[go: up one dir, main page]

JP2022013489A - Mobile sterilizer - Google Patents

Mobile sterilizer Download PDF

Info

Publication number
JP2022013489A
JP2022013489A JP2020126846A JP2020126846A JP2022013489A JP 2022013489 A JP2022013489 A JP 2022013489A JP 2020126846 A JP2020126846 A JP 2020126846A JP 2020126846 A JP2020126846 A JP 2020126846A JP 2022013489 A JP2022013489 A JP 2022013489A
Authority
JP
Japan
Prior art keywords
air
moving body
sterilization
mobile
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020126846A
Other languages
Japanese (ja)
Inventor
國昭 永山
Kuniaki Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N Em Lab Co Ltd
Original Assignee
N Em Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N Em Lab Co Ltd filed Critical N Em Lab Co Ltd
Priority to JP2020126846A priority Critical patent/JP2022013489A/en
Publication of JP2022013489A publication Critical patent/JP2022013489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

To provide a sterilizer in a mobile space for storing many people in a closed and narrow space.SOLUTION: A sterilizer comprises: a gas collecting pipe 16; a blower 27; a sterilization box 25; a filter box 22; and a gas dispersion pipe 15. Air in a mobile collected by the gas collection pipe 16 passes through a suction hole 28, the blower 27, the sterilization box 25, and a blower joint 26, and enters the sterilization box 25. The air in a mobile is irradiated with ultraviolet by an ultraviolet source 100 attached to the sterilization box 25 for sterilization, and the sterilized air passes through the filter box 22 and a sterilization box joint 24 and is delivered to the filter box 22. The sterilized air passes through a filter passage air channel 22a during utilization of the mobile, and passes through a filter bypass air channel 22b during non-utilization of the mobile, and the sterilized air is discharged from a discharge hole 21 and is delivered to the gas dispersion pipe 15, so that, the two air channels 22a, 22b are used properly according to a situation of utilization/non-utilization of the mobile.SELECTED DRAWING: Figure 1

Description

発明の詳細な説明Detailed description of the invention

本発明は、移動体内部の空気及設置物表面の殺菌に関する。より詳しくは、乗用車やエレベーターなどの閉鎖空間を持つ移動体に装備され、その内部空間の空気中に浮遊するウイルスや細菌及び移動体内壁表面や移動体内設置物表面に付着するウイルスや細菌を殺菌し移動体内を清浄化する独立型装置に関する。 The present invention relates to sterilization of air inside a moving body and the surface of an installed object. More specifically, it is installed in a moving body with a closed space such as a passenger car or an elevator, and sterilizes viruses and bacteria floating in the air in the internal space and viruses and bacteria adhering to the surface of the moving body wall and the surface of the moving body installation. It relates to a stand-alone device that cleans the moving body.

現今猛威を振るう新興感染症(新型コロナウイルス感染症)につき種々の感染源や感染環境が問題視されているが、タクシーやエレベーターなども感染場所として注意が喚起されている。こうしたコンパクトな移動体は、閉鎖的で狭い空間に多人数を収容するため、感染に致命的ないわゆる3蜜(密閉、密集、密接)状態を形成しやすいという共通性を持つ。 Various sources of infection and the environment of infection have been regarded as problems with emerging infectious diseases (new coronavirus infections) that are currently rampant, but taxis and elevators are also being called attention as infection sites. Since these compact mobiles accommodate a large number of people in a closed and narrow space, they have the commonality of easily forming the so-called three-honey (sealed, dense, close) state that is fatal to infection.

一般に閉鎖空間である室内の空気清浄化については、フィルターを用いた種々の製品(非特許文献1、2)が市販されている。しかしこれらはゴミや花粉などのアレルゲン除去が主目的であり殺菌の実効性はほとんどないと考えられる。殺菌をうたった家庭用製品としては、空気還流型の紫外線殺菌装置(非特許文献3)があるが、殺菌効率が定義できるのは装置内部空間だけあり、膨大な空間の空気容量を考慮すると装置外部での殺菌率が推計不能である。紫外線照射による開放型の紫外線殺菌装置(非特許文献4)では、殺菌可能域は装置近くに限定され、離れた場所の殺菌効果は不明である。また人目に触れる場所や時間での設置が紫外線有害性により困難である。紫外線に替わる殺菌手段としてオゾン殺菌装置(非特許文献5,6)も注目されているが、これも殺菌効率と有害性との相反性を回避できない。乗用車やエレベーターなどのコンパクト移動体の場合、限定された狭い閉鎖空間に3蜜状態が作られるため、例示した市販装置のような漠然とした殺菌ではなく、殺菌率仕様や殺菌時間さらに対象空間の空気容量を考慮し、気流を制御することで人から人への感染を防ぐ定量的殺菌装置の装備が不可欠となる。 Various products using filters (Non-Patent Documents 1 and 2) are commercially available for air purification in a room which is generally a closed space. However, these are considered to have little effectiveness in sterilization because their main purpose is to remove allergens such as dust and pollen. As a household product that sterilizes, there is an air recirculation type ultraviolet sterilization device (Non-Patent Document 3), but the sterilization efficiency can be defined only in the internal space of the device, and considering the air capacity of the huge space, the device The external sterilization rate cannot be estimated. In an open type ultraviolet sterilizer by ultraviolet irradiation (Non-Patent Document 4), the sterilizable area is limited to the vicinity of the apparatus, and the sterilizing effect at a distant place is unknown. In addition, it is difficult to install in a place and time that can be seen by the public due to the harmful effects of ultraviolet rays. Ozone sterilizers (Non-Patent Documents 5 and 6) have also attracted attention as a sterilization means that replaces ultraviolet rays, but this also cannot avoid the conflict between sterilization efficiency and harmfulness. In the case of compact moving objects such as passenger cars and elevators, three honey states are created in a limited narrow closed space, so instead of vague sterilization as in the example commercial equipment, sterilization rate specifications, sterilization time, and air in the target space It is indispensable to equip a quantitative sterilizer to prevent human-to-human transmission by controlling the air flow in consideration of the capacity.

すでに本出願者は、新興感染症対策機器として、便器内空気の殺菌装置(特許文献1)、ハンドドライヤー空気の殺菌装置(特許文献2)、患者下半身局所の空気殺菌装置(特許文献3)を出願しているが、それら全てにおいて所与の紫外線光出力での殺菌時間推計を殺菌すべき空気量と目標の殺菌率を指標として定量的に行った。そこでの定量的計算経験から判断し、既に記したように、室内などの開放空間での使用をうたった既存の紫外線殺菌装置はその実効性が大いに疑問視される。人を擁することを前提とする移動体においても、出願済みの3種の装置に比べ、殺菌対象として考慮すべき空気容量は各段に大きくかつ人が複数密集して存在する空間であるため、短時間に目標とする殺菌率を達成するには高い紫外線光出力の紫外線源設置が要請される。従来の殺菌用紫外線ランプの多数設置でこの問題に対処するとしても、高い電力消費および広い設置体積両者の要求の観点から解決は極めて困難である。しかし、近年発展著しい高出力の深紫外線LEDを活用すれば、電力消費および設置体積ともに抑制できるため、移動体がエレベーターや乗用車などのコンパクトなものであれば、出願済みの3種の発明(特許文献1~3)と同じ様式の殺菌措置が可能と考えられる。 The applicant has already provided an air sterilizer for air in a toilet bowl (Patent Document 1), a hand dryer air sterilizer (Patent Document 2), and an air sterilizer for the lower body of a patient (Patent Document 3) as devices for controlling emerging infectious diseases. Although we have applied for it, we quantitatively estimated the sterilization time at a given ultraviolet light output in all of them using the amount of air to be sterilized and the target sterilization rate as indicators. Judging from the quantitative calculation experience there, as already mentioned, the effectiveness of existing UV sterilizers that claim to be used in open spaces such as indoors is greatly questioned. Even in a moving body that is supposed to hold people, the air capacity that should be considered as a sterilization target is larger in each stage and the space is densely populated with multiple people, compared to the three types of devices that have been filed. In order to achieve the target sterilization rate in a short time, it is required to install an ultraviolet source with a high ultraviolet light output. Even if a large number of conventional UV lamps for sterilization are used to deal with this problem, it is extremely difficult to solve the problem in terms of both high power consumption and wide installation volume. However, if the high-power deep-UV LED, which has been rapidly developing in recent years, can be used to reduce both power consumption and installation volume, if the moving object is a compact one such as an elevator or a passenger car, three types of patents have been filed (patents). It is considered that the same form of sterilization measures as in Documents 1 to 3) is possible.

特願2020-94964(便器内空気殺菌装置) 2020年4月27日出願Japanese Patent Application No. 2020-94964 (Air sterilizer in toilet bowl) Filed on April 27, 2020 特願2020-97256(空気殺菌ハンドドライヤー) 2020年5月4日出願Japanese Patent Application No. 2020-97256 (Air Sterilization Hand Dryer) Filed May 4, 2020 特願2020-103374(局所空気殺菌装置) 2020年5月19日出願Japanese Patent Application No. 2020-103374 (Local Air Sterilizer) Filed May 19, 2020

https://www.dyson.co.jp/air-treatment/purifier-humidifier/dyson-pure-humidify-cool/ph01-dyson-pure-humidify-cool-white-silver.aspx(加湿空気清浄機)https: // www. dyson. co. jp / air-treatment / purifier-humidifier / dyson-pure-humidiffy-col / ph01-dyson-pure-humidifier-col-white-silver. aspx (humidified air purifier) https://www.daikinaircon.com/ca/index.html(ストリーマ空気清浄機)https: // www. daikinaircon. com / ca / index. html (streamer air purifier) https://axel.as-1.co.jp/asone/g/NCN8038968/(空気殺菌灯)https: // axel. as-1. co. jp / asone / g / NCN8038968 / (air germicidal lamp) http://www.nitride.co.jp/products/Germicidal-Lamp.html(ハンディUV-LED殺菌灯)http: // www. Nitride. co. jp / products / Germicidal-Lamp. html (Handy UV-LED germicidal lamp) https://www.ozonemart.jp/wp/archives/product_lp/1003(オゾンクラスター1400)https: // www. ozonemart. jp / wp / archives / product_lp / 1003 (ozone cluster 1400) https://www.teco.co.jp/lyon.html(リオン3.0)https: // www. teco. co. jp / lyon. html (Lion 3.0) Ryoichi Matsuda,Fart and air in toilet private room maybe routes for fecal-oral infection,possibly for 2019-nCoV.,Internat.J.Hygn.Environ.Health,2020、投稿中。Ryoichi Matsuda, Fart and air in toilet private room maybe routes for facial-oral infection, positive for 2019-nCoV. , Internat. J. Hygn. Environ. Health, 2020, posting. https://www.iwasaki.co.jp/optics/chishiki/uv/02.html 岩崎電機株式会社ホームページ、照明、光応用の知識、紫外線殺菌、 2.紫外線による殺菌・不活化、表2。https: // www. iwasaki. co. jp / optics / chishiki / uv / 02. html Iwasaki Electric Co., Ltd. Homepage, Lighting, Knowledge of optical application, UV sterilization, 2. Sterilization and inactivation by ultraviolet rays, Table 2. https://www.ana.co.jp/group/about-us/air-circulation.html ANA、機内の空気循環について。https: // www. ana. co. jp / group / about-us / air-cyclation. About html ANA, air circulation in the cabin.

