[go: up one dir, main page]

JP2021155818A - Electrode and method for producing hydrogen peroxide using this electrode - Google Patents

Electrode and method for producing hydrogen peroxide using this electrode Download PDF

Info

Publication number
JP2021155818A
JP2021155818A JP2020058508A JP2020058508A JP2021155818A JP 2021155818 A JP2021155818 A JP 2021155818A JP 2020058508 A JP2020058508 A JP 2020058508A JP 2020058508 A JP2020058508 A JP 2020058508A JP 2021155818 A JP2021155818 A JP 2021155818A
Authority
JP
Japan
Prior art keywords
electrode
nickel
conductive carbon
carbon particles
nickel salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020058508A
Other languages
Japanese (ja)
Other versions
JP2021155818A5 (en
JP7466182B2 (en
Inventor
壮一 ▲高▼杉
壮一 ▲高▼杉
Soichi Takasugi
由也 小西
Yoshiya Konishi
由也 小西
和弘 佐山
Kazuhiro Sayama
和弘 佐山
雄悟 三石
Yugo Mitsuishi
雄悟 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2020058508A priority Critical patent/JP7466182B2/en
Publication of JP2021155818A publication Critical patent/JP2021155818A/en
Publication of JP2021155818A5 publication Critical patent/JP2021155818A5/ja
Application granted granted Critical
Publication of JP7466182B2 publication Critical patent/JP7466182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】より低い印加電圧、より高い電流効率、およびより大きい電流密度で、低コストに過酸化水素を製造する。【解決手段】過酸化水素の製造方法は、所定の電極をカソード電極として用いて、電解液中の酸素を還元する。この電極は、導電性炭素粒子とニッケル塩を液体中で混合し、液体を除いた後に粉砕して、導電性炭素粒子とニッケル塩を含有する複合体を得る混合粉砕工程と、複合体の分散液を電極基材に塗布し、複合体を電極基材に保持して電極を得る塗布工程を経て製造される。この電極は、電極基材と、電極基材に保持された導電性炭素粒子と、導電性炭素粒子に担持されたニッケル塩とを有する。【選択図】図1[Problem] Hydrogen peroxide is produced at low cost with a lower applied voltage, higher current efficiency, and higher current density. [Solution] A method for producing hydrogen peroxide uses a specified electrode as a cathode to reduce oxygen in an electrolyte. This electrode is produced through a mixing and grinding process in which conductive carbon particles and a nickel salt are mixed in a liquid, the liquid is removed, and then the mixture is ground to obtain a composite containing the conductive carbon particles and the nickel salt, and a coating process in which a dispersion of the composite is applied to an electrode substrate, and the composite is held on the electrode substrate to obtain an electrode. This electrode has an electrode substrate, conductive carbon particles held on the electrode substrate, and nickel salt supported on the conductive carbon particles. [Selected Figure] Figure 1

Description

本願は、電極反応で酸素を還元して過酸化水素を製造するのに適した電極と、この電極の製造方法と、この電極を用いて過酸化水素を製造する方法に関する。 The present application relates to an electrode suitable for producing hydrogen peroxide by reducing oxygen in an electrode reaction, a method for producing this electrode, and a method for producing hydrogen peroxide using this electrode.

過酸化水素は、消毒、殺菌、漂白、洗浄、または酸化等に用いられており、工業的には2−アルキルアントラキノンの水素化と空気酸化を利用するアントラキノン法で製造されている(非特許文献1)。しかしながら、アントラキノン法は、アントラキノン誘導体および有機溶媒等の有機物を用いるため環境負荷が大きい。また、アントラキノン法による過酸化水素の製造では、分離操作等が必要となり高コストである。このため、他の工業的な過酸化水素の製造方法が検討されてきた。 Hydrogen peroxide is used for disinfection, sterilization, bleaching, washing, oxidation, etc., and is industrially produced by the anthraquinone method utilizing hydrogenation and air oxidation of 2-alkylanthraquinone (non-patent documents). 1). However, since the anthraquinone method uses an anthraquinone derivative and an organic substance such as an organic solvent, it has a large environmental load. Further, the production of hydrogen peroxide by the anthraquinone method requires a separation operation and the like, which is expensive. Therefore, other industrial methods for producing hydrogen peroxide have been studied.

他の過酸化水素の製造方法として、例えば、カソード電極における酸素の還元(特許文献1、特許文献2、特許文献3、および非特許文献2)、または炭酸塩を含む電解液を用いることによる過炭酸アニオン中間体を経由したアノード電極における水の酸化(特許文献4)のように、電極反応によって電気化学的に過酸化水素を製造する方法が提案されている。また、原理的にはアノード電極を+1.8V(RHE)よりも正の電位とし、カソード電極の電位を+0.68V(RHE)よりも負の電位とすれば、これらを組み合わせて両極で同時に過酸化水素を製造することもできる。 As another method for producing hydrogen peroxide, for example, reduction of oxygen in the cathode electrode (Patent Document 1, Patent Document 2, Patent Document 3, and Non-Patent Document 2), or an electrolytic solution containing a carbonate is used. A method for electrochemically producing hydrogen peroxide by an electrode reaction has been proposed, as in the case of oxidation of water at an anode electrode via an anion carbonate intermediate (Patent Document 4). Further, in principle, if the anode electrode has a positive potential higher than + 1.8V (RHE) and the potential of the cathode electrode has a negative potential higher than +0.68V (RHE), these can be combined and simultaneously overwhelmed at both poles. Hydrogen peroxide can also be produced.

また、活性炭またはカーボンブラックなどの電気伝導性を有する様々な炭素材料を硫酸酸化または硝酸酸化等の酸化処理をして得られる導電性炭素酸化物は、酸素を還元して過酸化水素を製造するカソード電極の材料として優れていることが見出されている。この導電性炭素酸化物をカソード電極として用いることによって、アルカリ性電解液での電流効率が向上するのみならず、電流効率が低い酸性電解液でも高効率で過酸化水素を製造できることが報告されている(特許文献5)。 Further, the conductive carbon oxide obtained by subjecting various electrically conductive carbon materials such as activated carbon or carbon black to oxidation treatment such as sulfate oxidation or nitric acid oxidation reduces oxygen to produce hydrogen peroxide. It has been found to be an excellent material for cathode electrodes. It has been reported that by using this conductive carbon oxide as a cathode electrode, not only the current efficiency in an alkaline electrolytic solution is improved, but also hydrogen hydrogen can be produced with high efficiency even in an acidic electrolytic solution having a low current efficiency. (Patent Document 5).

