[go: up one dir, main page]

JP2021164193A - Cooling unit of linear motor, linear motor, and manufacturing method of the linear motor - Google Patents

Cooling unit of linear motor, linear motor, and manufacturing method of the linear motor Download PDF

Info

Publication number
JP2021164193A
JP2021164193A JP2020061280A JP2020061280A JP2021164193A JP 2021164193 A JP2021164193 A JP 2021164193A JP 2020061280 A JP2020061280 A JP 2020061280A JP 2020061280 A JP2020061280 A JP 2020061280A JP 2021164193 A JP2021164193 A JP 2021164193A
Authority
JP
Japan
Prior art keywords
flat plate
plate member
cooling unit
linear motor
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020061280A
Other languages
Japanese (ja)
Other versions
JP7402102B2 (en
Inventor
隆 池田
Takashi Ikeda
達矢 吉田
Tatsuya Yoshida
大輔 篠平
Daisuke Shinohira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2020061280A priority Critical patent/JP7402102B2/en
Publication of JP2021164193A publication Critical patent/JP2021164193A/en
Application granted granted Critical
Publication of JP7402102B2 publication Critical patent/JP7402102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

To provide a technique capable of reducing a manufacturing cost of a cooling unit of a linear motor.SOLUTION: A cooling unit of a linear motor, is a cooling unit for cooling a coil so as to be adhered to the coil structuring the linear motor, comprising: a first flat member; and a second flat member 22 paralleled to the first flat member. Projections 20d and 20e projected toward the second flat member 22 are formed on a face of the first flat member opposite to the second flat member 22. A flow channel 30 is formed between the first flat member and the second flat member 22. The projections 20d and 20e are jointed to the second flat member 22 in the flow channel 30. In a cross section orthogonal to a direction where the first flat member and the second flat member 22 are arranged in paralleled and passing the flow channel 30, the projections 20d and 20e are provided in an island shape.SELECTED DRAWING: Figure 6

Description

本発明は、リニアモータの冷却ユニット、リニアモータ、リニアモータの冷却ユニットの製造方法に関する。 The present invention relates to a linear motor cooling unit, a linear motor, and a method for manufacturing a linear motor cooling unit.

リニアモータのコイルを冷却する冷却ユニットとして、内部を冷媒が流れる平板状の冷却部を備える冷却ユニットが知られている。たとえば、従来では、4枚の冷却部を箱状に連結してコイルを囲み、発熱するコイルを冷却するリニアモータの冷却ユニットが提案されている(特許文献1)。 As a cooling unit for cooling the coil of a linear motor, a cooling unit having a flat plate-shaped cooling portion through which a refrigerant flows is known. For example, conventionally, a cooling unit of a linear motor has been proposed in which four cooling units are connected in a box shape to surround a coil and cool a coil that generates heat (Patent Document 1).

特開2011−200098号公報Japanese Unexamined Patent Publication No. 2011-200098

本発明はこうした状況においてなされたものであり、そのある態様の例示的な目的のひとつは、リニアモータの冷却ユニットの製造コストを低減できる技術を提供することにある。 The present invention has been made in such a situation, and one of the exemplary objects of the embodiment is to provide a technique capable of reducing the manufacturing cost of a cooling unit of a linear motor.

上記課題を解決するために、本発明のある態様のリニアモータの冷却ユニットは、リニアモータを構成するコイルに密着して当該コイルを冷却するための冷却ユニットであって、第1平板部材と、第1平板部材に並設される第2平板部材と、を備える。第2平板部材と対向する第1平板部材の面には第2平板部材に向けて突出する突起が形成され、第1平板部材と第2平板部材との間に流路が形成され、突起は、流路内において第2平板部材に接合され、第1平板部材と第2平板部材とが並設される方向に直交し、かつ、流路を通る断面において、突起は島状に設けられている。 In order to solve the above problems, the cooling unit of the linear motor according to the present invention is a cooling unit for cooling the coil in close contact with the coil constituting the linear motor, and the first flat plate member and the first flat plate member are used. A second flat plate member arranged in parallel with the first flat plate member is provided. A protrusion protruding toward the second flat plate member is formed on the surface of the first flat plate member facing the second flat plate member, and a flow path is formed between the first flat plate member and the second flat plate member. , It is joined to the second flat plate member in the flow path, the first flat plate member and the second flat plate member are orthogonal to each other in the direction in which they are arranged side by side, and the protrusions are provided in an island shape in the cross section passing through the flow path. There is.

本発明の別の態様は、リニアモータである。このリニアモータは、上述のリニアモータの冷却ユニットを備え、冷却ユニットは、対向して配置されるコイルの間に介在して両側のコイルを保持する。 Another aspect of the present invention is a linear motor. This linear motor includes the cooling unit of the above-mentioned linear motor, and the cooling unit holds the coils on both sides between the coils arranged so as to face each other.

