[go: up one dir, main page]

JP2021148453A - Discrimination device and discrimination method for steel material fracture surface - Google Patents

Discrimination device and discrimination method for steel material fracture surface Download PDF

Info

Publication number
JP2021148453A
JP2021148453A JP2020045435A JP2020045435A JP2021148453A JP 2021148453 A JP2021148453 A JP 2021148453A JP 2020045435 A JP2020045435 A JP 2020045435A JP 2020045435 A JP2020045435 A JP 2020045435A JP 2021148453 A JP2021148453 A JP 2021148453A
Authority
JP
Japan
Prior art keywords
line segment
points
fracture
steel material
ductile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020045435A
Other languages
Japanese (ja)
Other versions
JP7147802B2 (en
Inventor
涼太 長尾
Ryota Nagao
涼太 長尾
久和 田近
Hisakazu Tachika
久和 田近
恒久 半田
Tsunehisa Handa
恒久 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020045435A priority Critical patent/JP7147802B2/en
Publication of JP2021148453A publication Critical patent/JP2021148453A/en
Application granted granted Critical
Publication of JP7147802B2 publication Critical patent/JP7147802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a discrimination device and discrimination method for a steel material fracture surface, capable of automatically discriminating a brittle fracture part and a ductile fracture part on a fracture surface of a steel material, and capable of being applied to a large test piece in addition to a small test.SOLUTION: A discrimination device 1 for a steel material fracture surface comprises: a 3D measuring device 2 that measures the shape of a fracture surface 11 of a steel material 10; and discrimination means 4 that acquires 3D point group data of the fracture surface shape measured by the 3D measuring device 2, extracts the shape data of a 2D cross section cut in a plane (XY plane) perpendicular to a crack propagation direction (Z direction) of the steel material 10 from the 3D point group data, and discriminates whether the range of a line segment is a brittle fracture part 11a or a ductile fracture part 11b based on an absolute value of inclination of a line segment (line segment 12, ..., line segment n-1n) between adjacent points (point 1 and point 2, ..., point n-1 and point n) in the extracted shape data of the 2D cross section and the absolute value of the difference in inclination of adjacent line segments (line segment 12 and line segment 23, line segment 23 and line segment 34, ..., line segment n-2n-1 and line segment n-1n).SELECTED DRAWING: Figure 1

Description

本発明は、鋼材の破壊試験等で得られる破面の、脆性破壊部と延性破壊部とを自動的に判別する鋼材破面の判別装置及び判別方法に関する。 The present invention relates to a steel fracture surface discriminating device and a discriminating method for automatically discriminating between a brittle fracture portion and a ductile fracture portion of a fracture surface obtained by a fracture test of a steel material or the like.

鋼材の機械的性能評価を行う際、一般的に鋼材を破壊させて強度や靱性といった特性を得ることが必要とされる。例えば、船舶など、低温環境で用いられる構造物の厚鋼板では脆性き裂が発生しやすいため、被害を最小限に抑えるべく、高い脆性き裂伝播停止性能が鋼材に求められることになる。
この脆性き裂伝播停止性能の評価方法として、ESSO試験がある。このESSO試験では試験片に温度勾配を設けた状態で低温側から高温側へ脆性き裂を伝播させ、停止した位置で脆性き裂長さと温度との関係から脆性き裂アレスト靱性値を求める。ESSO試験では、脆性き裂伝播方向の試験片長さは500mmを要する。
When evaluating the mechanical performance of a steel material, it is generally necessary to break the steel material to obtain properties such as strength and toughness. For example, since brittle cracks are likely to occur in thick steel plates of structures used in low temperature environments such as ships, high brittle crack propagation stopping performance is required for steel materials in order to minimize damage.
There is an ESSO test as a method for evaluating the brittle crack propagation stopping performance. In this ESSO test, the brittle crack is propagated from the low temperature side to the high temperature side in a state where the test piece is provided with a temperature gradient, and the brittle crack arrest toughness value is obtained from the relationship between the brittle crack length and the temperature at the stopped position. In the ESSO test, the length of the test piece in the brittle crack propagation direction requires 500 mm.

このとき停止した脆性き裂長さを確認するため、一般的には試験後に試験片へ荷重を負荷し、脆性き裂の伝播しなかった箇所を延性破壊させ試験片を破断させる。ここで、破断された試験片の破面は、試験時に脆性破壊した脆性破壊部と試験後の荷重負荷によって延性破壊した延性破壊部とが混在した状態となる。
試験時に脆性き裂の伝播しなかった領域は、塑性変形によるエネルギー吸収や、き裂開口抑制といった効果があり、脆性き裂伝播停止性能の向上に寄与する。このため、鋼材の破面において脆性破壊部と延性破壊部とを自動で判別し、延性破壊部あるいは脆性破壊部の大きさを定量的に評価することは鋼材の特性評価を精度高く行うために必要とされる。
In order to confirm the length of the brittle crack stopped at this time, a load is generally applied to the test piece after the test, and the part where the brittle crack has not propagated is ductilely fractured to break the test piece. Here, the fracture surface of the fractured test piece is in a state in which a brittle fracture portion that is brittle fracture during the test and a ductile fracture portion that is ductile fracture due to a load after the test are mixed.
The region where brittle cracks did not propagate during the test has effects such as energy absorption due to plastic deformation and suppression of crack opening, and contributes to improvement of brittle crack propagation stopping performance. Therefore, it is necessary to automatically discriminate between the brittle fracture part and the ductile fracture part on the fracture surface of the steel material and quantitatively evaluate the size of the ductile fracture part or the brittle fracture part in order to evaluate the characteristics of the steel material with high accuracy. Needed.

ここで、従来、例えば特許文献1に示す破面観察方法では、き裂が生じた被検材料の破面を観察するに当たり、未破壊の部分を強制的に破壊し破面観察を行う際に、強制的に破壊する前にあらかじめ既存のき裂破面に加熱により着色を与えたのち被検材料を強制的に破壊して破面を観察するようにしている。
これにより、強制破壊破面は着色されていないので、着色された既存のき裂破面と強制破壊破面との区別が容易となる。
また、従来の特許文献2に示す自動破面観察装置では、試験片の破面を観察する顕微鏡と、顕微鏡に接続され、試験片の破面の像を撮像してアナログ画像を出力する撮像機とを用いて、画像処理により脆性破面と延性破面とを判別するようにしている。
これにより、高速かつ自動的に破面解析を行うことができる。
Here, conventionally, for example, in the fracture surface observation method shown in Patent Document 1, when observing the fracture surface of the test material in which cracks have occurred, the unbroken portion is forcibly destroyed and the fracture surface observation is performed. Before the forced fracture, the existing crack fracture surface is colored by heating in advance, and then the test material is forcibly fractured to observe the fracture surface.
As a result, since the forced rupture fracture surface is not colored, it becomes easy to distinguish between the existing colored crack fracture surface and the forced rupture fracture surface.
Further, in the conventional automatic fracture surface observation device shown in Patent Document 2, a microscope for observing the fracture surface of the test piece and an imager connected to the microscope to capture an image of the fracture surface of the test piece and output an analog image. The brittle fracture surface and the ductile fracture surface are discriminated by image processing using and.
As a result, fracture surface analysis can be performed at high speed and automatically.

特開平4−50749号公報Japanese Unexamined Patent Publication No. 4-50749 特公平5−60058号公報Special Fair 5-60058 No.

しかしながら、従来のこれら特許文献1に示す破面観察方法及び特許文献2に示す自動破面観察装置にあっては、以下の問題点があった。
即ち、特許文献1に示す破面観察方法の場合には、着色された既存のき裂破面と強制破壊破面との区別が容易となるものの、鋼材の破面において脆性破壊部と延性破壊部とを自動で判別することができない。
一方、特許文献2に示す自動破面観察装置の場合には、脆性破面と延性破面とを高速かつ自動的に判別することができるが、破面解析に顕微鏡を要するため、ESSO試験に用いられるような大型試験片の破面を観察する際には不向きとなる。
従って、本発明はこれら従来の問題点を解決するためになされたものであり、その目的は、鋼材の破面において脆性破壊部と延性破壊部とを自動で判別し、小型試験(落重試験、シャルピー衝撃試験等)に加えて大型試験片に対しても適用可能な鋼材破面の判別装置及び判別方法を提供することにある。
However, the conventional fracture surface observation method shown in Patent Document 1 and the automatic fracture surface observation device shown in Patent Document 2 have the following problems.
That is, in the case of the fracture surface observation method shown in Patent Document 1, although it is easy to distinguish between the existing colored crack fracture surface and the forced fracture surface, the brittle fracture portion and the ductile fracture portion in the fracture surface of the steel material Cannot be automatically determined.
On the other hand, in the case of the automatic fracture surface observation device shown in Patent Document 2, the brittle fracture surface and the ductile fracture surface can be discriminated at high speed and automatically, but since a microscope is required for the fracture surface analysis, the ESSO test is performed. It is not suitable for observing the fracture surface of a large test piece such as that used.
Therefore, the present invention has been made to solve these conventional problems, and an object of the present invention is to automatically discriminate between a brittle fractured portion and a ductile fractured portion on a fracture surface of a steel material, and perform a small test (drop weight test). , Charpy impact test, etc.), as well as a steel fracture surface discrimination device and a discrimination method applicable to a large test piece.

上記目的を達成するために、本発明の一態様に係る鋼材破面の判別装置は、鋼材の破面の形状を測定する3次元測定装置と、該3次元測定装置で測定された破面形状の3次元の点群データを取得し、該3次元の点群データから前記鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データを抽出し、抽出された前記2次元断面の形状データにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部か延性破壊部かを判別する判別手段とを備えていることを要旨とする。
また、本発明の別の態様に係る鋼材破面の判別方法は、鋼材の破面の形状を測定する3次元測定ステップと、3次元測定ステップで測定された破面形状の3次元の点群データを取得し、該3次元の点群データから前記鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データを抽出し、抽出された該2次元断面の形状データにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部か延性破壊部かを判別する判別ステップとを含むことを要旨とする。
In order to achieve the above object, the steel fracture surface discriminating device according to one aspect of the present invention includes a three-dimensional measuring device for measuring the shape of the fracture surface of the steel material and a fracture surface shape measured by the three-dimensional measuring device. The three-dimensional point group data of the above is acquired, and the shape data of the two-dimensional cross section cut in a plane perpendicular to the crack propagation direction of the steel material is extracted from the three-dimensional point group data, and the extracted two-dimensional point group data is extracted. Discrimination to determine whether the range of the line segment is a brittle fracture portion or a ductile fracture portion based on the absolute value of the inclination of the line segment between adjacent points and the absolute value of the difference in the inclination of the adjacent line segments in the shape data of the cross section. The gist is that it has means.
Further, the method for discriminating the fracture surface of the steel material according to another aspect of the present invention is a three-dimensional measurement step for measuring the shape of the fracture surface of the steel material and a three-dimensional point group of the fracture surface shape measured in the three-dimensional measurement step. Data is acquired, shape data of a two-dimensional cross section cut in a plane perpendicular to the crack propagation direction of the steel material is extracted from the three-dimensional point group data, and adjacent in the extracted shape data of the two-dimensional cross section. Including a determination step of determining whether the range of the line segment is a brittle fracture portion or a ductile fracture portion based on the absolute value of the inclination of the line segment between the points to be formed and the absolute value of the difference in the inclination of the adjacent line segments. It is a summary.

本発明に係る鋼材破面の判別装置及び判別方法によれば、鋼材の破面において脆性破壊部と延性破壊部とを自動で判別し、小型試験(落重試験、シャルピー衝撃試験等)に加えて大型試験片に対しても適用可能な鋼材破面の判別装置及び判別方法を提供できる。 According to the steel fracture surface discriminating device and the discriminating method according to the present invention, the brittle fractured portion and the ductile fractured portion are automatically discriminated on the fracture surface of the steel material, and in addition to the small test (drop weight test, Charpy impact test, etc.). It is possible to provide a steel fracture surface discriminating device and a discriminating method that can be applied to a large test piece.