さらに、炭酸塩を含む電解液を用いたアノード電極での水の酸化では、アノード電極として光電極を用いて光照射下で電極反応を行うことで、太陽光等の光エネルギーが利用できる。このため、外部電圧を印加せず、または低く抑えた外部電圧を印加して、低コストで過酸化水素を製造する方法も提案されている。(非特許文献3および特許文献6)。また、酸化処理した導電性炭素材料を電極材料として用いたカソード電極と、光電極を用いたアノード電極を組み合わせることにより、カソード電極における酸素の還元と、炭酸塩を含む電解液を用いたアノード電極における光照射下で水の酸化を同時に行って、高い電流効率で効率的に、過酸化水素を両極で製造する方法が提案されている(特許文献7)。 Further, in the oxidation of water at the anode electrode using an electrolytic solution containing a carbonate, light energy such as sunlight can be used by performing an electrode reaction under light irradiation using a light electrode as the anode electrode. Therefore, a method of producing hydrogen peroxide at low cost without applying an external voltage or by applying a low external voltage has also been proposed. (Non-Patent Document 3 and Patent Document 6). Further, by combining a cathode electrode using an oxidation-treated conductive carbon material as an electrode material and an anode electrode using an optical electrode, oxygen reduction in the cathode electrode and an anode electrode using an electrolytic solution containing a carbonate can be used. A method has been proposed in which water is simultaneously oxidized under light irradiation in (Patent Document 7) to efficiently produce hydrogen peroxide at both electrodes with high current efficiency (Patent Document 7).

特開2005−146344号公報Japanese Unexamined Patent Publication No. 2005-146344 特開2007−162033号公報Japanese Unexamined Patent Publication No. 2007-162033 特開2005−281057号公報Japanese Unexamined Patent Publication No. 2005-281507 特開2017−039981号公報Japanese Unexamined Patent Publication No. 2017-039981 特開2010−144203号公報Japanese Unexamined Patent Publication No. 2010-144203 特開2017−171554号公報JP-A-2017-171554 特開2019−157223号公報JP-A-2019-157223

化学便覧応用化学編第7版、632頁Chemistry Handbook Applied Chemistry, 7th Edition, p. 632 I. Yamanaka et al. Chem. Lett., 2006, 35, No.12, 1330I. Yamanaka et al. Chem. Lett., 2006, 35, No.12, 1330 K. Fuku et al. Chem. Commun., 2016, 52, 5406K. Fuku et al. Chem. Commun., 2016, 52, 5406

電極反応によって、より低い印加電圧、より高い電流効率、およびより大きい電流密度で、低コストに過酸化水素を製造することが好ましい。本願の課題は、このようなより好ましい条件で過酸化水素を製造できるように、酸素を還元するカソード電極の性能を向上させることである。 It is preferred that the electrode reaction produce hydrogen peroxide at low cost with lower applied voltage, higher current efficiency, and higher current density. An object of the present application is to improve the performance of a cathode electrode that reduces oxygen so that hydrogen peroxide can be produced under such more preferable conditions.

本願発明者らは、従来技術を検討し、カソード電極のさらなる性能向上を目指して様々な条件で実験を進めた。その結果、カソード電極の材料として用いられていた導電性炭素材料に新たにニッケル塩を添加することで、過酸化水素の製造における性能が向上することを見出した。また、本願のニッケル塩を含有する導電性炭素材料は、炭酸塩を含む液体に浸漬することにより性能が向上ことを見出した。 The inventors of the present application examined the prior art and proceeded with experiments under various conditions with the aim of further improving the performance of the cathode electrode. As a result, it was found that the performance in the production of hydrogen peroxide is improved by newly adding a nickel salt to the conductive carbon material used as the material of the cathode electrode. Further, it has been found that the performance of the conductive carbon material containing a nickel salt of the present application is improved by immersing it in a liquid containing a carbonate.

本願のある態様の電極は、電解液中の酸素を還元して過酸化水素を製造するカソード用の電極であって、電極基材と、導電性炭素粒子と、ニッケル塩とを有する。本願の他の態様の電極は、電極基材と、電極基材に保持された導電性炭素粒子と、導電性炭素粒子に担持されたニッケル塩とを有する。 An electrode of an aspect of the present application is an electrode for a cathode that reduces oxygen in an electrolytic solution to produce hydrogen hydrogen, and has an electrode base material, conductive carbon particles, and a nickel salt. The electrode of another aspect of the present application has an electrode base material, conductive carbon particles held on the electrode base material, and a nickel salt supported on the conductive carbon particles.

本願の電極の製造方法は、導電性炭素粒子とニッケル塩を液体中で混合し、液体を除いた後に粉砕して、導電性炭素粒子とニッケル塩を含有する複合体を得る混合粉砕工程と、複合体の分散液を電極基材に塗布し、複合体を電極基材に保持して電極を得る塗布工程とを有する。本願の過酸化水素の製造方法は、本願の電極または本願の電極の製造方法で製造された電極をカソード電極として、電解液中の酸素を還元する。 The method for producing an electrode of the present application includes a mixing and pulverizing step of mixing conductive carbon particles and a nickel salt in a liquid, removing the liquid, and then pulverizing the mixture to obtain a composite containing the conductive carbon particles and the nickel salt. It has a coating step of applying a dispersion liquid of a composite to an electrode base material and holding the composite on the electrode base material to obtain an electrode. The method for producing hydrogen peroxide of the present application uses the electrode of the present application or the electrode produced by the method for producing an electrode of the present application as a cathode electrode to reduce oxygen in an electrolytic solution.

本願によれば、導電性炭素粒子とニッケル塩を含有するカソード電極を用いて、高効率で酸素を還元して過酸化水素が製造できる。 According to the present application, hydrogen peroxide can be produced by reducing oxygen with high efficiency by using a cathode electrode containing conductive carbon particles and a nickel salt.

実施形態のカソード電極の模式図。The schematic diagram of the cathode electrode of an embodiment. 実施形態の過酸化水素の製造方法に用いる装置の模式図。The schematic diagram of the apparatus used in the method for producing hydrogen peroxide of an embodiment. (a)実施例2の複合体の電子顕微鏡像、(b)実施例4の複合体の電子顕微鏡像。(A) Electron microscope image of the complex of Example 2, (b) Electron microscope image of the complex of Example 4.

図1は、本願の実施形態の電極16を模式的に示している。本実施形態では、電極16は、電解液中の酸素を還元して過酸化水素を製造するカソード電極である。電極16は、電極基材34と、導電性炭素粒子31と、ニッケル塩32と、バインダ33を備えている。電極基材34は、炭素繊維をシート状に成形したカーボンペーパーである。電極基材34は、導電性材料から構成される基材であれば特に制限がなく、カーボンペーパー以外にカーボンファイバー、導電性ガラス、金属板などであってもよい。 FIG. 1 schematically shows an electrode 16 according to an embodiment of the present application. In the present embodiment, the electrode 16 is a cathode electrode that reduces oxygen in the electrolytic solution to produce hydrogen peroxide. The electrode 16 includes an electrode base material 34, conductive carbon particles 31, a nickel salt 32, and a binder 33. The electrode base material 34 is carbon paper obtained by molding carbon fibers into a sheet shape. The electrode base material 34 is not particularly limited as long as it is a base material made of a conductive material, and may be carbon fiber, conductive glass, a metal plate, or the like in addition to carbon paper.