エレベーターや乗用車などの3蜜状態を形成しやすいコンパクトな移動体に対しては、新興感染症を含め感染症問題に対処するため以下の課題の解決が要請される。
1、移動体内部空間の空気を効率的に殺菌する装置であること(空気感染防止)、
2、移動体内壁表面や移動体内設置物表面を殺菌する装置であること(接触感染防止)、
3、殺菌率は99%以上であること(殺菌能力)、
4、人から人への飛沫感染を防げること(飛沫感染防止)、
5、手法が無害であること(安全性)、
6、無人連続運転に耐えること(頑強性)、
7、どのようなコンパクト移動体に対しても敷設できること(汎用性)。
出願済み3種の発明(特許文献1~3)と本願との大きな違いは、飛沫感染距離に他者がいる環境を扱っていることである。そのため特に課題4が解決すべき重要項目である。
なお本願で殺菌とは、「ウイルスや細菌など感染源全般の不活化」を指す。
For compact moving objects such as elevators and passenger cars that easily form the three-cs state, it is required to solve the following problems in order to deal with infectious disease problems including emerging infectious diseases.
1. A device that efficiently sterilizes the air inside the moving body (prevention of airborne infection).
2. It must be a device that sterilizes the surface of walls inside moving bodies and the surface of objects installed inside moving bodies (prevention of contact infection).
3. The sterilization rate is 99% or more (sterilization ability),
4. Preventing droplet infection from person to person (prevention of droplet infection),
5. The method is harmless (safety),
6. Withstand unmanned continuous operation (robustness),
7. Can be laid on any compact moving object (universality).
The major difference between the three claimed inventions (Patent Documents 1 to 3) and the present application is that they deal with an environment in which there are others in the distance of droplet infection. Therefore, problem 4 is an important item to be solved.
In the present application, sterilization refers to "inactivation of all infection sources such as viruses and bacteria".

ここで感染形態の用語につき本願における定義を明確にする。
飛沫感染とは、咳やくしゃみで感染源を含む飛沫が飛び、その飛沫を近隣他者が呼気を通じて体内に取り込むために感染する形態を指す。飛沫は通常水滴状のアエロゾルである。
空気感染とは、咳やくしゃみで飛んだ飛沫の水分が蒸発した後、感染源が長時間空気中に浮遊し、呼気を通じて人の体内に入り感染する形態を指す。なお肛門よりおならとして排出される腸内ガスにも感染源細菌が多量に含まれることが最近報告された(非特許文献7)。おならを肛門から排出される飛沫と考えれば、人の口に達するまでに空中を漂い水分が蒸発した後、呼気を通じて人の体内に入るので空気感染の1種と考えられる。便器内の便臭気からの飛沫も同様であり、これらを総称して糞口感染と語用することもある。
接触感染とは、皮膚や粘膜の感染源への直接的な接触や、ウイルスがついた物に触れた手や物を介して人の口に入り感染する形態を指す。
Here, the definition of the term of infection form is clarified in the present application.
Droplet infection refers to a form in which droplets containing the source of infection fly by coughing or sneezing, and the droplets are infected by others in the vicinity through exhalation. The droplets are usually water droplet-like aerosols.
Airborne infection refers to a form in which the source of infection floats in the air for a long period of time after the water in the droplets that have flown due to coughing or sneezing evaporates, and then enters the human body through exhaled breath and becomes infected. It has recently been reported that the intestinal gas discharged from the anus as a flatulence also contains a large amount of infection source bacteria (Non-Patent Document 7). If you think of a flatulence as a droplet discharged from the anus, it is considered to be a type of airborne infection because it floats in the air before reaching the human mouth, evaporates water, and then enters the human body through exhaled breath. The same applies to droplets from the stool odor in the toilet bowl, and these are sometimes collectively referred to as fecal-oral infection.
Contact infection refers to a form of direct contact with the source of infection of the skin or mucous membrane, or a form of infection in the human mouth through a hand or object that has touched an object with a virus.

第1の発明は、移動体内に装備される長尺筐体において、長手方向両端の一面に長尺の散気パイプを対抗面に長尺の集気パイプを接続させ、前記長尺筐体内には空気を送る送風機と紫外線源を収容する殺菌箱とを内蔵させ、前記送風機の送風により前記移動体内の空気と前記長尺筐体内の空気とを前記散気パイプ及び前記集気パイプを通じ円環気流接合させ、常時稼働の前記送風機により前記殺菌箱に導かれた空気に浮遊するウイルスや細菌を、前記殺菌箱に付置された前記紫外線源から放射される紫外線により殺菌し、無菌化された空気は、前記送風機送気流に乗り移動体上部に設置された長尺の前記散気パイプに送られ、前記散気パイプに穿たれた複数の散気口より上方から下方に向け移動体内に散気され、散気下降気流により移動体内の感染源気体を下方へ送ることで飛沫感染を防止し、感染源を含む下降気流は円環気流接合原理に従い全量移動体下部に設置された長尺の前記集気パイプに集気され、再び前記殺菌箱に送られ従前と同じ殺菌過程を経ることで移動体内空気を循環殺菌し空気感染防止を行うことを特徴とする移動体殺菌装置である。 According to the first invention, in a long housing equipped in a moving body, a long air diffuser pipe is connected to one surface at both ends in the longitudinal direction, and a long air collecting pipe is connected to the opposite surface, and the inside of the long housing is formed. Incorporates a blower for sending air and a sterilization box for accommodating an ultraviolet source, and the air in the moving body and the air in the long housing are circularly ringed through the air diffuser pipe and the air collecting pipe by the air blown by the blower. Air that is sterilized by air-bonding and sterilizing viruses and bacteria floating in the air that is guided to the sterilization box by the blower that is always in operation with the ultraviolet rays emitted from the ultraviolet source attached to the sterilization box. Is sent to the long air diffuser pipe installed on the upper part of the moving body by riding on the blower airflow, and is air-dispersed into the moving body from above to downward from a plurality of air diffusers pierced in the air diffuser pipe. The sterilization source gas in the moving body is sent downward by the diffused downdraft to prevent droplet infection, and the downdraft containing the infectious source is the long one installed at the bottom of the moving body in accordance with the annular air flow joining principle. It is a mobile body sterilizer characterized in that air is collected in an air collecting pipe, sent to the sterilization box again, and subjected to the same sterilization process as before to circulate and sterilize the air inside the moving body to prevent air infection.

第1の発明に係る移動体殺菌装置によれば、3蜜状態を形成しやすい移動体内閉鎖空間において、第1には感染者がいる場合、移動体殺菌装置より上方から散気される無菌化空気下降気流により、感染者から発せられるウイルスや細菌を下方移動することで飛沫感染が防止され、第2には下方移動した浮遊ウイルスや細菌を含む空気が集気され殺菌箱に還流され紫外線殺菌されることで移動体内の空気を常時清浄化し空気感染を連続的に防止できる。 According to the mobile sterilizer according to the first invention, in a closed space inside a mobile body where a three-honey state is likely to be formed, first, when an infected person is present, sterilization is performed from above the mobile sterilizer. The air downdraft prevents droplet infection by moving the virus and bacteria emitted from the infected person downward, and secondly, the air containing the floating virus and bacteria that has moved downward is collected and returned to the sterilization box for sterilization by ultraviolet rays. By doing so, the air inside the moving body can be constantly cleaned and air infection can be continuously prevented.

第2の発明は、第1の発明において、気流結合される前記散気パイプ、前記送風機、前記殺菌箱、前記集気パイプは、そのいずれかの間に、オゾン除去のためのフィルターを収容するフィルター箱を設けることを特徴とする移動体殺菌装置である。 In the second invention, in the first invention, the air diffuser pipe, the blower, the sterilization box, and the air collecting pipe to be airflow-coupled accommodate a filter for ozone removal between them. It is a mobile sterilizer characterized by providing a filter box.

第2の発明に係る移動体殺菌装置によれば、前記殺菌箱に設置した紫外線源の紫外線照射により生成したオゾンが前記フィルターにより除去されるので無臭で安全な無菌化空気を移動体内部に供給できる。 According to the mobile body sterilizer according to the second invention, ozone generated by the ultraviolet irradiation of the ultraviolet source installed in the sterilization box is removed by the filter, so that odorless and safe sterilized air is supplied to the inside of the mobile body. can.

第3の発明は、第2の発明において、前記フィルター箱は、前記殺菌箱を出た空気を導く気流路として、オゾン除去用前記フィルターを通過する気流路と迂回する気流路の2つを備え、状況に応じ2つの気流路のどちらかの選択を可能とするシャッター機構を具備し、移動体の稼働状況では前記フィルターを通過する気流路の選択を、移動体の非稼働状況では前記フィルターを迂回する気流路の選択を行うことで、人のいる移動体稼働時にはオゾン除去無菌化空気を移動体内に供給し飛沫感染防止を行い、人のいない移動体非稼働時には紫外線照射により生成されたオゾンを移動体内に供給し移動体内壁や移動体内設置物表面のオゾン殺菌を行い接触感染防止を行うことを特徴とする移動体殺菌装置である。 According to a third aspect of the invention, in the second invention, the filter box includes two air channels that guide the air leaving the sterilization box, one that passes through the filter for ozone removal and the other that bypasses the filter. A shutter mechanism that enables selection of either of the two air flow paths according to the situation is provided, and the air flow path that passes through the filter can be selected in the operating state of the moving body, and the filter can be selected in the non-operating state of the moving body. By selecting a detour air flow path, ozone removal sterilization air is supplied to the moving body to prevent droplet infection when the moving body with people is operating, and ozone generated by ultraviolet irradiation when the moving body without people is not operating. It is a mobile body sterilizer characterized by supplying ozone to the moving body wall and the surface of the moving body installation object to prevent contact infection.