本発明の一実施形態に係る鋼材破面の判別方法が適用される破面を有する破断された鋼材を示す模式図である。It is a schematic diagram which shows the fractured steel material which has the fracture surface to which the method of discriminating the steel material fracture surface which concerns on one Embodiment of this invention is applied. 本発明の一実施形態に係る鋼材破面の判別装置の概略構成図である。It is a schematic block diagram of the steel material fracture surface discriminating device which concerns on one Embodiment of this invention. 図2に示す鋼材破面の判別装置を用いた鋼材破面の判別方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the method of discriminating the steel material fracture surface using the steel material fracture surface discriminating device shown in FIG. 図3に示すフローチャートにおけるステップS2(判別ステップ)の手順を示すフローチャートである。It is a flowchart which shows the procedure of step S2 (discrimination step) in the flowchart shown in FIG. 鋼材破面における脆性破壊部は傾きが小さく、延性破壊部は傾きが大きいと仮定したときに考えられる破面のパターンを示す模式図で、(A)は点1と点2との間の線分12が脆性破壊部、点2と点3との間の線分23が脆性破壊部である破面パターンを示し、(B)は点1と点2との間の線分12が脆性破壊部、点2と点3との間の線分23が延性破壊部である破面パターンを示し、(C)は点1と点2との間の線分12が延性破壊部、点2と点3との間の線分23が脆性破壊部である破面パターンを示し、(D)は点1と点2との間の線分12が延性破壊部、点2と点3との間の線分23が延性破壊部である破面パターンを示している。It is a schematic diagram showing a pattern of a fracture surface that can be considered when it is assumed that the brittle fracture portion on the steel fracture surface has a small inclination and the ductile fracture portion has a large inclination. (A) is a line between points 1 and 2. Minute 12 shows a fracture surface pattern in which the line segment 23 between the points 2 and 3 is the brittle fracture portion, and in (B), the line segment 12 between the points 1 and 2 shows the ductile fracture. The fracture surface pattern in which the line 23 between the points 2 and 3 is the ductile fracture surface is shown, and in (C), the line 12 between the points 1 and 2 is the ductile fracture and the points 2. The line segment 23 between the point 3 shows the fracture surface pattern which is the brittle fracture portion, and in (D), the line segment 12 between the point 1 and the point 2 is the ductile fracture portion, and between the point 2 and the point 3. Line 23 shows a fracture surface pattern that is a ductile fracture portion. 鋼材破面における脆性破壊部と延性破壊部とが混在した混在部において、鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データの一例を示すグラフである。It is a graph which shows an example of the shape data of the 2D cross section cut in the plane perpendicular to the crack propagation direction of a steel material in the mixed part where the brittle fracture part and the ductile fracture part are mixed in the steel material fracture surface.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, arrangement, etc. of the components. It is not specified in the following embodiments. The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings.

図1には、本発明の一実施形態に係る鋼材破面の判別方法が適用される破面を有する破断された鋼材の一例が示されている。図1に示す破断された鋼材10は、例えば、ESSO試験において試験片に温度勾配を設けて低温側から高温側へ脆性き裂を伝播させ、その後に試験片へ荷重を負荷して脆性き裂の伝播しなかった未破壊部分を強制的に延性破壊させて破断されたものである。ここで、破断された鋼材10は、矢印Xで示す幅方向に70mm、矢印Zで示す長手方向に500mm、矢印Yで示す高さ方向に所定の厚さを有する。破断された鋼材10の上面が、破面11を構成し、き裂の伝播方向は、鋼材10の一端面10aから他端面10bへ向かう前述の矢印Zで示す長手方向である。そして、鋼材10の破面11は、き裂の始端である鋼材10の一端面10aからき裂の終端近傍にいたるまでに形成された脆性破壊部11aと、鋼材10の他端面10bからき裂の終端近傍にいたるまでに形成された延性破壊部11bと、き裂の終端近傍において矢印Zで示す長手方向に所定の範囲にわたって形成された脆性破壊部11aと延性破壊部11bとが混在する混在部11cとを含んでいる。 FIG. 1 shows an example of a fractured steel material having a fracture surface to which the method for determining a fracture surface of a steel material according to an embodiment of the present invention is applied. In the fractured steel material 10 shown in FIG. 1, for example, in the ESSO test, a temperature gradient is provided on the test piece to propagate brittle cracks from the low temperature side to the high temperature side, and then a load is applied to the test piece to propagate the brittle cracks. The unbroken part that did not propagate was forcibly ductilely broken and broken. Here, the broken steel material 10 has a predetermined thickness in the width direction indicated by the arrow X, 500 mm in the longitudinal direction indicated by the arrow Z, and a predetermined thickness in the height direction indicated by the arrow Y. The upper surface of the fractured steel material 10 constitutes the fracture surface 11, and the crack propagation direction is the longitudinal direction indicated by the arrow Z described above from one end surface 10a to the other end surface 10b of the steel material 10. The fracture surface 11 of the steel material 10 includes a brittle fracture portion 11a formed from one end surface 10a of the steel material 10 which is the start end of the crack to the vicinity of the end of the crack, and the end of the crack from the other end surface 10b of the steel material 10. A mixed portion 11c in which the ductile fracture portion 11b formed up to the vicinity and the brittle fracture portion 11a and the ductile fracture portion 11b formed in the longitudinal direction indicated by the arrow Z in the vicinity of the end of the crack are mixed. And include.

この鋼材10の破面11、特に破面11の混在部11cにおいて、脆性破壊部11aか延性破壊部11bかを判別するために、本実施形態に係る判別装置1(図2参照)が用いられる。
脆性き裂伝播後に未破壊部分を強制的に破壊させた破面11では、巨視的なき裂伝播方向(図1におけるZ方向)に対して垂直な2次元断面を見ると、脆性破壊部11aと延性破壊部11bとの境界で破面に傾斜が大きく異なることが特徴である。本実施形態に係る判別装置1では、この特徴を活用して脆性破壊部11aか延性破壊部11bかを判別する。
The discriminating device 1 (see FIG. 2) according to the present embodiment is used to discriminate between the brittle fractured portion 11a and the ductile fractured portion 11b in the fracture surface 11 of the steel material 10, particularly the mixed portion 11c of the fracture surface 11. ..
In the fracture surface 11 in which the unbroken portion was forcibly fractured after the brittle crack propagation, the two-dimensional cross section perpendicular to the macroscopic crack propagation direction (Z direction in FIG. 1) shows that the brittle fracture portion 11a It is characterized in that the inclination of the fracture surface is significantly different at the boundary with the ductile fracture portion 11b. In the discrimination device 1 according to the present embodiment, this feature is utilized to discriminate between the brittle fracture portion 11a and the ductile fracture portion 11b.

図2に示す判別装置1は、3次元測定装置2と、データ処理装置3と、出力装置8とを備えている。
3次元測定装置2は、破断された鋼材10の上方に設置され、鋼材10の破面11の形状を測定する。3次元測定装置2としては、例えば、レーザを用いたレーザ測定器(3Dスキャナ)が使用される。3次元測定装置2は、例えばレーザによる距離計測を行うもので、その距離計測は、三角測距方式であっても位相差測距方式であってもよい。
The discrimination device 1 shown in FIG. 2 includes a three-dimensional measuring device 2, a data processing device 3, and an output device 8.
The three-dimensional measuring device 2 is installed above the broken steel material 10 and measures the shape of the fracture surface 11 of the steel material 10. As the three-dimensional measuring device 2, for example, a laser measuring device (3D scanner) using a laser is used. The three-dimensional measuring device 2 measures the distance by, for example, a laser, and the distance measurement may be a triangular distance measuring method or a phase difference distance measuring method.

また、データ処理装置3は、3次元測定装置2で測定された破面形状の3次元の点群データを処理し、脆性破壊部11aか延性破壊部11bかを判別し、最終的には延性破壊部11bの表面積の算出を行う。
このデータ処理装置3は、後に述べる判別手段4、投影長さ算出手段5、実長算出手段6、及び表面積算出手段7の各機能をコンピュータソフトウェア上でプログラムを実行することで実現するための演算処理機能を有するコンピュータシステムである。そして、このコンピュータシステムは、ROM,RAM,CPU等を備えて構成され、ROM等に予め記憶された各種専用のプログラムを実行することにより、前述した各機能をソフトウェア上で実現する
データ処理装置3は、3次元測定装置2で測定された破面形状の3次元の点群データを取得し、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データ(図6参照)を抽出し、抽出された2次元断面の形状データにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分(線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1n)の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを判別する判別手段4を備えている。
Further, the data processing device 3 processes the three-dimensional point cloud data of the fracture surface shape measured by the three-dimensional measuring device 2, determines whether it is the brittle fracture portion 11a or the ductile fracture portion 11b, and finally the ductility. The surface area of the broken portion 11b is calculated.
The data processing device 3 is an operation for realizing each function of the discriminating means 4, the projected length calculating means 5, the actual length calculating means 6, and the surface area calculating means 7 described later by executing a program on the computer software. It is a computer system having a processing function. The computer system is configured to include a ROM, RAM, CPU, etc., and a data processing device 3 that realizes each of the above-mentioned functions on software by executing various dedicated programs stored in the ROM or the like in advance. Acquires three-dimensional point group data of the fracture surface shape measured by the three-dimensional measuring device 2, and from the three-dimensional point group data, a plane (XY) perpendicular to the crack propagation direction (Z direction) of the steel material 10. The shape data (see FIG. 6) of the two-dimensional cross section cut by the plane) is extracted, and adjacent points (point 1 and point 2, ..., Point n-1 and point) in the extracted shape data of the two-dimensional cross section are extracted. The absolute value of the inclination of the line segment (line segment 12, ..., Line segment n-1n) between n) and the adjacent line segment (line segment 12 and line segment 23, line segment 23 and line segment 34, ... A discriminating means 4 for determining whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b based on the absolute value of the difference in inclination between the line segment n-2n-1 and the line segment n-1n) is provided. ing.

判別手段4では、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出するに際し、図1に示すように、鋼材10のき裂伝播方向(Z方向)に一定の切断間隔Δzで所定範囲にわたって切断した複数(m個)の2次元断面の形状データを抽出し、抽出された複数(m個)の2次元断面の形状データのそれぞれにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分(線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1n)の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別する。
ここで、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別する具体的手法について、図5を参照して説明する。図5には、破面11における脆性破壊部11aは傾きが小さく、延性破壊部11bは傾きが大きいと仮定したときに考えられる破面のパターンが示されている。
In the discriminating means 4, when extracting the shape data of the two-dimensional cross section cut in the plane (XY plane) perpendicular to the crack propagation direction (Z direction) of the steel material 10 from the three-dimensional point group data, it is shown in FIG. As described above, the shape data of a plurality (m pieces) of two-dimensional cross sections cut over a predetermined range at a constant cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 is extracted, and the extracted plurality (m pieces). Line segment (line segment 12, ..., line segment n-1n) between adjacent points (point 1 and point 2, ..., Point n-1 and point n) in each of the shape data of the two-dimensional cross section of ) And the difference in the inclination of adjacent line segments (line segment 12 and line segment 23, line segment 23 and line segment 34, ..., Line segment n-2n-1 and line segment n-1n). Based on the absolute value of, whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b is determined for each shape data of the two-dimensional cross section.
Here, a specific method for determining whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b for each shape data of the two-dimensional cross section will be described with reference to FIG. FIG. 5 shows a pattern of the fracture surface that can be considered when it is assumed that the brittle fracture portion 11a on the fracture surface 11 has a small inclination and the ductile fracture portion 11b has a large inclination.

ここで、抽出された複数(m個)の2次元断面の形状データのそれぞれにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとする。
ここで、これら点1、点2、点3、・・・、点nの2次元断面上の座標をそれぞれ(x,y)、(x,y)、(x,y)、・・・、(x,y)とすると、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値a12、23、a34、・・・、an−1nは(a12、23のみ説明する)、次の(1)式、(2)式のように表せる。
Here, in each of the extracted multiple (m) two-dimensional cross-sectional shape data, points 1 and 2, points 2 and 3, points 3 and points 4, ..., Points that are adjacent to each other in succession. The absolute values of the slopes of the line segment 12, the line segment 23, the line segment 34, ..., The line segment n-1n between n-1 and the point n are a 12, a 23 , a 34, ..., A, respectively. Let n-1n, and the absolute value of the difference in inclination between the adjacent line segment 12 and line segment 23, the line segment 23 and line segment 34, ..., The line segment n-2n-1 and the line segment n-1n, respectively, is b. 13 , b 24 , ..., b n-2n, and the thresholds α and β differ depending on the steel material.
Here, the coordinates of these points 1, point 2, point 3, ..., Point n on the two-dimensional cross section are (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3), respectively. ), ..., (x n , y n ), point 1 and point 2, point 2 and point 3, point 3 and point 4, ..., Point n-1 and point n that are adjacent to each other in succession. line 12, line 23 between the line segment 34, ..., the absolute value a 12 inclination of the line segment n-1n, a 23, a 34, ···, a n-1n are (a 12, a 23 only will be described), the following equation (1), expressed as (2).

Figure 2021148453
Figure 2021148453

また、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値b13、b24、・・・、bn−2nは(b13のみ説明する)、次の(3)式のように表せる。 Further, the absolute values of the difference in slope between the adjacent line segment 12 and the line segment 23, the line segment 23 and the line segment 34, ..., The line segment n-2n-1 and the line segment n-1n, b 13 and b 24 , ..., B n-2n ( only b 13 will be described) can be expressed as the following equation (3).