本発明の別の態様は、リニアモータの冷却ユニットの製造方法である。この方法は、リニアモータを構成するコイルに密着して当該コイルを冷却するための冷却ユニットの製造方法であって、冷却ユニットは、第1平板部材と、第1平板部材に並設される第2平板部材と、を含む。本製造方法は、第2平板部材と対向する第1平板部材の面に絞り加工によって突起を形成する工程と、第2平板部材を形成する工程と、第1平板部材と第2平板部材とを、それらの間に流路が形成されるように並設し、外周を溶接によって接合する工程と、流路内に突出する第1平板部材の突起と、第2平板部材とをスポット溶接によって接合する工程と、を含む。 Another aspect of the present invention is a method of manufacturing a cooling unit of a linear motor. This method is a method of manufacturing a cooling unit for cooling the coil in close contact with the coil constituting the linear motor, and the cooling unit is arranged side by side on the first flat plate member and the first flat plate member. 2 includes a flat plate member. In this manufacturing method, a step of forming a protrusion on the surface of a first flat plate member facing the second flat plate member by drawing, a step of forming a second flat plate member, and a first flat plate member and a second flat plate member are provided. , The process of arranging them side by side so that a flow path is formed between them and joining the outer periphery by welding, and joining the protrusion of the first flat plate member protruding into the flow path and the second flat plate member by spot welding. Including the process of welding.

なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and those in which the components and expressions of the present invention are mutually replaced between methods, devices, systems and the like are also effective as aspects of the present invention.

本発明によれば、リニアモータの冷却ユニットの製造コストを低減できる。 According to the present invention, the manufacturing cost of the cooling unit of the linear motor can be reduced.

実施形態に係るリニアモータの冷却ユニットを示す斜視図である。It is a perspective view which shows the cooling unit of the linear motor which concerns on embodiment. 図1の平板冷却部の斜視図である。It is a perspective view of the flat plate cooling part of FIG. 図1の平板冷却部の分解斜視図である。It is an exploded perspective view of the flat plate cooling part of FIG. 図1の平板冷却部を第1平板部材側から見た側面図である。It is a side view which looked at the flat plate cooling part of FIG. 1 from the 1st flat plate member side. 図4のA−A線断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 図5のB−B線断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. 冷却ユニットを製造する工程を示す製造工程図である。It is a manufacturing process diagram which shows the process of manufacturing a cooling unit. 図8(a)〜(c)はそれぞれ、変形例に係る平板冷却部の断面図である。8 (a) to 8 (c) are cross-sectional views of the flat plate cooling portion according to the modified example.

以下、各図面に示される同一または同等の構成要素、部材、工程には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. In addition, the dimensions of the members in each drawing are shown enlarged or reduced as appropriate for easy understanding. In addition, some of the members that are not important for explaining the embodiment in each drawing are omitted and displayed.

図1は、実施形態に係る冷却ユニット10が用いられるリニアモータ2を示す斜視図である。リニアモータ2は、所定の方向に並設される矩形板状の複数のコイル4と、交互に並設され、コイル4と対向する複数のN極の磁石および複数のS極の磁石(いずれも不図示)と、を備える。本実施の形態では、冷却ユニット10は、対向する(すなわち2列に並ぶ)コイル4の間に介在し、両側のコイル4を保持する。コイル4に通電されるとN極の磁石とS極の磁石との間で電磁力が発生し、この電磁力により、冷却ユニット10を伴ってコイル4が磁石に対して相対移動する。 FIG. 1 is a perspective view showing a linear motor 2 in which the cooling unit 10 according to the embodiment is used. The linear motor 2 includes a plurality of rectangular plate-shaped coils 4 arranged side by side in a predetermined direction, a plurality of N-pole magnets and a plurality of S-pole magnets which are alternately arranged side by side and face the coils 4. (Not shown) and. In the present embodiment, the cooling unit 10 is interposed between the coils 4 facing each other (that is, arranged in two rows) and holds the coils 4 on both sides. When the coil 4 is energized, an electromagnetic force is generated between the N-pole magnet and the S-pole magnet, and the electromagnetic force causes the coil 4 to move relative to the magnet together with the cooling unit 10.

冷却ユニット10は、コイル4を冷却し、その温度上昇を抑える。冷却ユニット10は、コイル4を保持する平板冷却部12と、コイル4の並設方向の一方端側に設けられる流入部14と、他方端側に設けられる流出部16と、を備える。 The cooling unit 10 cools the coil 4 and suppresses the temperature rise thereof. The cooling unit 10 includes a flat plate cooling unit 12 for holding the coil 4, an inflow unit 14 provided on one end side of the coils 4 in the parallel arrangement direction, and an outflow unit 16 provided on the other end side.

図2〜5は、平板冷却部12を示す。図2は、平板冷却部12の斜視図である。図3は、平板冷却部12の分解斜視図である。図4は、平板冷却部12を第1平板部材20側から見た側面図である。図5は、図4のA−A線断面図である。 2 to 5 show the flat plate cooling unit 12. FIG. 2 is a perspective view of the flat plate cooling unit 12. FIG. 3 is an exploded perspective view of the flat plate cooling unit 12. FIG. 4 is a side view of the flat plate cooling unit 12 as viewed from the first flat plate member 20 side. FIG. 5 is a cross-sectional view taken along the line AA of FIG.

平板冷却部12は、第1平板部材20と、第2平板部材22と、枠部材24と、を含む。第1平板部材20、第2平板部材22および枠部材24は、SUSなどの金属製である。 The flat plate cooling unit 12 includes a first flat plate member 20, a second flat plate member 22, and a frame member 24. The first flat plate member 20, the second flat plate member 22, and the frame member 24 are made of metal such as SUS.