第3の発明に係る移動体殺菌装置によれば、移動体内の空気殺菌清浄化による不活化を逃れたウイルスや細菌が移動体内壁表面や移動体内設置物表面に付着し感染源となっても、移動体非稼働時に作動するフィルター迂回気流路を通った紫外線誘起オゾンにより、それら表面を移動体稼働時前にあらかじめオゾン殺菌することができ、元来の飛沫感染防止機能に加え接触感染防止機能が付加される。 According to the mobile body sterilizer according to the third invention, even if a virus or a bacterium that escapes inactivation by air sterilization and purification in the moving body adheres to the surface of the moving body wall or the surface of the moving body installation object and becomes an infection source. , The surface can be sterilized with ozone in advance before the moving body is operated by the ultraviolet-induced ozone passing through the filter detour air flow path that operates when the moving body is not operating. Is added.

第4の発明は、第1または第2のいずれかの発明において、前記散気パイプは空気を通過させる複数の散気口を、前記集気パイプは空気を通過させる複数の集気口を有するが、それらの口の大きさをパイプ根元から終端に向かい大きくなるよう調整することで移動体内部に放出される下降気流の場所一様性を確保することを特徴とする移動体殺菌装置である。 In the fourth aspect of the invention, in any one of the first or second inventions, the air diffuser pipe has a plurality of air diffusers through which air passes, and the air collection pipe has a plurality of air collection ports through which air passes. However, it is a moving body sterilizer characterized by ensuring the location uniformity of the downdraft discharged inside the moving body by adjusting the size of those mouths from the root of the pipe toward the end. ..

第4の発明に係る移動体殺菌装置によれば、上部散気パイプと下部集気パイプに挟まれた移動体内空間につき空気全体を円環的に気流循環できるので殺菌の死角が減弱でき安全性を高められる。 According to the mobile body sterilizer according to the fourth invention, since the entire air can be circularly circulated in the moving internal space sandwiched between the upper air diffuser pipe and the lower air collecting pipe, the blind spot of sterilization can be diminished and safety is achieved. Can be enhanced.

第5の発明は、第1または第2のいずれかの発明において、前記紫外線発生源は、波長範囲が180nmから379nmのいずれかに中心波長をもつ紫外線を発生する紫外線LEDを1個乃至複数個有することを特徴とする移動体殺菌装置である。A fifth aspect of the invention is the first or second invention, wherein the ultraviolet source is one or a plurality of ultraviolet LEDs that generate ultraviolet rays having a central wavelength in any of 180 nm to 379 nm. It is a mobile sterilizer characterized by having.

第5の発明に係る移動体殺菌装置によれば、殺菌箱内空気を紫外線で殺菌し移動体内部に放出することでは結果的に移動体内を空気殺菌することができる。 According to the mobile body sterilizer according to the fifth aspect of the invention, the air inside the sterilizing box is sterilized by ultraviolet rays and released into the moving body, and as a result, the moving body can be sterilized by air.

第6の発明は、第1または第2のいずれかの発明において、前記送風機は、送風量が電気制御され、移動体内空気全量を30秒から1時間の範囲にわたって1回循環させる能力を有することを特徴とする移動体殺菌装置である。 A sixth aspect of the invention, in any one of the first or second inventions, is that the blower is electrically controlled in the amount of air blown and has the ability to circulate the entire amount of air in the moving body once over a range of 30 seconds to 1 hour. It is a mobile body sterilizer characterized by.

第6の発明に係る移動体殺菌装置によれば、移動体内空気容量の大小及び移動体稼働時、非稼働時の状況に応じ送風量を制御することで、殺菌効率と電力消費の相互依存最適化を図ることが出来る。例えば、エレベーターの場合、移動体稼働時は、顔の周りの上下50cmくらいの範囲の呼気を10秒程度で下方気流換気できれば、飛沫感染リスクは抑えられる。この場合移動体の高さが2m程度なら空気全量を1分以内で循環できることになる。また接触感染防止のための内壁表面や設置物表面のオゾン殺菌は、人がいない夜などの移動体非稼働時に行うので時間をかけて処理ができるため10分以上の循環時間が許容され、電力消費は抑制される。こうした送風量制御は、移動体稼働状況を考慮した自動化が好ましい。 According to the mobile body sterilizer according to the sixth invention, the interdependence between sterilization efficiency and power consumption is optimized by controlling the amount of air blown according to the size of the air capacity in the moving body and the conditions during operation and non-operation of the moving body. It can be changed. For example, in the case of an elevator, the risk of droplet infection can be suppressed if the exhaled air in a range of about 50 cm above and below the face can be ventilated in the downward airflow in about 10 seconds when the moving body is operating. In this case, if the height of the moving body is about 2 m, the entire amount of air can be circulated within 1 minute. In addition, ozone sterilization of the inner wall surface and the surface of the installation to prevent contact infection is performed when the moving object is not operating, such as at night when there are no people, so it can be processed over time, so a circulation time of 10 minutes or more is allowed, and electricity is required. Consumption is curtailed. Such air flow control is preferably automated in consideration of the operating status of the moving body.

第7の発明は、第1または第2のいずれかの発明において、前記殺菌箱は、鏡面仕上げされた内壁の反射率が50%以上であることを特徴とする記載の移動体殺菌装置である。 A seventh aspect of the invention is the mobile sterilizer according to the first or second aspect, wherein the sterilizer box has a reflectance of 50% or more on a mirror-finished inner wall. ..

第7の発明に係る移動体殺菌装置によれば、殺菌箱内に設置された前記紫外線源から射出された紫外線が内壁により何回も反射されながら殺菌箱内空気を照明するため、紫外線照明強度が実効的に増大し殺菌効率を高めることまたは殺菌時間を短縮することができる。 According to the mobile sterilizer according to the seventh aspect of the invention, the ultraviolet rays emitted from the ultraviolet source installed in the sterilizing box illuminate the air inside the sterilizing box while being reflected many times by the inner wall. Can be effectively increased to increase sterilization efficiency or shorten sterilization time.

本願発明により、無菌化された空気の上方からの散気により移動体内の人の口や肛門から放出され浮遊する細菌やウイルス等を迅速に気流下降させることおよび下降気流を再度殺菌箱に循環し殺菌することで、移動体利用者の空気感染及び飛沫感染を持続的に防止することができる。また紫外線由来オゾンの利活用による移動体の内壁表面や設置物表面のオゾン殺菌により、移動体利用者の接触感染を持続的に防止することができる。 According to the present invention, the airflow of bacteria and viruses released from the mouth and anus of a moving body by airborne air from above the sterilized air is rapidly lowered, and the downdraft is circulated to the sterilization box again. By sterilizing, it is possible to continuously prevent airborne infection and droplet infection of mobile users. In addition, ozone sterilization of the inner wall surface of the mobile body and the surface of the installation by utilizing the ozone derived from ultraviolet rays can continuously prevent contact infection of the mobile body user.

移動体殺菌装置の概要図。なお以下の図において、循環する気流の流れは図中にところどころ矢印で示されている。Schematic diagram of a mobile sterilizer. In the figure below, the flow of the circulating airflow is indicated by arrows in some places in the figure. 移動体殺菌装置4基のエレベーター内設置時の外観概要図。Outline view of appearance when four mobile sterilizers are installed in an elevator. 移動体殺菌装置の乗用車内設置使用時の外観概要図。 A,乗用車を上から見た図 B,乗用車を横から見た図Outline view of the appearance of the mobile sterilizer when installed in a passenger car. A, top view of the passenger car B, side view of the passenger car 紫外線LED光出力推計のための殺菌箱モデル。Sterilization box model for UV LED light output estimation. フィルター箱における、フィルター通過気流路とフィルター迂回気流路の切り替えシャッター機構の概要図。 A,フィルター通過気流路選択時のシャッター位置を示す排気側フィルター箱正面図 B,フィルター迂回気流路選択時のシャッター位置を示す排気側フィルター箱正面図 C,排気側のフィルター面に固定された気流拡散板 D,Cの気流拡散板と対をなす排気側のシャッター E,フィルター通過気流路選択時のフィルター箱側面図 F,フィルター迂回気流路選択時のフィルター箱側面図 G,吸気側のフィルター面に固定された気流拡散板 H,G,の気流拡散板と対をなす吸気側のシャッターSchematic diagram of the shutter mechanism for switching between the filter passing air flow and the filter detour air flow in the filter box. A, Front view of the exhaust side filter box showing the shutter position when the filter passing air flow path is selected B, Front view of the exhaust side filter box showing the shutter position when the filter detour air flow path is selected C, Airflow fixed to the filter surface on the exhaust side Diffusers D, Shutter E on the exhaust side paired with the airflow diffuser E, Filter box side view F when the filter passing air flow path is selected F, Filter box side view G when the filter detour air flow path is selected G, Filter surface on the intake side Airflow diffuser fixed to H, G, shutter on the intake side paired with the airflow diffuser

本願は、空気感染防止機構、飛沫感染防止機構、接触感染防止機構を1つの装置で実現することを技術思想としており、以下、本願発明の実施形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。また本実施の形態によって本発明が限定されるものではない。 The technical concept of the present application is to realize an airborne infection prevention mechanism, a droplet infection prevention mechanism, and a contact infection prevention mechanism with a single device, and the embodiments of the present invention will be described below with reference to the drawings. In each drawing, similar components are designated by the same reference numerals and detailed description thereof will be omitted as appropriate. Further, the present invention is not limited to the present embodiment.