図1に示すように、導電性炭素粒子31は、電極基材34に保持されている。導電性炭素粒子31を構成する導電性炭素材料としては、導電性を備える炭素材料であれば特に制限がなく、カーボンブラックまたは活性炭などが挙げられる。これらの中でも、導電性に優れるカーボンブラック(例えば、ケッチェンブラック)が好ましい。また、導電性炭素粒子31は、硝酸などによって酸化処理した導電性炭素材料から構成されていてもよい。 As shown in FIG. 1, the conductive carbon particles 31 are held by the electrode base material 34. The conductive carbon material constituting the conductive carbon particles 31 is not particularly limited as long as it is a conductive carbon material, and examples thereof include carbon black and activated carbon. Among these, carbon black having excellent conductivity (for example, Ketjen black) is preferable. Further, the conductive carbon particles 31 may be made of a conductive carbon material that has been oxidized with nitric acid or the like.

図1に示すように、ニッケル塩32は、導電性炭素粒子31に担持されている。すなわち、導電性炭素粒子31の周囲にニッケル塩32が付着している。ニッケル塩32は、ニッケルイオンと対イオンとのイオン結合により形成されるイオン結合性の物質である。ニッケル塩32としては、水溶性の硝酸ニッケル、硫酸ニッケル、塩化ニッケル、および酢酸ニッケル、ならびに水に不溶の酸化ニッケル、水酸化ニッケル、炭酸ニッケル、シュウ酸ニッケル、ピロリン酸ニッケル、よう素酸ニッケル、およびリン酸ニッケルが挙げられる。これらの中でも、ニッケル塩32は、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、酸化ニッケル、水酸化ニッケル、および炭酸ニッケルの一種以上であることが好ましい。実施例に示すように、高性能の電極16が得られるからである。 As shown in FIG. 1, the nickel salt 32 is supported on the conductive carbon particles 31. That is, the nickel salt 32 is attached around the conductive carbon particles 31. The nickel salt 32 is an ionic bonding substance formed by an ionic bond between a nickel ion and a counter ion. Nickel salt 32 includes water-soluble nickel nitrate, nickel sulfate, nickel chloride, and nickel acetate, as well as water-insoluble nickel oxide, nickel hydroxide, nickel carbonate, nickel oxalate, nickel pyrophosphate, nickel arsenide, and the like. And nickel phosphate. Among these, the nickel salt 32 is preferably one or more of nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, nickel oxide, nickel hydroxide, and nickel carbonate. This is because, as shown in the examples, a high-performance electrode 16 can be obtained.

詳細は後述するが、水溶性のニッケル塩32を用いて電極16を作製する過程で、ニッケル塩32は、導電性炭素粒子31が分散している水中に溶解し、導電性炭素粒子31に均一に高分散で容易に担持される。ニッケル塩32が導電性炭素粒子31に均一に高分散で担持されることによって、得られる電極16の特性が向上する。このため、ニッケル塩32は水溶性であることが好ましい。 Details will be described later, but in the process of producing the electrode 16 using the water-soluble nickel salt 32, the nickel salt 32 is dissolved in water in which the conductive carbon particles 31 are dispersed and is uniform in the conductive carbon particles 31. It is highly dispersed and easily supported. When the nickel salt 32 is uniformly and highly dispersed on the conductive carbon particles 31, the characteristics of the obtained electrode 16 are improved. Therefore, the nickel salt 32 is preferably water-soluble.

バインダ33は、電極基材34と導電性炭素粒子31の導通を確保しながら、電極基材34に導電性炭素粒子31を保持する機能を有する。なお、電極基材34に導電性炭素粒子31が保持できれば、バインダ33はなくてもよい。本実施形態では、図1に示すように、バインダ33は、電極基材34と導電性炭素粒子31の接触部を囲むように設けられている。バインダ33としては、フッ素系高分子(例えば、ナフィオン)、導電性接着剤、有機系高分子などが挙げられる。 The binder 33 has a function of holding the conductive carbon particles 31 on the electrode base material 34 while ensuring the conduction between the electrode base material 34 and the conductive carbon particles 31. The binder 33 may be omitted as long as the conductive carbon particles 31 can be held on the electrode base material 34. In the present embodiment, as shown in FIG. 1, the binder 33 is provided so as to surround the contact portion between the electrode base material 34 and the conductive carbon particles 31. Examples of the binder 33 include a fluorine-based polymer (for example, Nafion), a conductive adhesive, and an organic polymer.

電極16の性能、特に電極16をカソード電極として用いて、電解液中の酸素を還元して過酸化水素を製造するときの電流効率と電流密度の観点から、導電性炭素粒子31の質量に対するニッケル塩32の質量の割合、すなわちニッケル塩32の含有量(ニッケル塩32の質量/導電性炭素粒子31の質量×100)は、5%以上100%以下であることが好ましく、5%以上50%以下であることがより好ましく、5%以上10%以下であることが特に好ましい。ニッケル塩32の含有量が多過ぎると、ニッケル塩32が凝集して電極基材34に担持され、電極16の性能がやや低下することがある。 From the viewpoint of the performance of the electrode 16, particularly the current efficiency and current density when the electrode 16 is used as the cathode electrode to reduce oxygen in the electrolytic solution to produce hydrogen peroxide, nickel with respect to the mass of the conductive carbon particles 31. The ratio of the mass of the salt 32, that is, the content of the nickel salt 32 (mass of the nickel salt 32 / mass of the conductive carbon particles 31 × 100) is preferably 5% or more and 100% or less, and 5% or more and 50%. It is more preferably 5% or more and 10% or less. If the content of the nickel salt 32 is too large, the nickel salt 32 may aggregate and be supported on the electrode base material 34, and the performance of the electrode 16 may be slightly deteriorated.

本願の実施形態の電極の製造方法は、混合粉砕工程と、塗布工程を備えている。混合粉砕工程では、導電性炭素粒子とニッケル塩を液体中で混合し、液体を除いた後に粉砕して、導電性炭素粒子とニッケル塩を含有する複合体を得る。具体的には、液体、例えば水に、導電性炭素粒子とニッケル塩を加えて、攪拌して混合、分散させ、必要に応じて超音波処理する。これをろ過して、乾燥させ、粉砕処理すると、導電性炭素粒子と、導電性炭素粒子に担持されているニッケル塩を含有する複合体が得られる。 The electrode manufacturing method of the embodiment of the present application includes a mixing and pulverizing step and a coating step. In the mixing and pulverizing step, the conductive carbon particles and the nickel salt are mixed in a liquid, the liquid is removed, and then the mixture is pulverized to obtain a composite containing the conductive carbon particles and the nickel salt. Specifically, conductive carbon particles and a nickel salt are added to a liquid, for example, water, and the mixture is mixed and dispersed by stirring, and ultrasonically treated as necessary. When this is filtered, dried, and pulverized, a composite containing conductive carbon particles and a nickel salt supported on the conductive carbon particles is obtained.