第1平板部材20は、長方形状の平板である。第2平板部材22は、第1平板部材20と同じ大きさの長方形状の平板である。枠部材24は、第1平板部材20および第2平板部材22と概ね同じ外周形状を有する枠部材である。枠部材24は、1つの大きな開口部24aを有する平板部材とも捉えることができる。第1平板部材20、枠部材24、第2平板部材22は、この順に積層され、外周全域が後述のように接合される。平板冷却部12内には、第2平板部材22と対向する第1平板部材20の面20a、第1平板部材20と対向する第2平板部材22の面22a、および枠部材24の開口部24aの周面24bによって囲まれる流路30が形成されている。 The first flat plate member 20 is a rectangular flat plate. The second flat plate member 22 is a rectangular flat plate having the same size as the first flat plate member 20. The frame member 24 is a frame member having substantially the same outer peripheral shape as the first flat plate member 20 and the second flat plate member 22. The frame member 24 can also be regarded as a flat plate member having one large opening 24a. The first flat plate member 20, the frame member 24, and the second flat plate member 22 are laminated in this order, and the entire outer periphery is joined as described later. Inside the flat plate cooling unit 12, the surface 20a of the first flat plate member 20 facing the second flat plate member 22, the surface 22a of the second flat plate member 22 facing the first flat plate member 20, and the opening 24a of the frame member 24 A flow path 30 surrounded by the peripheral surface 24b of the above is formed.

第1平板部材20の長手方向の一端側(図4では左側)、かつ、短手方向の一端側(図4では上側)には、平板面を貫通する円形状の流入口20bが形成されている。また、第1平板部材20の長手方向の他端側(図4では右側)、かつ、短手方向の一端側には、平板面を貫通する円形状の流出口20cが形成される。流入口20b、流出口20cはそれぞれ、側面視において開口部24aの内側に位置する。したがって、流入口20b、流出口20cはそれぞれ、流路30に連通する。たとえば冷却水などの冷媒がこの流路30を流れる。なお、流入口および流出口は、第2平板部材22に形成されてもよい。 A circular inflow port 20b penetrating the flat plate surface is formed on one end side in the longitudinal direction (left side in FIG. 4) and one end side in the lateral direction (upper side in FIG. 4) of the first flat plate member 20. There is. Further, a circular outlet 20c penetrating the flat plate surface is formed on the other end side of the first flat plate member 20 in the longitudinal direction (right side in FIG. 4) and one end side in the lateral direction. The inflow port 20b and the outflow port 20c are located inside the opening 24a in a side view, respectively. Therefore, the inflow port 20b and the outflow port 20c communicate with the flow path 30, respectively. For example, a refrigerant such as cooling water flows through the flow path 30. The inflow port and the outflow port may be formed on the second flat plate member 22.

第1平板部材20の面20aには、側面視において開口部24aの内側に、第2平板部材22側に向けて突出する複数の突起20d,20eが形成されている。第2平板部材22の面22aには、側面視において開口部24aの内側に、第1平板部材20側に向けて突出する複数の突起22d,22eが形成されている。複数の突起20d,20eと複数の突起22d,22eとは、枠部材24に対して対称に設けられている。複数の突起20d,20e,22d,22eはそれぞれ、開口部24a(すなわち流路30)に進入し、そこで対応する(対向する)突起同士で接合される。本実施の形態では、複数の突起20d,20e,22d,22e,は絞り加工によって形成される。したがって、平板部材を裏から見ると、突起に対応する位置に凹部が形成されている。 On the surface 20a of the first flat plate member 20, a plurality of protrusions 20d and 20e protruding toward the second flat plate member 22 side are formed inside the opening 24a in a side view. On the surface 22a of the second flat plate member 22, a plurality of protrusions 22d and 22e protruding toward the first flat plate member 20 side are formed inside the opening 24a in a side view. The plurality of protrusions 20d and 20e and the plurality of protrusions 22d and 22e are provided symmetrically with respect to the frame member 24. Each of the plurality of protrusions 20d, 20e, 22d, 22e enters the opening 24a (that is, the flow path 30), and the corresponding (opposing) protrusions are joined to each other. In the present embodiment, the plurality of protrusions 20d, 20e, 22d, 22e, are formed by drawing. Therefore, when the flat plate member is viewed from the back, a recess is formed at a position corresponding to the protrusion.

複数の突起20d,22dはそれぞれ、線状に並んでいる。流路30は、複数の突起20d,22dによって第1分割流路32aと第2分割流路32bとに分割されている。つまり、複数の突起20d、22dは、流路30を分割流路に分割する仕切壁36を構成する。なお、流路30は、複数の突起20d,22dによって3つ以上の分割流路に分割されてもよい。 The plurality of protrusions 20d and 22d are lined up in a line, respectively. The flow path 30 is divided into a first divided flow path 32a and a second divided flow path 32b by a plurality of protrusions 20d and 22d. That is, the plurality of protrusions 20d and 22d form a partition wall 36 that divides the flow path 30 into the divided flow paths. The flow path 30 may be divided into three or more divided flow paths by the plurality of protrusions 20d and 22d.

