JP2021146442A - Surface-coated cutting tool - Google Patents
Surface-coated cutting tool Download PDFInfo
- Publication number
- JP2021146442A JP2021146442A JP2020048657A JP2020048657A JP2021146442A JP 2021146442 A JP2021146442 A JP 2021146442A JP 2020048657 A JP2020048657 A JP 2020048657A JP 2020048657 A JP2020048657 A JP 2020048657A JP 2021146442 A JP2021146442 A JP 2021146442A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- average
- tool
- upper layer
- carbonitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 34
- 239000010410 layer Substances 0.000 claims abstract description 198
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000013078 crystal Substances 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000011247 coating layer Substances 0.000 claims abstract description 13
- 239000010936 titanium Substances 0.000 claims description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 229910002090 carbon oxide Inorganic materials 0.000 claims description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims description 2
- 229910001141 Ductile iron Inorganic materials 0.000 abstract description 9
- 150000004767 nitrides Chemical class 0.000 abstract description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract 2
- 239000011780 sodium chloride Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- 239000012495 reaction gas Substances 0.000 description 14
- 229910010037 TiAlN Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- HSUBYXNYMJBNAE-UHFFFAOYSA-N [N]=O.C(O)(O)=O Chemical compound [N]=O.C(O)(O)=O HSUBYXNYMJBNAE-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 carbide Chemical class 0.000 description 1
- MMCOUVMKNAHQOY-UHFFFAOYSA-N carbonoperoxoic acid Chemical compound OOC(O)=O MMCOUVMKNAHQOY-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、特に、球状黒鉛鋳鉄の高速旋削加工に用いても、硬質皮膜層が優れた耐溶着性、耐チッピング性を有し、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention is a surface coating cutting tool in which the hard film layer has excellent welding resistance and chipping resistance even when used for high-speed turning of spheroidal graphite cast iron, and exhibits excellent cutting performance over a long period of use. (Hereinafter, it may be referred to as a covering tool).
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。
従来から、被覆工具としては、例えば、WC基超硬合金等の工具基体に硬質皮膜層を形成したものが知られており、工具基体と硬質皮膜層との界面に注目して、切削性能の改善を目的として種々の提案がなされている。
Generally, covering tools are used for turning and planing of various types of steel, cast iron, and other work materials, such as inserts that are detachably attached to the tip of a cutting tool, and drilling and cutting of work materials. There are drills and miniature drills, as well as solid type end mills used for surface machining, grooving, shoulder machining, etc. of work materials, and inserts can be attached and detached to perform cutting in the same way as solid type end mills. Insert type end mills and the like are known.
Conventionally, as a covering tool, for example, a tool in which a hard coating layer is formed on a tool substrate such as a WC-based cemented carbide has been known, and attention is paid to the interface between the tool substrate and the hard coating layer, and the cutting performance is improved. Various proposals have been made for the purpose of improvement.
例えば、特許文献1には、工具基体上に接合層としての機能を果たすTiN被覆層を設け、その上に中間層となるTiCN(MT−TiCN)被覆層を介してTiAlN層(TiとAlの複合窒化物層)を被覆した被覆工具が記載されている。 For example, in Patent Document 1, a TiN coating layer that functions as a bonding layer is provided on a tool substrate, and a TiAlN layer (Ti and Al of Ti and Al) is provided on the TiN coating layer via a TiCN (MT-TiCN) coating layer that serves as an intermediate layer. A covering tool coated with a composite nitride layer) is described.
また、例えば、特許文献2には、工具基体表面に平均層厚0.1〜1.0μmのTiN層、該TiN層の上に、平均層厚1.5〜5.0μmの下部層としてのTiCxN1−x(但し、0.30≦x≦0.80)層および平均層厚0.1〜1.0μmの上部層としてのTiCyN1−y(但し、0.85≦y≦1.00)を含む中間層、および、該中間層の上に、平均層厚1.5〜6.0μmである(AlzTi1−z)N層(但し、0.70≦z≦0.95)、を有することを特徴とする被覆工具が記載され、この被覆工具は鋼のミーリングの高速高送り断続加工に対しても優れた耐チッピング性を有すると説明されている。 Further, for example, in Patent Document 2, a TiN layer having an average layer thickness of 0.1 to 1.0 μm is provided on the surface of the tool substrate, and a lower layer having an average layer thickness of 1.5 to 5.0 μm is provided on the TiN layer. TiCxN1-x (however, 0.30 ≦ x ≦ 0.80) layer and TiCyN1-y (however, 0.85 ≦ y ≦ 1.00) as an upper layer having an average layer thickness of 0.1 to 1.0 μm. Having an intermediate layer containing the intermediate layer and an N layer (however, 0.70 ≦ z ≦ 0.95) having an average layer thickness of 1.5 to 6.0 μm (AlzTi1-z) on the intermediate layer. A featured covering tool is described, which is described as having excellent chipping resistance even for high-speed, high-feed intermittent machining of steel milling.