Figure 2021148453
Figure 2021148453

このときに、判別手段4は、先ず、(a)点1と点2間の線分12については、a12>αであれば延性破壊部11b、a12≦αであれば脆性破壊部11aと判断する。この理由は、脆性き裂を伝播させる試験で、き裂の伝播が停止した後に未破壊部分を強制破断させた場合、試験時の脆性破壊部分は一般的に平坦な状態で残るのに対し、未破壊部分は大きな変形を伴って延性破壊するため、延性破壊部11bの傾きが脆性破壊部11aの傾きよりも大きくなるからである。閾値αには、対象とする鋼材破面の特徴を考慮し、判別に最適な値を決定する。 At this time, first, for the line segment 12 between the points 1 and 2, the discriminating means 4 first has a ductile fracture portion 11b if a 12 > α and a brittle fracture portion 11a if a 12 ≦ α. Judge. The reason for this is that in a test of propagating brittle cracks, when the unbroken portion is forcibly fractured after the propagation of cracks has stopped, the brittle fractured portion at the time of the test generally remains in a flat state. This is because the unbroken portion undergoes ductile fracture with a large deformation, so that the inclination of the ductile fracture portion 11b becomes larger than the inclination of the brittle fracture portion 11a. For the threshold value α, the optimum value for discrimination is determined in consideration of the characteristics of the target steel fracture surface.

次いで、判別手段4は、(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部11aと判断されている場合に、b13>βであれば延性破壊部11bと判断し(図5(B)に示す)、b13≦βであれば脆性破壊部11aと判断する(図5(A)に示す)。閾値βには、対象とする鋼材破面の特徴を考慮し、判別に最適な値を決定する。
また、判別手段4は、(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部11bと判断されている場合に、a23>αかつb13≦βであれば延性破壊部11bと判断し(図5(D)に示す)、a23≦αあるいはb13>βであれば脆性破壊部11aと判断する(図5(C)に示す)。
Next, the discriminating means 4 (b) regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the brittle fracture portion 11a, b 13 > β. If it is, it is determined that it is a ductile fracture portion 11b (shown in FIG. 5 (B)), and if b 13 ≦ β, it is determined that it is a brittle fracture portion 11a (shown in FIG. 5 (A)). For the threshold value β, the optimum value for discrimination is determined in consideration of the characteristics of the target steel fracture surface.
Further, the discriminating means 4 (c) regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion 11b, a 23 > α. If b 13 ≤ β, it is determined to be ductile fracture portion 11b (shown in FIG. 5 (D)), and if a 23 ≤ α or b 13 > β, it is determined to be brittle fracture portion 11a (FIG. 5 (C)). Shown in).

更に、判別手段4は、(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部11aか延性破壊部11bかを判断する。
このように、判別手段4による脆性破壊部11aか延性破壊部11bかの判断に際し、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値a12、23、a34、・・・、an−1nのみでなく、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値b13、b24、・・・、bn−2nを用いているのは、傾斜の大小だけで判断すると誤差が大きいので、傾斜の急変点を脆性破壊部分と延性破壊部分との境界として検出するためである。
Further, the discriminating means 4 is brittle according to the determination criteria of (b) and (c) for (d) the line segment 34, ..., The line segment n-1n after the line segment 34 between the point 3 and the point 4. It is determined whether the fracture portion 11a or the ductile fracture portion 11b.
In this way, when the discriminating means 4 determines whether the brittle fracture portion 11a or the ductile fracture portion 11b, the points 1 and 2, the points 2 and 3, the points 3 and 4, ... Absolute values of the slopes of line segment 12, line segment 23, line segment 34, ..., Line segment n-1n between n-1 and point n, a 12, a 23 , a 34, ..., an- Not only 1n , but also adjacent line segment 12 and line segment 23, line segment 23 and line segment 34, ..., Absolute value b 13 of the difference in slope between line segment n-2n-1 and line segment n-1n, The reason why b 24 , ..., B n-2n is used is to detect the sudden change point of the inclination as the boundary between the brittle fracture part and the ductile fracture part because the error is large when judging only by the magnitude of the inclination. be.

また、データ処理装置3は、判別手段4によって2次元断面の形状データ毎に判別された延性破壊部11bの任意の2次元平面(ZX平面とYZ平面)に対する投影長さを算出する投影長さ算出手段5を備えている
投影長さ算出手段5による延性破壊部11bの任意の2次元平面(ZX平面とYZ平面)に対する投影長さを算出する具体的な方法について図6を参照して説明する。
Further, the data processing device 3 calculates the projection length of the ductile fracture unit 11b determined for each shape data of the two-dimensional cross section by the discrimination means 4 with respect to an arbitrary two-dimensional plane (ZX plane and YZ plane). A specific method for calculating the projection length of the ductile fracture portion 11b by the projection length calculation means 5 with respect to an arbitrary two-dimensional plane (ZX plane and YZ plane) by the projection length calculation means 5 will be described with reference to FIG. do.

判別に用いた2次元平面(XY平面)において、延性破壊部11bと判断された線分がp本(p>0)である場合、それぞれの線分を構成する2点について、x座標の差の絶対値をそれぞれΔx、Δx、・・・、Δx、y座標の差の絶対値をそれぞれΔy、Δy、・・・、Δyとすると、延性破壊部11bのZX平面への投影長さl、延性破壊部11bのYZ平面への投影長さlはそれぞれ次の(4)式、(5)式のように表される。図6においては、延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlは一部しか図示されていない。 In the two-dimensional plane (XY plane) used for discrimination, when the number of line segments determined to be the ductile fracture portion 11b is p (p> 0), the difference in x coordinates for the two points constituting each line segment. If the absolute values of are Δx 1 , Δx 2 , ..., Δx p , and the absolute values of the difference between the y coordinate are Δy 1 , Δy 2 , ..., Δy p , respectively, then to the ZX plane of the ductile fracture portion 11b. projected length l x of each projection length l y to the YZ plane of the ductile fracture portion 11b of the next equation (4), is expressed as equation (5). In Figure 6, the projection length l y to the YZ plane of the projected length l x and ductile fracture portion 11b of the ZX plane of the ductile fracture portion 11b is not only partially shown.

Figure 2021148453
Figure 2021148453

投影長さ算出手段5は、2次元断面の形状データ毎の延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを前述の(4)式及び(5)式を用いて算出する。
また、データ処理装置3は、判別手段4によって2次元断面の形状データ毎に判別された延性破壊部11bの実長を算出する実長算出手段6を備えている。
実長算出手段6による延性破壊部11bの実長を算出する具体的な方法について図6を参照して説明する。
判別に用いた2次元平面(XY平面)において、延性破壊部11bと判断された線分がp本(p>0)である場合、それぞれの線分を構成する2点(x,y)、(x,y)の実長Δxyは、次の(6)式に表される。
Projected length calculating unit 5, the projected length l y to 2-dimensional cross-sectional shape data for each of the projected length l x and YZ plane of ductile fracture portion 11b of the ZX plane of the ductile fracture portion 11b of the aforementioned (4 ) And (5) are used for calculation.
Further, the data processing device 3 includes an actual length calculating means 6 for calculating the actual length of the ductile fracture portion 11b determined for each shape data of the two-dimensional cross section by the determining means 4.
A specific method for calculating the actual length of the ductile fracture portion 11b by the actual length calculating means 6 will be described with reference to FIG.
In the two-dimensional plane (XY plane) used for discrimination, when the line segment determined to be the ductile fracture portion 11b is p lines (p> 0), the two points (x a , ya a) constituting each line segment are formed. ), The actual length Δxy of (x b , y b ) is expressed by the following equation (6).

Figure 2021148453
Figure 2021148453

そして、判別に用いた2次元平面(XY平面)において、延性破壊部11bと判断された線分がp本(p>0)である場合、各線分の実長を実長Δxy、Δxy、・・・、Δxyとすると、延性破壊部11bの実長lxyは、次の(7)式により表される。 Then, in the two-dimensional plane (XY plane) used for discrimination, when the line segments determined to be the ductile fracture portion 11b are p lines (p> 0), the actual lengths of the line segments are the actual lengths Δxy 1 and Δxy 2. , ..., Δxy p , the actual length lxy of the ductile fracture portion 11b is expressed by the following equation (7).

Figure 2021148453
Figure 2021148453

実長算出手段6は、2次元断面の形状データ毎の延性破壊部11bの実長lxyを前述の(7)式を用いて算出する。
更に、データ処理装置3は、実長算出手段6によって算出された2次元断面の形状データ毎の延性破壊部11bの実長lxyと、複数(m個)の2次元断面の鋼材10のき裂伝播方向(Z方向)における切断間隔Δzとに基づいて、鋼材10のき裂伝播方向(Z方向)の前記所定範囲における延性破壊部11bの表面積を算出する表面積算出手段7を備えている。
The actual length calculating means 6 calculates the actual length lxy of the ductile fracture portion 11b for each shape data of the two-dimensional cross section by using the above equation (7).
Further, the data processing device 3 includes the actual length lxy of the ductile fracture portion 11b for each shape data of the two-dimensional cross section calculated by the actual length calculating means 6, and the cracks of the steel material 10 having a plurality of (m pieces) two-dimensional cross sections. A cross-section calculation means 7 for calculating the surface area of the fractured fracture portion 11b in the predetermined range in the crack propagation direction (Z direction) of the steel material 10 based on the cutting interval Δz in the propagation direction (Z direction) is provided.

表面積算出手段7による延性破壊部11bの表面積を算出する具体的な方法について説明する。
前述したように、判別手段4では、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出するに際し、図1に示すように、鋼材10のき裂伝播方向(Z方向)に一定の切断間隔Δzで所定範囲にわたって切断した複数(m個)の2次元断面の形状データを抽出している。
そして、実長算出手段6は、2次元断面の形状データ毎の延性破壊部11bの実長lxyを算出している。
ここで、2次元断面における延性破壊部11bの実長lxyは、複数(m個)あることから、各2次元断面における延性破壊部11bの実長をlxy、lxy、・・・、lxyとすると、前述の所定範囲における延性破壊部11bの表面積Sは、次の(8)式により近似することができる。
A specific method for calculating the surface area of the ductile fracture portion 11b by the surface area calculation means 7 will be described.
As described above, the discriminating means 4 extracts the shape data of the two-dimensional cross section cut in the plane (XY plane) perpendicular to the crack propagation direction (Z direction) of the steel material 10 from the three-dimensional point group data. As shown in FIG. 1, shape data of a plurality of (m pieces) two-dimensional cross sections cut over a predetermined range at a constant cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 are extracted.
Then, the actual length calculating means 6 calculates the actual length lxy of the ductile fracture portion 11b for each shape data of the two-dimensional cross section.
Here, since the actual lengths of the ductile fracture portions 11b in the two-dimensional cross section are plural (m), the actual lengths of the ductile fracture portions 11b in each two-dimensional cross section are lxy 1 , lxy 2 , ..., Lxy. Assuming m , the surface surface S of the ductile fracture portion 11b in the above-mentioned predetermined range can be approximated by the following equation (8).

Figure 2021148453
Figure 2021148453

なお、この近似値と実表面積との大きな乖離を回避するため、切断間隔Δzは対象となる破面11の大きさを考慮して設定することが好ましい。
表面積算出手段7は、前述の(8)式によりき裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sを算出する。
In order to avoid a large deviation between this approximate value and the actual surface area, it is preferable to set the cutting interval Δz in consideration of the size of the target fracture surface 11.
The surface area calculation means 7 calculates the surface area S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) by the above equation (8).

出力装置8は、データ処理装置3による算出結果を出力するものであり、例えば、プリンター等で構成され、投影長さ算出手段5による2次元断面の形状データ毎の延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さl、実長算出手段6による2次元断面の形状データ毎の延性破壊部11bの実長lxy、表面積算出手段7によるき裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sの算出結果を出力する。 The output device 8 outputs the calculation result by the data processing device 3, for example, to the ZX plane of the ductile fracture unit 11b for each shape data of the two-dimensional cross section by the projection length calculation means 5, which is composed of a printer or the like. According projection length l x and projected length l y to the YZ plane of the ductile fracture portion 11b, the actual length lxy ductile fracture portion 11b of each shape data of the two-dimensional cross-section by the actual length calculating unit 6, the surface area calculation means 7 The calculation result of the surface surface S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) is output.