複数の突起20e,22eは、流路30内、図示の例では第1分割流路32a内に設けられる。流路内において突起20eと突起22eとが接合されていることによって、流路30内を流れる冷媒の圧力によって第1平板部材20や第2平板部材22が変形するのを抑止できる。つまり、平板冷却部12の強度を向上できる。 The plurality of protrusions 20e and 22e are provided in the flow path 30, and in the illustrated example, in the first divided flow path 32a. By joining the protrusions 20e and 22e in the flow path, it is possible to prevent the first flat plate member 20 and the second flat plate member 22 from being deformed by the pressure of the refrigerant flowing in the flow path 30. That is, the strength of the flat plate cooling unit 12 can be improved.

図6は、図5のB−B線断面図である。図6は、第1平板部材20と第2平板部材22とが並設されている方向に直交し、かつ、流路30を通る断面である。図6の断面において、複数の突起20d,20e,22d,22eは、島状に設けられている。島状に設けられた突起20d,22dが仕切壁36を構成するため、仕切壁36は分割流路32a,32bに沿って断続的になっている。 FIG. 6 is a cross-sectional view taken along the line BB of FIG. FIG. 6 is a cross section in which the first flat plate member 20 and the second flat plate member 22 are orthogonal to each other in the direction in which they are arranged side by side and pass through the flow path 30. In the cross section of FIG. 6, the plurality of protrusions 20d, 20e, 22d, 22e are provided in an island shape. Since the island-shaped protrusions 20d and 22d form the partition wall 36, the partition wall 36 is intermittent along the dividing flow paths 32a and 32b.

図1に戻り、流入部14は、直方体状に形成される。流入部14には、一端は上面に開口し、他端は側面に開口した流入口14aが形成される。流入口14aは、第1平板部材20の流入口20bと連通する。つまり、流入部14と平板冷却部12の流路30とが連通する。 Returning to FIG. 1, the inflow portion 14 is formed in a rectangular parallelepiped shape. The inflow portion 14 is formed with an inflow port 14a having one end open on the upper surface and the other end open on the side surface. The inflow port 14a communicates with the inflow port 20b of the first flat plate member 20. That is, the inflow portion 14 and the flow path 30 of the flat plate cooling portion 12 communicate with each other.

流出部16は、流入部14と同様、直方体状に形成される。流出部16には、流入部14と同様に、一端が上面に開口し、他端は側面に開口した流出口16aが形成される。流出口16aは、第1平板部材20の流出口20cと連通する。つまり、流出部16と平板冷却部12の流路30とが連通する。 The outflow portion 16 is formed in a rectangular parallelepiped shape like the inflow portion 14. Similar to the inflow section 14, the outflow section 16 is formed with an outflow port 16a having one end open on the upper surface and the other end open on the side surface. The outlet 16a communicates with the outlet 20c of the first flat plate member 20. That is, the outflow portion 16 and the flow path 30 of the flat plate cooling portion 12 communicate with each other.

流入部14の流入口14aに冷媒を流入させると、冷媒は流入口20bを通って平板冷却部12に流れ込み、第1分割流路32aおよび第2分割流路32bを流れ、流出口20cを通って平板冷却部12から流れ出て、流出部16の流出口16aから外部に流出する。 When the refrigerant flows into the inflow port 14a of the inflow section 14, the refrigerant flows into the flat plate cooling section 12 through the inflow port 20b, flows through the first divided flow path 32a and the second divided flow path 32b, and passes through the outflow port 20c. It flows out from the flat plate cooling unit 12 and flows out from the outflow port 16a of the outflow unit 16.

以上が冷却ユニット10の基本構成である。つづいて、冷却ユニット10の製造方法を説明する。 The above is the basic configuration of the cooling unit 10. Next, a method of manufacturing the cooling unit 10 will be described.

図7は、冷却ユニット10を製造する工程を示す製造工程図である。冷却ユニット10を製造する工程は、形成工程102と、平板冷却部組み立て工程104、全体組み立て工程106と、を含む。 FIG. 7 is a manufacturing process diagram showing a process of manufacturing the cooling unit 10. The step of manufacturing the cooling unit 10 includes a forming step 102, a flat plate cooling unit assembling step 104, and an overall assembling step 106.

形成工程102は、第1平板部材20を形成する第1平板部材形成工程110と、第2平板部材22を形成する第2平板部材形成工程112と、枠部材24を形成する枠部材形成工程114と、流入部14を形成する流入部形成工程116と、流出部16を形成する流出部形成工程118と、を含む。各工程では、公知の加工技術を使用すればよい。 The forming step 102 includes a first flat plate member forming step 110 for forming the first flat plate member 20, a second flat plate member forming step 112 for forming the second flat plate member 22, and a frame member forming step 114 for forming the frame member 24. The inflow portion forming step 116 for forming the inflow portion 14 and the outflow portion forming step 118 for forming the outflow portion 16 are included. In each step, a known processing technique may be used.

第1平板部材形成工程110は、絞り加工によって突起20d,20eを形成する絞り加工工程120を含む。第2平板部材形成工程112は、絞り加工によって突起22d,22eを形成する絞り加工工程122を含む。 The first flat plate member forming step 110 includes a drawing process 120 for forming protrusions 20d and 20e by drawing. The second flat plate member forming step 112 includes a drawing process 122 for forming the protrusions 22d and 22e by drawing.