(殺菌装置の基本的実施形態)
本願装置の形態の概略は図1に示すようになる。図中のところどころに矢印で示されている気流の流れに従い、装置の部分を説明すると、送風機27の駆動により移動体内下部に設置された長尺の集気パイプ16から集気された移動体内空気は、吸気口28、送風機27、殺菌箱-送風機ジョイント26を通過し、殺菌箱25に入り、殺菌箱内に付置された紫外線源100により紫外線照射され殺菌される。殺菌率との対応でウイルスや細菌ごとに実測されている紫外線照射量(光エネルギー/面積)を満足する紫外線照射量は、紫外線光出力(光エネルギー/時間)、殺菌時間(殺菌箱滞在時間)と照射面積で求まり、また殺菌時間は殺菌箱容積と送風量の比で決まるので、これらの装置パラメーターが決まれば、本装置から放出される空気の殺菌率が与えられる。状況依存である装置パラメーターを最適化して設定される高い殺菌率の空気はフィルター箱-殺菌箱ジョイント24を通りフィルター箱22に送られ、移動体稼働時はフィルター通過気流路22aを通り、移動体非稼働時はフィルター迂回気流路22bを通り排気口21から排気される。2つの気流路はオゾン除去殺菌空気とオゾン含有殺菌空気を移動体の稼働非稼働の状況により使い分けるために設けられている。稼働時は快適性を保証するためにオゾン除去を行い、非稼働時はオゾン含有空気による移動体内部表面のオゾン殺菌を推進させる。気流路の切り替えにはシャッター12aと12bが使われ、その駆動はシャッター駆動機構13によりシャッター支持部12の移動により行われる。移動体内への殺菌済み無菌化空気の上方からの散気は排気口より先に接続された長尺の散気パイプ15により行われるが、一様な下降気流を生じさせるため散気パイプ15に穿たれた複数の散気口の大きさは事前に調整される。人の口から放出される感染源は無菌化下降気流により下方に送気されるので3蜜状態でも飛沫感染の危険性が減り安全な移動体内部空間が保証される。下方気流は再び集気パイプ16により集気され従前の殺菌過程に供される。このように本願装置は、第一義的には、殺菌箱保持円環気流接合による移動体内空気の常時殺菌による空気感染防止機構と気流制御による飛沫感染防止機構の両者により構成されている。
なお本願での送風機は、空気ポンプやブロアーなど空気を送気、送風する機構を持つ電動型機械を指す。また紫外線源としては殺菌効率の高い波長をもつ深紫外LEDを用いる場合を考える。
(Basic embodiment of sterilizer)
The outline of the form of the apparatus of the present application is as shown in FIG. Explaining the part of the device according to the flow of the air flow indicated by the arrows in some places in the figure, the moving body air collected from the long air collecting pipe 16 installed in the lower part of the moving body by the drive of the blower 27. Passes through the intake port 28, the blower 27, and the sterilizing box-blower joint 26, enters the sterilizing box 25, and is sterilized by being irradiated with ultraviolet rays by the ultraviolet source 100 attached in the sterilizing box. The ultraviolet irradiation amount that satisfies the ultraviolet irradiation amount (light energy / area) actually measured for each virus or bacterium in correspondence with the sterilization rate is the ultraviolet light output (light energy / hour) and the sterilization time (sterilization box stay time). And the sterilization time is determined by the ratio of the volume of the sterilization box and the amount of air blown, so if these device parameters are determined, the sterilization rate of the air emitted from this device is given. Air with a high sterilization rate set by optimizing the device parameters that are situation-dependent is sent to the filter box 22 through the filter box-sterilization box joint 24, and when the moving body is operating, it passes through the filter passing air flow path 22a and the moving body. When not in operation, the air is exhausted from the exhaust port 21 through the filter detour air flow path 22b. The two air channels are provided to properly use ozone-removing sterilizing air and ozone-containing sterilizing air depending on the operating / non-operating status of the moving body. Ozone is removed to ensure comfort during operation, and ozone sterilization of the internal surface of the moving body is promoted by ozone-containing air during non-operation. Shutters 12a and 12b are used for switching the air flow path, and the shutter 12a and 12b are driven by the movement of the shutter support portion 12 by the shutter drive mechanism 13. The air diffused from above the sterilized sterilized air into the moving body is performed by the long air diffuser pipe 15 connected before the exhaust port, but the air diffuser pipe 15 is used to generate a uniform downdraft. The size of the multiple air diffusers pierced is pre-adjusted. Since the source of infection released from the human mouth is blown downward by a sterilized downdraft, the risk of droplet infection is reduced even in the three-honey state, and a safe interior space of the moving body is guaranteed. The downward airflow is collected again by the air collecting pipe 16 and is used for the conventional sterilization process. As described above, the apparatus of the present application is primarily composed of both an air infection prevention mechanism by constantly sterilizing the moving body air by sterilization box holding circular airflow joining and a droplet infection prevention mechanism by airflow control.
The blower in the present application refers to an electric machine having a mechanism for blowing and blowing air, such as an air pump and a blower. Further, consider the case where a deep ultraviolet LED having a wavelength with high sterilization efficiency is used as the ultraviolet source.

ここで下降気流の速度、気流面積、送風量の関係を明らかにし、気流制御による飛沫感染防止機構につき詳細を記述する。気流面積は対象空間の天井の面積とし正方形を仮定した。結果を下表に示した。

Figure 2022013489000002
例えば2m四方の天井を持つエレベーターでは、天井の4辺から吹き出された空気が下降気流を作るとすると、平均化した場合4m面積の気流となるので、気流速度5cm/秒の場合は、12.0 /分の送風量が気流速度10cm/秒の場合は、24.0m/分の送風量が必要となる。同一装置をエレベーターの4隅に置けば(図4参照)、各装置の送風量は4分の1になり、気流速度5cm/秒の場合は、3.0 /分の送風量が気流速度10cm/秒の場合は、6.0m/分の送風量となり、家庭用ルームエアコンの送風機でまかなえる。乗用車はエレベーターと異なり上方が狭く下方が広いので例えば、1m四方の気流面積を想定すれば、エレベーター4隅に置くものと同等装置を置くとして、気流速度5cm/秒の場合は、3.0 /分の送風量が気流速度10cm/秒の場合は、6.0m/分が必要送風量となり、同様に家庭用ルームエアコンの送風機でまかなえる。
5cm/秒の気流速度も10cm/秒の気流速度も極めて小さいが、この気流を乱す他の擾乱気流がなければ、この気流速度で他者の呼気由来の飛沫感染を防止できる。例えば、エレベーター内や乗用車内での人の顔の距離が50cm以上であれば、その50cmの間に呼気が他者に到達する時間を5秒以上と考え、5cm/秒風速では25cm以上下方に、10cm/秒風速では50cm以上下方に絶えず呼気が押しやられるので、たとえ呼気中に感染源があっても隣接する他所の口に届かず飛沫感染は防止される。どちらの風速を与える送風機を設定するかは、設定環境に依存し、本装置の下降気流以外の擾乱気流がない場合は5cm/秒風速で、擾乱気流がある場合は10cm/秒風速で良い。なお本願では気流速度と風速は同義として語用している。Here, the relationship between the velocity of the downdraft, the airflow area, and the amount of airflow will be clarified, and the details of the droplet infection prevention mechanism by airflow control will be described. The airflow area is assumed to be a square as the area of the ceiling of the target space. The results are shown in the table below.
Figure 2022013489000002
For example, in an elevator with a 2m square ceiling, if the air blown from the four sides of the ceiling creates a downdraft, the averaged airflow will be 4m2 area, so if the airflow velocity is 5cm / sec, 12 When the air flow rate of 0.0 m 3 / min is an air flow velocity of 10 cm / sec, an air flow rate of 24.0 m 3 / min is required. If the same device is placed in the four corners of the elevator (see Fig. 4), the airflow volume of each device will be reduced to 1/4, and if the airflow velocity is 5 cm / sec, the airflow volume will be 3.0 m 3 / min. When the speed is 10 cm / sec, the air flow amount is 6.0 m 3 / min, which can be covered by the blower of the household room air conditioner. Unlike an elevator, a passenger car has a narrow upper part and a wider lower part. If the airflow rate is 3 / min and the airflow velocity is 10 cm / sec, 6.0 m 3 / min is the required airflow rate, which can be covered by the blower of the household room air conditioner.
The airflow velocity of 5 cm / sec and the airflow velocity of 10 cm / sec are extremely small, but if there is no other turbulent airflow that disturbs this airflow, this airflow velocity can prevent droplet infection from the exhaled breath of another person. For example, if the distance between a person's face in an elevator or a passenger car is 50 cm or more, it is considered that the time it takes for exhaled breath to reach another person during that 50 cm is 5 seconds or more, and the wind speed is 25 cm or more downward at 5 cm / sec. At a wind speed of 10 cm / sec, the exhaled breath is constantly pushed downward by 50 cm or more, so even if there is an infection source in the exhaled breath, it does not reach the mouth of another adjacent place and droplet infection is prevented. Which wind speed is to be set depends on the setting environment, and if there is no turbulent airflow other than the downdraft of this device, the wind speed may be 5 cm / sec, and if there is turbulent airflow, the wind speed may be 10 cm / sec. In this application, airflow velocity and wind velocity are used as synonyms.

前記に記した気流速度はいわば最大性能であり、通常空調とおなじく状況に応じた気流速度が選択される。例えば、エレベーターに人が乗り込んできた場合は、5cm/秒風速の場合は最大風量で20秒間、10cm/秒風速の場合は最大風量で10秒間稼働させ、エレベーター空間の上半分を無菌化空気で置換し、その後低風量すなわち小さい風速モードに切り替え装置を稼働させればよい。例えば、最大風量の半分に設定した場合、エレベーター内空気全容量(2x2x2.2m=8.8mを仮定)は2.5cm/秒風速では88秒、5cm/秒風速では44秒で1回循環するので安全な無菌化環境がその間に形成される。乗用車の場合、車内上半分は、5cm/秒風速の場合は10秒間、10cm/秒風速の場合は最大風量で5秒間の稼働で無菌化空気に置換する。その後は状況に応じ半分の風量、4分の1の風量で対応しても1分から2分の間で車内空気全容量(3mを仮定)が無菌化空気で循環されるので安全な無菌化環境が形成され空気感染が防止される。The airflow velocity described above is, so to speak, the maximum performance, and the airflow velocity according to the situation similar to that of normal air conditioning is selected. For example, when a person gets into the elevator, operate it for 20 seconds at the maximum air volume at a wind speed of 5 cm / sec and 10 seconds at the maximum air volume at a wind speed of 10 cm / sec, and sterilize the upper half of the elevator space. The replacement may be performed, and then the switching device may be operated by switching to a low air volume or low wind speed mode. For example, when set to half of the maximum air volume, the total air capacity in the elevator (assuming 2x2x2.2m = 8.8m 3 ) circulates once in 88 seconds at a wind speed of 2.5 cm / sec and 44 seconds at a wind speed of 5 cm / sec. So a safe sterilization environment is formed in the meantime. In the case of a passenger car, the upper half of the vehicle is replaced with aseptic air by operating for 10 seconds at a wind speed of 5 cm / sec and at a maximum air volume of 5 seconds at a wind speed of 10 cm / sec. After that, depending on the situation, even if the air volume is halved or quadrupled, the total capacity of the air inside the vehicle (assuming 3 m 3 ) is circulated with sterilized air within 1 to 2 minutes, so sterilization is safe. An environment is formed and airborne infections are prevented.

