[go: up one dir, main page]

JP2021161764A - Seismic structure - Google Patents

Seismic structure Download PDF

Info

Publication number
JP2021161764A
JP2021161764A JP2020064849A JP2020064849A JP2021161764A JP 2021161764 A JP2021161764 A JP 2021161764A JP 2020064849 A JP2020064849 A JP 2020064849A JP 2020064849 A JP2020064849 A JP 2020064849A JP 2021161764 A JP2021161764 A JP 2021161764A
Authority
JP
Japan
Prior art keywords
pair
energy absorbing
portions
horizontal member
absorbing members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020064849A
Other languages
Japanese (ja)
Other versions
JP7388968B2 (en
Inventor
高夫 小山
Takao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2020064849A priority Critical patent/JP7388968B2/en
Publication of JP2021161764A publication Critical patent/JP2021161764A/en
Application granted granted Critical
Publication of JP7388968B2 publication Critical patent/JP7388968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a seismic structure that can ensure high seismic performance while achieving compactness.SOLUTION: The seismic structure of the present invention includes an upper horizontal member, a lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member. The energy absorbing member is configured so that it has a curved portion, a pair of intermediate portions continuously extending from both ends of the curved portion, and a pair of fixing portions continuously extending from the ends of the pair of intermediate portions, and according to the relative displacement of the upper horizontal member and the lower horizontal member in the horizontal direction, the relative displacement of the pair of fixed portions occurs in the extending direction. The pair of energy absorbing members are sandwiched by a pair of sandwiching portions in a state where the curved portions are close to each other so as to face each other.SELECTED DRAWING: Figure 1

Description

本発明は、耐震構造に関するものである。 The present invention relates to seismic structures.

従来、一対のU字形のダンパーを用いた制震構造や耐震構造が知られている。これらの構造では、ダンパーが常に同一の曲率で湾曲するように構成するのが、エネルギー吸収性能上好ましい。 Conventionally, seismic control structures and seismic structures using a pair of U-shaped dampers are known. In these structures, it is preferable in terms of energy absorption performance that the dampers are always curved with the same curvature.

その為、特許文献1では、一対の拘束部を一対のダンパーよりも左右または上下方向に長く延出させることで、建物の層間変位が大きくなりそれに伴い一対の拘束部の相対的変位が大きくなった場合も、一対の拘束部からダンパーがはみ出さないようにして、ダンパーの不均質な変形を抑制するように構成されている。 Therefore, in Patent Document 1, by extending the pair of restraint portions in the left-right or vertical direction longer than the pair of dampers, the inter-story displacement of the building becomes large, and the relative displacement of the pair of restraint portions becomes large accordingly. Even in this case, the damper is prevented from protruding from the pair of restraint portions, and the damper is configured to suppress inhomogeneous deformation.

特開2009−270336号公報Japanese Unexamined Patent Publication No. 2009-270336

しかしながら、特許文献1に記載の技術では、一対の拘束部が一対のダンパーよりも長く延出するので、付近の他の部材との干渉を避ける必要があり、パネルフレームの幅を大きくしなければならず、建物の間取りの設計の自由度を低下させるおそれがあった。 However, in the technique described in Patent Document 1, since the pair of restraining portions extend longer than the pair of dampers, it is necessary to avoid interference with other members in the vicinity, and the width of the panel frame must be increased. Therefore, there was a risk of reducing the degree of freedom in designing the floor plan of the building.

このような事情に鑑みて、本発明は、コンパクト化を図りつつ、高い耐震性能を確保することができる、耐震構造を提供することを目的とする。 In view of these circumstances, an object of the present invention is to provide a seismic structure capable of ensuring high seismic performance while achieving compactness.

本発明の要旨構成は、以下の通りである。
(1)上部横架材と、下部横架材と、前記上部横架材及び前記下部横架材の間に設けられた一対のエネルギー吸収部材と、を備え、
前記エネルギー吸収部材は、湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有するとともに、前記上部横架材と前記下部横架材との水平方向の相対的変位に応じて、前記一対の固定部にその延在方向の相対的変位が生じるように構成されており、
前記一対のエネルギー吸収部材は、一対の挟持部によって前記湾曲部同士が対向するように近接した状態で挟持されている、耐震構造。
The gist structure of the present invention is as follows.
(1) An upper horizontal member, a lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member are provided.
The energy absorbing member has a curved portion, a pair of intermediate portions continuously extending from both ends of the curved portion, and a pair of fixing portions continuously extending from the ends of the pair of intermediate portions. , The pair of fixed portions are configured so that the relative displacement in the extending direction occurs according to the relative displacement of the upper horizontal member and the lower horizontal member in the horizontal direction.
An earthquake-resistant structure in which the pair of energy absorbing members are sandwiched by a pair of sandwiching portions in a state in which the curved portions face each other so as to face each other.

(2)前記一対のエネルギー吸収部材の同じ側の前記固定部のうち一方の前記固定部の端部から他方の前記固定部の端部までの寸法に等しい寸法を有する前記挟持部によって挟持されている、上記(1)に記載の耐震構造。 (2) It is sandwiched by the sandwiching portion having a dimension equal to the dimension from the end of the fixing portion of one of the fixing portions on the same side of the pair of energy absorbing members to the end of the fixing portion of the other. The seismic structure according to (1) above.

(3)前記一対のエネルギー吸収部材を複数対、連続的に挟持しうる挟持部を有する、上記(1)に記載の耐震構造。 (3) The seismic structure according to (1) above, which has a plurality of pairs of energy absorbing members that can continuously sandwich the pair of energy absorbing members.

(4)前記一対の挟持部は、複数対の前記エネルギー吸収部材を、上下方向に連続的に設置しうるように構成されている、上記(3)に記載の耐震構造。 (4) The seismic structure according to (3) above, wherein the pair of sandwiching portions is configured so that a plurality of pairs of the energy absorbing members can be continuously installed in the vertical direction.