さらに、例えば、特許文献3には、工具基体表面に下部層としてTiCN層、上部層としてTiAlCN層を有し、前記下部層のうちの合計平均層厚の50%以上の平均層厚の結晶粒および上部層の結晶粒の{422}面の法線が前記工具基体表面となす角が0〜10度の傾斜区分に30%以上となる度数分布をし、かつ、前記下部層の前記結晶粒は前記上部層の前記結晶粒の50%以上の面積割合を有する被覆工具が記載され、この被覆工具は鋼や鋳鉄の高速断続切削加工に対しても優れた耐チッピング性を有すると説明されている。 Further, for example, Patent Document 3 has a TiCN layer as a lower layer and a TiAlCN layer as an upper layer on the surface of the tool substrate, and crystal grains having an average layer thickness of 50% or more of the total average layer thickness of the lower layers. And the crystal grains in the lower layer have a frequency distribution in which the normal line of the {422} plane of the crystal grains in the upper layer has an angle of 0 to 10 degrees with the surface of the tool substrate, which is 30% or more. Describes a covering tool having an area ratio of 50% or more of the crystal grains in the upper layer, and it is explained that this covering tool has excellent chipping resistance even for high-speed intermittent cutting of steel and cast iron. There is.
特許文献1〜3に記載された硬質皮膜層を有する被覆工具は、それぞれの特許文献に記載された切削加工では満足する性能発揮するものの、引張強度の高い球状黒鉛鋳鉄などに対して、高速かつ高負荷な切削条件での加工に用いた場合には、硬質皮膜層の剥離やチッピングの発生が起こり、十分な寿命を有していないことが判明した。 The coating tool having the hard coating layer described in Patent Documents 1 to 3 exhibits satisfactory performance in the cutting process described in each Patent Document, but is faster than spheroidal graphite cast iron having high tensile strength. It was found that when used for machining under high-load cutting conditions, the hard film layer peeled off and chipping occurred, and the life was not sufficient.
そこで、本発明は、このような状況を鑑みてなされたものであって、球状黒鉛鋳鉄の高速旋削加工に供しても、優れた耐剥離性、耐チッピング性を示し、長期の使用にわたって優れた切削性能を発揮する切削工具を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, and even when subjected to high-speed turning of spheroidal graphite cast iron, it exhibits excellent peeling resistance and chipping resistance, and is excellent over a long period of use. It is an object of the present invention to provide a cutting tool that exhibits cutting performance.
本発明者は、前記課題を解決すべく、球状黒鉛鋳鉄の高速旋削加工における硬質皮膜の剥離やチッピングの発生について鋭意検討したところ、剥離やチッピングの発生の原因はTiAlNの異常成長結晶が起点となっていること、このTiAlNの異常成長は工具基体の凹凸を起点とする結晶成長に起因するものであって、TiCN層とTiAlN層との界面領域付近で生じやすいとの新規な知見を得た。 In order to solve the above problems, the present inventor diligently studied the occurrence of peeling and chipping of the hard film in the high-speed turning process of spheroidal graphite cast iron. We have obtained a new finding that this abnormal growth of TiAlN is caused by crystal growth originating from the unevenness of the tool substrate and is likely to occur near the interface region between the TiCN layer and the TiAlN layer. ..
本発明は、この知見に基づくものであって、次のとおりのものである。
「(1)工具基体と該工具基体の表面上に工具表面に向かって、順に、下層、中間層、上層を含む被覆層を有する表面被覆切削工具であって、
前記下層は、2.0〜20.0μmの平均層厚で、少なくとも1層のTiの炭窒化物層を有し、
前記中間層は0.1〜1.5μmの平均層厚で、前記下層側にTiの窒化物である下部層と、前記上層側にTiの炭窒化物、炭酸化物、または、炭窒酸化物である上部層とを有し、前記上部層の前記Tiの炭窒化物、炭酸化物、または、炭窒酸化物は、前記工具基体の表面に平行な方向の結晶粒の平均幅が0.20μm以下であって、
前記上層は、1.0〜10.0μmの平均層厚であって、組成を組成式:Ti1−xAlxNで表したとき(但し、xは原子比で平均組成を表す)、0.60≦x≦0.95を満足して、NaCl型面心立方構造の結晶粒が主である、
ことを特徴とする表面被覆切削工具。」
The present invention is based on this finding and is as follows.
"(1) A surface-coated cutting tool having a tool substrate and a coating layer including a lower layer, an intermediate layer, and an upper layer in this order toward the tool surface on the surface of the tool substrate.
The lower layer has an average layer thickness of 2.0 to 20.0 μm and has at least one Ti carbonitride layer.
The intermediate layer has an average layer thickness of 0.1 to 1.5 μm, with a lower layer which is a titanium nitride on the lower layer side and a titanium nitride, carbon oxide, or charcoal oxide on the upper layer side. The titanium nitride, carbon oxide, or carbon dioxide oxide of the Ti in the upper layer has an upper layer, and the average width of crystal grains in the direction parallel to the surface of the tool substrate is 0.20 μm. Below,
The upper layer has an average layer thickness of 1.0 to 10.0 μm, and when the composition is represented by the composition formula: Ti 1-x Al x N (where x represents the average composition in atomic ratio), it is 0. Mainly crystal grains having a NaCl-type face-centered cubic structure, satisfying .60 ≦ x ≦ 0.95.
A surface coating cutting tool characterized by that. "
本発明の表面被覆切削工具は、球状黒鉛鋳鉄の高速旋削加工等の高温発生を伴う高負荷切削において、優れた耐摩耗性、耐剥離性、および、耐チッピング性を発揮する。 The surface-coated cutting tool of the present invention exhibits excellent wear resistance, peeling resistance, and chipping resistance in high-load cutting accompanied by high temperature generation such as high-speed turning of spheroidal graphite cast iron.