このように、本実施形態に係る鋼材破面の判別装置1によれば、鋼材10の破面11の形状を測定する3次元測定装置2と、3次元測定装置2で測定された破面形状の3次元の点群データを取得し、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出し、抽出された2次元断面の形状データにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを判別する判別手段4とを備えている。
これにより、鋼材10の破面11において脆性破壊部11aと延性破壊部11bとを自動で判別することができる。また、鋼材10の破面11の形状を測定する際に3次元測定装置(例えば、3Dスキャナ)を使用し、顕微鏡を用いないので、小型試験(落重試験、シャルピー衝撃試験等)に加えて大型試験片に対しても適用可能な鋼材破面の判別装置1とすることができる。
As described above, according to the steel material fracture surface discriminating device 1 according to the present embodiment, the three-dimensional measuring device 2 for measuring the shape of the fracture surface 11 of the steel material 10 and the fracture surface shape measured by the three-dimensional measuring device 2 The three-dimensional point group data of the above is acquired, and the shape data of the two-dimensional cross section cut in the plane (XY plane) perpendicular to the crack propagation direction (Z direction) of the steel material 10 is extracted from the three-dimensional point group data. Based on the absolute value of the inclination of the line segment between adjacent points and the absolute value of the difference in inclination of the adjacent line segment in the extracted shape data of the two-dimensional cross section, the range of the line segment is brittle fracture portion 11a or ductility. It is provided with a discriminating means 4 for discriminating whether it is the broken portion 11b.
As a result, the brittle fracture portion 11a and the ductile fracture portion 11b can be automatically discriminated from the fracture surface 11 of the steel material 10. Further, when measuring the shape of the fracture surface 11 of the steel material 10, a three-dimensional measuring device (for example, a 3D scanner) is used, and since a microscope is not used, in addition to a small test (drop weight test, Charpy impact test, etc.) It can be a steel fracture surface discrimination device 1 that can be applied to a large test piece.

また、本実施形態に係る鋼材破面の判別装置1によれば、判別手段4は、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出するに際し、鋼材10のき裂伝播方向(Z方向)に一定の切断間隔Δzで切断した複数(m個)の2次元断面の形状データを抽出する。そして、抽出された複数(m個)の2次元断面の形状データのそれぞれにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別する。
これにより、鋼材10のき裂伝播方向(Z方向)における複数(m個)の2次元断面の形状データにおいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別できる。
Further, according to the steel material fracture surface discriminating device 1 according to the present embodiment, the discriminating means 4 is a plane (XY plane) perpendicular to the crack propagation direction (Z direction) of the steel material 10 from the three-dimensional point group data. When extracting the shape data of the two-dimensional cross section cut in 1 above, the shape data of a plurality (m pieces) of the two-dimensional cross section cut at a constant cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 is extracted. Then, a line segment (line segment 12) between adjacent points (point 1 and point 2, ..., Point n-1 and point n) in each of the extracted plurality (m) two-dimensional cross-sectional shape data. , ..., Based on the absolute value of the inclination of the line segment n-1n) and the absolute value of the difference in the inclination of the adjacent line segments, it is two-dimensional whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b. It is determined for each cross-sectional shape data.
As a result, in the shape data of a plurality of (m) two-dimensional cross sections in the crack propagation direction (Z direction) of the steel material 10, the shape of the two-dimensional cross section determines whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b. It can be identified for each data.

また、本実施形態に係る鋼材破面の判別装置1によれば、判別手段4は、抽出された複数(m個)の2次元断面の形状データのそれぞれにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとしたときに、次の手法により線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別する。 Further, according to the steel material fracture surface discriminating device 1 according to the present embodiment, the discriminating means 4 is continuously adjacent to the points 1 in each of the extracted shape data of the plurality of (m) two-dimensional cross sections. Point 2, point 2 and point 3, point 3 and point 4, ..., Line segment 12 between point n-1 and point n, line segment 23, line segment 34, ..., Line segment n-1n The absolute values of the slopes are a 12, a 23 , a 34, ..., An-1n , respectively, and the adjacent line segment 12 and line segment 23, line segment 23 and line segment 34, ..., Line segment n. When the absolute values of the difference in inclination between -2n-1 and the line segment n-1n are b 13 , b 24 , ..., B n-2n , respectively, and the thresholds α and β differ depending on the steel material, the following method is used. It is determined whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b for each shape data of the two-dimensional cross section.

(a)点1と点2間の線分12については、a12>αであれば延性破壊部11b、a12≦αであれば脆性破壊部11aと判断し、
(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部11aと判断されている場合に、b13>βであれば延性破壊部11bと判断し、b13≦βであれば脆性破壊部11aと判断し、
(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部11bと判断されている場合に、a23>αかつb13≦βであれば延性破壊部11bと判断し、a23≦αあるいはb13>βであれば脆性破壊部11aと判断し、
(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部11aか延性破壊部11bかを判断する。
(A) Regarding the line segment 12 between the points 1 and 2 , if a 12 > α, it is determined to be the ductile fracture portion 11b, and if a 12 ≤ α, it is determined to be the brittle fracture portion 11a.
(B) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the brittle fracture portion 11a , if b 13 > β, the ductile fracture portion 11b If b 13 ≤ β, it is determined that the brittle fracture portion 11a is formed.
(C) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion 11b, a 23 > α and b 13 ≤ β. If it is determined to be the ductile fracture portion 11b, and if a 23 ≤ α or b 13 > β, it is determined to be the brittle fracture portion 11a.
(D) Regarding the line segments 34, ..., Line segments n-1n after the line segment 34 between the points 3 and 4, the brittle fracture portion 11a or the ductile fracture portion 11a or the ductile fracture portion according to the judgment criteria of (b) and (c). Judge whether it is 11b.

これにより、抽出された複数(m個)の2次元断面の形状データのそれぞれにおいて、線分12、線分23、線分34、・・・、線分n−1nのそれぞれについて脆性破壊部11aか延性破壊部11bかを正確に判別することができる。
このように、判別手段4による脆性破壊部11aか延性破壊部11bかの判断に際し、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値a12、23、a34、・・・、an−1nのみでなく、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値b13、b24、・・・、bn−2nを用いているのは、傾斜の大小だけで判断すると誤差が大きいので、傾斜の急変点を脆性破壊部分と延性破壊部分との境界として検出するためである。
As a result, in each of the extracted shape data of the plurality of (m) two-dimensional cross sections, the brittle fracture portion 11a is provided for each of the line segment 12, the line segment 23, the line segment 34, ..., And the line segment n-1n. It is possible to accurately determine whether it is the ductile fracture portion 11b.
In this way, when the discriminating means 4 determines whether the brittle fracture portion 11a or the ductile fracture portion 11b, the points 1 and 2, the points 2 and 3, the points 3 and 4, ... Absolute values of the slopes of line segment 12, line segment 23, line segment 34, ..., Line segment n-1n between n-1 and point n, a 12, a 23 , a 34, ..., an- Not only 1n , but also adjacent line segment 12 and line segment 23, line segment 23 and line segment 34, ..., Absolute value b 13 of the difference in slope between line segment n-2n-1 and line segment n-1n, The reason why b 24 , ..., B n-2n is used is to detect the sudden change point of the inclination as the boundary between the brittle fracture part and the ductile fracture part because the error is large when judging only by the magnitude of the inclination. be.

また、本実施形態に係る鋼材破面の判別装置1によれば、判別手段4によって2次元断面の形状データ毎に判別された延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを算出する投影長さ算出手段5を備えている。
これにより、2次元断面の形状データ毎の延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを算出することができ、延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを定量的に評価することができる。
Further, according to the determination device 1 of the steel material fracture surface according to the present embodiment, the projection length l x and ductile fracture of the discriminating means 4 to determine ductility fracture portion 11b of the ZX plane for each shape data of the two-dimensional cross-section and a projected length calculating unit 5 that calculates a projected length l y to the YZ plane parts 11b.
Thus, it is possible to calculate the projected length l y to 2-dimensional cross-sectional shape data for each of the projected length l x and YZ plane of ductile fracture portion 11b of the ZX plane of the ductile fracture portion 11b, ductile fracture portion the projected length l y to 11b of the projection length l x and YZ plane of ductile fracture portion 11b of the ZX plane can be quantitatively evaluated.

また、本実施形態に係る鋼材破面の判別装置1によれば、判別手段4によって2次元断面の形状データ毎に判別された延性破壊部11bの実長lxyを算出する実長算出手段6を備えている。
これにより、2次元断面の形状データ毎の延性破壊部11bの実長lxyを算出することができ、延性破壊部11bの実長lxyを定量的に評価することができる。
Further, according to the steel fracture surface discriminating device 1 according to the present embodiment, the actual length calculating means 6 for calculating the actual length lxy of the ductile fracture portion 11b determined for each shape data of the two-dimensional cross section by the discriminating means 4 is provided. I have.
Thereby, the actual length lxy of the ductile fracture portion 11b can be calculated for each shape data of the two-dimensional cross section, and the actual length lxy of the ductile fracture portion 11b can be quantitatively evaluated.

更に、本実施形態に係る鋼材破面の判別装置1によれば、実長算出手段6によって算出された2次元断面の形状データ毎の延性破壊部11bの実長lxyと、複数(m個)の2次元断面の鋼材10のき裂伝播方向(Z方向)における切断間隔Δzとに基づいて、鋼材10のき裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sを算出する表面積算出手段7を備えている。
これにより、き裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sを算出することができ、延性破壊部11bの表面積Sを定量的に評価することができる。
Further, according to the steel fracture surface discriminating device 1 according to the present embodiment, the actual length lxy of the ductile fracture portions 11b for each shape data of the two-dimensional cross section calculated by the actual length calculating means 6 and a plurality (m pieces). The surface surface S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) of the steel material 10 is calculated based on the cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 in the two-dimensional cross section of the above. The surface area calculation means 7 is provided.
Thereby, the surface area S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) can be calculated, and the surface area S of the ductile fracture portion 11b can be quantitatively evaluated.

次に、図2に示す鋼材破面の判別装置1を用いた本実施形態に係る鋼材破面の判別方法について、図3及び図4を参照して説明する。
先ず、ステップS1において、3次元測定装置2は、図1に示す破断された鋼材10の上方から鋼材10の破面11の形状を測定する(3次元測定ステップ)。
次いで、ステップS2において、データ処理装置3の判別手段4は、3次元測定装置2で測定された破面形状の3次元の点群データを取得し、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データ(図6参照)を抽出し、抽出された2次元断面の形状データにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分(線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1n)の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを判別する(判別ステップ)。
Next, a method for discriminating the steel fracture surface according to the present embodiment using the steel fracture surface discriminating device 1 shown in FIG. 2 will be described with reference to FIGS. 3 and 4.
First, in step S1, the three-dimensional measuring device 2 measures the shape of the fracture surface 11 of the steel material 10 from above the broken steel material 10 shown in FIG. 1 (three-dimensional measurement step).
Next, in step S2, the discriminating means 4 of the data processing device 3 acquires the three-dimensional point group data of the fracture surface shape measured by the three-dimensional measuring device 2, and the steel material 10 is obtained from the three-dimensional point group data. The shape data (see FIG. 6) of the two-dimensional cross section cut in the plane (XY plane) perpendicular to the crack propagation direction (Z direction) is extracted, and the adjacent points (point 1) in the extracted shape data of the two-dimensional cross section are extracted. And the absolute value of the inclination of the line segment (line segment 12, ..., Line segment n-1n) between the point 2, ..., Point n-1 and point n) and the adjacent line segment (line segment 12 and Based on the absolute value of the difference in inclination between the line segment 23, the line segment 23 and the line segment 34, ..., The line segment n-2n-1 and the line segment n-1n), the range of the line segment is the brittle fracture portion 11a. It is determined whether it is the ductile fracture portion 11b (discrimination step).

このステップS2(判別ステップ)について、図4を参照して具体的に述べると、先ず、ステップS21において、判別手段4は、3次元測定装置2で測定された破面形状の3次元の点群データを取得する(点群データ取得ステップ)。
次いで、ステップS22において、判別手段4は、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出するに際し、鋼材10のき裂伝播方向(Z方向)に一定の切断間隔Δzで所定範囲にわたって切断した複数(m個)の2次元断面の形状データを抽出する(2次元断面の形状データ抽出ステップ)。
The step S2 (discrimination step) will be specifically described with reference to FIG. 4. First, in step S21, the discriminating means 4 is a three-dimensional point cloud having a fracture surface shape measured by the three-dimensional measuring device 2. Acquire data (point cloud data acquisition step).
Next, in step S22, the discriminating means 4 extracts shape data of a two-dimensional cross section cut in a plane (XY plane) perpendicular to the crack propagation direction (Z direction) of the steel material 10 from the three-dimensional point group data. At this time, the shape data of a plurality of (m) two-dimensional cross sections cut over a predetermined range at a constant cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 are extracted (shape data extraction step of the two-dimensional cross section). ..