(5)前記エネルギー吸収部材は、複数層で構成されており、内側の層の厚みは外側の層の厚みよりも小さい、上記(1)〜(4)のいずれかに記載の耐震構造。 (5) The seismic structure according to any one of (1) to (4) above, wherein the energy absorbing member is composed of a plurality of layers, and the thickness of the inner layer is smaller than the thickness of the outer layer.

本発明によれば、コンパクト化を図りつつ、高い耐震性能を確保することができる、耐震構造を提供することができる。 According to the present invention, it is possible to provide a seismic structure capable of ensuring high seismic performance while achieving compactness.

本発明の第1の実施形態にかかる耐震構造を示す正面図である。It is a front view which shows the seismic structure which concerns on 1st Embodiment of this invention. エネルギー吸収部材の一例を示す図である。It is a figure which shows an example of the energy absorption member. 本実施形態で用いているエネルギー吸収部材の配置を示す図である。It is a figure which shows the arrangement of the energy absorption member used in this embodiment. 本実施形態でのエネルギー吸収部材の変形を模式的に示す図である。It is a figure which shows typically the deformation of the energy absorption member in this embodiment. エネルギー吸収部材の対比となる配置を示す図である。It is a figure which shows the arrangement which becomes the contrast of the energy absorption member. 対比となるエネルギー吸収部材の変形を模式的に示す図である。It is a figure which shows typically the deformation of the energy absorption member which becomes a contrast. 本発明の第2の実施形態にかかる耐震構造を示す正面図である。It is a front view which shows the seismic structure which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態にかかる耐震構造を示す正面図である。It is a front view which shows the seismic structure which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態にかかる耐震構造を示す正面図である。It is a front view which shows the seismic structure which concerns on 4th Embodiment of this invention. 本発明の第5の実施形態にかかる耐震構造を示す正面図である。It is a front view which shows the seismic structure which concerns on 5th Embodiment of this invention. エネルギー吸収部材の一例を示す図である。It is a figure which shows an example of the energy absorption member. 層を重ね合わせる手法の一例を示す図である。It is a figure which shows an example of the method of superimposing layers. 層を重ね合わせる手法の他の例を示す図である。It is a figure which shows another example of the method of superimposing layers. 層を重ね合わせる手法の別の例を示す図である。It is a figure which shows another example of the method of superimposing layers.

以下、本発明の実施形態について図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態にかかる耐震構造を示す正面図である。
本発明にかかる耐震構造が適用される建物の架構は、鉄筋コンクリート造の基礎梁及び基礎梁の上に構築され、鋼材の柱・梁等からなる鉄骨造の上部架構で構成されている。本例では、2階以上に設置される耐震構造について説明するが、本発明の耐震構造は、地上階にも設置することができる。図1に示すように、架構は、上階梁(上部横架材)5、下階梁(下部横架材)6を有している。ここでいう上下は、建物の鉛直方向の上下であり、図示の上下とも一致する。また、左右は、上記鉛直方向に直交する水平面における水平方向の一方側、他方側であり、図示の左右である。
[First Embodiment]
FIG. 1 is a front view showing a seismic structure according to the first embodiment of the present invention.
The frame of the building to which the seismic structure according to the present invention is applied is constructed on a reinforced concrete foundation beam and a foundation beam, and is composed of a steel-framed upper frame composed of steel columns and beams. In this example, the seismic structure installed on the second floor or higher will be described, but the seismic structure of the present invention can also be installed on the ground floor. As shown in FIG. 1, the frame has an upper floor beam (upper horizontal member) 5 and a lower floor beam (lower horizontal member) 6. The top and bottom here are the top and bottom of the building in the vertical direction, and coincide with the top and bottom of the figure. Further, the left and right are one side and the other side in the horizontal direction in the horizontal plane orthogonal to the vertical direction, and are the left and right in the drawing.

図1に示すように、上階梁5及び下階梁6は、水平方向に延在している。図示は省略しているが、上階梁5及び下階梁6の端は、柱または他の横架材に接合されている。上階梁5及び下階梁6はH形鋼で構成されており、上下フランジには、他の部材をボルト接合するための孔が所定のピッチで穿設されている。 As shown in FIG. 1, the upper floor beam 5 and the lower floor beam 6 extend in the horizontal direction. Although not shown, the ends of the upper beam 5 and the lower beam 6 are joined to a column or other horizontal member. The upper beam 5 and the lower beam 6 are made of H-shaped steel, and holes for bolting other members are bored in the upper and lower flanges at a predetermined pitch.

<エネルギー吸収部材>
図2は、エネルギー吸収部材の一例を示す図である。図3Aは、本実施形態で用いているエネルギー吸収部材の配置を示す図である。図3Bは、本実施形態でのエネルギー吸収部材の変形を模式的に示す図である。
エネルギー吸収部材4は、建物に地震等の水平力が作用した際の建物の層間変形に応じてそれ自体が変形等することにより、エネルギーを吸収し建物の揺れを減衰させる機能を有するものである。エネルギー吸収部材4は、略U字の形状をなしており、湾曲部4aと、湾曲部4aの両端のそれぞれから連続して延びる一対の中間部4bと、一対の中間部4bの端からそれぞれ連続して延びる一対の固定部4cと、を有している。一対の中間部4bの一部及び一対の固定部4cは、(非変形状態において)互いに対向する一対の対向部をなしている。エネルギー吸収部材4は矩形の板状の鋼材を曲げ加工することにより、上記の形状(略U字状)となされている。このような形状のエネルギー吸収部材4では、一対の固定部4cが、互いに平行な状態を保ったままその延在方向の相対的変位を正負方向に繰り返すことで、(一方の対向部における湾曲部の近傍部分が湾曲部と略同一の曲げ歪みで湾曲すると共に、他方の対向部における湾曲部の近傍付近が平坦となるような変形が生じて)その変位(変形)に応じた分のエネルギーを吸収することができる。
<Energy absorption member>
FIG. 2 is a diagram showing an example of an energy absorbing member. FIG. 3A is a diagram showing an arrangement of energy absorbing members used in the present embodiment. FIG. 3B is a diagram schematically showing the deformation of the energy absorbing member in this embodiment.
The energy absorbing member 4 has a function of absorbing energy and attenuating the shaking of the building by deforming itself in response to the inter-story deformation of the building when a horizontal force such as an earthquake acts on the building. .. The energy absorbing member 4 has a substantially U-shape, and is continuous from the ends of the curved portion 4a, the pair of intermediate portions 4b extending continuously from both ends of the curved portion 4a, and the ends of the pair of intermediate portions 4b. It has a pair of fixing portions 4c extending in the direction of the above. A part of the pair of intermediate portions 4b and the pair of fixed portions 4c form a pair of facing portions facing each other (in a non-deformed state). The energy absorbing member 4 has the above-mentioned shape (substantially U-shaped) by bending a rectangular plate-shaped steel material. In the energy absorbing member 4 having such a shape, the pair of fixed portions 4c repeat the relative displacement in the extending direction in the positive and negative directions while maintaining the state parallel to each other (the curved portion in one facing portion). The vicinity of the curved part is curved with almost the same bending strain as the curved part, and the other facing part is deformed so that the vicinity of the curved part becomes flat). Can be absorbed.