以下、本発明の被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「A〜B」(A、Bはともに数値)を用いて表現する場合、その範囲は上限(B)および下限(A)の数値を含むものである。また、上限(B)および下限(A)は同じ単位である。 Hereinafter, the covering tool of the present invention will be described in more detail. In the description of the scope of claims in this specification, when the numerical range is expressed using "A to B" (both A and B are numerical values), the range is the upper limit (B) and the lower limit (A). It includes numerical values. Further, the upper limit (B) and the lower limit (A) are the same unit.
ここで、本明細書において、Tiの窒化物、炭化物、窒化物、炭酸化物、炭窒酸化物、または、炭窒化物のように、化合物を組成式で表さないときは、その組成は、必ずしも化学量論的範囲のものに限定されない。 Here, in the present specification, when a compound is not represented by a composition formula, such as Ti nitride, carbide, nitride, carbon oxide, carbonitride oxide, or carbonitride, the composition is defined as. It is not necessarily limited to the stoichiometric range.
硬質皮膜層の構造と組成:
硬質皮膜層は、図1に模式的に示すように、工具基体から工具表面に向かって、順に、下層、中間層、上層の3層を有しており、中間層は上部層と下部層を有している。
以下、各層について説明する。
Structure and composition of hard film layer:
As schematically shown in FIG. 1, the hard film layer has three layers, a lower layer, an intermediate layer, and an upper layer, in order from the tool substrate to the tool surface, and the intermediate layer has an upper layer and a lower layer. Have.
Hereinafter, each layer will be described.
(1)下層
下層は、少なくとも1層のTi炭窒化物層を有し、さらに、少なくとも1層のTiの炭化物、窒化物、炭酸化物、または、炭窒酸化物のいずれかを含んでもよい。Ti炭窒化物層は、柱状粒子から構成されることが好ましい。
少なくとも1層のTiの炭窒化物層を有することにより、中間層を介して形成される上層と工具基体を強固に結合することができる。また、少なくとも1層のTi炭窒化物層の他に、例えば、工具基体直上に下地層として、Tiの窒化物層、Tiの炭化物層を有することが好ましい。
(1) Lower layer The lower layer has at least one Ti carbonitride layer, and may further contain at least one Ti carbide, nitride, carbonic acid oxide, or carbonic acid nitrogen oxide. The Ti carbonitride layer is preferably composed of columnar particles.
By having at least one Ti carbonitride layer, the upper layer formed via the intermediate layer and the tool substrate can be firmly bonded. Further, in addition to at least one Ti carbonitride layer, for example, it is preferable to have a Ti nitride layer and a Ti carbide layer as a base layer directly above the tool substrate.
(2)中間層
中間層は、下層側にTiの窒化物である下部層と、上層側にTiの炭窒化物、炭酸化物、または、炭窒化物である上部層とを有している。このような2層構造とすることにより、工具基体の凹凸を起点とした下層のTi炭窒化物の成長方向の乱れを下部層のTiNで分断し、上部層の結晶成長を工具基体の表面に垂直な方向とし、後述する上層であるTiAlNの異常成長を抑制することができる。
そして、前記上部層であるTiの炭窒化物、炭酸化物、または、炭窒酸化物の層は、前記工具基体の表面と平行な方向の結晶粒の平均幅を0.20μm以下とすることにより、確実に、下層のTi炭窒化物の成長方向の乱れ分断し、中間層と上層との界面領域における上層のTiAlNの異常成長を抑制することができる。なお、この平均幅の下限値は特段の制約はないが、後述する実施例の製造方法に従って製造した場合は、0.02μm程度が下限になる。
(2) Intermediate layer The intermediate layer has a lower layer which is a titride of Ti on the lower layer side and an upper layer which is a carbonitride, carbon oxide, or a carbonitride of Ti on the upper layer side. With such a two-layer structure, the turbulence in the growth direction of the lower Ti carbonitride starting from the unevenness of the tool substrate is divided by the TiN of the lower layer, and the crystal growth of the upper layer is transferred to the surface of the tool substrate. The direction is vertical, and abnormal growth of TiAlN, which is the upper layer described later, can be suppressed.
The upper layer of Ti carbonitride, carbon oxide, or carbonitride oxide has an average width of crystal grains in a direction parallel to the surface of the tool substrate of 0.20 μm or less. It is possible to surely divide the Ti carbonitride in the lower layer in the growth direction and suppress the abnormal growth of TiAlN in the upper layer in the interface region between the intermediate layer and the upper layer. The lower limit of the average width is not particularly limited, but when manufactured according to the manufacturing method of Examples described later, the lower limit is about 0.02 μm.
ここで、工具基体の表面と平行な方向の結晶粒の平均幅は、以下のようにして求めるものである。すなわち、硬質皮膜層の縦断面(工具基体の表面に垂直な断面)の研磨面を透過型電子顕微鏡(Transmission Electron Microscope:TEM)の20000倍視野にて複数視野観察し、得られた顕微鏡写真中の5箇所において、前記上部層の上端と下端の中央に位置する基材と平行な5μmの直線と交わる粒界数を計測し、直線1μm当りの平均粒界数の逆数を平均粒子幅とする。 Here, the average width of the crystal grains in the direction parallel to the surface of the tool substrate is obtained as follows. That is, the polished surface of the vertical cross section of the hard film layer (the cross section perpendicular to the surface of the tool substrate) was observed in a plurality of fields with a 20000x field of view of a transmission electron microscope (TEM), and in the obtained micrograph. The number of grain boundaries intersecting a straight line of 5 μm parallel to the base material located at the center of the upper end and the lower end of the upper layer is measured at the five locations, and the inverse of the average number of grain boundaries per 1 μm of the straight line is defined as the average particle width. ..