その後、ステップS23において、判別手段4は、抽出された複数(m個)の2次元断面の形状データのそれぞれにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分(線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1n)の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを判別する(判断ステップ)
このステップS23における判断ステップでは、前述と同様に、判別手段4は、抽出された複数(m個)の2次元断面の形状データのそれぞれにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる前述の閾値α、βとする。
After that, in step S23, the discriminating means 4 determines adjacent points (points 1 and 2, ..., Points n-1 and n) in each of the extracted shape data of the plurality of (m) two-dimensional cross sections. ) And the absolute value of the inclination of the line segment (line segment 12, ..., Line segment n-1n) and the adjacent line segment (line segment 12 and line segment 23, line segment 23 and line segment 34, ...) , Based on the absolute value of the difference in inclination between the line segment n-2n-1 and the line segment n-1n), it is determined whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b (determination step).
In the determination step in step S23, similarly to the above, the determination means 4 continuously adjacent points 1, points 2, and points 2 in each of the extracted plurality (m) of the shape data of the two-dimensional cross sections. And point 3, point 3 and point 4, ..., Line segment 12, line segment 23, line segment 34, ..., The absolute value of the inclination of line segment n-1n between point n-1 and point n. Let a 12, a 23 , a 34, ..., An-1n , respectively, and adjacent line segment 12 and line segment 23, line segment 23 and line segment 34, ..., Line segment n-2n-1. The absolute values of the difference in the inclinations of the line segments n-1n are b 13 , b 24 , ..., B n-2n, respectively, and the above-mentioned thresholds α and β differ depending on the steel material.

そして、判別手段4は、先ず、(a)点1と点2間の線分12については、a12>αであれば延性破壊部、a12≦αであれば脆性破壊部11aと判断する。次いで、判別手段4は、(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部11aと判断されている場合に、b13>βであれば延性破壊部11bと判断し、b13≦βであれば脆性破壊部11aと判断する。更に、判別手段4は、(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部11bと判断されている場合に、a23>αかつb13≦βであれば延性破壊部11bと判断し、a23≦αあるいはb13>βであれば脆性破壊部11aと判断する。更に、判別手段4は、(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部11aか延性破壊部11bかを判断する。
これにより、ステップS2(判別ステップ)は終了し、判別結果が投影長さ算出手段5に送出される。
Then, the discriminating means 4 first determines (a) that the line segment 12 between the points 1 and 2 is a ductile fracture portion if a 12 > α and a brittle fracture portion 11a if a 12 ≦ α. .. Next, the discriminating means 4 (b) regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the brittle fracture portion 11a, b 13 > β. If it is, it is determined that it is a ductile fracture portion 11b, and if b 13 ≦ β, it is determined that it is a brittle fracture portion 11a. Further, the discriminating means 4 (c) regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion 11b, a 23 > α. If b 13 ≤ β, it is determined to be the ductile fracture portion 11b, and if a 23 ≤ α or b 13 > β, it is determined to be the brittle fracture portion 11a. Further, the discriminating means 4 is brittle according to the determination criteria of (b) and (c) for (d) the line segment 34, ..., The line segment n-1n after the line segment 34 between the point 3 and the point 4. It is determined whether the fracture portion 11a or the ductile fracture portion 11b.
As a result, step S2 (discrimination step) is completed, and the discrimination result is sent to the projection length calculating means 5.

次に、ステップS3に移行し、データ処理装置3の投影長さ算出手段5は、ステップS2(判別ステップ)によって2次元断面の形状データ毎に判別された延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを算出する(投影長さ算出ステップ)。
この投影長さ算出手段5による2次元断面の形状データ毎に判別された延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlの具体的な算出方法は前述と同様である。
次に、ステップS4に移行し、データ処理装置3の実長算出手段6は、ステップS2(判別ステップ)によって2次元断面の形状データ毎に判別された延性破壊部11bの実長lxyを算出する(実長算出ステップ)。
Next, the process proceeds to step S3, and the projection length calculation means 5 of the data processing device 3 projects the ductile fracture unit 11b determined for each shape data of the two-dimensional cross section on the ZX plane by step S2 (discrimination step). calculating the length l x and projected length l y to the YZ plane of the ductile fracture portion 11b (projected length calculation step).
Specifically the projected length l y to the YZ plane of the projected length l x and ductile fracture portion 11b of the ZX plane of the determined ductile fracture portion 11b in a two-dimensional cross-section each of shape data by the projected length calculating unit 5 The specific calculation method is the same as described above.
Next, the process proceeds to step S4, and the actual length calculating means 6 of the data processing device 3 calculates the actual length lxy of the ductile fracture unit 11b determined for each shape data of the two-dimensional cross section in step S2 (discrimination step). (Actual length calculation step).

この実長算出手段6による2次元断面の形状データ毎に判別された延性破壊部11bの実長lxyの具体的な算出方法は前述と同様である。
次に、ステップS5に移行し、データ処理装置3の表面積算出手段7は、ステップS4(実長算出ステップ)によって算出された2次元断面の形状データ毎の延性破壊部11bの実長lxyと、複数(m個)の2次元断面の鋼材10のき裂伝播方向(Z方向)における切断間隔Δzとに基づいて、鋼材10のき裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sを算出する(表面積算出ステップ)。
The specific calculation method of the actual length lxy of the ductile fracture portion 11b determined for each shape data of the two-dimensional cross section by the actual length calculating means 6 is the same as described above.
Next, in step S5, the surface area calculation means 7 of the data processing device 3 includes the actual length lxy of the ductile fracture unit 11b for each shape data of the two-dimensional cross section calculated in step S4 (actual length calculation step). A ductile fracture portion 11b in a predetermined range of the crack propagation direction (Z direction) of the steel material 10 based on the cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 having a plurality of (m pieces) two-dimensional cross sections. The cross section S is calculated (cross section calculation step).

この表面積算出手段7によるき裂伝播方向(Z方向)の所定範囲における表面積Sの具体的な算出方法は前述と同様である。
最後にステップS6に移行し、出力装置8は、投影長さ算出手段5による2次元断面の形状データ毎の延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さl、実長算出手段6による2次元断面の形状データ毎の延性破壊部11bの実長lxy、表面積算出手段7によるき裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sの算出結果を出力する。
The specific method for calculating the surface area S in a predetermined range in the crack propagation direction (Z direction) by the surface area calculation means 7 is the same as described above.
Finally proceeds to a step S6, the output device 8, YZ plane of the projection length l x and ductile fracture portion 11b of the ZX plane of the ductile fracture portion 11b of each shape data of the two-dimensional cross-section by the projected length calculating unit 5 ductile fracture in a predetermined range of the projected length l y, the actual length calculating means actual length of the ductile fracture portion 11b of each shape data of the two-dimensional cross-section by 6 lxy, by crack propagation direction in the surface area calculation unit 7 (Z direction) to The calculation result of the surface surface S of the part 11b is output.

このように、本実施形態に係る鋼材破面の判別方法によれば、鋼材10の破面11の形状を測定するステップS1(3次元測定ステップ)と、ステップS1(3次元測定ステップ)で測定された破面形状の3次元の点群データを取得し、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出し、抽出された2次元断面の形状データにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを判別するステップS2(判別ステップ)とを含んでいる。
これにより、鋼材10の破面11において脆性破壊部11aと延性破壊部11bとを自動で判別することができる。また、鋼材10の破面11の形状を測定する際に3次元測定装置(例えば、3Dスキャナ)を使用し、顕微鏡を用いないので、小型試験(落重試験、シャルピー衝撃試験等)に加えて大型試験片に対しても適用可能な鋼材破面の判別装置1とすることができる。
As described above, according to the method for determining the fracture surface of the steel material according to the present embodiment, the measurement is performed in step S1 (three-dimensional measurement step) for measuring the shape of the fracture surface 11 of the steel material 10 and step S1 (three-dimensional measurement step). A two-dimensional cross section obtained by acquiring three-dimensional point group data of the fractured surface shape and cutting from the three-dimensional point group data in a plane (XY plane) perpendicular to the crack propagation direction (Z direction) of the steel material 10. The shape data is extracted, and the range of the line segment is brittle based on the absolute value of the inclination of the line segment between adjacent points and the absolute value of the difference in the inclination of the adjacent line segment in the extracted shape data of the two-dimensional cross section. It includes a step S2 (discrimination step) of determining whether the fractured portion 11a or the ductile fractured portion 11b.
As a result, the brittle fracture portion 11a and the ductile fracture portion 11b can be automatically discriminated from the fracture surface 11 of the steel material 10. Further, when measuring the shape of the fracture surface 11 of the steel material 10, a three-dimensional measuring device (for example, a 3D scanner) is used, and since a microscope is not used, in addition to a small test (drop weight test, Charpy impact test, etc.) It can be a steel fracture surface discrimination device 1 that can be applied to a large test piece.

また、本実施形態に係る鋼材破面の判別方法によれば、ステップS2(判別ステップ)では、3次元の点群データから鋼材10のき裂伝播方向(Z方向)に対し垂直な平面(XY平面)で切断した2次元断面の形状データを抽出するに際し、鋼材10のき裂伝播方向(Z方向)に一定の切断間隔Δzで所定範囲にわたって切断した複数(m個)の2次元断面の形状データを抽出する。そして、抽出された複数(m個)の2次元断面の形状データのそれぞれにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別する。 Further, according to the method for discriminating the fracture surface of the steel material according to the present embodiment, in step S2 (discrimination step), a plane (XY) perpendicular to the crack propagation direction (Z direction) of the steel material 10 is obtained from the three-dimensional point group data. When extracting the shape data of the two-dimensional cross section cut in the plane), the shape of a plurality (m pieces) of the two-dimensional cross section cut over a predetermined range at a constant cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10. Extract the data. Then, a line segment (line segment 12) between adjacent points (point 1 and point 2, ..., Point n-1 and point n) in each of the extracted plurality (m) two-dimensional cross-sectional shape data. , ..., Based on the absolute value of the inclination of the line segment n-1n) and the absolute value of the difference in the inclination of the adjacent line segments, it is two-dimensional whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b. It is determined for each cross-sectional shape data.

これにより、鋼材10のき裂伝播方向(Z方向)における複数(m個)の2次元断面の形状データにおいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別できる。
また、本実施形態に係る鋼材破面の判別方法によれば、ステップS2(判別ステップ)では、抽出された複数(m個)の2次元断面の形状データのそれぞれにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとしたときに、次の手法により線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別する。
As a result, in the shape data of a plurality of (m) two-dimensional cross sections in the crack propagation direction (Z direction) of the steel material 10, the shape of the two-dimensional cross section determines whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b. It can be identified for each data.
Further, according to the method for discriminating steel fracture surfaces according to the present embodiment, in step S2 (discrimination step), points that are continuously adjacent to each other in each of the extracted shape data of a plurality of (m) two-dimensional cross sections. 1 and point 2, point 2 and point 3, point 3 and point 4, ..., Line segment 12 between point n-1 and point n, line segment 23, line segment 34, ..., Line segment n- The absolute values of the inclination of 1n are a 12, a 23 , a 34, ..., An-1n , respectively, and the adjacent line segment 12 and line segment 23, line segment 23 and line segment 34, ..., Line When the absolute values of the difference in inclination between the line segment n-2n-1 and the line segment n-1n are b 13 , b 24 , ..., B n-2n , respectively, and the thresholds α and β differ depending on the steel material, the following Whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b is determined for each shape data of the two-dimensional cross section by the method of.

(a)点1と点2間の線分12については、a12>αであれば延性破壊部11b、a12≦αであれば脆性破壊部11aと判断し、
(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部11aと判断されている場合に、b13>βであれば延性破壊部11bと判断し、b13≦βであれば脆性破壊部11aと判断し、
(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部11bと判断されている場合に、a23>αかつb13≦βであれば延性破壊部11bと判断し、a23≦αあるいはb13>βであれば脆性破壊部11aと判断し、
(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部11aか延性破壊部11bかを判断する。
(A) Regarding the line segment 12 between the points 1 and 2 , if a 12 > α, it is determined to be the ductile fracture portion 11b, and if a 12 ≤ α, it is determined to be the brittle fracture portion 11a.
(B) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the brittle fracture portion 11a , if b 13 > β, the ductile fracture portion 11b If b 13 ≤ β, it is determined that the brittle fracture portion 11a is formed.
(C) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion 11b, a 23 > α and b 13 ≤ β. If it is determined to be the ductile fracture portion 11b, and if a 23 ≤ α or b 13 > β, it is determined to be the brittle fracture portion 11a.
(D) Regarding the line segments 34, ..., Line segments n-1n after the line segment 34 between the points 3 and 4, the brittle fracture portion 11a or the ductile fracture portion 11a or the ductile fracture portion according to the judgment criteria of (b) and (c). Judge whether it is 11b.