エネルギー吸収部材4は、耐震要素の固定部4cにはボルト接合の為の孔が複数穿設されており、後述のとおり取付部材の当接面に対しボルト接合等により接合されるが、この接合によって湾曲形状に変形することが拘束され平坦形状が維持される領域が固定部4cであり、円弧状の湾曲形状が常に維持される領域が湾曲部4aであり、湾曲形状と平坦形状とに変化し得る領域が中間部4bである。 The energy absorbing member 4 is provided with a plurality of holes for bolt joining in the fixing portion 4c of the seismic element, and is joined to the contact surface of the mounting member by bolt joining or the like as described later. The region where the deformation to the curved shape is constrained by and the flat shape is maintained is the fixed portion 4c, and the region where the arcuate curved shape is always maintained is the curved portion 4a, which changes between the curved shape and the flat shape. The possible region is the intermediate portion 4b.

また、一方の中間部4bにおける固定部4cとの境界部まで湾曲形状に変形し、他方の中間部4bにおける湾曲部4aとの境界部まで平坦となった状態が、エネルギー吸収部材4の相対的変位が最大値に達した状態であり、エネルギー吸収部材4の相対的変位の最大量は、接合の位置により決定される(接合の位置が湾曲部4aから遠いほど、固定部4cの領域は小さくなり、エネルギー吸収部材4の相対的変位の最大量は大きくなる)。 Further, the state in which the one intermediate portion 4b is deformed into a curved shape up to the boundary portion with the fixed portion 4c and the other intermediate portion 4b is flattened to the boundary portion with the curved portion 4a is the relative energy absorbing member 4. The maximum amount of displacement is reached, and the maximum amount of relative displacement of the energy absorbing member 4 is determined by the position of the joint (the farther the position of the joint is from the curved portion 4a, the smaller the region of the fixed portion 4c is. Therefore, the maximum amount of relative displacement of the energy absorbing member 4 becomes large).

本例では、図1に示すように、一対のエネルギー吸収部材4が、湾曲部4a同士を対向させて(湾曲部4a同士が最も近接するように又は接するように)配置されている。湾曲部4a間は、例えば5〜10mm間隔を空けることが、湾曲部4aの変形を考慮する上で好ましいが、間隔を設けないこともできる。なお、エネルギー吸収部材4を一対で設ける場合は、固定部4c同士が対向するように(固定部4c同士が最も近接するように又は接するように)配置することもできる。また、エネルギー吸収部材4(対ではなく単体)の長さ寸法は、例えば、250〜400mmとすることができ、高さ寸法(一方の当接面から他方の当接面までの寸法)及び幅寸法は、例えば、50〜150mmとすることができる。 In this example, as shown in FIG. 1, a pair of energy absorbing members 4 are arranged so that the curved portions 4a face each other (so that the curved portions 4a are closest to each other or are in contact with each other). It is preferable to leave a space of 5 to 10 mm between the curved portions 4a in consideration of deformation of the curved portion 4a, but it is also possible not to provide a gap. When the energy absorbing members 4 are provided in pairs, the fixed portions 4c may be arranged so as to face each other (so that the fixed portions 4c are closest to each other or in contact with each other). Further, the length dimension of the energy absorbing member 4 (not a pair but a single body) can be, for example, 250 to 400 mm, and the height dimension (dimension from one contact surface to the other contact surface) and width. The dimensions can be, for example, 50 to 150 mm.