平板冷却部組み立て工程104は、外周溶接工程130と、突起溶接工程132と、を含む。外周溶接工程130では、枠部材24を第1平板部材20および第2平板部材22で挟み込み、それらの外周全域を溶接にて接合して密封する。突起溶接工程132では、第1平板部材20および第2平板部材22の対応する突起同士をスポット溶接により接合する。 The flat plate cooling unit assembling step 104 includes an outer peripheral welding step 130 and a protrusion welding step 132. In the outer peripheral welding step 130, the frame member 24 is sandwiched between the first flat plate member 20 and the second flat plate member 22, and the entire outer periphery thereof is joined and sealed by welding. In the protrusion welding step 132, the corresponding protrusions of the first flat plate member 20 and the second flat plate member 22 are joined by spot welding.

全体組み立て工程106では、平板冷却部組み立て工程104を経た平板冷却部12および他の部材を使用して冷却ユニット10を組み立てる。 In the overall assembly step 106, the cooling unit 10 is assembled using the flat plate cooling unit 12 and other members that have undergone the flat plate cooling unit assembly step 104.

図7の製造工程図はあくまでも一例であり、他の工程を追加したり、一部の工程を変更または削除したり、工程の順序を入れ替えてもよい。 The manufacturing process diagram of FIG. 7 is merely an example, and other processes may be added, some processes may be changed or deleted, or the order of the processes may be changed.

以上が冷却ユニット10の製造方法である。つづいて、本実施の形態が奏する効果について説明する。 The above is the manufacturing method of the cooling unit 10. Next, the effects of the present embodiment will be described.

非島状の突起、たとえば枠部材24の開口部24aの周面24bに繋がっている突起によって流路を形成する場合、形成できる流路は制限される。これに対し、本実施の形態では、島状に設けられる突起20d,22dによって分割流路を形成するため、形成できる分割流路は特に制限されず、自由に分割流路を形成できる。これにより、流路30の全体に冷媒を行き渡らせることが可能となり、冷却ユニット10の冷却性能を高めることができる。また、複数の分割流路を形成する場合、流路30の途中から分割流路を分割すればよいため平板冷却部12への流入口、流出口はそれぞれ1つずつで足り、したがって、流入部14および流出部16を簡単な形状にでき、その結果、冷却ユニット10の製造コストを低減できる。 When the flow path is formed by a non-island-shaped protrusion, for example, a protrusion connected to the peripheral surface 24b of the opening 24a of the frame member 24, the flow path that can be formed is limited. On the other hand, in the present embodiment, since the divided flow paths are formed by the protrusions 20d and 22d provided in an island shape, the divided flow paths that can be formed are not particularly limited, and the divided flow paths can be freely formed. As a result, the refrigerant can be distributed throughout the flow path 30, and the cooling performance of the cooling unit 10 can be improved. Further, when forming a plurality of divided flow paths, the divided flow paths may be divided from the middle of the flow path 30, so that one inflow port and one outflow port to the flat plate cooling unit 12 are sufficient. Therefore, the inflow unit is sufficient. The shape of the 14 and the outflow portion 16 can be simplified, and as a result, the manufacturing cost of the cooling unit 10 can be reduced.

また、本実施の形態では、島状の突起20eと突起22eとが流路内において接合される。これにより、流路30内を流れる冷媒の圧力によって第1平板部材20や第2平板部材22が変形するのを抑止できる。つまり、平板冷却部12の強度向上を図れる。なお、突起20e,22eは島状であるため、これらを設けたことによる冷媒の流れへの影響は小さく抑えられる。 Further, in the present embodiment, the island-shaped protrusions 20e and the protrusions 22e are joined in the flow path. As a result, it is possible to prevent the first flat plate member 20 and the second flat plate member 22 from being deformed by the pressure of the refrigerant flowing in the flow path 30. That is, the strength of the flat plate cooling unit 12 can be improved. Since the protrusions 20e and 22e are island-shaped, the influence of providing them on the flow of the refrigerant can be suppressed to a small extent.

また、本実施の形態によれば、絞り加工により突起を形成するため、たとえば鋳造によって突起とともに平板部材を形成する場合と比べ、低コストで突起を有する平板部材を形成できる。また、絞り加工によって突起を形成すると、突起の裏側には凹部が形成される。つまり、エンボス状の突起が形成される。この場合、突起は平板部材の他の部分と同程度の薄さを有する。言い換えると突起は比較的薄肉に形成される。これにより、突起をスポット溶接によって容易かつ確実に接合できる。 Further, according to the present embodiment, since the protrusions are formed by drawing, for example, a flat plate member having protrusions can be formed at a lower cost than in the case of forming a flat plate member together with the protrusions by casting. Further, when the protrusion is formed by drawing, a recess is formed on the back side of the protrusion. That is, an embossed protrusion is formed. In this case, the protrusions are as thin as the rest of the flat plate member. In other words, the protrusions are formed relatively thin. As a result, the protrusions can be easily and surely joined by spot welding.

また、本実施の形態によれば、第1平板部材20および第2平板部材22の対応する突起同士が接合される。つまり、第1平板部材20および第2平板部材22の両方に突起が形成される。これらの突起は特に、絞り加工によって形成される。したがって、第1平板部材20および第2平板部材22の両方が、エンボス状の突起すなわちエンボス部を有することになり、第1平板部材20および第2平板部材22の両方の強度が向上する。 Further, according to the present embodiment, the corresponding protrusions of the first flat plate member 20 and the second flat plate member 22 are joined to each other. That is, protrusions are formed on both the first flat plate member 20 and the second flat plate member 22. These protrusions are particularly formed by drawing. Therefore, both the first flat plate member 20 and the second flat plate member 22 have embossed protrusions, that is, embossed portions, and the strength of both the first flat plate member 20 and the second flat plate member 22 is improved.