これにより、抽出された複数(m個)の2次元断面の形状データのそれぞれにおいて、線分12、線分23、線分34、・・・、線分n−1nのそれぞれについて脆性破壊部11aか延性破壊部11bかを正確に判別することができる。
また、本実施形態に係る鋼材破面の判別方法によれば、ステップS2(判別ステップ)によって2次元断面の形状データ毎に判別された延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを算出するステップS3(投影長さ算出ステップ)を含んでいる。
As a result, in each of the extracted shape data of the plurality of (m) two-dimensional cross sections, the brittle fracture portion 11a is provided for each of the line segment 12, the line segment 23, the line segment 34, ..., And the line segment n-1n. It is possible to accurately determine whether it is the ductile fracture portion 11b.
The present according to the determination method of the steel material fracture according to the embodiment, the step S2 (determination step) by projected length l x and to the determined ductile fracture portion 11b of the ZX plane for each shape data of the two-dimensional cross-section includes the step S3 (projected length calculation step) for calculating a projected length l y to the YZ plane of the ductile fracture portion 11b.

これにより、2次元断面の形状データ毎の延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを算出することができ、延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを定量的に評価することができる。
また、本実施形態に係る鋼材破面の判別方法によれば、ステップS2(判別ステップ)によって2次元断面の形状データ毎に判別された延性破壊部11bの実長lxyを算出するステップS4(実長算出ステップ)を含んでいる。
Thus, it is possible to calculate the projected length l y to 2-dimensional cross-sectional shape data for each of the projected length l x and YZ plane of ductile fracture portion 11b of the ZX plane of the ductile fracture portion 11b, ductile fracture portion the projected length l y to 11b of the projection length l x and YZ plane of ductile fracture portion 11b of the ZX plane can be quantitatively evaluated.
Further, according to the method for discriminating the fracture surface of the steel material according to the present embodiment, step S4 (actual) for calculating the actual length lxy of the ductile fracture portion 11b determined for each shape data of the two-dimensional cross section in step S2 (discrimination step). Length calculation step) is included.

これにより、2次元断面の形状データ毎の延性破壊部11bの実長lxyを算出することができ、延性破壊部11bの実長lxyを定量的に評価することができる。
更に、本実施形態に係る鋼材破面の判別方法によれば、ステップS4(実長算出ステップ)によって算出された2次元断面の形状データ毎の延性破壊部11bの実長lxyと、複数(m個)の2次元断面の鋼材10のき裂伝播方向(Z方向)における切断間隔Δzとに基づいて、鋼材10のき裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sを算出するステップS5(表面積算出ステップ)を備えている。
Thereby, the actual length lxy of the ductile fracture portion 11b can be calculated for each shape data of the two-dimensional cross section, and the actual length lxy of the ductile fracture portion 11b can be quantitatively evaluated.
Further, according to the method for determining the fracture surface of the steel material according to the present embodiment, the actual length lxy of the ductile fracture portion 11b for each shape data of the two-dimensional cross section calculated in step S4 (actual length calculation step) and a plurality (m). The surface surface S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) of the steel material 10 is determined based on the cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 in the two-dimensional cross section. The calculation step S5 (cross-section calculation step) is provided.

これにより、き裂伝播方向(Z方向)の所定範囲における延性破壊部11bの表面積Sを算出することができ、延性破壊部11bの表面積Sを定量的に評価することができる。
以上、本発明の実施形態について説明してきたが、本発明はこれに限定されず、種々の変更、改良を行うことができる。
例えば、投影長さ算出手段5(投影長さ算出ステップ)は、判別手段4(判別ステップ)によって2次元断面の形状データ毎に判別された延性破壊部11bのZX平面への投影長さl及び延性破壊部11bのYZ平面への投影長さlを算出しているが、判別手段4(判別ステップ)によって2次元断面の形状データ毎に判別された脆性破壊部11aのZX平面への投影長さ及び脆性破壊部11aのYZ平面への投影長さを算出するようにしてもよい。
Thereby, the surface area S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) can be calculated, and the surface area S of the ductile fracture portion 11b can be quantitatively evaluated.
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and various modifications and improvements can be made.
For example, the projection length calculation means 5 (projection length calculation step) has a projection length l x on the ZX plane of the ductile fracture portion 11b determined for each shape data of the two-dimensional cross section by the discrimination means 4 (discrimination step). and it has to calculate the projected length l y to the YZ plane of the ductile fracture portion 11b, discriminating means 4 (determination step) by to the determined brittle fracture portion 11a of the ZX plane for each shape data of the two-dimensional cross-section The projected length and the projected length of the brittle fracture portion 11a on the YZ plane may be calculated.

また、実長算出手段6(実長算出ステップ)は、判別手段4(判別ステップ)によって2次元断面の形状データ毎に判別された延性破壊部11bの実長lxyを算出しているが、判別手段4(判別ステップ)によって2次元断面の形状データ毎に判別された脆性破壊部11aの実長を算出するようにしてもよい。
更に、表面積算出手段7(表面積算出ステップ)は、実長算出手段6(実長算出ステップ)によって算出された2次元断面の形状データ毎の延性破壊部11bの実長lxyと、複数(m個)の2次元断面の鋼材10のき裂伝播方向(Z方向)における切断間隔Δzとに基づいて、き裂伝播方向(Z方向)所定範囲における延性破壊部11bの表面積Sを算出するようにしているが、実長算出手段6(実長算出ステップ)によって算出された2次元断面の形状データ毎の脆性破壊部11aの実長と、複数(m個)の2次元断面の鋼材10のき裂伝播方向(Z方向)における切断間隔Δzとに基づいて、き裂伝播方向(Z方向)所定範囲における脆性破壊部11aの表面積Sを算出するようにしてもよい。
Further, the actual length calculation means 6 (actual length calculation step) calculates the actual length lxy of the ductile fracture portion 11b determined for each shape data of the two-dimensional cross section by the determination means 4 (discrimination step). The actual length of the brittle fracture portion 11a determined for each shape data of the two-dimensional cross section by the means 4 (discrimination step) may be calculated.
Further, the surface area calculation means 7 (surface area calculation step) includes a plurality (m pieces) of the actual length lxy of the ductile fracture portion 11b for each shape data of the two-dimensional cross section calculated by the actual length calculation means 6 (actual length calculation step). ), The surface surface S of the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction) is calculated based on the cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10 in the two-dimensional cross section. However, the actual length of the brittle fracture portion 11a for each shape data of the two-dimensional cross section calculated by the actual length calculating means 6 (actual length calculation step) and the cracks of a plurality (m pieces) of steel materials 10 having a two-dimensional cross section. The surface surface S of the brittle fracture portion 11a in a predetermined range in the crack propagation direction (Z direction) may be calculated based on the cutting interval Δz in the propagation direction (Z direction).

また、本実施形態では、判別手段4(判別ステップ)は、鋼材10のき裂伝播方向(Z方向)に一定の切断間隔Δzで切断した所定範囲の複数(m個)の2次元断面の形状データを抽出し、抽出された複数(m個)の2次元断面の形状データのそれぞれにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを2次元断面の形状データ毎に判別するようにしている。 Further, in the present embodiment, the discriminating means 4 (discrimination step) has a plurality (m pieces) of two-dimensional cross-sectional shapes in a predetermined range cut at a constant cutting interval Δz in the crack propagation direction (Z direction) of the steel material 10. Data is extracted, and a line segment (point 1 and point 2, ..., Point n-1 and point n) between adjacent points (point 1 and point 2, ..., Point n-1 and point n) in each of the extracted shape data of a plurality of (m) two-dimensional cross sections ( Whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b based on the absolute value of the inclination of the line segment 12, ..., The line segment n-1n) and the absolute value of the difference in the inclination of the adjacent line segments. Is determined for each shape data of the two-dimensional cross section.

しかし、判別手段4(判別ステップ)は、鋼材10のき裂伝播方向(Z方向)に一か所で切断した1個の2次元断面の形状データを抽出し、抽出された1個の2次元断面の形状データにおける隣接する点(点1と点2、・・・、点n−1と点n)間の線分(線分12、・・・、線分n−1n)の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部11aか延性破壊部11bかを判別するようにしてもよい。
この場合、投影長さ算出手段5(投影長さ算出ステップ)は、判別手段4(判別ステップ)によって判別された脆性破壊部11aまたは延性破壊部11bのZX平面への投影長さ及び脆性破壊部11aまたは延性破壊部11bのYZ平面への投影長さを1個の2次元断面の形状データについて算出すればよい。
However, the discrimination means 4 (discrimination step) extracts the shape data of one two-dimensional cross section cut at one place in the crack propagation direction (Z direction) of the steel material 10, and extracts one two-dimensional. Absolute inclination of the line segment (line segment 12, ..., line segment n-1n) between adjacent points (point 1 and point 2, ..., Point n-1 and point n) in the shape data of the cross section. It may be determined whether the range of the line segment is the brittle fracture portion 11a or the ductile fracture portion 11b based on the absolute value of the difference between the value and the inclination of the adjacent line segments.
In this case, the projection length calculation means 5 (projection length calculation step) is the projection length of the brittle fracture portion 11a or the ductile fracture portion 11b determined by the discrimination means 4 (discrimination step) on the ZX plane and the brittle fracture portion. The projected length of the ductile fracture portion 11a or the ductile fracture portion 11b onto the YZ plane may be calculated for the shape data of one two-dimensional cross section.

また、この場合、実長算出手段6(実長算出ステップ)は、判別手段4(判別ステップ)によって判別された脆性破壊部11aまたは延性破壊部11bの実長を1個の2次元断面の形状データについて算出すればよい。
更に、この場合、表面積算出手段7(表面積算出ステップ)は、き裂伝播方向(Z方向)の所定範囲における脆性破壊部11aまたは延性破壊部11bの表面積Sを算出しない。
Further, in this case, the actual length calculation means 6 (actual length calculation step) has the actual length of the brittle fracture portion 11a or the ductile fracture portion 11b determined by the discrimination means 4 (discrimination step) in the shape of one two-dimensional cross section. It may be calculated for the data.
Further, in this case, the surface area calculation means 7 (surface area calculation step) does not calculate the surface area S of the brittle fracture portion 11a or the ductile fracture portion 11b in a predetermined range in the crack propagation direction (Z direction).

また、投影長さ算出手段5(投影長さ算出ステップ)は、判別手段4(判別ステップ)によって判別された脆性破壊部11aまたは延性破壊部11bのZX平面への投影長さ及び脆性破壊部11aまたは延性破壊部11bのYZ平面への投影長さを算出しているが、投影長さ算出手段5(投影長さ算出ステップ)は、ZX平面及びYZ平面に限らず、判別手段4(判別ステップ)によって判別された脆性破壊部11aまたは延性破壊部11bの任意の2次元平面に対する投影長さを算出すればよい。 Further, the projection length calculation means 5 (projection length calculation step) is the projection length of the brittle fracture portion 11a or the ductile fracture portion 11b determined by the discrimination means 4 (discrimination step) on the ZX plane and the brittle fracture portion 11a. Alternatively, the projection length of the ductile fracture portion 11b onto the YZ plane is calculated, but the projection length calculation means 5 (projection length calculation step) is not limited to the ZX plane and the YZ plane, but the discrimination means 4 (discrimination step). ), The projected length of the brittle fracture portion 11a or the ductile fracture portion 11b with respect to an arbitrary two-dimensional plane may be calculated.

次に、本発明の実施例について説明する。本実施例で用いた破面11は、図1に示すように、脆性き裂を伝播させた後、未破壊部分を荷重負荷により延性破壊させた鋼材10の破面11である。鋼材10の破面11は、70mm(X方向)×500mm(Z方向)であり、巨視的には500mmの方向(Z方向)へき裂が伝播している。この破面11のうち脆性破壊部11aと延性破壊部11bとが混在した混在部11cにおいて、き裂伝播方向(Z方向)にわたって30mmの範囲で本発明の判別方法を適用した。 Next, examples of the present invention will be described. As shown in FIG. 1, the fracture surface 11 used in this embodiment is the fracture surface 11 of the steel material 10 in which the unbroken portion is ductilely fractured by a load after the brittle cracks are propagated. The fracture surface 11 of the steel material 10 is 70 mm (X direction) × 500 mm (Z direction), and the crack propagates macroscopically in the direction of 500 mm (Z direction). In the mixed portion 11c in which the brittle fracture portion 11a and the ductile fracture portion 11b are mixed in the fracture surface 11, the discrimination method of the present invention is applied within a range of 30 mm over the crack propagation direction (Z direction).

図6には、鋼材破面11における脆性破壊部11aと延性破壊部11bとが混在した混在部11c(30mmの範囲)において、き裂伝播方向(Z方向)に対し垂直な平面で切断した2次元断面の形状データの一例が示されている。
この図6に示す特定の2次元断面においては、目視による脆性破壊部11aか延性破壊部11bかの判別と、本発明の判別方法による脆性破壊部11aか延性破壊部11bかの判別との一致率が85.8%となっており、本発明の判別方法が良好な結果であることがわかった。
In FIG. 6, in the mixed portion 11c (range of 30 mm) in which the brittle fracture portion 11a and the ductile fracture portion 11b are mixed in the fracture surface 11 of the steel material, the fracture surface 11 is cut in a plane perpendicular to the crack propagation direction (Z direction). An example of the shape data of the dimensional cross section is shown.
In the specific two-dimensional cross section shown in FIG. 6, the visual determination of the brittle fracture portion 11a or the ductile fracture portion 11b coincides with the determination of the brittle fracture portion 11a or the ductile fracture portion 11b by the discrimination method of the present invention. The rate was 85.8%, and it was found that the discrimination method of the present invention was a good result.