エネルギー吸収部材4は、湾曲部4a同士が対向するように(湾曲部4a同士が近接するように又は接するように)一対設けられており、エネルギー吸収部材4の一対分の長さ(一対のエネルギー吸収部4における同じ側の固定部2cのうち一方の固定部2cの端部から他方の固定部2cの端部までの寸法)に等しい寸法を有する当接面(挟持部)を有する一対の部材で挟持されている。対比として図4Aに示すように、エネルギー吸収部材4の一対を、固定部4cを対向させて配置した場合、エネルギー吸収部材4の一対分の長さの当接面(挟持部)を有する一対の部材で両側から挟持していても、図4Bに模式的に示すように、相対的に変位した際に、上下の拘束力がなくなることから、局所的に当初の曲げ歪みとは異なる不均質な曲げ歪みでの変形を生じやすくなり、一対の対向部が相対的に変位することによってエネルギーを吸収するという本来の機能が十分に発揮できなくなるおそれがある。これに対し、図3Aに示すように、エネルギー吸収部材4の一対を、湾曲部4a同士を対向させて配置することより、図3Bに模式的に示すように、相対的変位が生じた際にも、エネルギー吸収部材4が常に一対の部材の当接面からの拘束を受けた状態であるため、当初の曲げ歪みと同じ曲げ歪みでの変形が維持され、その結果、エネルギーを十分に吸収して、建物の揺れをより一層速やかに減衰させることができる。また、このような構成によれば、エネルギー吸収部材4を設置する為に必要なスペースも最小限に抑えることもできる。 A pair of energy absorbing members 4 are provided so that the curved portions 4a face each other (so that the curved portions 4a are close to each other or in contact with each other), and the length of the energy absorbing member 4 is one pair (a pair of energies). A pair of members having a contact surface (holding portion) having a dimension equal to (the dimension from the end of one fixing portion 2c to the end of the other fixing portion 2c) of the fixing portions 2c on the same side in the absorbing portion 4. It is sandwiched between. As a comparison, as shown in FIG. 4A, when a pair of energy absorbing members 4 are arranged with the fixing portions 4c facing each other, a pair having a contact surface (holding portion) having a length equal to that of the pair of energy absorbing members 4. Even if it is sandwiched between members from both sides, as schematically shown in FIG. 4B, when it is relatively displaced, the vertical binding force is lost, so that it is locally inhomogeneous, which is different from the initial bending strain. Deformation due to bending strain is likely to occur, and there is a risk that the original function of absorbing energy due to the relative displacement of the pair of facing portions cannot be fully exerted. On the other hand, as shown in FIG. 3A, by arranging the pair of energy absorbing members 4 so that the curved portions 4a face each other, as shown schematically in FIG. 3B, when a relative displacement occurs. However, since the energy absorbing member 4 is always restrained from the contact surface of the pair of members, the deformation with the same bending strain as the initial bending strain is maintained, and as a result, the energy is sufficiently absorbed. Therefore, the shaking of the building can be damped more quickly. Further, according to such a configuration, the space required for installing the energy absorbing member 4 can be minimized.

エネルギー吸収部材4は上階梁または下階梁に対し、直接あるいは取付部材3を介して接合されている。取付部材3は、一対の棒状部材3a、3bと、エネルギー吸収部材4が接合される当接面(挟持部)を有する連結部材3cと、を有する。一対の棒状部材3a、3bは、角形鋼管で構成されている。また、連結部材3cは、矩形板状の水平片と、矩形板状であって水平片から垂下した垂下片と、を有する断面略T字状の部材である。水平片は、その上面が当接面とされており、エネルギー吸収部材2をボルト接合する為の孔が穿設されている。一対の棒状部材3a、3bはその一端側が連結部材3cの両端部に溶接等によって接合されており、取付部材3は全体として正面視で略等脚台形状をなしている。 The energy absorbing member 4 is joined to the upper or lower beam directly or via the mounting member 3. The mounting member 3 has a pair of rod-shaped members 3a and 3b, and a connecting member 3c having a contact surface (holding portion) to which the energy absorbing member 4 is joined. The pair of rod-shaped members 3a and 3b are made of square steel pipes. Further, the connecting member 3c is a member having a substantially T-shaped cross section having a rectangular plate-shaped horizontal piece and a rectangular plate-shaped hanging piece hanging from the horizontal piece. The upper surface of the horizontal piece is a contact surface, and a hole for bolting the energy absorbing member 2 is bored. One end of the pair of rod-shaped members 3a and 3b is joined to both ends of the connecting member 3c by welding or the like, and the mounting member 3 has a substantially isosceles trapezoidal shape as a whole when viewed from the front.

取付部材3は、一対の棒状部材3a、3bの他端側が上階梁5または下階梁6にボルト接合等により接合されることによって、上階梁5から垂下または下階梁6から起立している。取付部材3は、地震等の水平力により架構に層間変位(上階梁5と下階梁6との水平方向の相対的変位)が生じた際に、一対の当接面の間に層間変位に応じた相対的な変位を生じせしめることでエネルギー吸収部材4を変形させる。取付部材3は、その剛性が大きいほど効果的にエネルギー吸収部材4を変形させるが、エネルギー吸収部材4に変形を生じさせる程度の剛性を有していればよく、完全な剛体でなくともよい。 The mounting member 3 hangs from the upper beam 5 or stands up from the lower beam 6 by joining the other end side of the pair of rod-shaped members 3a and 3b to the upper beam 5 or the lower beam 6 by bolt joining or the like. ing. The mounting member 3 is displaced between the pair of contact surfaces when an interlayer displacement (horizontal relative displacement between the upper beam 5 and the lower beam 6) occurs in the frame due to a horizontal force such as an earthquake. The energy absorbing member 4 is deformed by causing a relative displacement according to the above. The greater the rigidity of the mounting member 3, the more effectively the energy absorbing member 4 is deformed. However, the mounting member 3 may be rigid enough to cause the energy absorbing member 4 to be deformed, and may not be a completely rigid body.

図1(a)に示す形態は、一対の取付部材3を用いてエネルギー吸収部材4を上階梁と下階梁との間の略中間に配置するとともに、一対の取付部材3の当接面(一対の挟持部)に当接しボルト接合により接合した例である。また、図1(b)及び図1(c)に示す形態は、ひとつの取付部材3のみを用いてエネルギー吸収部材4を上階梁近傍または下階梁近傍に配置するとともに、取付部材3の当接面(一方の挟持部)と下階梁または上階梁のフランジ面(他方の挟持部)に当接しボルト接合により接合した例である。いずれ形態においても、エネルギー吸収部材4の一対の固定片2cの間には層間変位(上階梁と下階梁の水平方向の相対的変位)に対応した水平方向の相対的変位が生じ、地震等のエネルギーを吸収することができる。 In the form shown in FIG. 1 (a), the energy absorbing member 4 is arranged substantially in the middle between the upper floor beam and the lower floor beam by using the pair of mounting members 3, and the contact surface of the pair of mounting members 3 is arranged. This is an example of contacting (a pair of holding portions) and joining by bolt joining. Further, in the form shown in FIGS. 1 (b) and 1 (c), the energy absorbing member 4 is arranged near the upper beam or the lower beam by using only one mounting member 3, and the mounting member 3 is used. This is an example in which the contact surface (one sandwiched portion) and the flange surface of the lower or upper beam (the other sandwiched portion) are contacted and joined by bolt joining. In either form, a horizontal relative displacement corresponding to the interlayer displacement (horizontal relative displacement of the upper and lower beams) occurs between the pair of fixed pieces 2c of the energy absorbing member 4, resulting in an earthquake. Etc. can be absorbed.