また、従来は、比較的高コストな接合方法である熱拡散接合を使用して平板冷却部12を組み立てていたため、冷却ユニット10の製造コストが比較的高かった。本実施の形態によれば、比較的低コストな接合方法である溶接によって平板冷却部12を組み立てるため、冷却ユニット10の製造コストを低減できる。 Further, conventionally, since the flat plate cooling unit 12 is assembled by using heat diffusion joining, which is a relatively high cost joining method, the manufacturing cost of the cooling unit 10 is relatively high. According to this embodiment, since the flat plate cooling unit 12 is assembled by welding, which is a relatively low-cost joining method, the manufacturing cost of the cooling unit 10 can be reduced.

以上、実施の形態に係る冷却ユニットについて説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下変形例を示す。 The cooling unit according to the embodiment has been described above. This embodiment is an example, and it is understood by those skilled in the art that various modifications are possible for each of these components and combinations of each processing process, and that such modifications are also within the scope of the present invention. be. A modified example is shown below.

(変形例1)
実施の形態では、平板冷却部12が、第1平板部材20、第2平板部材22および枠部材24の3つの部材によって構成される場合について説明したが、これには限られない。たとえば、平板冷却部12は、第1平板部材および第2平板部材の2つの部材によって構成されてもよい。この場合、実施の形態の第1平板部材20および枠部材24が合わさったものを、第1平板部材として形成してもよい。あるいは、第2平板部材22および枠部材24が合わさったものを、第2平板部材として形成してもよい。
(Modification example 1)
In the embodiment, the case where the flat plate cooling unit 12 is composed of three members, the first flat plate member 20, the second flat plate member 22, and the frame member 24, has been described, but the present invention is not limited to this. For example, the flat plate cooling unit 12 may be composed of two members, a first flat plate member and a second flat plate member. In this case, the first flat plate member 20 and the frame member 24 of the embodiment may be combined to form the first flat plate member. Alternatively, a combination of the second flat plate member 22 and the frame member 24 may be formed as the second flat plate member.

(変形例2)
実施の形態では、第1平板部材20の面20aに形成される突起と第2平板部材22の面22aに形成される突起とを接合する場合について説明したが、これには限定されない。図8(a)〜(c)はそれぞれ、変形例に係る平板冷却部12の断面図である。図8(a)〜(c)はいずれも、図5に対応する。図8(a)では、第1平板部材20の突起20d,20eと第2平板部材22の面22a(すなわち平坦面)とが接合されている。図8(b)では、第2平板部材22の突起22d,22eと第1平板部材20の面20a(すなわち平坦面)とが接合されている。図8(c)では、第1平板部材20の突起20dと第2平板部材22の面22aとが接合され、第2平板部材22の突起22eと第1平板部材20の面20aとが接合されている。
(Modification 2)
In the embodiment, the case where the protrusion formed on the surface 20a of the first flat plate member 20 and the protrusion formed on the surface 22a of the second flat plate member 22 are joined has been described, but the present invention is not limited thereto. 8 (a) to 8 (c) are cross-sectional views of the flat plate cooling unit 12 according to the modified example. 8 (a) to 8 (c) all correspond to FIG. In FIG. 8A, the protrusions 20d and 20e of the first flat plate member 20 and the surface 22a (that is, the flat surface) of the second flat plate member 22 are joined. In FIG. 8B, the protrusions 22d and 22e of the second flat plate member 22 and the surface 20a (that is, the flat surface) of the first flat plate member 20 are joined. In FIG. 8C, the protrusion 20d of the first flat plate member 20 and the surface 22a of the second flat plate member 22 are joined, and the protrusion 22e of the second flat plate member 22 and the surface 20a of the first flat plate member 20 are joined. ing.

たとえば、第1平板部材20の面20aにのみ突起が設けられ、第2平板部材22の面22aには突起が設けられなくてもよい。また、たとえば、第2平板部材22の面22aにのみ突起が設けられ、第1平板部材20の面22aには突起が設けられなくてもよい。これらの場合、第1平板部材20および第2平板部材22の一方のみに絞り加工を施せばよいため、製造コストを低減できる。 For example, the protrusion may be provided only on the surface 20a of the first flat plate member 20, and the protrusion may not be provided on the surface 22a of the second flat plate member 22. Further, for example, the protrusion may be provided only on the surface 22a of the second flat plate member 22, and the protrusion may not be provided on the surface 22a of the first flat plate member 20. In these cases, only one of the first flat plate member 20 and the second flat plate member 22 needs to be drawn, so that the manufacturing cost can be reduced.

(変形例3)
実施の形態では、冷却ユニット10が、対向するコイル4の間に介在し、両側のコイル4を保持する場合について説明したが、これに限られない。冷却ユニット10は、2枚の平板冷却部12を含み、2枚の平板冷却部12が1列に並ぶコイル4を挟んでコイル4を保持してもよい。
(Modification example 3)
In the embodiment, the case where the cooling unit 10 is interposed between the opposing coils 4 and holds the coils 4 on both sides has been described, but the present invention is not limited to this. The cooling unit 10 may include two flat plate cooling units 12 and hold the coil 4 with the coil 4 in which the two flat plate cooling units 12 are lined up in a row.