本願の第3の感染防止機構はオゾンを活用した接触感染防止である。この機構は夜などの人がいない移動体非稼働時に発動される。人がいる稼働時には人に不快かつ有害なオゾンはフィルター通過気流路により除去されるが、人がいないときオゾンは殺菌目的に積極的に利用される。具体的には、強力な紫外線により生成されたオゾンは、フィルター迂回気流路を用いた円環気流接合により移動体内に蓄積される。夜などの非稼働時間は長く取れるので、空気全量の循環時間はゆっくりで良く電力消費は抑制されるとともに高濃度オゾンが発生し、移動体内の内壁表面や設置物表面は時間をかけたオゾン殺菌が可能となる。オゾン殺菌が充分進行した後は気流路をフィルター通過気流モードに切り替えることで、移動体稼働開始前にオゾンは除去される。このような時系列的気流路制御及びそれに付随した送風量制御は、移動体稼働状況を考慮した自動化が望ましい。 The third infection control mechanism of the present application is contact infection prevention using ozone. This mechanism is activated when the mobile body is not in operation, such as at night. Ozone, which is unpleasant and harmful to humans when operating with humans, is removed by the air flow path through the filter, but ozone is actively used for sterilization purposes when there are no humans. Specifically, ozone generated by strong ultraviolet rays is accumulated in the moving body by circular airflow junction using a filter detour air flow path. Since non-operating time such as at night can be taken for a long time, the circulation time of the total amount of air is slow and good, power consumption is suppressed, high concentration ozone is generated, and the inner wall surface and the surface of the installation in the moving body are sterilized by ozone over time. Is possible. After the ozone sterilization has progressed sufficiently, ozone is removed before the start of operation of the mobile body by switching the air flow path to the filter passing air flow mode. It is desirable to automate such time-series air flow control and the accompanying air flow amount control in consideration of the operating status of the moving body.

(殺菌装置のシャッター機構)
実施形態にはオゾンの有無を切り替える2つの気流路の存在を記述したが、その気流路の切り替えは、オゾン除用フィルター23内空気の一様気流を生み出す気流拡散板とカップルしたシャッター機構が使用される。その機構の1例を図2にフィルター箱内の詳細と共に示しその働きを説明する。図2AとEはフィルター通過気流路22a選択時のフィルター箱22の正面図と側面図であり、フィルター通過気流がAの場合、フィルター箱22内の矩形孔内の点で、Eの場合、矢印(22a)で示されている。図2BとFはフィルター迂回気流路22b選択時のフィルター箱22の正面図と側面図であり、フィルター迂回気流がBの場合、フィルター箱22内の矩形孔内の点で、Fの場合、矢印(22b)で示されている。オゾン除去用フィルター23の上下に固定貼付される複数の気流通過孔をもつ気流拡散板23aと23bは図2C、Gにそれぞれ示されている。気流通過孔の位置が気流拡散板23aと23bと相補的になるシャッター12aと12bは図2D、Hに示されている。シャッター開閉による2つの気流路の選択過程は、図2D、Hに示す左向き矢印で象徴的に示されており、このとき上下のシャッター12aと12bは、両者を結合するシャッター支持部12を通じシャッター駆動機構13により同時的に駆動される。本願で重要な発明であるフィルター通過気流路利用の殺菌空気送風モードとフィルター迂回気流路利用のオゾン含有殺菌空気送風モードの切り替えはここで説明したシャッター機構を用いて行われる。
(Shutter mechanism of sterilizer)
Although the existence of two air flow paths for switching the presence or absence of ozone is described in the embodiment, the switching of the air flow paths is performed by a shutter mechanism coupled with an air flow diffusion plate that creates a uniform air flow of the air inside the ozone removal filter 23. Will be done. An example of the mechanism is shown in FIG. 2 together with the details inside the filter box, and its function will be explained. 2A and 2B are a front view and a side view of the filter box 22 when the filter passing air flow path 22a is selected. It is shown by (22a). 2B and F are a front view and a side view of the filter box 22 when the filter detour air flow path 22b is selected. When the filter detour airflow is B, it is a point in the rectangular hole in the filter box 22. It is shown by (22b). The airflow diffusion plates 23a and 23b having a plurality of airflow passage holes fixedly attached to the upper and lower sides of the ozone removal filter 23 are shown in FIGS. 2C and 2G, respectively. The shutters 12a and 12b in which the positions of the airflow passage holes are complementary to the airflow diffusion plates 23a and 23b are shown in FIGS. 2D and H. The process of selecting two air flow paths by opening and closing the shutter is symbolically shown by the left-pointing arrow shown in FIGS. 2D and H. At this time, the upper and lower shutters 12a and 12b are driven by the shutter through the shutter support portion 12 connecting the two. It is driven simultaneously by the mechanism 13. Switching between the sterilizing air blowing mode using the filter passing air flow path and the ozone-containing sterilizing air blowing mode using the filter detour air flow path, which is an important invention in the present application, is performed by using the shutter mechanism described here.

(殺菌率の推計と装置パラメーターの設定)
本願装置での殺菌は、人の目に触れない殺菌箱内空間の紫外線殺菌または人のいない移動体内でのオゾン殺菌で遂行される。そのために、紫外線強度を必要に応じ強力化またオゾン濃度を必要に応じ高濃度化することができ、殺菌効率の著しい向上が可能となる。その殺菌効率がどの程度か見積もるため、以下殺菌箱の両端面に紫外線LED100を添付した図3の長尺殺菌箱モデルを使い、殺菌性能を定量的に推計する。殺菌箱25利用のもう一つの利点として、内面を鏡面仕上げにすることで紫外線反射の繰り返しが起こるため、実効的照射強度増加による殺菌効率増強効果がある。反射率をx%とすれば、増強率は1/(1-0.01x)となる。例えば、照射強度は反射率90%では10倍に、反射率80%では5倍にまで増強される。しかも気流方向に紫外線が照射されるため増強紫外線が同一感染源に対し殺菌箱の気流通過時間と同時間照射されつづけることになる。
(Estimation of sterilization rate and setting of device parameters)
Sterilization with the device of the present application is carried out by ultraviolet sterilization in the space inside the sterilization box that is invisible to the human eye or ozone sterilization in a moving body without human eyes. Therefore, the intensity of ultraviolet rays can be increased as needed and the ozone concentration can be increased as needed, and the sterilization efficiency can be significantly improved. In order to estimate the sterilization efficiency, the sterilization performance is quantitatively estimated using the long sterilization box model of FIG. 3 in which ultraviolet LEDs 100 are attached to both ends of the sterilization box. Another advantage of using the sterilization box 25 is that the inner surface is mirror-finished so that ultraviolet reflection is repeated, so that there is an effect of enhancing the sterilization efficiency by increasing the effective irradiation intensity. If the reflectance is x%, the enhancement rate is 1 / (1-0.01x). For example, the irradiation intensity is increased 10 times at a reflectance of 90% and up to 5 times at a reflectance of 80%. Moreover, since the ultraviolet rays are irradiated in the direction of the air flow, the enhanced ultraviolet rays continue to be irradiated to the same infection source for the same time as the air flow passing time of the sterilization box.

次に、利用可能な紫外線光出力および殺菌箱容積が与えられているとき、ある特定の殺菌率(例えば99.9%など)に要求される紫外線照射量(単位mJ/cm)を満たす送風量の上限について推計を行う。送風量が小さいほど殺菌箱内滞在時間は長くなるので殺菌効率は高い。しかし単位時間当たりの無菌化空気量は減るので移動体内空気循環速度が遅くなり迅速な感染防止に支障をきたす。従って目標の紫外線照射量を維持しうる送風量上限値が重要となる。紫外線照射量(単位:mJ/cm)については、種々のウイルスや細菌に対して、たとえば254nm波長の水銀ランプでの99.9%不活化率(殺菌)対応のデータが公開されている(非特許文献8)。それによれば、大腸菌、赤痢菌、コレラ菌などは、10mJ/cm前後。インフルエンザウイルスは7mJ/cm、ロタウイルスは24mJ/cmである。新型コロナウイルスに対する紫外線照射量は不明だが、本願では2つのウイルスの中間値を取り15mJ/cmを仮定する。Next, given the available UV light output and sterilization box volume, the feed meets the UV irradiation dose (unit mJ / cm 2 ) required for a particular sterilization rate (eg 99.9%). Estimate the upper limit of air volume. The smaller the amount of air blown, the longer the staying time in the sterilization box, and the higher the sterilization efficiency. However, since the amount of sterilized air per unit time decreases, the air circulation speed in the moving body slows down, which hinders rapid infection prevention. Therefore, the upper limit of the amount of air blown that can maintain the target amount of ultraviolet irradiation is important. Regarding the amount of ultraviolet irradiation (unit: mJ / cm 2 ), data on various viruses and bacteria corresponding to 99.9% inactivation rate (sterilization) with a mercury lamp having a wavelength of 254 nm, for example, has been released (). Non-Patent Document 8). According to it, Escherichia coli, Shigella, Vibrio cholerae, etc. are around 10 mJ / cm 2 . Influenza virus is 7 mJ / cm 2 and rotavirus is 24 mJ / cm 2 . The amount of UV irradiation for the new coronavirus is unknown, but in this application, the median value of the two viruses is taken and 15 mJ / cm 2 is assumed.

