor Company Fuel cell hydrogen supply fault diagnosis system and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765530B2 (en) * 1985-03-29 1995-07-19 富士通テン株式会社 Control correction amount correction device transiently acting on internal combustion engine control
JP2000120495A (en) * 1998-10-16 2000-04-25 Denso Corp Evaporated gas purging system
JP2000303909A (en) * 1999-04-22 2000-10-31 Honda Motor Co Ltd Gas fuel supply system of vehicle
DE112005000589B8 (en) * 2004-03-17 2017-07-13 Toyota Jidosha Kabushiki Kaisha Gas leakage detection method for a fuel cell system and apparatus therefor
JP5013037B2 (en) * 2005-07-01 2012-08-29 トヨタ自動車株式会社 FUEL CELL SYSTEM, ITS GAS LEAK DETECTION METHOD, AND MOBILE BODY
JP2007051917A (en) * 2005-08-17 2007-03-01 Toyota Motor Corp Airtightness abnormality determination device and gas supply device
JP4506644B2 (en) * 2005-10-31 2010-07-21 トヨタ自動車株式会社 Fuel gas consumption system and gas leak detection method of fuel gas consumption system
JP2007329105A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Abnormality detection device for fuel cell system and abnormality detection method for the same
CN101852714B (en) * 2010-04-30 2011-09-14 中国石油大学(北京) Measuring system and method of low-speed non-linear seepage parameters
JP6620776B2 (en) * 2017-03-15 2019-12-18 トヨタ自動車株式会社 Fuel cell system
CN109813020B (en) * 2019-02-20 2020-03-06 珠海格力电器股份有限公司 Electronic expansion valve blockage detection method, heat pump system control method, electric appliance and computer readable storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291932U (en) * 1988-12-29 1990-07-20
JP2007134063A (en) * 2005-11-08 2007-05-31 Toyota Motor Corp FUEL CELL SYSTEM, GAS LEAK DETECTING METHOD, AND MOBILE BODY
KR20180013255A (en) * 2016-07-29 2018-02-07 현대자동차주식회사 The method for removing a leak of fuel tank valve
JP2018092737A (en) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 Fuel cell system
JP2019149234A (en) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 Fuel cell system
US20200119378A1 (en) * 2018-10-15 2020-04-16 Hyundai Motor Company Fuel cell hydrogen supply fault diagnosis system and method

Also Published As

Publication number Publication date
CN114323631A (en) 2022-04-12
JP7338597B2 (en) 2023-09-05
CN114323631B (en) 2024-09-13

Similar Documents

Publication Publication Date Title
JP4806989B2 (en) Fuel cell system
CN101233641B (en) Fuel cell system and gas leak detection device
US7829233B2 (en) Fuel cell system and method for judging fuel gas leak in a fuel cell system
CN110197916B (en) Fuel cell system and method of controlling fuel cell
JP4956906B2 (en) Fuel cell system and hydrogen leak detection method
CN108630963A (en) Fuel cell system and its control method
CN109935863B (en) Fuel cell system
JP4636336B2 (en) Exhaust valve failure diagnosis device
CN101467295B (en) Fuel cell system
CN108598523B (en) Fuel cell system and determination method
JP2018160363A (en) Fuel cell system
CN100468851C (en) Fault diagnosis device for exhaust valve
CN101809794B (en) fuel cell system
JP4758707B2 (en) Fuel cell system
JP5110415B2 (en) Fuel cell system and gas leak detection method
JP4632119B2 (en) Fuel supply device
CN109494387B (en) Fuel cell system and abnormality diagnosis method for fuel cell system
JP2022053799A (en) Valve abnormality determination device and method
JP4176453B2 (en) Operation control of fuel cell system
JP2021190235A (en) Fuel cell system
KR102663202B1 (en) Control method for hydrogen supply of fuel cell
JP5333730B2 (en) Fuel cell system
JP2014154362A (en) Fuel cell diagnostic method, fuel cell diagnostic device, and fuel cell system
JP2011124132A (en) Fuel cell system
JP2020087586A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R151 Written notification of patent or utility model registration

Ref document number: 7338597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151