[第2の実施形態]
図5は、本発明の第2の実施形態にかかる耐震構造を示す正面図である。図5に示す第2の実施形態では、エネルギー吸収部材4の水平方向の両側に一対の柱7、8が配置されている点で、図1に示す第1の実施形態と異なっている(なお、図1(a)と図5(a)、図1(b)と図5(b)、及び図1(c)と図5(c)をそれぞれ対比させている)。
柱7及び柱8は、それぞれ、角形鋼管からなり、上端は上階梁5にボルト接合等によって接合され、下端は下階梁6にボルト接合等によって接合されている。
そして、一対の棒状部材2a、2bの他端側は、柱7及び柱8の側面にそれぞれボルト接合等によって接合されている。
このような形態とすることで、上階梁5及び下階梁6が柱7及び柱8によって連結され、上階梁5及び下階梁6の鉛直方向の変形が抑制されるので、層間変位がエネルギー吸収部材4に対してよりダイレクトに伝わり、エネルギー吸収部材4のエネルギー吸収効果をより高めることができる。
[Second Embodiment]
FIG. 5 is a front view showing a seismic structure according to a second embodiment of the present invention. The second embodiment shown in FIG. 5 is different from the first embodiment shown in FIG. 1 in that a pair of columns 7 and 8 are arranged on both sides in the horizontal direction of the energy absorbing member 4. , FIGS. 1 (a) and 5 (a), FIGS. 1 (b) and 5 (b), and FIGS. 1 (c) and 5 (c), respectively).
The columns 7 and 8 are each made of a square steel pipe, the upper end of which is joined to the upper beam 5 by bolting or the like, and the lower end of which is joined to the lower beam 6 by bolting or the like.
The other ends of the pair of rod-shaped members 2a and 2b are joined to the side surfaces of the pillar 7 and the pillar 8 by bolt joining or the like, respectively.
With such a form, the upper beam 5 and the lower beam 6 are connected by the columns 7 and 8, and the vertical deformation of the upper beam 5 and the lower beam 6 is suppressed. Is transmitted more directly to the energy absorbing member 4, and the energy absorbing effect of the energy absorbing member 4 can be further enhanced.

[第3の実施形態]
図6は、本発明の第3の実施形態にかかる耐震構造を示す正面図である。第2の実施形態と同一の構成については説明を省略し、異なる点について以下説明する。図6(a)の形態では、一対の取付部材3が、左右方向に並び、エネルギー吸収部材4は上下方向に延在するように配置されている。各取付部材3は、他方の柱から一方の柱の方向に延びている。各取付部材3の棒状部材3a、3bは、柱の側面にボルト接合等にて接合されている。図6(b)(c)の形態では、取付部材3は、一方の柱から他方の柱の方向の近傍まで延びており、その当接面(一方の挟持部)は他方の柱の側面に対向しており、エネルギー吸収部材4は上下方向に延在するように配置されている。エネルギー吸収部材4の一方の固定部4cは、他方の柱の上下方向の中間部側面(他方の挟持部)に直接ボルト接合等により接合され、他方の固定部4cは取付部材3の当接面にボルト接合等により接合されている。図6(a)〜(c)の形態のいずれにおいても、エネルギー吸収部材4を、上下方向に複数並ぶように設置してもよい。
[Third Embodiment]
FIG. 6 is a front view showing a seismic structure according to a third embodiment of the present invention. The description of the same configuration as that of the second embodiment will be omitted, and the differences will be described below. In the form of FIG. 6A, the pair of mounting members 3 are arranged in the left-right direction, and the energy absorbing member 4 is arranged so as to extend in the vertical direction. Each mounting member 3 extends from the other pillar in the direction of one pillar. The rod-shaped members 3a and 3b of each mounting member 3 are joined to the side surface of the pillar by bolt joining or the like. In the form of FIGS. 6B and 6C, the mounting member 3 extends from one pillar to the vicinity in the direction of the other pillar, and its contact surface (one holding portion) is on the side surface of the other pillar. The energy absorbing members 4 are arranged so as to face each other and extend in the vertical direction. One fixing portion 4c of the energy absorbing member 4 is directly joined to the side surface of the intermediate portion (the other holding portion) in the vertical direction of the other pillar by bolt joining or the like, and the other fixing portion 4c is the contact surface of the mounting member 3. Is joined by bolt joining or the like. In any of the modes shown in FIGS. 6A to 6C, a plurality of energy absorbing members 4 may be installed so as to be arranged in the vertical direction.

[第4の実施形態]
図7は、本発明の第4の実施形態にかかる耐震構造を示す正面図である。図7に示す第4の実施形態では、一対の柱7、8が比較的近い位置に配置されている(例えば対向する側面同士の離間寸法が20〜30cm程度である)。また、エネルギー吸収部材4は、一対の固定部4cがそれぞれ一対の柱7、8の側面(一対の挟持部)に直接当接されてボルト接合等により接合されている。エネルギー吸収部材4は、一対の柱7、8に対し複数対が上下方向に連続的に設置し得るように構成されている(柱の側面には、予め所定の位置にボルト接合用の孔が穿設されている)。エネルギー吸収部材4は、一対(2個)を一単位として設置される。必要とされる水平耐力に応じて、設置するエネルギー吸収部材4の対の個数が決定される(例えば一対のみでもよい)。
[Fourth Embodiment]
FIG. 7 is a front view showing a seismic structure according to a fourth embodiment of the present invention. In the fourth embodiment shown in FIG. 7, the pair of columns 7 and 8 are arranged at relatively close positions (for example, the distance between the facing side surfaces is about 20 to 30 cm). Further, in the energy absorbing member 4, the pair of fixing portions 4c are directly in contact with the side surfaces (pair of holding portions) of the pair of columns 7 and 8, respectively, and are joined by bolt joining or the like. The energy absorbing member 4 is configured so that a plurality of pairs can be continuously installed in the vertical direction with respect to the pair of columns 7 and 8 (the side surface of the column has a hole for bolt joining at a predetermined position in advance). It has been drilled). The energy absorbing members 4 are installed in pairs (two) as one unit. The number of pairs of energy absorbing members 4 to be installed is determined according to the required horizontal strength (for example, only one pair may be used).