容積V(cm)を持つ殺菌箱を用い、送風機による空気送風量をv(cm/秒)とすると、殺菌箱内を空気が通過する時間はV/v秒となる。長尺で細身の殺菌箱を想定し、殺菌箱の長さをL、断面積をSとすると、V=LS。ここで図3のように殺菌箱端面に添付した深紫外LED1個の光出力をQ(mW=mJ/秒)とすると、鏡面反射による増強率がMの場合、MQの光出力が殺菌箱長手方向に放出される。殺菌箱断面積はSなので、殺菌箱内空気通過時間での感染源への紫外線照射量は以下となる。Assuming that a sterilization box having a volume of V (cm 3 ) is used and the amount of air blown by the blower is v (cm 3 / sec), the time for air to pass through the sterilization box is V / v seconds. Assuming a long and slender sterilization box, assuming that the length of the sterilization box is L and the cross section is S, V = LS. Here, assuming that the light output of one deep ultraviolet LED attached to the end face of the sterilization box is Q (mW = mJ / sec) as shown in FIG. 3, when the enhancement rate due to specular reflection is M, the light output of MQ is the length of the sterilization box. Emitted in the direction. Since the cross-sectional area of the sterilization box is S, the amount of ultraviolet irradiation to the infection source during the air passage time in the sterilization box is as follows.

Figure 2022013489000003
Figure 2022013489000003

殺菌率を99.9%とした場合、上記紫外線照射量が新型コロナウイルスの99.9%殺菌に必要な照射量qに等しくなる条件[数2]により送風量の上限見積もり[数3]が与えられる。 When the sterilization rate is 99.9%, the upper limit of the amount of air blown is estimated [Equation 3] under the condition [Equation 2] that the above-mentioned ultraviolet irradiation amount is equal to the irradiation amount q required for 99.9% sterilization of the new coronavirus. Given.

Figure 2022013489000004
Figure 2022013489000004

Figure 2022013489000005
Figure 2022013489000005

[数3]において、Q、V(=LS)、M、qは所与の定数とし、L,Sを設計パラメーターとする。すると殺菌箱体積Vが一定の場合、送風量vは殺菌箱の長さLを大きくし断面積Sを小さくとれば、いくらでも大きく取れることになる。すなわち殺菌箱は細長ければ細長いほど送風量が大となっても同一の殺菌効率を保持できることになる。しかし、反射率とMとの関係は、相対する2つの鏡面に光が垂直入射・反射を繰り返しながら同一反射率で無限回反射するときの照射増強定数であり、細長い箱では照射角度の広いLEDの場合、照射方向が箱の長手方向よりずれ側面反射が生ずるので、Lが大きくなればMの減弱が生ずる。その場合、[数1]に示す照射量LMQ/vはLに単純に比例せずLMに対する評価が必要となる。しかしここでは端的に、殺菌箱は細長い方が殺菌効率に寄与すると仮定し、装置性能推計作業において、MのL依存は無視し、M=(1/(1-0.01x))とする。 In [Equation 3], Q, V (= LS), M, and q are given constants, and L and S are design parameters. Then, when the volume V of the sterilization box is constant, the amount of air blown v can be increased as much as possible by increasing the length L of the sterilization box and reducing the cross-sectional area S. That is, the longer the sterilization box is, the more the same sterilization efficiency can be maintained even if the amount of air blown is large. However, the relationship between the reflectance and M is the irradiation enhancement constant when light is reflected infinitely with the same reflectance while repeating vertical incident and reflection on two opposing mirror surfaces, and an LED with a wide irradiation angle in an elongated box. In the case of, the irradiation direction deviates from the longitudinal direction of the box and side reflection occurs. Therefore, when L becomes large, M is attenuated. In that case, the irradiation amount LMQ / v shown in [Equation 1] is not simply proportional to L, and evaluation for LM is required. However, here, it is simply assumed that the elongated sterilization box contributes to the sterilization efficiency, and in the device performance estimation work, the L dependence of M is ignored and M = (1 / (1-0.01x)).

ここで具体的な数値を入れると、
M=10(内壁の反射率を90%と見積った)、
Q=50mW(市販深紫外LEDの最高出力)、
L=150cm(エレベーターや乗用車を想定)、
S=250cm(殺菌箱内風速計算に使用)、
q=15mJ/cm(99.9%殺菌照射量をインフルエンザとロタウイルスの中間とした)
すると[数3]より上限送風量vは以下で与えられる。
If you enter a specific number here,
M = 10 (the reflectance of the inner wall was estimated to be 90%),
Q = 50mW (maximum output of commercially available deep UV LED),
L = 150 cm (assuming elevators and passenger cars),
S = 250cm 2 (used to calculate the wind speed inside the sterilization box),
q = 15mJ / cm 2 (99.9% bactericidal irradiation dose was between influenza and rotavirus)
Then, from [Equation 3], the upper limit air flow amount v is given by the following.

Figure 2022013489000006
Figure 2022013489000006

例えば乗用車の室内空間は3m程度であり、0.3m/分では空気全量交換に10分かかるため初期感染防止用には送風量不足である。[数4]より光出力Qに比例し上限送風量は上がるので殺菌箱に10個深紫外LEDをつけるとすると、上記の上限送風量の10倍を許容するので、上限送風量は3m/分となる。乗用車内空気は1分で循環され、乗用車の場合、上部空間が狭いので(図5参照)人顔回りの空気の下方送気は、同じ送風量で10秒~20秒の範囲で行われる。エレベーターの場合、2m四方と高さ2.2mを想定すれば、空間容量は8.8mとなる。同型殺菌箱4基をエレベーター4隅に搭載すれば(図4参照)送風量は12m/分になるので、エレベーター内空気循環は44秒で完結する。また上部3分の1の部分の空気は約15秒で交換するので人の顔回りの50cm範囲の呼気は10秒で下方移動し飛沫感染の確率を大きく下げる。ここで各殺菌箱内の風速を見積もると、断面積250cmの時は、2m/秒であり、そよ風程度であり送風雑音問題は生じないと考えられる。しかし、殺菌箱、送風機、フィルター箱間の結合部及び散気パイプ、集気パイプの断面積が殺菌箱のそれよりかなり小さければ送風雑音問題が避けられないので各部結合部分の断面積は可能な限り大きくすることが望ましい。この送風量に伴うの問題を含め次に移動体殺菌装置の実例につき記述する。For example, the interior space of a passenger car is about 3 m 3 , and at 0.3 m 3 / min, it takes 10 minutes to replace the total amount of air, so the amount of air blown is insufficient to prevent initial infection. Since the upper limit air flow rate increases in proportion to the light output Q from [Equation 4], if 10 deep ultraviolet LEDs are attached to the sterilization box, 10 times the above upper limit air flow rate is allowed, so the upper limit air flow rate is 3 m 3 /. It will be a minute. The air inside the passenger car is circulated in 1 minute, and in the case of a passenger car, the upper space is narrow (see FIG. 5), so that the downward air supply of the air around the human face is performed in the range of 10 to 20 seconds with the same air flow rate. In the case of an elevator, assuming a 2m square and a height of 2.2m, the space capacity is 8.8m3 . If four sterilization boxes of the same type are mounted in the four corners of the elevator (see Fig. 4), the air volume will be 12 m 3 / min, so the air circulation in the elevator will be completed in 44 seconds. In addition, since the air in the upper third part is exchanged in about 15 seconds, the exhaled breath in the 50 cm range around the human face moves downward in 10 seconds, greatly reducing the probability of droplet infection. Here, when the wind speed in each sterilization box is estimated, when the cross section is 250 cm 2 , the wind speed is 2 m / sec, which is about a breeze, and it is considered that the problem of blowing noise does not occur. However, if the cross-sectional area of the joint between the sterilizer box, blower, filter box, air diffuser pipe, and air collecting pipe is much smaller than that of the sterilizer box, the problem of blown noise is unavoidable, so the cross-section of each part can be made. It is desirable to make it as large as possible. Next, an example of a mobile sterilizer will be described, including the problems associated with this air volume.

実例Illustration

移動体殺菌装置の実装実例として、エレベーターの場合を図4に、乗用車の場合を図5に示した。両者の内部空間容量が大きく異なることを考慮し、エレベーターの場合、移動体殺菌装置を4基搭載、乗用車の場合、1基搭載とした。移動体殺菌装置1個の無菌化空気上限送風量3m/分は、現行の最強ヘヤードライヤーの最大送風量に比べても大きいが家庭用ルームエアコンの弱風程度であり、送気管各部の断面積をうまく設計すれば送風雑音などの騒音問題は避けられる。従って殺菌箱、送風機、フィルター箱、をつなぐジョイントや排気口に続く散気パイプ、吸気口に続く集気パイプの太さは可能な限り大きくすることが望ましい。As an example of mounting the mobile sterilizer, the case of an elevator is shown in FIG. 4, and the case of a passenger car is shown in FIG. Considering that the internal space capacity of the two is significantly different, four mobile sterilizers are installed in the case of an elevator, and one is installed in the case of a passenger car. The maximum amount of sterilized air blown by one mobile sterilizer is 3 m 3 / min, which is larger than the maximum amount of air blown by the current strongest hair dryer, but it is about the weak wind of a household room air conditioner. If the area is designed well, noise problems such as ventilation noise can be avoided. Therefore, it is desirable to make the thickness of the joint connecting the sterilizer box, the blower, the filter box, the air diffuser pipe connected to the exhaust port, and the air collecting pipe connected to the intake port as large as possible.

ここで本願の重要な構成要件である気流につき考察し、2つの実例につきその実装上の注意を喚起する。まず図4に示すエレベーターについてであるが、感染危険性は、第1義的には扉開閉時に感染対策のない外部から持ち込まれる空気であり、この空気を短時間に人の顔面高さより下方に送気する必要がある。本願ではこれを10秒程度で行うことを想定し最大送風量を見積もった。エレベーター内での会話を控える習慣があれば、この初期作動を過ぎた後の送風は穏やかなもので良く、感染危険性のない環境が、無菌化空気の下方移動循環により保証される。この様に移動体稼働時の空気殺菌と移動体非稼働時のオゾン殺菌とで、エレベーター内空気とエレベーター内表面は常に殺菌されるのでエレベーターは無菌化された安全な場所となる。 Here, we consider the airflow, which is an important component of the present application, and call attention to its implementation with respect to the two examples. First, regarding the elevator shown in FIG. 4, the risk of infection is primarily the air brought in from the outside without infection control when opening and closing the door, and this air is quickly lowered below the height of the human face. You need to send air. In the present application, the maximum air volume is estimated assuming that this is performed in about 10 seconds. If you have a habit of refraining from talking in the elevator, the blast after this initial operation may be gentle and a risk-free environment is ensured by the downward movement circulation of sterile air. In this way, the air inside the elevator and the inner surface of the elevator are constantly sterilized by air sterilization when the moving body is operating and ozone sterilization when the moving body is not operating, so that the elevator becomes a sterilized and safe place.