Figure 2021148453
Figure 2021148453

なお、表1には、図6に示す特定の2次元断面における延性破壊部11bのZX平面への投影長さl、延性破壊部11bのYZ平面への投影長さl、延性破壊部11bの実長lxy、及び対象範囲(30mm)における延性破壊部11bの表面積Sが示されている。 In Table 1, the specific projected length l x to the ZX plane of the ductile fracture portion 11b in the two-dimensional cross-section, projected length l y to the YZ plane of the ductile fracture portion 11b shown in FIG. 6, ductile fracture portion The actual length lxy of 11b and the surface surface S of the ductile fracture portion 11b in the target range (30 mm) are shown.

1 鋼材破面の判別装置
2 3次元測定装置
3 データ処理装置
4 判別手段
5 投影長さ算出手段
6 実長算出手段
7 表面積算出手段
8 出力装置
10 鋼材
10a 一端面
10b 他端面
11 破面
11a 脆性破壊部
11b 延性破壊部
11c 混在部
1 Steel fracture surface discrimination device 2 3D measuring device 3 Data processing device 4 Discrimination means 5 Projection length calculation means 6 Actual length calculation means 7 Surface area calculation means 8 Output device 10 Steel material 10a One end surface 10b End end surface 11 Fracture surface 11a Brittleness Breaking part 11b Ductile breaking part 11c Mixed part

Claims (18)

鋼材の破面の形状を測定する3次元測定装置と、該3次元測定装置で測定された破面形状の3次元の点群データを取得し、該3次元の点群データから前記鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データを抽出し、抽出された前記2次元断面の形状データにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部か延性破壊部かを判別する判別手段とを備えていることを特徴とする鋼材破面の判別装置。 A three-dimensional measuring device for measuring the shape of the fracture surface of the steel material and three-dimensional point group data of the fracture surface shape measured by the three-dimensional measuring device are acquired, and the steel material is used from the three-dimensional point group data. The shape data of the two-dimensional cross section cut in the plane perpendicular to the crack propagation direction is extracted, and the absolute value of the inclination of the line segment between the adjacent points and the adjacent line segment in the extracted shape data of the two-dimensional cross section. A steel fracture surface discriminating device comprising a discriminating means for discriminating whether the range of a line segment is a brittle fracture portion or a ductile fracture portion based on an absolute value of a difference in inclination. 前記判別手段は、抽出された前記2次元断面の形状データにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとしたときに、
(a)点1と点2間の線分12については、a12>αであれば延性破壊部、a12≦αであれば脆性破壊部と判断し、
(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部と判断されている場合に、b13>βであれば延性破壊部と判断し、b13≦βであれば脆性破壊部と判断し、
(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部と判断されている場合に、a23>αかつb13≦βであれば延性破壊部と判断し、a23≦αあるいはb13>βであれば脆性破壊部と判断し、
(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部か延性破壊部かを判断することを特徴とする請求項1に記載の鋼材破面の判別装置。
In the extracted shape data of the two-dimensional cross section, the discriminating means continuously adjacent points 1 and 2, points 2 and 3, points 3 and 4, ..., Points n-1 and points. The absolute values of the inclinations of the line segment 12, the line segment 23, the line segment 34, ..., The line segment n-1n between n are set to a 12, a 23 , a 34, ..., An-1n , respectively. The absolute values of the difference in inclination between the adjacent line segment 12 and the line segment 23, the line segment 23 and the line segment 34, ..., The line segment n-2n-1 and the line segment n-1n are b 13 , b 24 , respectively. ..., b n-2n, and when the line segments α and β differ depending on the steel material,
(A) Regarding the line segment 12 between the points 1 and 2 , if a 12 > α, it is determined to be a ductile fracture portion, and if a 12 ≤ α, it is determined to be a brittle fracture portion.
(B) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be a brittle fracture portion , if b 13 > β, it is determined to be a ductile fracture portion. Then , if b 13 ≤ β, it is judged to be a brittle fracture part, and it is judged.
(C) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion, if a 23 > α and b 13 ≦ β. It is judged to be a ductile fracture part, and if a 23 ≤ α or b 13 > β, it is judged to be a brittle fracture part.
(D) Regarding the line segments 34, ..., Line segments n-1n after the line segment 34 between the points 3 and 4, whether they are brittle fracture parts or ductile fracture parts according to the judgment criteria of (b) and (c). The steel fracture surface discriminating device according to claim 1, further comprising determining.
前記判別手段によって判別された脆性破壊部または延性破壊部の任意の2次元平面に対する投影長さを算出する投影長さ算出手段を備えていることを特徴とする請求項2に記載の鋼材破面の判別装置。 The steel fracture surface according to claim 2, further comprising a projection length calculating means for calculating the projection length of the brittle fracture portion or the ductile fracture portion determined by the discrimination means with respect to an arbitrary two-dimensional plane. Discriminating device. 前記判別手段によって判別された脆性破壊部または延性破壊部の実長を算出する実長算出手段を備えていることを特徴とする請求項2又は3に記載の鋼材破面の判別装置。 The device for discriminating a fracture surface of a steel material according to claim 2 or 3, further comprising an actual length calculating means for calculating the actual length of the brittle fractured portion or the ductile fractured portion determined by the discriminating means. 前記判別手段は、前記3次元の点群データから前記鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データを抽出するに際し、前記鋼材のき裂伝播方向に一定の切断間隔で所定範囲にわたって切断した複数の2次元断面の形状データを抽出し、抽出された前記複数の2次元断面の形状データのそれぞれにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部か延性破壊部かを2次元断面の形状データ毎に判別することを特徴とする請求項1に記載の鋼材破面の判別装置。 When the discriminating means extracts shape data of a two-dimensional cross section cut in a plane perpendicular to the crack propagation direction of the steel material from the three-dimensional point group data, the cutting means is constant in the crack propagation direction of the steel material. The shape data of a plurality of two-dimensional cross sections cut over a predetermined range at intervals are extracted, and the absolute value of the inclination of the line segment between the adjacent points and the adjacent lines in each of the extracted shape data of the plurality of two-dimensional cross sections. The steel fracture surface according to claim 1, wherein the range of the line segment is determined for each shape data of the two-dimensional cross section based on the absolute value of the difference in the inclination of the minutes. Discriminating device. 前記判別手段は、抽出された前記複数の2次元断面の形状データのそれぞれにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとしたときに、
(a)点1と点2間の線分12については、a12>αであれば延性破壊部、a12≦αであれば脆性破壊部と判断し、
(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部と判断されている場合に、b13>βであれば延性破壊部と判断し、b13≦βであれば脆性破壊部と判断し、
(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部と判断されている場合に、a23>αかつb13≦βであれば延性破壊部と判断し、a23≦αあるいはb13>βであれば脆性破壊部と判断し、
(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部か延性破壊部かを判断することを特徴とする請求項5に記載の鋼材破面の判別装置。
In each of the extracted shape data of the plurality of two-dimensional cross sections, the discriminating means continuously adjacent points 1 and 2, points 2 and 3, points 3 and 4, ..., Point n. The absolute values of the slopes of the line segment 12, the line segment 23, the line segment 34, ..., The line segment n-1n between -1 and the point n are a 12, a 23 , a 34, ..., An, respectively. Set to -1n, and the absolute value of the difference in inclination between the adjacent line segment 12 and the line segment 23, the line segment 23 and the line segment 34, ..., The line segment n-2n-1 and the line segment n-1n is b 13 respectively. , B 24 , ..., b n-2n, and when the line segments α and β differ depending on the steel material,
(A) Regarding the line segment 12 between the points 1 and 2 , if a 12 > α, it is determined to be a ductile fracture portion, and if a 12 ≤ α, it is determined to be a brittle fracture portion.
(B) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be a brittle fracture portion , if b 13 > β, it is determined to be a ductile fracture portion. Then , if b 13 ≤ β, it is judged to be a brittle fracture part, and it is judged.
(C) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion, if a 23 > α and b 13 ≦ β. It is judged to be a ductile fracture part, and if a 23 ≤ α or b 13 > β, it is judged to be a brittle fracture part.
(D) Regarding the line segments 34, ..., Line segments n-1n after the line segment 34 between the points 3 and 4, whether they are brittle fracture parts or ductile fracture parts according to the judgment criteria of (b) and (c). The steel fracture surface discriminating device according to claim 5, further comprising determining.
前記判別手段によって2次元断面の形状データ毎に判別された脆性破壊部または延性破壊部の任意の2次元平面に対する投影長さを算出する投影長さ算出手段を備えていることを特徴とする請求項6に記載の鋼材破面の判別装置。 A claim comprising a projection length calculating means for calculating the projection length of a brittle fracture portion or a ductile fracture portion determined for each shape data of a two-dimensional cross section with respect to an arbitrary two-dimensional plane by the discrimination means. Item 6. The device for discriminating the fracture surface of a steel material according to Item 6. 前記判別手段によって2次元断面の形状データ毎に判別された脆性破壊部または延性破壊部の実長を算出する実長算出手段を備えていることを特徴とする請求項6又は7に記載の鋼材破面の判別装置。 The steel material according to claim 6 or 7, further comprising an actual length calculating means for calculating the actual length of the brittle fractured portion or the ductile fractured portion determined for each shape data of the two-dimensional cross section by the discriminating means. Fracture surface discrimination device. 前記実長算出手段によって算出された2次元断面の形状データ毎の脆性破壊部または延性破壊部の実長と、前記複数の2次元断面の前記鋼材のき裂伝播方向における切断間隔とに基づいて、前記鋼材のき裂伝播方向の前記所定範囲における脆性破壊部または延性破壊部の表面積を算出する表面積算出手段を備えていることを特徴とする請求項8に記載の鋼材破面の判別装置。 Based on the actual length of the brittle fracture part or ductile fracture part for each shape data of the two-dimensional cross section calculated by the actual length calculation means, and the cutting interval in the crack propagation direction of the steel material of the plurality of two-dimensional cross sections. The device for determining a fracture surface of a steel material according to claim 8, further comprising a cross-section calculating means for calculating the cross section of the brittle fracture portion or the ductile fracture portion in the predetermined range in the crack propagation direction of the steel material. 鋼材の破面の形状を測定する3次元測定ステップと、
該3次元測定ステップで測定された破面形状の3次元の点群データを取得し、該3次元の点群データから前記鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データを抽出し、抽出された該2次元断面の形状データにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部か延性破壊部かを判別する判別ステップとを含むことを特徴とする鋼材破面の判別方法。
A three-dimensional measurement step that measures the shape of the fracture surface of a steel material,
The three-dimensional point group data of the fracture surface shape measured in the three-dimensional measurement step is acquired, and the two-dimensional cross section cut from the three-dimensional point group data in a plane perpendicular to the crack propagation direction of the steel material. The shape data is extracted, and the range of the line segment is determined based on the absolute value of the inclination of the line segment between the adjacent points and the absolute value of the difference in the inclination of the adjacent line segments in the extracted shape data of the two-dimensional cross section. A method for discriminating a fracture surface of a steel material, which comprises a discriminating step for discriminating between a brittle fractured portion and a ductile fractured portion.
前記判別ステップでは、抽出された前記2次元断面の形状データにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとしたときに、
(a)点1と点2間の線分12については、a12>αであれば延性破壊部、a12≦αであれば脆性破壊部と判断し、
(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部と判断されている場合に、b13>βであれば延性破壊部と判断し、b13≦βであれば脆性破壊部と判断し、
(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部と判断されている場合に、a23>αかつb13≦βであれば延性破壊部と判断し、a23≦αあるいはb13>βであれば脆性破壊部と判断し、
(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部か延性破壊部かを判断することを特徴とする請求項10に記載の鋼材破面の判別方法。
In the determination step, in the extracted shape data of the two-dimensional cross section, points 1 and 2, points 2 and 3, points 3 and 4, ..., Points n-1 and points that are adjacent to each other in succession. The absolute values of the inclinations of the line segment 12, the line segment 23, the line segment 34, ..., The line segment n-1n between n are set to a 12, a 23 , a 34, ..., An-1n , respectively. The absolute values of the difference in inclination between the adjacent line segment 12 and the line segment 23, the line segment 23 and the line segment 34, ..., The line segment n-2n-1 and the line segment n-1n are b 13 , b 24 , respectively. ..., b n-2n, and when the line segments α and β differ depending on the steel material,
(A) Regarding the line segment 12 between the points 1 and 2 , if a 12 > α, it is determined to be a ductile fracture portion, and if a 12 ≤ α, it is determined to be a brittle fracture portion.
(B) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be a brittle fracture portion , if b 13 > β, it is determined to be a ductile fracture portion. Then , if b 13 ≤ β, it is judged to be a brittle fracture part, and it is judged.
(C) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion, if a 23 > α and b 13 ≦ β. It is judged to be a ductile fracture part, and if a 23 ≤ α or b 13 > β, it is judged to be a brittle fracture part.
(D) Regarding the line segments 34, ..., Line segments n-1n after the line segment 34 between the points 3 and 4, whether they are brittle fracture parts or ductile fracture parts according to the judgment criteria of (b) and (c). The method for discriminating a fracture surface of a steel material according to claim 10, wherein the method for determining the fracture surface of a steel material.
前記判別ステップによって判別された脆性破壊部または延性破壊部の任意の2次元平面に対する投影長さを算出する投影長さ算出ステップを含むことを特徴とする請求項11に記載の鋼材破面の判別方法。 The determination of a steel fracture surface according to claim 11, further comprising a projection length calculation step for calculating the projection length of the brittle fracture portion or the ductile fracture portion determined by the determination step with respect to an arbitrary two-dimensional plane. Method. 前記判別ステップによって判別された脆性破壊部または延性破壊部の実長を算出する実長算出ステップを含むことを特徴とする請求項11又は12に記載の鋼材破面の判別方法。 The method for discriminating a steel fracture surface according to claim 11 or 12, wherein the actual length calculation step for calculating the actual length of the brittle fracture portion or the ductile fracture portion determined by the discrimination step is included. 前記判別ステップでは、前記3次元の点群データから前記鋼材のき裂伝播方向に対し垂直な平面で切断した2次元断面の形状データを抽出するに際し、前記鋼材のき裂伝播方向に一定の切断間隔で所定範囲にわたって切断した複数の2次元断面の形状データを抽出し、抽出された前記複数の2次元断面の形状データのそれぞれにおける隣接する点間の線分の傾きの絶対値及び隣接する線分の傾きの差の絶対値に基づいて、線分の範囲が脆性破壊部か延性破壊部かを2次元断面の形状データ毎に判別することを特徴とする請求項10に記載の鋼材破面の判別方法。 In the discrimination step, when extracting the shape data of the two-dimensional cross section cut in the plane perpendicular to the crack propagation direction of the steel material from the three-dimensional point group data, the cutting is constant in the crack propagation direction of the steel material. The shape data of a plurality of two-dimensional cross sections cut over a predetermined range at intervals are extracted, and the absolute value of the inclination of the line segment between the adjacent points and the adjacent lines in each of the extracted shape data of the plurality of two-dimensional cross sections. The steel fracture surface according to claim 10, wherein the range of the line segment is determined for each shape data of the two-dimensional cross section based on the absolute value of the difference in the inclination of the minutes. How to determine. 前記判別ステップでは、抽出された前記複数の2次元断面の形状データのそれぞれにおいて、連続して隣り合う点1と点2、点2と点3、点3と点4、・・・、点n−1と点n間の線分12、線分23、線分34、・・・、線分n−1nの傾きの絶対値をそれぞれa12、23、a34、・・・、an−1nとし、隣り合う線分12と線分23、線分23と線分34、・・・、線分n−2n−1と線分n−1nの傾きの差の絶対値をそれぞれb13、b24、・・・、bn−2nとし、鋼材により異なる閾値α、βとしたときに、
(a)点1と点2間の線分12については、a12>αであれば延性破壊部、a12≦αであれば脆性破壊部と判断し、
(b)点2と点3間の線分23については、点1と点2間の線分12が脆性破壊部と判断されている場合に、b13>βであれば延性破壊部と判断し、b13≦βであれば脆性破壊部と判断し、
(c)点2と点3間の線分23については、点1と点2間の線分12が延性破壊部と判断されている場合に、a23>αかつb13≦βであれば延性破壊部と判断し、a23≦αあるいはb13>βであれば脆性破壊部と判断し、
(d)点3と点4間の線分34以降の線分34、・・・、線分n−1nについては、(b)及び(c)の判断基準に従って脆性破壊部か延性破壊部かを判断することを特徴とする請求項14に記載の鋼材破面の判別方法。
In the determination step, in each of the extracted shape data of the plurality of two-dimensional cross sections, points 1 and 2, point 2 and point 3, point 3 and point 4, ..., Point n that are adjacent to each other in succession. The absolute values of the slopes of the line segment 12, the line segment 23, the line segment 34, ..., The line segment n-1n between -1 and the point n are a 12, a 23 , a 34, ..., An, respectively. Set to -1n, and the absolute value of the difference in inclination between the adjacent line segment 12 and the line segment 23, the line segment 23 and the line segment 34, ..., The line segment n-2n-1 and the line segment n-1n is b 13 respectively. , B 24 , ..., b n-2n, and when the line segments α and β differ depending on the steel material,
(A) Regarding the line segment 12 between the points 1 and 2 , if a 12 > α, it is determined to be a ductile fracture portion, and if a 12 ≤ α, it is determined to be a brittle fracture portion.
(B) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be a brittle fracture portion , if b 13 > β, it is determined to be a ductile fracture portion. Then , if b 13 ≤ β, it is judged to be a brittle fracture part, and it is judged.
(C) Regarding the line segment 23 between the points 2 and 3, when the line segment 12 between the points 1 and 2 is determined to be the ductile fracture portion, if a 23 > α and b 13 ≦ β. It is judged to be a ductile fracture part, and if a 23 ≤ α or b 13 > β, it is judged to be a brittle fracture part.
(D) Regarding the line segments 34, ..., Line segments n-1n after the line segment 34 between the points 3 and 4, whether they are brittle fracture parts or ductile fracture parts according to the judgment criteria of (b) and (c). The method for determining a fracture surface of a steel material according to claim 14, wherein the method for determining a fracture surface of a steel material is characterized.
前記判別ステップによって2次元断面の形状データ毎に判別された脆性破壊部または延性破壊部の任意の2次元平面に対する投影長さを算出する投影長さ算出ステップを含むことを特徴とする請求項15に記載の鋼材破面の判別方法。 15. Claim 15 including a projection length calculation step for calculating the projection length of a brittle fracture portion or a ductile fracture portion determined for each shape data of a two-dimensional cross section with respect to an arbitrary two-dimensional plane by the determination step. The method for discriminating the fracture surface of steel material described in 1. 前記判別ステップによって2次元断面の形状データ毎に判別された脆性破壊部または延性破壊部の実長を算出する実長算出ステップを含むことを特徴とする請求項15又は16に記載の鋼材破面の判別方法。 The steel fracture surface according to claim 15 or 16, wherein the actual length calculation step for calculating the actual length of the brittle fracture portion or the ductile fracture portion determined for each shape data of the two-dimensional cross section by the determination step is included. How to determine. 前記実長算出ステップによって算出された2次元断面の形状データ毎の脆性破壊部または延性破壊部の実長と、前記複数の2次元断面の前記鋼材のき裂伝播方向における切断間隔とに基づいて、前記鋼材のき裂伝播方向の前記所定範囲における脆性破壊部または延性破壊部の表面積を算出する表面積算出ステップを含むことを特徴とする請求項17に記載の鋼材破面の判別方法。 Based on the actual length of the brittle fractured portion or ductile fractured portion for each shape data of the two-dimensional cross section calculated by the actual length calculation step, and the cutting interval of the plurality of two-dimensional cross sections in the crack propagation direction of the steel material. The method for determining a fracture surface of a steel material according to claim 17, further comprising a step of calculating the cross section of the brittle fractured portion or the ductile fractured portion in the predetermined range in the crack propagation direction of the steel material.
JP2020045435A 2020-03-16 2020-03-16 Determination device and determination method for steel fracture surface Active JP7147802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020045435A JP7147802B2 (en) 2020-03-16 2020-03-16 Determination device and determination method for steel fracture surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020045435A JP7147802B2 (en) 2020-03-16 2020-03-16 Determination device and determination method for steel fracture surface