(3)上層
上層は、その組成を組成式:Ti1−xAlxNで表したとき(但し、xは原子比で平均組成を表す)、0.60≦x≦0.95を満足するTiAlN層である。xをこの範囲とした理由は、0.60未満であると耐摩耗性が十分でなく、一方、0.95を超えると六方晶の析出量が増大して硬さが低下して耐摩耗性が低下するためである。
(3) Upper layer The upper layer satisfies 0.60 ≦ x ≦ 0.95 when its composition is represented by the composition formula: Ti 1-x Al x N (where x represents the average composition by the atomic ratio). It is a TiAlN layer. The reason why x is set in this range is that if it is less than 0.60, the wear resistance is not sufficient, while if it exceeds 0.95, the amount of hexagonal precipitation increases and the hardness decreases, and the wear resistance This is because
また、上層を形成する前記TiAlN層は、NaCl型の面心立方構造を主とすることが好ましい。ここで、NaCl型の面心立方構造を主とするとは、被覆層の縦断面おいて、NaCl型の面心立方構造を有する結晶の面積率が50%以上であることをいい、この面積率は70%以上がさらに好ましく、80%以上がより好ましく、100%であってもよい。 Further, it is preferable that the TiAlN layer forming the upper layer mainly has a NaCl-type face-centered cubic structure. Here, the term "mainly in the NaCl-type face-centered cubic structure" means that the area ratio of the crystal having the NaCl-type face-centered cubic structure is 50% or more in the vertical cross section of the coating layer. Is more preferably 70% or more, more preferably 80% or more, and may be 100%.
各層の平均膜厚:
硬質皮膜を構成する各層の平均膜厚は、それぞれ、下層が2.0〜20.0μm、中間層が0.1〜1.5μm、上層が1.0〜10.0μmである。
上層および下層の平均層厚を前記範囲とした理由は、それぞれの下限値未満であると、長期の使用にわたって優れた耐摩耗性を発揮することができず、一方、それぞれの上限値を超えると、硬質皮膜の結晶粒が粗大化しやすくなり、被覆層全体の厚さが厚くなって耐チッピング性向上効果が得られなくなるからである。
中間層の平均層厚を前記範囲とした理由は、下限値未満であると、下層のTi炭窒化物の成長方向の乱れを分断する十分な効果が得られず、一方、上限値を超えると中間層の結晶粒の粗大化により前述の平均幅が0.2μmを超えてしまうためである。なお、上部層と下部層のそれぞれの平均層厚は、中間層の層厚が前記範囲にあり、かつ、上部層の平均幅が0.2μm以下となれば、特に制約はない。
なお、より好ましい各層の平均層厚は、それぞれ、下層が6.0〜15.0μm、中間層が0.3〜1.0μm、上層が3.0〜6.0μmである。
Average film thickness of each layer:
The average film thickness of each layer constituting the hard film is 2.0 to 20.0 μm for the lower layer, 0.1 to 1.5 μm for the intermediate layer, and 1.0 to 10.0 μm for the upper layer, respectively.
The reason why the average layer thickness of the upper layer and the lower layer is set in the above range is that if it is less than the lower limit of each, excellent wear resistance cannot be exhibited over a long period of use, while if it exceeds the upper limit of each. This is because the crystal grains of the hard film tend to be coarsened, and the thickness of the entire coating layer becomes thicker, so that the effect of improving the chipping resistance cannot be obtained.
The reason why the average layer thickness of the intermediate layer is set to the above range is that if it is less than the lower limit value, a sufficient effect of dividing the turbulence in the growth direction of the Ti carbonitride in the lower layer cannot be obtained, while if it exceeds the upper limit value. This is because the above-mentioned average width exceeds 0.2 μm due to the coarsening of the crystal grains in the intermediate layer. The average layer thickness of each of the upper layer and the lower layer is not particularly limited as long as the layer thickness of the intermediate layer is within the above range and the average width of the upper layer is 0.2 μm or less.
The more preferable average thickness of each layer is 6.0 to 15.0 μm for the lower layer, 0.3 to 1.0 μm for the intermediate layer, and 3.0 to 6.0 μm for the upper layer, respectively.
平均層厚、平均組成、結晶構造の測定方法:
平均膜厚については、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)を用いた硬質皮膜層の縦断面の観察により求めることができる。
前記TiAlN層の平均組成については、電子線マイクロアナライザ(Electro n−Probe−Micro−Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均を平均組成とする。
TiAlN層の結晶構造については、電子線後方散乱回折装置(Electron Backscatter Diffraction:EBSD)を用いて、硬質皮膜層の研磨した縦断の測定範囲内に存在する個々の結晶粒に対して70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、0.01μm/stepの間隔で照射する。そして、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析し、結晶構造が同定された全ピクセル数に占めるNaCl型面心立方構造に属するピクセル数の割合を求めることで、NaCl型面心立方構造の結晶粒の面積割合を求める。なお、測定範囲は、工具基体の表面に平行な方向に50μm、垂直方向は硬質皮膜層の厚さ全体を含む範囲とする。
Method for measuring average layer thickness, average composition, and crystal structure:
The average film thickness can be determined by observing the vertical cross section of the hard film layer using a scanning electron microscope (SEM).