このとき、液体、例えば水に溶解するニッケル塩を用いれば、ニッケル塩は、導電性炭素粒子に均一に高分散で担持される。ニッケル塩が均一に高分散で担持された導電性炭素粒子を含有する複合体から得られる電極は、高性能である。導電性炭素粒子に担持されるニッケル塩の質量は、混合粉砕工程で仕込んだニッケル塩の質量におおむね比例し、この仕込んだニッケル塩の質量の80%〜90%程度である。 At this time, if a nickel salt that dissolves in a liquid, for example, water is used, the nickel salt is uniformly and highly dispersed on the conductive carbon particles. Electrodes obtained from a composite containing conductive carbon particles in which nickel salts are uniformly and highly dispersed are high performance. The mass of the nickel salt carried on the conductive carbon particles is roughly proportional to the mass of the nickel salt charged in the mixing and pulverizing step, and is about 80% to 90% of the mass of the charged nickel salt.

塗布工程では、複合体の分散液を電極基材に塗布し、複合体を電極基材に保持して電極を得る。具体的には、複合体と必要に応じたバインダを分散媒、例えばエタノールに分散させて、この分散液を少量ずつ電極基材に滴下して、複合体を電極基材に保持させる。本実施形態ではバインダを用いている。複合体の質量に対するバインダの質量の割合は、5%以上15%以下が好ましい。また、電極基材上の複合体の保持量は、1.3mg/cm以上1.7mg/cm以下であることが好ましく、約1.5mg/cmであることがより好ましい。 In the coating step, the dispersion liquid of the complex is applied to the electrode base material, and the composite is held on the electrode base material to obtain an electrode. Specifically, the complex and, if necessary, a binder are dispersed in a dispersion medium, for example, ethanol, and the dispersion is dropped onto the electrode substrate little by little to hold the complex on the electrode substrate. In this embodiment, a binder is used. The ratio of the mass of the binder to the mass of the complex is preferably 5% or more and 15% or less. The amount of the complex retained on the electrode substrate is preferably 1.3 mg / cm 2 or more and 1.7 mg / cm 2 or less, and more preferably about 1.5 mg / cm 2 .

また、本願の電極の製造方法は、浸漬工程をさらに有していてもよい。この場合、混合粉砕工程では、水溶性のニッケル塩を用い、導電性炭素粒子とニッケル塩を水中で混合する。そして、浸漬工程では、混合粉砕工程の後、複合体を炭酸塩の水溶液に浸漬する。炭酸塩としては、水に溶解するものであれば特に制限がなく、アルカリ金属およびアルカリ土類金属などの炭酸塩が挙げられる。具体的には、炭酸水素リチウムおよび炭酸水素カリウムなどが例示できる。これらの中でも、溶解度および金属の残留の観点から、炭酸水素カリウムが好ましい。 Further, the electrode manufacturing method of the present application may further include a dipping step. In this case, in the mixing and pulverizing step, a water-soluble nickel salt is used, and the conductive carbon particles and the nickel salt are mixed in water. Then, in the dipping step, after the mixing and pulverizing step, the complex is immersed in an aqueous solution of carbonate. The carbonate is not particularly limited as long as it is soluble in water, and examples thereof include carbonates such as alkali metals and alkaline earth metals. Specifically, lithium hydrogen carbonate, potassium hydrogen carbonate and the like can be exemplified. Among these, potassium hydrogencarbonate is preferable from the viewpoint of solubility and metal residue.

浸漬工程によって、複合体中のニッケル塩の少なくとも一部が炭酸イオンと反応し、水溶性のニッケル塩が水に不要な炭酸ニッケルとなって、導電性炭素粒子に担持される。電極を構成する導電性炭素粒子に水溶性の塩として担持されたニッケルは、過酸化水素生成の電極反応の際、電解液に接触すると溶出しやすい。このため、浸漬工程によって、水に不溶の炭酸ニッケルとして導電性炭素粒子に担持されることで、過酸化水素生成の電極反応の際、電極から電解液へのニッケルの溶出が抑制できる。 By the dipping step, at least a part of the nickel salt in the composite reacts with carbonate ions, and the water-soluble nickel salt becomes nickel carbonate unnecessary for water and is supported on the conductive carbon particles. Nickel, which is supported as a water-soluble salt on the conductive carbon particles constituting the electrode, tends to elute when it comes into contact with the electrolytic solution during the electrode reaction of hydrogen peroxide production. Therefore, by being supported on the conductive carbon particles as nickel carbonate insoluble in water by the dipping step, it is possible to suppress the elution of nickel from the electrode to the electrolytic solution during the electrode reaction of hydrogen generation.

なお、当初から炭酸ニッケルと導電性炭素粒子を水に分散させて、導電性炭素粒子に炭酸ニッケルを担持させることもできる。しかし、炭酸ニッケルは水に不溶なので、混合粉砕工程で、均一に高分散で炭酸ニッケルを導電性炭素粒子に担持させるのは容易ではない。このため、導電性炭素粒子に均一に高分散で担持された水溶性のニッケル塩の一部以上を、浸漬工程によって炭酸ニッケルに置換することで、水に不溶なニッケル塩が均一に高分散で導電性炭素粒子に担持された複合体が得られる。 It is also possible to disperse nickel carbonate and conductive carbon particles in water from the beginning to support nickel carbonate on the conductive carbon particles. However, since nickel carbonate is insoluble in water, it is not easy to uniformly and highly disperse nickel carbonate on the conductive carbon particles in the mixing and pulverizing step. Therefore, by substituting a part or more of the water-soluble nickel salt uniformly and highly dispersedly supported on the conductive carbon particles with nickel carbonate by the dipping step, the nickel salt insoluble in water is uniformly and highly dispersed. A composite supported on conductive carbon particles is obtained.

浸漬工程は、混合粉砕工程の後であって塗布工程の前に行ってもよいし、混合粉砕工程および塗布工程の後で行ってもよい。また、ニッケル塩ではないニッケル有機金属錯体を導電性炭素粒子に分散させて担持した後、焼成して有機錯体を除去して複合体を得る方法も考えられる。しかし、焼成によって導電性炭素粒子の性能が低下するので、本願の電極の製造方法の方が優れている。 The dipping step may be performed after the mixing and crushing step and before the coating step, or after the mixing and crushing step and the coating step. Further, a method in which a nickel organic metal complex other than a nickel salt is dispersed and supported on conductive carbon particles and then calcined to remove the organic complex to obtain a composite is also conceivable. However, since the performance of the conductive carbon particles is deteriorated by firing, the method for producing an electrode of the present application is superior.