Publications (2)

Publication Number Publication Date
JP2021148453A true JP2021148453A (en) 2021-09-27
JP7147802B2 JP7147802B2 (en) 2022-10-05

Family

ID=77848380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020045435A Active JP7147802B2 (en) 2020-03-16 2020-03-16 Determination device and determination method for steel fracture surface

Country Status (1)

Country Link
JP (1) JP7147802B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143770A (en) * 1983-12-29 1985-07-30 Kawasaki Steel Corp Automatic broken surface analytical apparatus
US4864867A (en) * 1988-01-19 1989-09-12 Battelle Development Corporation Determining fracture mode transition behavior of solid materials using miniature specimens
JPH0442010A (en) * 1990-06-08 1992-02-12 Kobelco Syst Kk Three-dimensional shape measuring apparatus
KR20050063499A (en) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 Device for measuring the surface brittleness ratio of impact test piece
CN106442122A (en) * 2016-09-19 2017-02-22 哈尔滨工业大学 Method for detecting ductile section percentage of fracture of steel material in drop weight tear test based on image segmentation and identification
JP2019158423A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Impact test analysis device, impact test analysis system, impact test analysis method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143770A (en) * 1983-12-29 1985-07-30 Kawasaki Steel Corp Automatic broken surface analytical apparatus
US4864867A (en) * 1988-01-19 1989-09-12 Battelle Development Corporation Determining fracture mode transition behavior of solid materials using miniature specimens
JPH0442010A (en) * 1990-06-08 1992-02-12 Kobelco Syst Kk Three-dimensional shape measuring apparatus
KR20050063499A (en) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 Device for measuring the surface brittleness ratio of impact test piece
CN106442122A (en) * 2016-09-19 2017-02-22 哈尔滨工业大学 Method for detecting ductile section percentage of fracture of steel material in drop weight tear test based on image segmentation and identification
JP2019158423A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Impact test analysis device, impact test analysis system, impact test analysis method and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
小池 宏侑 他: "金属材料の破壊形態の定量化に関する研究", 栃木県産業技術センター 研究報告, JPN6022034360, 2015, pages 108 - 111, ISSN: 0004854112 *
黒田 敏雄 他: "三次元立体画像構築システムの開発とステンレス鋼破面への適用", 溶接学会論文集, vol. 第20巻,第1号, JPN6022034361, 2001, pages 143 - 151, ISSN: 0004854111 *

Also Published As

Publication number Publication date
JP7147802B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP4814851B2 (en) Estimation method of stretch flange crack in thin plate press forming simulation
US8490492B2 (en) Method for nondestructive testing of pipes
CN111033212B (en) Crack evaluation criterion establishing method, crack evaluation method based on internal flaw detection, and maintenance management method
JP2019045218A (en) Residual life evaluation method and maintenance method
JP2021148453A (en) Discrimination device and discrimination method for steel material fracture surface
JP6803769B2 (en) Crack evaluation method in welded part and maintenance management method of welded part by phased array method
Hartweg et al. Analysis of the crack location in notched steel bars with a multiple DC potential drop measurement
JP6271070B1 (en) Telescopic device inspection method
Nosov et al. Nondestructive testing of the quality of blanks for the fabrication of hot-rolled strips using the acoustic-emission method
JP2002207028A (en) Defect discrimination method
JP7327595B1 (en) METHOD AND DEVICE FOR ACQUIRING FORMING LIMIT OF METAL PLATE
JP2007271267A (en) Method of inspecting damage and corrosion thickness reduction phenomenon, caused by hydrogen
JP5790515B2 (en) Crack growth prediction device, strength characteristic prediction device, and program
Narasimhachary et al. Life assessment of large gas turbine blades
JP7490531B2 (en) Ultrasonic flaw detection image evaluation device, ultrasonic flaw detection system, and ultrasonic flaw detection image evaluation method
Nahbein et al. Determination of cracks using multiple dc potential drop measurements–experimental verification of an advanced model
JP6728524B2 (en) Center segregation evaluation method for steel
JP5133651B2 (en) Laser welding evaluation method
Huang et al. Determination of forming limit and fracture limit curves using digital image correlation
Funk et al. Influence of crack initiation on short crack propagation and cyclic lifetime of AA 7475-T761
Tufisi et al. Modeling of complex shaped cracks
Lozev et al. Assessment of High-Temperature Hydrogen Attack using Advanced Ultrasonic Array Techniques
Hattori et al. Crack sizing accuracy of a phased array ultrasonic scanner developed for inspection of rib-to-deck welded joints in orthotropic steel bridge decks
JP6746870B2 (en) Crack detection method
Tufisi et al. Effect of the orientation of an oblique crack branches on the beam eigenfrequencies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7147802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150