Regarding the average composition of the TiAlN layer, an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) was used to irradiate the sample whose surface was polished with an electron beam from the sample surface side, and the obtained characteristic X was obtained. The 10-point average of the line analysis results is taken as the average composition.
Regarding the crystal structure of the TiAlN layer, an electron backscatter diffraction (EBSD) was used to inject 70 degrees into each crystal grain existing within the measurement range of the polished longitudinal section of the hard film layer. An electron beam having an acceleration voltage of 15 kV at an angle is irradiated with an irradiation current of 1 nA at an interval of 0.01 μm / step. Then, by measuring the electron beam backscattered diffraction image, analyzing the crystal structure of each crystal grain, and determining the ratio of the number of pixels belonging to the NaCl-type face-centered cubic structure to the total number of identified crystal structures. , The area ratio of crystal grains having a NaCl-type face-centered cubic structure is determined. The measurement range is 50 μm in the direction parallel to the surface of the tool substrate, and the measurement range is the range including the entire thickness of the hard film layer in the vertical direction.
工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主
成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、または、cBN焼結体のいずれかであることが好ましい。
Tool base:
As the tool substrate, any substrate conventionally known as this type of tool substrate can be used as long as it does not hinder the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co and further added with carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, It is preferably one of TiN, TiCN and the like as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide and the like), or a cBN sintered body.
その他の層(最上層)
本発明の硬質皮膜は、球状黒鉛鋳鉄の高速旋削加工においても十分な耐摩耗性、耐チッピング性、および、耐剥離性を有するが、少なくとも酸化アルミニウム層を含む層が1.0〜25.0μmの合計平均層厚で最上層として、前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、より一層優れた耐摩耗性、耐チッピング性、および、耐剥離性を発揮することができる。ここで、少なくとも酸化アルミニウム層を含む層の合計平均層厚が1.0μm未満では、該層の効果が十分に奏されず、一方、25.0μmを超えると該層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
Other layers (top layer)
The hard film of the present invention has sufficient wear resistance, chipping resistance, and peeling resistance even in high-speed turning of spheroidal graphite cast iron, but at least a layer containing an aluminum oxide layer is 1.0 to 25.0 μm. When provided on the TiAlCN layer as the uppermost layer in the total average layer thickness of, in combination with the effects of these layers, even more excellent wear resistance, chipping resistance, and chipping resistance are achieved. It can exhibit peelability. Here, when the total average layer thickness of the layer including at least the aluminum oxide layer is less than 1.0 μm, the effect of the layer is not sufficiently exhibited, while when it exceeds 25.0 μm, the crystal grains of the layer tend to be coarsened. Therefore, chipping is likely to occur.
製造方法:
本発明の被覆工具の皮膜は、化学蒸着装置を使用して、例えば、以下の工程により行う。以下の%は、体積%(容量%)であり、上層の成膜工程ではガス群Aとガス群Bの和を100容量%としている。
Production method:
The coating of the coating tool of the present invention is carried out by, for example, the following steps using a chemical vapor deposition apparatus. The following% is a volume% (volume%), and the sum of the gas group A and the gas group B is 100% by volume in the film forming process of the upper layer.
(1)下層(TiCN層)の成膜工程
反応ガス TiCl4:2.0〜2.5%、CH3CN:0.6〜1.0%、
N2:20〜40%、H2:残部
反応雰囲気温度:800〜940℃
反応雰囲気圧力:5.0〜10.0kPa
なお、TiCN層の他に、下地層として、Ti化合物層、すなわち、Tiの炭化物、窒化物、炭酸化物、または、炭窒酸化物のいずれかを成膜する場合は、公知の成膜条件を適宜採用すればよい。
(1) Film formation process of lower layer (TiCN layer) Reaction gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.6 to 1.0%,
N 2 : 20-40%, H 2 : Remaining reaction atmosphere temperature: 800-940 ° C
Reaction atmospheric pressure: 5.0 to 10.0 kPa
In addition to the TiCN layer, when a Ti compound layer, that is, any of a carbide, a nitride, a carbon oxide, or a carbon dioxide oxide of Ti is formed as a base layer, known film forming conditions are used. It may be adopted as appropriate.
(2)中間層の成膜工程
中間層の成膜工程は、エッチング工程、下部層成膜工程と上部層成膜工程からなる。
a エッチング工程
反応ガス TiCl4:4.0〜6.0%、H2:残部
反応雰囲気温度:800〜980℃
反応雰囲気圧力:5.0〜10.0kPa
b 下部層(TiN層)成膜工程
反応ガス TiCl4:1.5〜2.5%、N2:45〜65%、H2:残部
反応雰囲気温度:880〜1000℃
反応雰囲気圧力:12.0〜20.0kPa
c 上部層(例:TiCN層)成膜工程
反応ガス TiCl4:2.0〜2.5%、CH3CN:0.4〜0.6%、
N2:20.0〜40.0%、H2:残部
反応雰囲気温度:700〜800℃
反応雰囲気圧力:5.0〜10.0kPa
(2) Intermediate layer film forming process The intermediate layer film forming process comprises an etching step, a lower layer film forming process, and an upper layer film forming process.
a Etching process Reaction gas TiCl 4 : 4.0 to 6.0%, H 2 : Remaining reaction atmosphere temperature: 800 to 980 ° C.