図2は、本願の実施形態の過酸化水素の製造方法に用いる過酸化水素製造装置10を模式的に示している。過酸化水素製造装置10は、電解槽12と、アノード電極14と、カソード電極16と、アノード電解液18と、カソード電解液20と、隔膜22と、アノード室24と、カソード室26を備えている。カソード電極16は、本願の電極または本願の電極の製造方法で製造された電極を使用する。電解槽12、アノード電極14、アノード電解液18、カソード電解液20、隔膜22、アノード室24、およびカソード室26は、酸素の還元による従来の過酸化水素製造装置と同様のものが使用できる。 FIG. 2 schematically shows a hydrogen peroxide producing apparatus 10 used in the method for producing hydrogen peroxide according to the embodiment of the present application. The hydrogen peroxide production apparatus 10 includes an electrolytic tank 12, an anode electrode 14, a cathode electrode 16, an anode electrolytic solution 18, a cathode electrolytic solution 20, a diaphragm 22, an anode chamber 24, and a cathode chamber 26. There is. As the cathode electrode 16, the electrode of the present application or the electrode manufactured by the method for producing the electrode of the present application is used. As the electrolytic cell 12, the anode electrode 14, the anode electrolyte 18, the cathode electrolyte 20, the diaphragm 22, the anode chamber 24, and the cathode chamber 26, the same equipment as the conventional hydrogen peroxide production apparatus by reducing oxygen can be used.

本実施形態の過酸化水素の製造方法は、本願の電極または本願の電極の製造方法で製造された電極をカソード電極16として、電解液であるカソード電解液20の酸素を還元して過酸化水素を製造する。本実施形態の過酸化水素の製造方法によれば、60%以上の電流効率で酸素を還元して、過酸化水素が製造できる。なお、カソード電解液20を酸素含有ガスでバブリングすることにより、還元される酸素を供給することが好ましい。 In the method for producing hydrogen peroxide of the present embodiment, the electrode of the present application or the electrode produced by the method of producing the electrode of the present application is used as the cathode electrode 16, and the oxygen of the cathode electrolytic solution 20 which is an electrolytic solution is reduced to obtain hydrogen peroxide. To manufacture. According to the method for producing hydrogen peroxide of the present embodiment, hydrogen peroxide can be produced by reducing oxygen with a current efficiency of 60% or more. It is preferable to supply the reduced oxygen by bubbling the cathode electrolytic solution 20 with an oxygen-containing gas.

また、水溶性のニッケル塩を含有する電極をカソード電極16とした場合、カソード電解液20は炭酸イオンを含有することが好ましい。カソード電極16の電極反応によって、水溶性のニッケル塩が水に不要な炭酸ニッケルに変化し、カソード電極16の性能の低下を抑制しながら、過酸化水素が製造できるからである。この場合、カソード電解液20は、例えば炭酸水素カリウム水溶液が採用できる。 When the electrode containing the water-soluble nickel salt is the cathode electrode 16, the cathode electrolyte 20 preferably contains carbonate ions. This is because the electrode reaction of the cathode electrode 16 changes the water-soluble nickel salt into nickel carbonate which is unnecessary for water, and hydrogen peroxide can be produced while suppressing the deterioration of the performance of the cathode electrode 16. In this case, for example, an aqueous potassium hydrogen carbonate solution can be used as the cathode electrolytic solution 20.

すなわち、水溶性のニッケル塩を含有する電極をカソード電極16として用い、炭酸イオンを含有するカソード電解液20中の酸素を還元して過酸化水素を製造する。さらに、炭酸塩を含むアノード電解液18を用いて、アノード室24側で水を酸化して、カソード室26と同時に過酸化水素を製造することもできる。この場合、光電極をアノード電極14として用いることで、光エネルギーを利用して外部電圧を印加することなく、または低い外部電圧で過酸化水素が製造できる。 That is, an electrode containing a water-soluble nickel salt is used as the cathode electrode 16, and oxygen in the cathode electrolytic solution 20 containing carbonate ions is reduced to produce hydrogen hydrogen. Further, the anode electrolytic solution 18 containing a carbonate can be used to oxidize water on the anode chamber 24 side to produce hydrogen peroxide at the same time as the cathode chamber 26. In this case, by using the optical electrode as the anode electrode 14, hydrogen hydrogen can be produced by using light energy without applying an external voltage or at a low external voltage.

(実施例1)
導電性炭素材料(ライオン・スペシャリティ・ケミカルズ株式会社、ケッチェンブラックEC600JD)100mgと、水溶性の硝酸ニッケル5mgを、水20mLに混合、分散し、1時間攪拌した後、1時間超音波処理した。これをろ過した後、100℃で20時間乾燥させ、10分間粉砕処理して、導電性炭素材料とニッケル塩の複合体を作製した。なお、複合体中の導電性炭素粒子の質量に対する硝酸ニッケル塩の質量の割合、すなわち複合体中の硝酸ニッケルの含有量は5質量%であった。この複合体3mgと、フッ素系高分子分散液(シグマアルドリッチ社、5質量%ナフィオン分散液)6mgを、エタノール200μLに分散させて複合体分散液を得た。
(Example 1)
100 mg of a conductive carbon material (Lion Specialty Chemicals Co., Ltd., Ketjen Black EC600JD) and 5 mg of water-soluble nickel nitrate were mixed and dispersed in 20 mL of water, stirred for 1 hour, and then ultrasonically treated for 1 hour. After filtering this, it was dried at 100 ° C. for 20 hours and pulverized for 10 minutes to prepare a composite of a conductive carbon material and a nickel salt. The ratio of the mass of the nickel nitrate salt to the mass of the conductive carbon particles in the composite, that is, the content of nickel nitrate in the composite was 5% by mass. 3 mg of this complex and 6 mg of a fluorine-based polymer dispersion (Sigma-Aldrich, 5% by mass Nafion dispersion) were dispersed in 200 μL of ethanol to obtain a complex dispersion.

複合体の保持量が約1.5mg/cmとなるように、カーボンペーパー(東レ社、TGP−H−90(テフロン撥水処理済み))基材上にこの複合体分散液を50μLずつ数回滴下して、カソード電極を得た。このカソード電極に+0.5Vの電圧を印加し、電解液中の酸素を還元して過酸化水素を製造した。なお、アノード電解液およびカソード電解液として2.0M炭酸水素カリウム水溶液を、参照電極としてAg/AgClを、対極のアノード電極として白金をそれぞれ用いた。過酸化水素生成時の電流効率と電流密度を表1に示す。 50 μL of this complex dispersion is placed on a carbon paper (Toray Industries, Inc., TGP-H-90 (Teflon water repellent treated)) substrate so that the amount of the complex retained is approximately 1.5 mg / cm 2. The mixture was dropped once to obtain a cathode electrode. A voltage of + 0.5 V was applied to this cathode electrode to reduce oxygen in the electrolytic solution to produce hydrogen peroxide. A 2.0 M potassium hydrogen carbonate aqueous solution was used as the anode electrolytic solution and the cathode electrolytic solution, Ag / AgCl was used as the reference electrode, and platinum was used as the counter electrode. Table 1 shows the current efficiency and current density when hydrogen peroxide is generated.