[第5の実施形態]
図8は、本発明の第5の実施形態にかかる耐震構造を示す正面図である。取付部材3は、柱の側面に当接される当接面を有する第一の当接片と、エネルギー吸収部材4の固定部4cが当接される当接面(挟持部)を有する第二当接片と、第一当接片と第二当接片との間に介在する略等脚台形状の板材からなる連結片とで構成されている。第二の当接片は、複数対のエネルギー吸収部材4を上下方向に連続的に設置し得るように構成されている(予め所定の位置にボルト接合用の孔が穿設されている)。エネルギー吸収部材4は、一対(2個)を一単位として設置される。必要とされる水平耐力に応じて、設置するエネルギー吸収部材4の対の個数が決定される(例えば一対のみでもよい)。
[Fifth Embodiment]
FIG. 8 is a front view showing a seismic structure according to a fifth embodiment of the present invention. The mounting member 3 has a first contact piece having a contact surface that comes into contact with the side surface of the pillar, and a second contact surface (holding portion) that the fixing portion 4c of the energy absorbing member 4 comes into contact with. It is composed of a contact piece and a connecting piece made of a substantially isosceles trapezoidal plate material interposed between the first contact piece and the second contact piece. The second contact piece is configured so that a plurality of pairs of energy absorbing members 4 can be continuously installed in the vertical direction (holes for bolt joining are formed in advance at predetermined positions). The energy absorbing members 4 are installed in pairs (two) as one unit. The number of pairs of energy absorbing members 4 to be installed is determined according to the required horizontal strength (for example, only one pair may be used).

図9は、エネルギー吸収部材の一例を示す図である。ここで、エネルギー吸収部材4は、湾曲部と、湾曲部の両端のそれぞれから連続して延びる一対の中間部と、一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有する層が、複数層重ね合わせられてなることが好ましい。耐震性能をさらに向上させることができるからである。ここで、重ねる層の層数や各層の厚さ等を調整することにより、容易に、各エネルギー吸収部材4の耐震性能を調整することができる。図示例では、3層41、42、42を重ね合わせた構成を示したが、2層以上であれば良い。層数の上限は、加工可能な範囲であれば特には限定されない。ここで、各層の厚さt1、t2、t3は、特には限定されないが、各層の曲げ歪みが略同じとなるように決定することができる。加えて、例えばエネルギー吸収能力に大きな影響を与える曲げ歪みが同じ場合で仮定すると、複数層にすることにより、材積が小さくなって省スペース化も可能となる。
ここで、図9に示すように、厚みtの部材が、外形半径rで曲げられた際の曲げ歪みεは、
(式)ε=(t/2)/(r−t/2)
で定義される。
一例を示すと、r=88mm、t=16mmの場合、
ε=(t/2)/(r−t/2)=(16/2)/(88−16/2)=8/80=0.1
となり、曲げ歪みは0.1(10%)となる。
なお、奥行き方向の単位長さ当たりの面積S1は、
S1=(88−72)×π/2≒4021.24mm/mm
となる。
一方で、2層で外側の厚みt2=12mm、内側の厚みt1=9mmとすると、外側の層の曲げ歪みは、
ε=(t/2)/(r−t/2)=(12/2)/(66−12/2)=6/60=0.1
となり、10%である。
内側の層の曲げ歪みは、
ε=(t/2)/(r−t/2)=(9/2)/(54−9/2)=4.5/49.5
=0.091
となり、9.1%である。
よって、t=16mmの1層の場合と比較して、上記の2層の場合は、外側の層も内側の層も曲げ歪みが同等以下となり、t=16mmの1層の場合と同等以上の繰り返し性能が期待できる。
一方で、上記の2層の場合の奥行き方向の単位長さ当たりの面積S2は、
S2=(66−45)×π/2≒3661.53mm/mm
となり、S2/S1=3661.53/4021.24≒0.91
となり、材積は91%となる。このように、同等の耐震性能(エネルギー吸収能力)で材積を小さくすることが可能である。
FIG. 9 is a diagram showing an example of an energy absorbing member. Here, the energy absorbing member 4 has a curved portion, a pair of intermediate portions continuously extending from both ends of the curved portion, and a pair of fixed portions continuously extending from the ends of the pair of intermediate portions. It is preferable that a plurality of layers are superposed. This is because the seismic performance can be further improved. Here, the seismic performance of each energy absorbing member 4 can be easily adjusted by adjusting the number of layers to be stacked, the thickness of each layer, and the like. In the illustrated example, the configuration in which the three layers 41, 42, and 42 are overlapped is shown, but it may be two or more layers. The upper limit of the number of layers is not particularly limited as long as it can be processed. Here, the thicknesses t1, t2, and t3 of each layer are not particularly limited, but can be determined so that the bending strain of each layer is substantially the same. In addition, for example, assuming that the bending strains that greatly affect the energy absorption capacity are the same, the volume can be reduced and space can be saved by using a plurality of layers.
Here, as shown in FIG. 9, the bending strain ε when the member having the thickness t is bent with the outer radius r is
(Equation) ε = (t / 2) / (rt / 2)
Defined in.
As an example, when r = 88 mm and t = 16 mm,
ε = (t / 2) / (rt / 2) = (16/2) / (88-16 / 2) = 8/80 = 0.1
The bending strain is 0.1 (10%).
The area S1 per unit length in the depth direction is
S1 = (88 2 -72 2) × π / 2 ≒ 4021.24mm 2 / mm
Will be.
On the other hand, assuming that the outer thickness t2 = 12 mm and the inner thickness t1 = 9 mm in the two layers, the bending strain of the outer layer is
ε = (t / 2) / (rt / 2) = (12/2) / (66-12 / 2) = 6/60 = 0.1
It becomes 10%.
The bending strain of the inner layer
ε = (t / 2) / (rt / 2) = (9/2) / (54-9 / 2) = 4.5 / 49.5
= 0.091
It becomes 9.1%.
Therefore, as compared with the case of one layer of t = 16 mm, in the case of the above two layers, the bending strain is equal to or less than that of the outer layer and the inner layer, and is equal to or higher than that of the case of one layer of t = 16 mm. Repeatable performance can be expected.
On the other hand, in the case of the above two layers, the area S2 per unit length in the depth direction is
S2 = (66 2 -45 2) × π / 2 ≒ 3661.53mm 2 / mm
And S2 / S1 = 3661.53 / 4021.24 ≒ 0.91
The volume is 91%. In this way, it is possible to reduce the volume with the same seismic performance (energy absorption capacity).