上述した実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。 Any combination of the embodiments and modifications described above is also useful as an embodiment of the present invention. The new embodiments resulting from the combination have the effects of the combined embodiments and variants.

4 コイル、 10 冷却ユニット、 12 平板冷却部、 20 第1平板部材、 20d,20e 突起、 22 第2平板部材、 22d,22e 突起、 30 流路。 4 coil, 10 cooling unit, 12 flat plate cooling part, 20 1st flat plate member, 20d, 20e protrusion, 22 2nd flat plate member, 22d, 22e protrusion, 30 flow path.

Claims (6)

リニアモータを構成するコイルに密着して当該コイルを冷却するための冷却ユニットであって、
第1平板部材と、
前記第1平板部材に並設される第2平板部材と、
を備え、
前記第2平板部材と対向する前記第1平板部材の面には前記第2平板部材に向けて突出する突起が形成され、
前記第1平板部材と前記第2平板部材との間に流路が形成され、
前記突起は、前記流路内において前記第2平板部材に接合され、
前記第1平板部材と前記第2平板部材とが並設される方向に直交し、かつ、前記流路を通る断面において、前記突起は島状に設けられていることを特徴とするリニアモータの冷却ユニット。
A cooling unit for cooling the coil in close contact with the coil that constitutes the linear motor.
The first flat plate member and
A second flat plate member juxtaposed with the first flat plate member and
With
On the surface of the first flat plate member facing the second flat plate member, a protrusion protruding toward the second flat plate member is formed.
A flow path is formed between the first flat plate member and the second flat plate member.
The protrusion is joined to the second flat plate member in the flow path, and is joined to the second flat plate member.
A linear motor characterized in that the protrusions are provided in an island shape in a cross section that is orthogonal to the direction in which the first flat plate member and the second flat plate member are arranged side by side and passes through the flow path. Cooling unit.
前記突起は、前記流路を複数の分割流路に分割する仕切壁を構成し、
前記仕切壁は、分割流路に沿って断続的に設けられることを特徴とする請求項1に記載のリニアモータの冷却ユニット。
The protrusion constitutes a partition wall that divides the flow path into a plurality of divided flow paths.
The cooling unit for a linear motor according to claim 1, wherein the partition wall is provided intermittently along the divided flow path.
前記第1平板部材に合わさる前記第2平板部材の面には前記第1平板部材に向けて突出する突起が形成され、
前記第1平板部材の突起と、前記第2平板部材の突起とが接合されることを特徴とする請求項1または2に記載のリニアモータの冷却ユニット。
A protrusion protruding toward the first flat plate member is formed on the surface of the second flat plate member that fits the first flat plate member.
The cooling unit for a linear motor according to claim 1 or 2, wherein the protrusion of the first flat plate member and the protrusion of the second flat plate member are joined.
前記第1平板部材と前記第2平板部材とに挟み込まれる枠部材をさらに含み、
前記第1平板部材の突起は、前記枠部材の開口部に進入していることを特徴とする請求項1から3のいずれかに記載のリニアモータの冷却ユニット。
Further including a frame member sandwiched between the first flat plate member and the second flat plate member,
The cooling unit for a linear motor according to any one of claims 1 to 3, wherein the protrusion of the first flat plate member enters the opening of the frame member.
請求項1から4のいずれかに記載のリニアモータの冷却ユニットを備え、
前記冷却ユニットは、対向して配置される前記コイルの間に介在して両側のコイルを保持することを特徴とするリニアモータ。
The linear motor cooling unit according to any one of claims 1 to 4 is provided.
The cooling unit is a linear motor characterized in that the coils on both sides are held between the coils arranged so as to face each other.
リニアモータを構成するコイルに密着して当該コイルを冷却するための冷却ユニットの製造方法であって、
前記冷却ユニットは、第1平板部材と、前記第1平板部材に並設される第2平板部材と、を含み、
本製造方法は、
前記第2平板部材と対向する前記第1平板部材の面に絞り加工によって突起を形成する工程と、
前記第2平板部材を形成する工程と、
前記第1平板部材と前記第2平板部材とを、それらの間に流路が形成されるように並設し、外周を溶接によって接合する工程と、
前記流路内に突出する前記第1平板部材の突起と、前記第2平板部材とをスポット溶接によって接合する工程と、を含むことを特徴とするリニアモータの冷却ユニットの製造方法。
It is a method of manufacturing a cooling unit for cooling the coil in close contact with the coil constituting the linear motor.
The cooling unit includes a first flat plate member and a second flat plate member juxtaposed with the first flat plate member.
This manufacturing method is
A step of forming a protrusion on the surface of the first flat plate member facing the second flat plate member by drawing processing, and
The step of forming the second flat plate member and
A step of arranging the first flat plate member and the second flat plate member side by side so as to form a flow path between them, and joining the outer periphery by welding.
A method for manufacturing a cooling unit of a linear motor, which comprises a step of joining the protrusion of the first flat plate member protruding into the flow path and the second flat plate member by spot welding.
JP2020061280A 2020-03-30 2020-03-30 Linear motor cooling unit, linear motor, linear motor cooling unit manufacturing method Active JP7402102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020061280A JP7402102B2 (en) 2020-03-30 2020-03-30 Linear motor cooling unit, linear motor, linear motor cooling unit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061280A JP7402102B2 (en) 2020-03-30 2020-03-30 Linear motor cooling unit, linear motor, linear motor cooling unit manufacturing method