(実施例2〜実施例4)
表1に示す硝酸ニッケルの含有量に変更した点を除き、実施例1と同様にして実施例2〜実施例4のカソード電極を作製した。カーボンペーパー基材上のニッケルの保持量をXRFから見積もった。その結果、実施例2では2.6μg/cm、実施例4では24.5μg/cmであった。硝酸ニッケルの含有量におおむね比例してカーボンペーパー基材上にニッケル塩が保持されていた。また、実施例1と同様にして、実施例2〜実施例4のカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表1に示す。
(Examples 2 to 4)
The cathode electrodes of Examples 2 to 4 were prepared in the same manner as in Example 1 except that the content was changed to the nickel nitrate content shown in Table 1. The amount of nickel retained on the carbon paper substrate was estimated from XRF. As a result, Example 2, 2.6μg / cm 2, was Example 4, 24.5μg / cm 2. The nickel salt was retained on the carbon paper substrate in approximately proportion to the nickel nitrate content. Further, in the same manner as in Example 1, hydrogen peroxide was produced using the cathode electrodes of Examples 2 to 4. Table 1 shows the current efficiency and current density when hydrogen peroxide is generated.

(比較例1)
硝酸ニッケルを含まない点を除き、実施例1と同様にして比較例1のカソード電極を作製した。また、実施例1と同様にして、比較例1のカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表1に示す。
(Comparative Example 1)
The cathode electrode of Comparative Example 1 was produced in the same manner as in Example 1 except that it did not contain nickel nitrate. Further, in the same manner as in Example 1, hydrogen peroxide was produced using the cathode electrode of Comparative Example 1. Table 1 shows the current efficiency and current density when hydrogen peroxide is generated.

Figure 2021155818
Figure 2021155818

比較例1では電流効率が59%であったのに対して、実施例1〜実施例4では65%以上の高い電流効率が得られた。さらに、印加電圧が同じであっても、実施例1〜実施例4の電流密度は、5.0mA/cm以上であり、比較例1の電流密度4.0mA/cmよりも大きかった。硝酸ニッケルの含有量が5質量%および10質量%である実施例1および実施例2では、電流効率が80%以上であり、特に高かった。 In Comparative Example 1, the current efficiency was 59%, whereas in Examples 1 to 4, a high current efficiency of 65% or more was obtained. Further, even if the applied voltage was the same, the current densities of Examples 1 to 4 were 5.0 mA / cm 2 or more, which was larger than the current density of 4.0 mA / cm 2 of Comparative Example 1. In Examples 1 and 2 in which the nickel nitrate content was 5% by mass and 10% by mass, the current efficiency was 80% or more, which was particularly high.

図3(a)および図3(b)に、実施例2および実施例4の複合体の電子顕微鏡写真をそれぞれ示す。実施例2の複合体では硝酸ニッケルの粒径が10〜40nmで、実施例4の複合体では硝酸ニッケルの粒径が1μm以上であった。このように、硝酸ニッケルの含有量が増加すると、硝酸ニッケルの分散性が低下して硝酸ニッケルの粒径が大きくなった。実施例2の複合体に含まれる硝酸ニッケルは、分散性に優れていた。このように、ニッケル塩がよく分散しているカソード電極を用いた過酸化水素の生成では、電流効率が高く、電流密度が大きかった。 3 (a) and 3 (b) show electron micrographs of the complexes of Example 2 and Example 4, respectively. In the complex of Example 2, the particle size of nickel nitrate was 10 to 40 nm, and in the complex of Example 4, the particle size of nickel nitrate was 1 μm or more. As described above, as the content of nickel nitrate increased, the dispersibility of nickel nitrate decreased and the particle size of nickel nitrate increased. The nickel nitrate contained in the complex of Example 2 was excellent in dispersibility. As described above, in the production of hydrogen peroxide using the cathode electrode in which the nickel salt is well dispersed, the current efficiency is high and the current density is high.

(実施例5〜実施例10)
表2に示すニッケル塩を用いた点を除き、実施例2と同様にして実施例5〜実施例11のカソード電極を作製した。また、実施例1と同様にして、実施例5〜実施例11のカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表2に示す。
(Examples 5 to 10)
The cathode electrodes of Examples 5 to 11 were prepared in the same manner as in Example 2 except that the nickel salt shown in Table 2 was used. Further, in the same manner as in Example 1, hydrogen peroxide was produced using the cathode electrodes of Examples 5 to 11. Table 2 shows the current efficiency and current density when hydrogen peroxide is generated.

(実施例11)
2.0M炭酸水素カリウム水溶液に実施例2で得られた複合体を浸漬し、水で洗浄した。その後、実施例2と同様にして、この複合体を用いてカソード電極を作製した。また、実施例1と同様にして、このカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表2に示す。
(Example 11)
The complex obtained in Example 2 was immersed in a 2.0 M aqueous potassium hydrogen carbonate solution and washed with water. Then, in the same manner as in Example 2, a cathode electrode was prepared using this complex. Further, hydrogen peroxide was produced using this cathode electrode in the same manner as in Example 1. Table 2 shows the current efficiency and current density when hydrogen peroxide is generated.

(実施例12)
特許文献7に開示されている硝酸酸化処理を行った導電性炭素材料を用いた点を除き、実施例2と同様にしてカソード電極を作製した。また、実施例1と同様にして、このカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表2に示す。
(Example 12)
A cathode electrode was produced in the same manner as in Example 2 except that the conductive carbon material subjected to the nitrate oxidation treatment disclosed in Patent Document 7 was used. Further, hydrogen peroxide was produced using this cathode electrode in the same manner as in Example 1. Table 2 shows the current efficiency and current density when hydrogen peroxide is generated.

(実施例13)
実施例2で得られた複合体を水で洗浄した。その後、実施例1と同様にして、この複合体を用いてカソード電極を作製した。また、実施例1と同様にして、このカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表2に示す。
(Example 13)
The complex obtained in Example 2 was washed with water. Then, in the same manner as in Example 1, a cathode electrode was prepared using this complex. Further, hydrogen peroxide was produced using this cathode electrode in the same manner as in Example 1. Table 2 shows the current efficiency and current density when hydrogen peroxide is generated.