ここで、エネルギー吸収部材は、複数層のうち少なくとも2層について、内側の層の厚さが、外側の層の厚さより薄いことが好ましい。これにより内側の層と外側の層との曲げ歪みの差を低減することができ、内側の層の疲労が早期に発生してしまうのを抑制することができ、また、内側の層の加工が容易となるからである。同様の理由により、特に、最も内側の層の厚さが最も薄いことが好ましい。また、同様の理由により、エネルギー吸収部材は、図9等に示すように、層の厚さが、湾曲部の曲げ歪み中心側である内側の層であるほど薄いことが好ましい(図9の例では、t1<t2<t3)。ここで、エネルギー吸収部材は、複数層が溶接されて一体化された状態であることが好ましい。現場での施工が容易となるからである。エネルギー吸収部材は、複数層の積層方向に隣接する2層の長さが異なることにより段差部が形成され、該段差部において隅肉溶接が施されて一体化された状態であることが好ましい。図9に示したようなエネルギー吸収部材を容易に製造することができるからである。例えば、図10A(正面図)に示すように、外側層より内側層の長さが短く、それにより生じた段差部において隅肉溶接(黒塗りで示している)を施して一体化することができる。また、図10B(側面図)に示すように、長さの短い層を長さの長い層で挟み込み、段差部に隅肉溶接(黒塗りで示している)を施すことによっても一体化することができる。あるいは、図10C(側面図)に示すように、外側層に孔を設けて孔の周縁部に隅肉溶接(黒塗りで示している)を施すこともできる。ここで、一例としては、耐震性能を向上させる対象となる建物において、外形寸法が同一であり、上記湾曲部と、上記一対の中間部と、上記一対の固定部と、を有する層が、複数層重ね合わせられてなるエネルギー吸収部材であって、層数及び/又は層の厚さが異なるものを複数種準備する工程と、上記建物においてエネルギー吸収部材を設置可能な設置部を1つ以上設定する工程と、当該建物において、各エネルギー吸収部材が負担する水平荷重を算出する工程と、算出した水平荷重に基づいて、設置部に設置するエネルギー吸収部材の種類を上記複数種の中から選択する工程と、を含む方法によって、建物の耐震設計をすることができる。このような方法によれば、エネルギー吸収部材を設置する位置を集約させることができ、間取りの設計自由度が増す。また、エネルギー吸収部材を重ね合わせる層の数や厚さを変えて耐震性能を向上させても、エネルギー吸収部材を重ね合わせる層の数や厚さに関係なく外形寸法が同一であるため、エネルギー吸収部材の設置部を常に同一の納まりとすることができる。 Here, it is preferable that the thickness of the inner layer of the energy absorbing member is thinner than the thickness of the outer layer for at least two of the plurality of layers. As a result, the difference in bending strain between the inner layer and the outer layer can be reduced, fatigue of the inner layer can be suppressed from occurring at an early stage, and the inner layer can be processed. This is because it becomes easy. For the same reason, it is particularly preferable that the innermost layer is the thinnest. Further, for the same reason, as shown in FIG. 9 and the like, it is preferable that the thickness of the layer of the energy absorbing member is as thin as the inner layer on the bending strain center side of the curved portion (example of FIG. 9). Then, t1 <t2 <t3). Here, it is preferable that the energy absorbing member is in a state in which a plurality of layers are welded and integrated. This is because on-site construction is easy. It is preferable that the energy absorbing member is in a state in which a step portion is formed by different lengths of two layers adjacent to each other in the stacking direction of the plurality of layers, and fillet welding is performed at the step portion to integrate the energy absorbing member. This is because the energy absorbing member as shown in FIG. 9 can be easily manufactured. For example, as shown in FIG. 10A (front view), the length of the inner layer is shorter than that of the outer layer, and fillet welding (shown in black) is applied to the stepped portion generated thereby to integrate them. can. Further, as shown in FIG. 10B (side view), a layer having a short length is sandwiched between layers having a long length, and fillet welding (shown in black) is performed on the stepped portion to integrate the layers. Can be done. Alternatively, as shown in FIG. 10C (side view), a hole may be provided in the outer layer and fillet welding (shown in black) may be performed on the peripheral edge of the hole. Here, as an example, in a building to be improved in seismic performance, there are a plurality of layers having the same external dimensions and having the curved portion, the pair of intermediate portions, and the pair of fixed portions. A process of preparing a plurality of types of energy absorbing members having different layers and / or layer thicknesses, and one or more installation parts where energy absorbing members can be installed in the above building are set. The process of calculating the horizontal load borne by each energy absorbing member in the building, and the type of energy absorbing member to be installed in the installation unit is selected from the above plurality of types based on the calculated horizontal load. The seismic design of the building can be done by the process and the method including. According to such a method, the positions where the energy absorbing members are installed can be concentrated, and the degree of freedom in designing the floor plan is increased. Further, even if the seismic performance is improved by changing the number and thickness of layers on which energy absorbing members are superposed, the external dimensions are the same regardless of the number and thickness of layers on which energy absorbing members are superposed, so energy absorption is performed. The installation parts of the members can always be the same.