次に図5に示す乗用車についてであるが、エレベーターと同じく人が乗りこむ時感染危険性がもっとも高いと考えられるので、最大送風での対処をすることになる。ただ車はエレベーターと異なり上方空間が狭いのでそこのみを無菌化空気で置換するのに必要な時間は短縮できる。車が定常的に稼働後は、静かな会話を行う限り送風量を落とすことが出来る。図5では運転席側ドアー上天井に散気パイプを貼付、反対側のドアー下床に集気パイプを置き、気流が袈裟懸けに車内を循環するとした。この場合、必ずしも車内空気循環の一様性が保証されないが、タクシーなど運転者保護の見地からこのパイプ配置も選択枝である。散気パイプと集気パイプを排気口と吸気口で分岐しそれぞれ2系統からなる複数のパイプで、両側面ドアー上の天井からの散気と両側面ドアー下の床から集気を行えば社内の循環気流一様性はより保証される。また殺菌箱及び殺菌箱を収容する長尺筐体の外形は図5例示と同型でなく、断面形状を長方形としたものが天井に張り付ける際の場所ふさぎにならず有用と考えられる。本願装置は断面積が同じならその形状を問わず性能は同じなので、天井のカーブに合わせた曲面型の長尺筐体や殺菌箱のモデルも考えられる。 Next, regarding the passenger car shown in FIG. 5, as with the elevator, the risk of infection is considered to be the highest when a person gets in, so the maximum ventilation will be used. However, unlike elevators, cars have a narrow space above, so the time required to replace only that space with sterile air can be shortened. After the car is in constant operation, the amount of air blown can be reduced as long as the conversation is quiet. In FIG. 5, an air diffuser pipe is attached to the upper ceiling of the driver's seat side door, and an air collecting pipe is placed on the lower floor of the door on the opposite side, and the air flow circulates in the car in a sloppy manner. In this case, the uniformity of air circulation in the vehicle is not always guaranteed, but this pipe arrangement is also an option from the viewpoint of driver protection such as taxi. The air-dissipating pipe and the air-collecting pipe are branched at the exhaust port and the intake port, and each of them is a plurality of pipes consisting of two systems. Circulating airflow uniformity is more guaranteed. Further, the outer shape of the sterilizing box and the long housing for accommodating the sterilizing box is not the same as that shown in FIG. Since the equipment of the present application has the same performance regardless of its shape as long as the cross section is the same, a model of a curved long housing or a sterilization box that matches the curve of the ceiling can be considered.

実例として示したエレベーター及び乗用車について、内部空間の容量をそれぞれ具体的な値に設定し空気の送風量や内部空間循環時間を示したが、両者ともに内部空間容量は対象ごとに千差万別なので、装備される移動体殺菌装置の形状、性能もそれぞれ対象の空間容量や殺菌速度などの仕様に合わせ最適化する必要がある。その時は、本願で提示した数式、[数1]から[数4]を設計の基礎とし、実例と同様な計算を行えば良い。 For the elevators and passenger cars shown as examples, the capacity of the internal space was set to specific values and the amount of air blown and the internal space circulation time were shown, but since the internal space capacity of both is different for each object. It is also necessary to optimize the shape and performance of the mobile body sterilizer to be equipped according to the specifications such as the target space capacity and sterilization speed. At that time, the mathematical formulas presented in the present application, [Equation 1] to [Equation 4], may be used as the basis of the design, and the same calculation as in the actual example may be performed.

感染防止の観点からコンパクトな移動体の中でも特に高頻度で利用されるエレベーターと乗用車につき、本願では実例として選択的に記載されたが、コンパクトな移動体の他の事例としては、ケーブルカー、ロープウェイ、遊園地の乗り物、マイクロバス、小型飛行機、ヘリコプター、潜水艇、宇宙船などがあり、本願の発明が同様に適用され、提示した数式、[数1]から[数4]を設計の基礎とし、実例と同様な計算を行い対応する事例ごとに製作すれば良い。 Elevators and passenger cars, which are used most frequently among compact moving objects from the viewpoint of infection prevention, are selectively described as examples in this application, but other examples of compact moving objects include cable cars and ropeways. , Amusement park vehicles, minibuses, small airplanes, helicopters, submersible boats, spacecraft, etc. The same calculation as the actual example may be performed and the product may be manufactured for each corresponding case.

(換気との競合と調和)
本願装置は気流制御を飛沫感染防止の手段としており、移動体内の換気と競合する。換気が外部の感染源を持ち込むことおよび換気流が本願装置気流制御の擾乱要因となるからである。従って換気なしの条件での本願装置の作動が望ましい。そもそも3蜜状態における感染の回避法の一つとして、飲食店、商店、車内、イベント会場など人の集まるあらゆる局面で推奨されている。しかしたとえば窓開け換気のように、冷暖房空調との相反問題や騒音増大問題などの新たな問題も生まれる。密閉した空間と殺菌箱との円環気流接合を前提とする本願発明は、いわば換気法と対極の技術である。しかし換気法と本願の密閉円環気流接合法の調和も考えられる。換気流と密閉円環気流の両者を含めた移動体内気流設計を行い、本願装置散気口からの風向きを調整し、移動体内の人の顔周辺に無菌化空気が集中するよう工夫することである。そのためには移動体内の内部構造と人配置を考慮した高度な流体力学計算が必要だが、スーパーコンピューターによる気流計算シミュレーションが広く普及し始めており容易に実行可能である。
換気法を移動体内感染防止に積極的に活用する例として、飛行機の空気循環に使われている例がある(非特許文献9)。飛行機が飛ぶ高度の外気はほぼ無菌と考えられるので、その外気を換気に取り込んでいる。ただし地上での換気の際の除菌としてHEPAフィルターも併用している。この中で換気の際、上方からの下降気流が飛沫感染防止に有効とうたっているので、本願では「上方からの下降気流による飛沫感染防止」は公知として扱い、具体的な気流速度や気流面積に本願装置の独自性を盛り込んだ。
(Competition and harmony with ventilation)
The device of the present application uses airflow control as a means of preventing droplet infection and competes with ventilation in the moving body. This is because ventilation brings in an external source of infection and ventilation flow is a disturbing factor in the airflow control of the device of the present application. Therefore, it is desirable to operate the apparatus of the present application under the condition without ventilation. In the first place, it is recommended as one of the avoidance methods of infection in the three honey state in all aspects where people gather, such as restaurants, shops, cars, and event venues. However, new problems such as the problem of conflict with air conditioning and the problem of increased noise, such as window ventilation, will also arise. The invention of the present application, which is premised on the circular airflow joining between a closed space and a sterilization box, is, so to speak, a technique opposite to the ventilation method. However, the harmony between the ventilation method and the closed circular airflow joining method of the present application can be considered. By designing the airflow inside the moving body including both the ventilation flow and the closed circular airflow, adjusting the wind direction from the air diffuser of the device of the present application, and devising a way to concentrate the sterilized air around the human face in the moving body. be. For that purpose, advanced fluid dynamics calculation considering the internal structure and the arrangement of people in the moving body is necessary, but the airflow calculation simulation by the supercomputer has begun to spread widely and can be easily executed.
As an example of actively utilizing the ventilation method to prevent infection in a moving body, there is an example in which it is used for air circulation in an airplane (Non-Patent Document 9). Since the altitude of the outside air at which an airplane flies is considered to be almost sterile, the outside air is taken into ventilation. However, a HEPA filter is also used as a sterilizer for ventilation on the ground. Among them, when ventilating, the downdraft from above is said to be effective in preventing droplet infection. Therefore, in this application, "prevention of droplet infection by downdraft from above" is treated as publicly known, and the specific airflow velocity and airflow area are defined. Incorporating the uniqueness of the device of the present application.

(冷暖房空調との競合と調和)
移動体内の気流を生み出す仕組みとして換気の他に冷暖房空調がある。例えば、乗用車などは冷暖房空調が快適さのため常備されており、本願装置との併用が避けられない。その場合は冷暖房空調使用時の実測またはシミュレーションにより得られた車内気流を考慮した本願装置の位置取りや下降気流の風量、風向の設計が必要である。これに関しても広く普及し始めたスーパーコンピューターによる気流計算シミュレーションの利用により容易に実行できる。
なお冷暖房空調を持つ既存の移動体に本願装置を装備する場合の最も簡単な調和は、両者を交互に使用し両装置の機能の衝突を回避することである。また両装置の競合問題の最も完全な調和法は、両装置を一体化することである。世上にはすでに殺菌をうたった冷暖房空調装置が販売されているが、定量性がなくほとんど実効を伴わない。すでに記したように、本願装置の使用風量は家庭用ルームエアコンのそれと同程度なので両者の統合は可能である。すなわち、移動体に装備された冷暖房空調の持つ送風機と熱交換機の前後または間に殺菌箱を設け、さらに既設の送気排出機構を効率的な散気と集気を行う散気パイプ機構、集気パイプ機構に改変すれば実行できる。
(Competition and harmony with air conditioning)
In addition to ventilation, there is air conditioning as a mechanism to generate airflow inside the moving body. For example, passenger cars and the like are always equipped with air conditioning for comfort, and it is unavoidable to use them in combination with the device of the present application. In that case, it is necessary to position the device of the present application in consideration of the in-vehicle airflow obtained by actual measurement or simulation when using air conditioning, and to design the air volume and direction of the downdraft. This can also be easily performed by using the airflow calculation simulation by the supercomputer, which has begun to spread widely.
The simplest harmonization when equipping an existing mobile body with air-conditioning with heating and cooling is to use both of them alternately to avoid a collision of the functions of both devices. Also, the most perfect harmonization of the competition between the two devices is to integrate the two devices. Air conditioners that have been sterilized are already on the market, but they are not quantitative and have little effect. As already mentioned, the air volume used by the device of the present application is about the same as that of the home room air conditioner, so the two can be integrated. That is, a sterilization box is provided before, after, or between the blower of the air conditioner equipped on the moving body and the heat exchanger, and the existing air supply / discharge mechanism is used to efficiently disperse and collect air. It can be executed by modifying the air pipe mechanism.