Reaction atmospheric pressure: 5.0 to 10.0 kPa
b Lower layer (TiN layer) film formation process Reaction gas TiCl 4 : 1.5 to 2.5%, N 2 : 45 to 65%, H 2 : Remaining reaction atmosphere temperature: 880 to 1000 ° C.
Reaction atmospheric pressure: 12.0 to 20.0 kPa
c Upper layer (eg TiCN layer) film formation process Reaction gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.4 to 0.6%,
N 2: 20.0~40.0%, H 2 : balance Temperature of reaction atmosphere: 700 to 800 ° C.
Reaction atmospheric pressure: 5.0 to 10.0 kPa
(3)上層(TiAlN層)の成膜工程
反応ガス群A NH3:0.8〜1.6%、H2:45〜55%
反応ガス群B AlCl3:0.5〜0.7%、TiCl4:0.1〜0.3%、
N2:0.0〜10.0%、H2:残部
反応雰囲気温度:700〜900℃
反応雰囲気圧力:4.0〜5.0kPa
反応ガス供給周期:1〜5秒
1周期当りのガス供給時間:0.15〜0.25秒
ガスA群の供給とガスB群の供給の位相差:0.10〜0.20秒
(3) Film formation process of upper layer (TiAlN layer) Reaction gas group A NH 3 : 0.8 to 1.6%, H 2 : 45 to 55%
Reaction gas group B AlCl 3 : 0.5 to 0.7%, TiCl 4 : 0.1 to 0.3%,
N2: 0.0 to 10.0%, H 2 : Remaining reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmospheric pressure: 4.0-5.0 kPa
Reaction gas supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between gas A group supply and gas B group supply: 0.10 to 0.20 seconds
次に、実施例について説明する。
ここでは、本発明の被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体は前述のとおりWC基超硬合金に限定されることはなく、また、工具としてドリル、エンドミル等に適用した場合も同様である。
Next, an example will be described.
Here, as a specific example of the coated tool of the present invention, a tool applied to an insert cutting tool using a WC-based cemented carbide as a tool substrate will be described, but the tool substrate is limited to the WC-based cemented carbide as described above. The same applies when the tool is applied to a drill, an end mill, or the like.
まず、原料粉末として、Co粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr3C2粉末、および、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格のCNMG120412のインサート形状をもったWC基超硬合金製の工具基体A〜Eを作製した。 First, as raw material powders, Co powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and WC powder are prepared, and these raw material powders are blended into the blending composition shown in Table 1. Further, wax is added, wet-mixed in a ball mill for 72 hours, dried under reduced pressure, press-molded at a pressure of 100 MPa, these powder compacts are sintered, processed to a predetermined size, and ISO standard. WC-based cemented carbide tool bases A to E having an insert shape of CNMG120412 of the above were prepared.
次に、この工具基体A〜E上に、下層、中間層、上層を表2〜表4に示す条件により、表7に示す本発明被覆工具1〜10を得た。これら各層の成膜条件は、概ね次のとおりである。 Next, the coated tools 1 to 10 of the present invention shown in Table 7 were obtained on the tool bases A to E under the conditions shown in Tables 2 to 4 for the lower layer, the intermediate layer, and the upper layer. The film forming conditions for each of these layers are as follows.
下層(TiCN層)の成膜工程
反応ガス TiCl4:2.0〜2.5%、CH3CN:0.6〜1.0%、
N2:20〜40%、H2:残部
反応雰囲気温度:800〜940℃
反応雰囲気圧力:5.0〜10.0kPa
Film formation process of lower layer (TiCN layer) Reaction gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.6 to 1.0%,
N 2 : 20-40%, H 2 : Remaining reaction atmosphere temperature: 800-940 ° C
Reaction atmospheric pressure: 5.0 to 10.0 kPa
中間層の成膜工程
a エッチング工程
反応ガス TiCl4:4.0〜6.0%、H2:残部
反応雰囲気温度:800〜980℃
反応雰囲気圧力:5.0〜10.0kPa
b 下部層(TiN層)の成膜工程
反応ガス TiCl4:1.5〜2.5%、N2:45〜65%、H2:残部
反応雰囲気温度:880〜1000℃
反応雰囲気圧力:12.0〜20.0kPa
c 上部層(TiCN層)の成膜工程
反応ガス TiCl4:2.0〜2.5%、CH3CN:0.4〜0.6%、
N2:20.0〜40.0%、H2:残部
反応雰囲気温度:700〜800℃
反応雰囲気圧力:5.0〜10.0kPa
Intermediate layer film formation step a Etching step Reaction gas Tycol 4 : 4.0 to 6.0%, H 2 : Remaining reaction atmosphere temperature: 800 to 980 ° C.
Reaction atmospheric pressure: 5.0 to 10.0 kPa
b Lower layer (TiN layer) film formation process Reaction gas TiCl 4 : 1.5 to 2.5%, N 2 : 45 to 65%, H 2 : Remaining reaction atmosphere temperature: 880 to 1000 ° C.
Reaction atmospheric pressure: 12.0 to 20.0 kPa
c Formation process of upper layer (TiCN layer) Reaction gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.4 to 0.6%,
N 2: 20.0~40.0%, H 2 : balance Temperature of reaction atmosphere: 700 to 800 ° C.