Figure 2021155818
Figure 2021155818

表2の実施例5〜実施例7に示すように、硝酸ニッケル以外の水溶性のニッケル塩を含有するカソード電極を用いて過酸化水素を生成させると、80%以上の高い電流効率が得られ、電流密度も大きくなった。また、表2の実施例8〜実施例10に示すように、水に不溶のニッケル塩を含有するカソード電極を用いて過酸化水素を生成させても、比較例1より高い70%以上の電流効率が得られ、電流密度も大きかった。 As shown in Examples 5 to 7 of Table 2, when hydrogen peroxide is generated using a cathode electrode containing a water-soluble nickel salt other than nickel nitrate, a high current efficiency of 80% or more can be obtained. , The current density has also increased. Further, as shown in Examples 8 to 10 of Table 2, even if hydrogen peroxide is generated using a cathode electrode containing a nickel salt insoluble in water, a current of 70% or more higher than that of Comparative Example 1 is generated. Efficiency was obtained and the current density was high.

表2の実施例11に示すように、導電性炭素材料と水溶性の硝酸ニッケルを含有する複合体を、炭酸イオンを含む溶液に浸漬することにより、その後に水で洗浄してもニッケル成分が複合体からあまり除去されず、電流効率82%、電流密度4.0mA/cmとなり、実施例2と同様に好ましい結果が得られた。また、実施例12では、83%の高い電流効率に加え、12.0mA/cmの大きな電流密度が得られた。 As shown in Example 11 of Table 2, by immersing the composite containing the conductive carbon material and the water-soluble nickel nitrate in a solution containing carbonate ions, the nickel component can be removed even if it is subsequently washed with water. It was not removed much from the composite, and the current efficiency was 82% and the current density was 4.0 mA / cm 2 , and favorable results were obtained as in Example 2. Further, in Example 12, in addition to a high current efficiency of 83%, a large current density of 12.0 mA / cm 2 was obtained.

実施例2および実施例11のカーボン電極について、カーボンペーパー基材上に担持されたニッケル量をXRFから見積もった。実施例2では2.6μg/cmであり、実施例11では2.3μg/cmであった。この結果から、炭酸イオンを含む溶液に複合体を浸漬することによって、導電性炭素材料の表面に担持された水溶性のニッケル塩は、その後の複合体の水洗浄を経ても、大部分が残存することがわかった。水溶性のニッケル塩を含有する複合体を、炭酸イオンを含む溶液に浸漬すると、水溶性のニッケル塩が水に不溶な炭酸ニッケルに変化し、その後の水洗浄であまり除去されなくなったからである。 For the carbon electrodes of Examples 2 and 11, the amount of nickel supported on the carbon paper substrate was estimated from XRF. A second embodiment in 2.6μg / cm 2, it was 2.3μg / cm 2 in Example 11. From this result, most of the water-soluble nickel salt supported on the surface of the conductive carbon material remained even after the subsequent washing with water of the composite by immersing the composite in a solution containing carbonate ions. I found out that I would do it. This is because when the complex containing the water-soluble nickel salt is immersed in a solution containing carbonate ions, the water-soluble nickel salt is changed to nickel carbonate which is insoluble in water, and is not removed so much in the subsequent washing with water.

水溶性の硝酸ニッケルを含む複合体を、炭酸水素カリウム水溶液に浸漬せずに、水で洗浄してから作製した実施例13のカソード電極では、電流効率が62%、電流密度が4.0mA/cmであった。実施例13のカソード電極では、比較例1のカソード電極より電流効率が高かった。このように、水溶性の硝酸ニッケルを含有する複合体は、炭酸イオンを含む溶液に浸漬しないと、その後の複合体の水洗浄でニッケルが減少して、カソード電極の性能が低下する。ただし、複合体の水洗浄でニッケル成分の全てが除去されるわけではないので、比較例1のカソード電極よりも実施例13のカソード電極の方が優れていた。 In the cathode electrode of Example 13 prepared after washing the composite containing water-soluble nickel nitrate with water without immersing it in an aqueous potassium hydrogen carbonate solution, the current efficiency was 62% and the current density was 4.0 mA /. It was cm 2. The cathode electrode of Example 13 had higher current efficiency than the cathode electrode of Comparative Example 1. As described above, if the composite containing water-soluble nickel nitrate is not immersed in a solution containing carbonate ions, the nickel is reduced in the subsequent washing of the composite with water, and the performance of the cathode electrode is deteriorated. However, since not all of the nickel components are removed by washing the complex with water, the cathode electrode of Example 13 was superior to the cathode electrode of Comparative Example 1.

10 過酸化水素製造装置
12 電解槽
14 アノード電極
16 電極(カソード電極)
18 アノード電解液
20 カソード電解液
22 隔膜
24 アノード室
26 カソード室
31 導電性炭素粒子
32 ニッケル塩
33 バインダ
34 電極基材
10 Hydrogen peroxide production equipment 12 Electrolytic cell 14 Anode electrode 16 Electrode (cathode electrode)
18 Anode electrolyte 20 Cathode electrolyte 22 Cathode 24 Anode chamber 26 Cathode chamber 31 Conductive carbon particles 32 Nickel salt 33 Binder 34 Electrode base material

Claims (12)