本願装置はエレベーターや乗用車などの3蜜状態を形成しやすいコンパクトな移動体に装備され、内部の空気に浮遊するウイルスや細菌などの感染源を紫外線で迅速に殺菌することおよび無菌化空気の気流制御により、空気感染、飛沫感染、接触感染などの感染経路を遮断することで、ウイルス感染や細菌感染を防止する公衆衛生基盤インフラとして幅広く利用される。 The device of the present application is equipped on a compact moving body such as an elevator or a passenger car that easily forms three honey states, and quickly sterilizes infection sources such as viruses and bacteria floating in the internal air with ultraviolet rays and sterilizes the air flow. It is widely used as a public health infrastructure to prevent viral and bacterial infections by blocking infection routes such as airborne infections, droplet infections, and contact infections through control.

10 移動体殺菌装置
11 長尺筐体
12 シャッター支持部
12a 排気側シャッター
12b 吸気側シャッター
13 シャッター駆動機構
15 散気パイプ
16 集気パイプ
20 殺菌箱内空間
21 排気口
22 フィルター箱
22a フィルター通過気流路
22b フィルター迂回気流路
23 フィルター
23a 排気側拡散板
23b 吸気側拡散板
24 フィルター箱-殺菌箱ジョイント
25 殺菌箱
26 殺菌箱-送風機ジョイント
27 送風機
28 吸気口
100 紫外線LED
10 Mobile sterilizer 11 Long housing 12 Shutter support 12a Exhaust side shutter 12b Intake side shutter 13 Shutter drive mechanism 15 Air diffuser pipe 16 Air collecting pipe 20 Sterilizing box inner space 21 Exhaust port 22 Filter box 22a Filter passing air flow path 22b Filter detour air flow path 23 Filter 23a Exhaust side diffuser 23b Intake side diffuser 24 Filter box-Sterilization box joint 25 Sterilization box 26 Sterilization box-Blower joint 27 Blower 28 Intake port 100 Ultraviolet LED

第7の発明は、第1または第2のいずれかの発明において、内壁が鏡面仕上げされ、前記殺菌箱は、鏡面仕上げされた内壁の反射率が50%以上であることを特徴とする記載の移動体殺菌装置である。A seventh aspect of the invention is characterized in that, in any one of the first or second inventions, the inner wall is mirror-finished, and the sterilization box has a reflectance of 50% or more of the mirror-finished inner wall. It is a mobile sterilizer.

Claims (7)

移動体内に装備される長尺筐体において、長手方向両端の一面に長尺の散気パイプを対抗面に長尺の集気パイプを接続させ、
前記長尺筐体内には空気を送る送風機と紫外線源を収容する殺菌箱とを内蔵させ、前記送風機の送風により前記移動体内の空気と前記長尺筐体内の空気とを前記散気パイプ及び前記集気パイプを通じ円環気流接合させ、
常時稼働の前記送風機により前記殺菌箱に導かれた空気に浮遊するウイルスや細菌を、前記殺菌箱に付置された前記紫外線源から放射される紫外線により殺菌し、
無菌化された空気は、前記送風機送気流に乗り移動体上部に設置された長尺の前記散気パイプに送られ前記散気パイプに穿たれた複数の散気口より上方から下方に向け移動体内に散気され、
散気下降気流により移動体内の感染源気体を下方へ送ることで飛沫感染を防止し、
感染源を含む下降気流は円環気流接合原理に従い全量移動体下部に設置された長尺の前記集気パイプに集気され、
再び前記殺菌箱に送られ前述と同じ殺菌過程を経ることで移動体内空気を循環殺菌し空気感染防止を行う、
ことを特徴とする移動体殺菌装置。
In a long housing equipped inside a moving body, a long air diffuser pipe is connected to one side at both ends in the longitudinal direction, and a long air collection pipe is connected to the opposite side.
A blower for sending air and a sterilizing box for accommodating an ultraviolet source are built in the long housing, and the air in the moving body and the air in the long housing are separated into the air diffuser pipe and the air by the blower of the blower. Circular airflow is joined through the air collecting pipe,
Viruses and bacteria floating in the air guided to the sterilization box by the constantly operating blower are sterilized by ultraviolet rays radiated from the ultraviolet source attached to the sterilization box.
The sterilized air rides on the blower airflow and is sent to the long air diffuser pipe installed on the upper part of the moving body, and moves from above to downward from the plurality of air diffusers drilled in the air diffuser pipe. Dissipated in the body,
Prevents droplet infection by sending the infection source gas in the moving body downward by the divergent downdraft.
The downdraft including the source of infection is collected by the long air collecting pipe installed under the moving body in accordance with the circular airflow joining principle.
It is sent to the sterilization box again and undergoes the same sterilization process as described above to circulate and sterilize the air inside the moving body to prevent air infection.
A mobile sterilizer characterized by that.
気流結合される前記散気パイプ、前記送風機、前記殺菌箱、前記集気パイプは、そのいずれかの間に、オゾン除去のためのフィルターを収容するフィルター箱を設ける、
ことを特徴とする請求項1に記載の移動体殺菌装置。
The air diffuser pipe, the blower, the sterilization box, and the air collecting pipe to be airflow-coupled are provided with a filter box containing a filter for ozone removal between them.
The mobile sterilizer according to claim 1.
前記フィルター箱は、前記殺菌箱を出た空気を導く気流路として、オゾン除去用前記フィルターを通過する気流路と迂回する気流路の2つを備え、
状況に応じ2つの気流路のどちらかの選択を可能とするシャッター機構を具備し、
移動体の稼働状況では前記フィルターを通過する気流路の選択を、
移動体の非稼働状況では前記フィルターを迂回する気流路の選択を行うことで、
人のいる移動体稼働時にはオゾン除去無菌化空気を移動体内に供給し飛沫感染防止を行い、
人のいない移動体非稼働時には紫外線照射により生成されたオゾンを移動体内に供給し移動体内壁や内部設置物表面のオゾン殺菌行い接触感染防止を行う、
ことを特徴とする請求項2に記載の移動体殺菌装置。
The filter box is provided with two air flow paths for guiding the air leaving the sterilization box, one is an air flow path that passes through the filter for ozone removal and the other is an air flow path that detours.
Equipped with a shutter mechanism that allows selection of either of the two airflow channels depending on the situation.
In the operating status of the moving body, select the air flow path that passes through the filter.
By selecting the air flow path that bypasses the filter in the non-operating state of the moving body,
Ozone removal sterilized air is supplied to the mobile body to prevent droplet infection when the mobile body with people is in operation.
When the mobile body is not in operation without people, ozone generated by UV irradiation is supplied to the moving body to sterilize the surface of the moving body wall and internal installations to prevent contact infection.
The mobile sterilizer according to claim 2.
前記散気パイプは空気を通過させる複数の散気口を、前記集気パイプは空気を通過させる複数の集気口を有するが、
それらの口の大きさをパイプ根元から終端に向かい大きくなるよう調整することで移動体内部に放出される下降気流の場所一様性を確保する、
ことを特徴とする請求項1乃至請求項2のいずれかに記載の移動体殺菌装置。
The air collecting pipe has a plurality of air collecting ports through which air passes, and the air collecting pipe has a plurality of air collecting ports through which air passes.
By adjusting the size of those mouths from the root of the pipe toward the end, the location of the downdraft discharged into the moving body is ensured.
The mobile sterilizer according to any one of claims 1 to 2, wherein the mobile sterilizer is characterized by the above.
前記紫外線発生源は、波長範囲が180nmから379nmのいずれかに中心波長をもつ紫外線を発生する紫外線LEDを1個乃至複数個有する
ことを特徴とする請求項1乃至請求項2のいずれかに記載の移動体殺菌装置。
The invention according to any one of claims 1 to 2, wherein the ultraviolet source has one or a plurality of ultraviolet LEDs that generate ultraviolet rays having a central wavelength in any one of the wavelength ranges of 180 nm to 379 nm. Mobile sterilizer.
前記送風機は、送風量が電気制御され、移動体内空気全量を30秒から1時間の範囲において一回循環させる能力を有する、
ことを特徴とする請求項1乃至請求項2のいずれかに記載の移動体殺菌装置。
The blower is electrically controlled in the amount of air blown and has the ability to circulate the entire amount of air in the moving body once in the range of 30 seconds to 1 hour.
The mobile sterilizer according to any one of claims 1 to 2, wherein the mobile sterilizer is characterized by the above.
前記殺菌箱は、鏡面仕上げされた内壁の反射率が50%以上である、
ことを特徴とする請求項1乃至請求項2のいずれかに記載の移動体殺菌装置。
The sterilization box has a mirror-finished inner wall having a reflectance of 50% or more.
The mobile sterilizer according to any one of claims 1 to 2, wherein the mobile sterilizer is characterized by the above.
JP2020126846A 2020-07-01 2020-07-01 Mobile sterilizer Pending JP2022013489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020126846A JP2022013489A (en) 2020-07-01 2020-07-01 Mobile sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020126846A JP2022013489A (en) 2020-07-01 2020-07-01 Mobile sterilizer

Publications (1)

Publication Number Publication Date
JP2022013489A true JP2022013489A (en) 2022-01-18

Family

ID=80169659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020126846A Pending JP2022013489A (en) 2020-07-01 2020-07-01 Mobile sterilizer

Country Status (1)

Country Link
JP (1) JP2022013489A (en)

Similar Documents

Publication Publication Date Title
US11052169B1 (en) Systems, apparatus and methods for purifying air
CA2818444C (en) Air purification devices methods and systems
US7270691B2 (en) Integrated air processing devices and isolation containment systems using such devices
KR102420838B1 (en) Noise reduction type heat recovering ventilation apparatus
US20220249729A1 (en) Led light troffer with uv sanitized air return
US11826499B2 (en) System for treating air
KR100903404B1 (en) Elevator Air Purifier
JP2022134675A (en) Ultraviolet sterilizer and indoor reflux type ultraviolet sterilizer
JP2022013489A (en) Mobile sterilizer
US12320547B2 (en) Air sanitizer with boundlessly-extended sanitizing chamber and method of using same
RU159961U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU159981U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU161173U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU161228U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU160323U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
CN115447354B (en) Passenger room sterilizing device for carrying tool organized by passenger room air flow
US20250195712A1 (en) Air purification systems and methods of use thereof
JP6978813B1 (en) Spatial sterilizer
WO2021255759A1 (en) A modular architectural light fixture for cleaning air pollutants and pathogens
RU159959U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU161641U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU159723U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU159983U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
JP2023544908A (en) Equipment with ceiling structures and such ceiling structures with means of air sterilization
RU159984U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009