Publications (2)

Publication Number Publication Date
JP2021164193A true JP2021164193A (en) 2021-10-11
JP7402102B2 JP7402102B2 (en) 2023-12-20

Family

ID=78005211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061280A Active JP7402102B2 (en) 2020-03-30 2020-03-30 Linear motor cooling unit, linear motor, linear motor cooling unit manufacturing method

Country Status (1)

Country Link
JP (1) JP7402102B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129304A (en) 2022-03-01 2023-09-08 스미도모쥬기가이고교 가부시키가이샤 Armature, driving device
JP7349540B1 (en) 2022-07-28 2023-09-22 株式会社ソディック Armature, cooling unit and linear motor
TWI877684B (en) 2022-07-28 2025-03-21 日商沙迪克股份有限公司 Armature, linear motor and cooling unit of linear motor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525717U (en) * 1978-08-09 1980-02-19
JPH07322567A (en) * 1994-05-20 1995-12-08 Meidensha Corp Liquid-cooled electric rotating machine
JP2004011936A (en) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd Heat exchanger
WO2004025808A1 (en) * 2002-09-13 2004-03-25 Aisin Aw Co., Ltd. Drive device
JP2013009597A (en) * 2011-02-18 2013-01-10 Honda Motor Co Ltd Case for rotary electric machine
JP2013106365A (en) * 2011-11-10 2013-05-30 Yaskawa Electric Corp Rotary electric machine
JP2013207835A (en) * 2012-03-27 2013-10-07 Sumitomo Heavy Ind Ltd Linear motor cooling structure
JP2014095492A (en) * 2012-11-08 2014-05-22 Mahle Filter Systems Japan Corp Multiple-plate type oil cooler
JP2014166031A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Motor
JP2018065536A (en) * 2016-10-21 2018-04-26 マツダ株式会社 Vehicle drive device and assembly method of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525717U (en) * 1978-08-09 1980-02-19
JPH07322567A (en) * 1994-05-20 1995-12-08 Meidensha Corp Liquid-cooled electric rotating machine
JP2004011936A (en) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd Heat exchanger
WO2004025808A1 (en) * 2002-09-13 2004-03-25 Aisin Aw Co., Ltd. Drive device
JP2013009597A (en) * 2011-02-18 2013-01-10 Honda Motor Co Ltd Case for rotary electric machine
JP2013106365A (en) * 2011-11-10 2013-05-30 Yaskawa Electric Corp Rotary electric machine
JP2013207835A (en) * 2012-03-27 2013-10-07 Sumitomo Heavy Ind Ltd Linear motor cooling structure
JP2014095492A (en) * 2012-11-08 2014-05-22 Mahle Filter Systems Japan Corp Multiple-plate type oil cooler
JP2014166031A (en) * 2013-02-25 2014-09-08 Honda Motor Co Ltd Motor
JP2018065536A (en) * 2016-10-21 2018-04-26 マツダ株式会社 Vehicle drive device and assembly method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129304A (en) 2022-03-01 2023-09-08 스미도모쥬기가이고교 가부시키가이샤 Armature, driving device
TWI858568B (en) * 2022-03-01 2024-10-11 日商住友重機械工業股份有限公司 Armature, drive device
JP7349540B1 (en) 2022-07-28 2023-09-22 株式会社ソディック Armature, cooling unit and linear motor
KR20240016196A (en) * 2022-07-28 2024-02-06 가부시키가이샤 소딕 Armature, linear motor and cooling unit of linear motor
JP2024017697A (en) * 2022-07-28 2024-02-08 株式会社ソディック Armature, cooling unit and linear motor
KR102771706B1 (en) 2022-07-28 2025-02-25 가부시키가이샤 소딕 Armature, linear motor and cooling unit of linear motor
TWI877684B (en) 2022-07-28 2025-03-21 日商沙迪克股份有限公司 Armature, linear motor and cooling unit of linear motor

Also Published As

Publication number Publication date
JP7402102B2 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
US9601980B2 (en) Electromechanical transducer and electroacoustic transducer
KR101509285B1 (en) Linear motor armature and linear motor
US20140270276A1 (en) Electromechanical transducer and electrocoustic transducer
JP2021164193A (en) Cooling unit of linear motor, linear motor, and manufacturing method of the linear motor
JP5859361B2 (en) Linear motor cooling structure
US9325223B2 (en) Linear motor cooling structure
TW201804105A (en) Electromagnetic actuator
JP2016059117A (en) Armature for linear motor
JP6253505B2 (en) Armature for linear motor
JP6338407B2 (en) Armature for linear motor
JP5220497B2 (en) Linear motor
JP3668940B2 (en) Linear motor
JP6482401B2 (en) Linear motor cooling unit
JP7349540B1 (en) Armature, cooling unit and linear motor
JP4092550B2 (en) Voice coil linear motor with cooling function
JP7393868B2 (en) Actuators and haptic devices
JP6351372B2 (en) Vibration generator
JP2021083261A (en) Power conversion device
JP6664146B2 (en) Armature for linear motor
JP5362305B2 (en) Linear motor
JP2023127252A (en) Armature and driving device
JPH1027700A (en) Periodic magnetic field generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7402102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150