電解液中の酸素を還元して過酸化水素を製造するカソード用の電極であって、
電極基材と、導電性炭素粒子と、ニッケル塩とを有する電極。
An electrode for the cathode that reduces oxygen in the electrolyte to produce hydrogen peroxide.
An electrode having an electrode base material, conductive carbon particles, and a nickel salt.
電極基材と、前記電極基材に保持された導電性炭素粒子と、前記導電性炭素粒子に担持されたニッケル塩とを有する電極。 An electrode having an electrode base material, conductive carbon particles held on the electrode base material, and a nickel salt supported on the conductive carbon particles. 請求項1または2において、
前記導電性炭素粒子の質量に対する前記ニッケル塩の質量の割合が、5%以上100%以下である電極。
In claim 1 or 2,
An electrode in which the ratio of the mass of the nickel salt to the mass of the conductive carbon particles is 5% or more and 100% or less.
請求項3において、
前記導電性炭素粒子の質量に対する前記ニッケル塩の質量の割合が、5%以上50%以下である電極。
In claim 3,
An electrode in which the ratio of the mass of the nickel salt to the mass of the conductive carbon particles is 5% or more and 50% or less.
請求項4において、
前記導電性炭素粒子の質量に対する前記ニッケル塩の質量の割合が、5%以上10%以下である電極。
In claim 4,
An electrode in which the ratio of the mass of the nickel salt to the mass of the conductive carbon particles is 5% or more and 10% or less.
請求項1から5のいずれかにおいて、
前記ニッケル塩が水溶性である電極。
In any of claims 1 to 5,
An electrode in which the nickel salt is water-soluble.
請求項1から5のいずれかにおいて、
前記ニッケル塩が、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、酸化ニッケル、水酸化ニッケル、および炭酸ニッケルの一種以上である電極。
In any of claims 1 to 5,
An electrode in which the nickel salt is one or more of nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, nickel oxide, nickel hydroxide, and nickel carbonate.
導電性炭素粒子とニッケル塩を液体中で混合し、前記液体を除いた後に粉砕して、前記導電性炭素粒子と前記ニッケル塩を含有する複合体を得る混合粉砕工程と、
前記複合体の分散液を電極基材に塗布し、前記複合体を前記電極基材に保持して電極を得る塗布工程と、
を有する電極の製造方法。
A mixing and pulverizing step of mixing conductive carbon particles and a nickel salt in a liquid, removing the liquid, and then pulverizing the mixture to obtain a composite containing the conductive carbon particles and the nickel salt.
A coating step of applying the dispersion liquid of the complex to the electrode base material and holding the complex on the electrode base material to obtain an electrode.
A method for manufacturing an electrode having.
請求項8において、
前記複合体中の前記ニッケル塩が、前記導電性炭素粒子に担持されている電極の製造方法。
In claim 8.
A method for producing an electrode in which the nickel salt in the complex is supported on the conductive carbon particles.
請求項8または9において、
前記ニッケル塩が水溶性であり、
前記混合粉砕工程では、前記導電性炭素粒子とニッケル塩を水中で混合し、
前記混合粉砕工程の後、前記複合体を前記炭酸塩の水溶液に浸漬する浸漬工程をさらに有する電極の製造方法。
In claim 8 or 9,
The nickel salt is water-soluble and
In the mixing and pulverizing step, the conductive carbon particles and the nickel salt are mixed in water, and the mixture is mixed.
A method for producing an electrode, further comprising a dipping step of immersing the composite in an aqueous solution of the carbonate after the mixing and pulverizing step.
請求項1から8のいずれかの電極または請求項9もしくは10の製造方法で製造された電極をカソード電極として、電解液中の酸素を還元する過酸化水素の製造方法。 A method for producing hydrogen hydrogen, which reduces oxygen in an electrolytic solution, using the electrode according to any one of claims 1 to 8 or the electrode produced by the production method according to claim 9 or 10 as a cathode electrode. 請求項6の電極または請求項10の製造方法で製造された電極をカソード電極として、炭酸イオンを含有する電解液中の酸素を還元する過酸化水素の製造方法。 A method for producing hydrogen hydrogen, which reduces oxygen in an electrolytic solution containing carbonate ions, using the electrode of claim 6 or the electrode produced by the production method of claim 10 as a cathode electrode.
JP2020058508A 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode Active JP7466182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058508A JP7466182B2 (en) 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058508A JP7466182B2 (en) 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode

Publications (3)

Publication Number Publication Date
JP2021155818A true JP2021155818A (en) 2021-10-07
JP2021155818A5 JP2021155818A5 (en) 2023-01-30
JP7466182B2 JP7466182B2 (en) 2024-04-12

Family

ID=77916969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058508A Active JP7466182B2 (en) 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode

Country Status (1)

Country Link
JP (1) JP7466182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249391A (en) * 2021-12-15 2022-03-29 盐城工学院 Preparation method of activated carbon column loaded nickel phosphate particle electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076043A (en) * 2003-08-28 2005-03-24 Asahi Kasei Chemicals Corp Fuel cell type reaction apparatus
JP2009068080A (en) * 2007-09-14 2009-04-02 Tokyo Institute Of Technology FUEL CELL TYPE REACTOR AND METHOD FOR PRODUCING COMPOUND USING THE SAME
JP2019157223A (en) * 2018-03-14 2019-09-19 国立研究開発法人産業技術総合研究所 Production method of hydrogen peroxide using photoelectrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919941B2 (en) 2006-12-28 2012-04-18 トヨタ自動車株式会社 Inspection method for polymer electrolyte membrane
JP5510181B2 (en) 2010-08-18 2014-06-04 凸版印刷株式会社 Electrocatalyst layer production method and polymer electrolyte fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076043A (en) * 2003-08-28 2005-03-24 Asahi Kasei Chemicals Corp Fuel cell type reaction apparatus
JP2009068080A (en) * 2007-09-14 2009-04-02 Tokyo Institute Of Technology FUEL CELL TYPE REACTOR AND METHOD FOR PRODUCING COMPOUND USING THE SAME
JP2019157223A (en) * 2018-03-14 2019-09-19 国立研究開発法人産業技術総合研究所 Production method of hydrogen peroxide using photoelectrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249391A (en) * 2021-12-15 2022-03-29 盐城工学院 Preparation method of activated carbon column loaded nickel phosphate particle electrode

Also Published As

Publication number Publication date
JP7466182B2 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
KR102093824B1 (en) Preparation method of carbon-supported platinum-transition metal alloy nanopaticle catalyst
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
JP2014239033A (en) Electrode catalyst for fuel battery, and method for activation of catalyst
CN112609213A (en) High-entropy alloy porous electrode and preparation method thereof
JP7203850B2 (en) Reduced graphene oxide, reduced graphene oxide-functional material composite, and method for producing the same
CN109860643A (en) Oxygen reduction electrocatalyst based on aromatic diazonium salt surface-modified MXene-supported platinum and preparation method thereof
JP2004349050A (en) Method for activating solid polymer fuel cell
CN108550871B (en) A kind of manganese dioxide/carbon black composite material and its preparation method and application
CN101473471A (en) Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell, and solid polymer electrolyte fuel cell comprising the same
CN1921197A (en) Ultra-fine, highly dispersed Pd/C catalyst for direct aminic acid fuel battery and method for making same
CN106029229A (en) Process for producing core-shell catalyst particles
JP6547696B2 (en) Fuel cell electrode catalyst, method for producing the same, and fuel cell
JP2019172487A (en) Cobalt composite γ-type manganese dioxide and method for producing the same
JP2019157223A (en) Production method of hydrogen peroxide using photoelectrode
JP2021155818A (en) Electrode and method for producing hydrogen peroxide using this electrode
Alemany‐Molina et al. Straightforward synthesis methodology for obtaining excellent ORR electrocatalysts from biomass residues through a one pot‐high temperature treatment approach
CN105013483A (en) Platinum-palladium-platinum/manganese dioxide/graphene laminated catalyst and preparation method therefor
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
KR101609913B1 (en) Carbon felt electrode for redox flow battery and method for preparing the same
CN116505002B (en) Graphite felt electrode for all-vanadium redox flow battery, and activation method and application thereof
CN101562250A (en) Method for preparing cathode catalyst of proton exchange membrane fuel cell
JP2012028181A (en) Enzyme electrode and fuel cell having the same
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
CN108889308B (en) Gold-core ruthenium platinum copper shell quaternary photoelectric composite, and preparation method and application thereof
KR102183156B1 (en) Oxygen-reduction electrocatalyst based on asymmetrical core-shell nanoparticle structure and preparing method of the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240326

R150 Certificate of patent or registration of utility model

Ref document number: 7466182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150