Reaction atmospheric pressure: 5.0 to 10.0 kPa
(3)上層(TiAlN層)成膜工程
反応ガス群A NH3:0.8〜1.6%、H2:45〜55%
反応ガス群B AlCl3:0.5〜0.7%、TiCl4:0.1〜0.3%、
N2:0.0〜10.0%、H2:残部
反応雰囲気温度:700〜900℃
反応雰囲気圧力:4.0〜5.0kPa
反応ガス供給周期:1〜5秒
1周期当りのガス供給時間:0.15〜0.25秒
ガスA群の供給とガスB群の供給の位相差:0.10〜0.20秒
(3) Upper layer (TiAlN layer) film formation process Reaction gas group A NH 3 : 0.8 to 1.6%, H 2 : 45 to 55%
Reaction gas group B AlCl 3 : 0.5 to 0.7%, TiCl 4 : 0.1 to 0.3%,
N2: 0.0 to 10.0%, H 2 : Remaining reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmospheric pressure: 4.0-5.0 kPa
Reaction gas supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between gas A group supply and gas B group supply: 0.10 to 0.20 seconds
なお、本発明被覆工具7、10は、表5に記載された成膜条件により酸化アルミニウムを含む最上層を形成した。 The coating tools 7 and 10 of the present invention formed the uppermost layer containing aluminum oxide under the film forming conditions shown in Table 5.
また、比較の目的で、工具基体A〜Eの表面に、表2に示される成膜条件により、表7に示された比較例1〜10を製造した。比較被覆工具2、4および8は、中間層の成膜条件は、実施例と同じ形成記号のものを使用したが、平均層厚を本発明で規定する範囲外にした。
なお、比較例7、10については、表5に記載された成膜条件により酸化アルミニウムを含む最上層を形成した。
Further, for the purpose of comparison, Comparative Examples 1 to 10 shown in Table 7 were manufactured on the surfaces of the tool substrates A to E under the film forming conditions shown in Table 2. For the comparative covering tools 2, 4 and 8, the film forming conditions of the intermediate layer were the same as those of the examples, but the average layer thickness was out of the range specified in the present invention.
In Comparative Examples 7 and 10, the uppermost layer containing aluminum oxide was formed under the film forming conditions shown in Table 5.
また、本発明被覆工具1〜10、比較被覆工具1〜10の被覆層の縦断面を、SEM(倍率5000倍)用いて測定し、観察視野内の5点で各層の層厚を測定して、各層の平均層厚とし、その結果を表6および表7に示す。
さらに、本発明被覆工具1〜10、比較被覆工具1〜10の被覆層について、前述した方法により、組成および結晶構造(NaCl型面心立方構造の結晶粒の面積割合)を測定し表7に記載した。
Further, the vertical cross section of the coating layers of the coating tools 1 to 10 and the comparative coating tools 1 to 10 of the present invention was measured using SEM (magnification 5000 times), and the layer thickness of each layer was measured at 5 points in the observation field. , The average layer thickness of each layer, and the results are shown in Tables 6 and 7.
Further, the composition and crystal structure (area ratio of crystal grains of NaCl-type face-centered cubic structure) of the coating layers of the coating tools 1 to 10 of the present invention and the comparative coating tools 1 to 10 were measured by the above-mentioned methods, and Table 7 shows. Described.
続いて、本発明被覆工具1〜10、比較被覆工具1〜10について、以下の切削試験を行った。 Subsequently, the following cutting tests were performed on the covering tools 1 to 10 of the present invention and the comparative covering tools 1 to 10.
被削材:JIS・FCD700の丸棒
切削速度:380m/min
切込み:3.0mm
送り:0.35mm/rev
切削時間:5min
結果を表8に示す。
Work material: JIS / FCD700 round bar Cutting speed: 380 m / min
Notch: 3.0 mm
Feed: 0.35 mm / rev
Cutting time: 5 min
The results are shown in Table 8.
表8に示す切削試験の結果から明らかなように、本発明被覆工具1〜10は、いずれも、優れた耐摩耗性、耐剥離性、および、耐チッピング性を有しているため、球状黒鉛鋳鉄の高速旋削加工においも、長期にわたって優れた切削性能を発揮する。これに対して、本発明の被覆工具に規定される事項を満足していない比較被覆工具1〜10は、球状黒鉛鋳鉄の高速旋削加工に供した場合、チッピングが発生して短時間で寿命に至っている。 As is clear from the results of the cutting test shown in Table 8, all of the covering tools 1 to 10 of the present invention have excellent wear resistance, peeling resistance, and chipping resistance, and thus spheroidal graphite. Even in high-speed turning of cast iron, it exhibits excellent cutting performance over a long period of time. On the other hand, the comparative covering tools 1 to 10 which do not satisfy the matters specified in the covering tool of the present invention are chipped and have a short life when they are subjected to high-speed turning of spheroidal graphite cast iron. It has reached.
本発明の表面被覆切削工具は、各種の鋼などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴うとともに、切刃部に対して大きな負荷がかかる球状黒鉛鋳鉄等の高速旋削加工において、優れた耐摩耗性、耐剥離性、および、耐チッピング性を発揮し、長期にわたって優れた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 The surface-coated cutting tool of the present invention not only cuts various types of steel under normal cutting conditions, but also generates high heat and applies a large load to the cutting edge, such as spheroidal graphite cast iron. In turning, it exhibits excellent wear resistance, peeling resistance, and chipping resistance, and exhibits excellent cutting performance over a long period of time. Therefore, the performance of the cutting equipment is improved and the cutting work is labor-saving. It is also fully satisfactory for energy saving and cost reduction.