1:耐震構造、
3:取付部材、
4:エネルギー吸収部材、
5:上階梁(上部横架材)、
6:下階梁(下部横架材)、
7:柱、
8:柱
1: Seismic structure,
3: Mounting member,
4: Energy absorbing member,
5: Upper floor beam (upper horizontal lumber),
6: Lower floor beam (lower horizontal member),
7: Pillar,
8: Pillar

Claims (5)

上部横架材と、下部横架材と、前記上部横架材及び前記下部横架材の間に設けられた一対のエネルギー吸収部材と、を備え、
前記エネルギー吸収部材は、湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有するとともに、前記上部横架材と前記下部横架材との水平方向の相対的変位に応じて、前記一対の固定部にその延在方向の相対的変位が生じるように構成されており、
前記一対のエネルギー吸収部材は、一対の挟持部によって前記湾曲部同士が対向するように近接した状態で挟持されている、耐震構造。
The upper horizontal member, the lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member are provided.
The energy absorbing member has a curved portion, a pair of intermediate portions continuously extending from both ends of the curved portion, and a pair of fixing portions continuously extending from the ends of the pair of intermediate portions. , The pair of fixed portions are configured so that the relative displacement in the extending direction occurs according to the relative displacement of the upper horizontal member and the lower horizontal member in the horizontal direction.
An earthquake-resistant structure in which the pair of energy absorbing members are sandwiched by a pair of sandwiching portions in a state in which the curved portions face each other so as to face each other.
前記一対のエネルギー吸収部材の同じ側の前記固定部のうち一方の前記固定部の端部から他方の前記固定部の端部までの寸法に等しい寸法を有する前記挟持部によって挟持されている、請求項1に記載の耐震構造。 A claim that is sandwiched by the sandwiching portion having a dimension equal to the dimension from the end of the fixing portion of one of the fixing portions on the same side of the pair of energy absorbing members to the end of the fixing portion of the other. Item 1. The seismic structure according to item 1. 前記一対のエネルギー吸収部材を複数対、連続的に挟持しうる挟持部を有する、請求項1に記載の耐震構造。 The seismic structure according to claim 1, further comprising a plurality of pairs of the pair of energy absorbing members that can continuously sandwich the pair of energy absorbing members. 前記一対の挟持部は、複数対の前記エネルギー吸収部材を、上下方向に連続的に設置しうるように構成されている、請求項3に記載の耐震構造。 The seismic structure according to claim 3, wherein the pair of sandwiching portions is configured so that a plurality of pairs of the energy absorbing members can be continuously installed in the vertical direction. 前記エネルギー吸収部材は、複数層で構成されており、内側の層の厚みは外側の層の厚みよりも小さい、請求項1〜4のいずれか一項に記載の耐震構造。 The seismic structure according to any one of claims 1 to 4, wherein the energy absorbing member is composed of a plurality of layers, and the thickness of the inner layer is smaller than the thickness of the outer layer.
JP2020064849A 2020-03-31 2020-03-31 Earthquake-resistant structure Active JP7388968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064849A JP7388968B2 (en) 2020-03-31 2020-03-31 Earthquake-resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064849A JP7388968B2 (en) 2020-03-31 2020-03-31 Earthquake-resistant structure

Publications (2)

Publication Number Publication Date
JP2021161764A true JP2021161764A (en) 2021-10-11
JP7388968B2 JP7388968B2 (en) 2023-11-29

Family

ID=78002871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064849A Active JP7388968B2 (en) 2020-03-31 2020-03-31 Earthquake-resistant structure

Country Status (1)

Country Link
JP (1) JP7388968B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116779A1 (en) * 2009-03-30 2010-10-14 国立大学法人名古屋大学 Vibration control device for beam frame body
JP2012082668A (en) * 2010-02-16 2012-04-26 Norimine Okura Fastener
JP2017061808A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Seismic wall structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116779A1 (en) * 2009-03-30 2010-10-14 国立大学法人名古屋大学 Vibration control device for beam frame body
JP2012082668A (en) * 2010-02-16 2012-04-26 Norimine Okura Fastener
JP2017061808A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Seismic wall structure

Also Published As

Publication number Publication date
JP7388968B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP2011501049A (en) Seismic isolation device for structure, construction method of the device, and seismic isolation member
JP6990979B2 (en) Framing structure of a building
JP2002235454A (en) Damping damper device
JP5822203B2 (en) Brace damper
JP5967438B2 (en) Brace seismic reinforcement structure
JP2023052692A (en) buckling restraint brace
JP2009047193A (en) Damper device and structure
JP7362534B2 (en) energy absorbing material
JP6589922B2 (en) Beam reinforcement structure and beam reinforcement method
JP6838877B2 (en) Buckling restraint brace damper
JP2021161764A (en) Seismic structure
JP2009161984A (en) Corrugated steel plate earthquake-resisting wall
JP6717636B2 (en) Vibration control device
JP4858836B2 (en) Vibration control pillar
JP2019210781A (en) Truss beam
JP5421236B2 (en) Building wall damping structure construction method
JP2009256957A (en) Viscoelastic brace damper
JP5318298B1 (en) Beam joint structure
JP2010007395A (en) Vibration control wall using corrugated steel plate
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP4994009B2 (en) Buildings with steel frame vibration control frames
JP3150716U (en) Reinforcement structure of buildings and structures
JP6313067B2 (en) Damping damper
JP7368849B2 (en) Vibration damper
JP5086901B2 (en) Building damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7388968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150