Claims (1)
前記下層は、2.0〜20.0μmの平均層厚で、少なくとも1層のTiの炭窒化物層を有し、
前記中間層は0.1〜1.5μmの平均層厚で、前記下層側にTiの窒化物である下部層と、前記上層側にTiの炭窒化物、炭酸化物、または、炭窒酸化物である上部層とを有し、前記上部層の前記Tiの炭窒化物、炭酸化物、または、炭窒酸化物は、前記工具基体の表面に平行な方向の結晶粒の平均幅が0.20μm以下であって、
前記上層は、1.0〜10.0μmの平均層厚であって、組成を組成式:Ti1−xAlxNで表したとき(但し、xは原子比で平均組成を表す)、0.60≦x≦0.95を満足して、NaCl型面心立方構造の結晶粒が主である、
ことを特徴とする表面被覆切削工具。 A surface-coated cutting tool having a tool substrate and a coating layer including a lower layer, an intermediate layer, and an upper layer in order toward the tool surface on the surface of the tool substrate.
The lower layer has an average layer thickness of 2.0 to 20.0 μm and has at least one Ti carbonitride layer.
The intermediate layer has an average layer thickness of 0.1 to 1.5 μm, with a lower layer which is a titanium nitride on the lower layer side and a titanium nitride, carbon oxide, or charcoal oxide on the upper layer side. The titanium nitride, carbon oxide, or carbon dioxide oxide of the Ti in the upper layer has an upper layer, and the average width of crystal grains in the direction parallel to the surface of the tool substrate is 0.20 μm. Below,
The upper layer has an average layer thickness of 1.0 to 10.0 μm, and when the composition is represented by the composition formula: Ti 1-x Al x N (where x represents the average composition in atomic ratio), it is 0. Mainly crystal grains having a NaCl-type face-centered cubic structure, satisfying .60 ≦ x ≦ 0.95.
A surface coating cutting tool characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020048657A JP7401850B2 (en) | 2020-03-19 | 2020-03-19 | surface coated cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020048657A JP7401850B2 (en) | 2020-03-19 | 2020-03-19 | surface coated cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021146442A true JP2021146442A (en) | 2021-09-27 |
JP7401850B2 JP7401850B2 (en) | 2023-12-20 |
Family
ID=77850318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020048657A Active JP7401850B2 (en) | 2020-03-19 | 2020-03-19 | surface coated cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7401850B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001179503A (en) * | 1999-12-24 | 2001-07-03 | Mitsubishi Materials Corp | Surface coated-thermet cutting tool having blade face of low frictional resistance to chip |
JP2007260851A (en) * | 2006-03-29 | 2007-10-11 | Kyocera Corp | Surface coated cutting tool |
US20160136786A1 (en) * | 2013-06-14 | 2016-05-19 | Sandvik Intellectual Property Ab | Coated cutting tool |
JP2017159409A (en) * | 2016-03-10 | 2017-09-14 | 三菱マテリアル株式会社 | Surface-coated cutting tool exerting excellent wear resistance |
JP2018114611A (en) * | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance |
WO2019146785A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
JP2019177424A (en) * | 2018-03-30 | 2019-10-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
-
2020
- 2020-03-19 JP JP2020048657A patent/JP7401850B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001179503A (en) * | 1999-12-24 | 2001-07-03 | Mitsubishi Materials Corp | Surface coated-thermet cutting tool having blade face of low frictional resistance to chip |
JP2007260851A (en) * | 2006-03-29 | 2007-10-11 | Kyocera Corp | Surface coated cutting tool |
US20160136786A1 (en) * | 2013-06-14 | 2016-05-19 | Sandvik Intellectual Property Ab | Coated cutting tool |
JP2017159409A (en) * | 2016-03-10 | 2017-09-14 | 三菱マテリアル株式会社 | Surface-coated cutting tool exerting excellent wear resistance |
JP2018114611A (en) * | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance |
WO2019146785A1 (en) * | 2018-01-29 | 2019-08-01 | 京セラ株式会社 | Coated tool, and cutting tool comprising same |
JP2019177424A (en) * | 2018-03-30 | 2019-10-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
Also Published As
Publication number | Publication date |
---|---|
JP7401850B2 (en) | 2023-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620482B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
EP2085500A2 (en) | Surface-coated cutting tool with hard coating layer having excellent abrasion resistance | |
US12162079B2 (en) | Surface-coated cutting tool | |
WO2016052479A1 (en) | Surface-coated cutting tool having excellent chip resistance | |
JP2007160497A (en) | Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer | |
JP7231885B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
JP2016036873A (en) | Surface-coated cutting tool excellent in wear-resistance | |
JP6650108B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
WO2020166683A1 (en) | Surface-coated cutting tool | |
CN103252509A (en) | A surface coating cutting tool with a hard coating layer exhibiting excellent broken fracture resistance | |
JP2020131424A (en) | Surface-coated cutting tool | |
JP7453616B2 (en) | surface coated cutting tools | |
JP4811787B2 (en) | Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer | |
US11998992B2 (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP7401850B2 (en) | surface coated cutting tools | |
JP7190111B2 (en) | surface coated cutting tools | |
JP5286931B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting | |
JP7492678B2 (en) | Surface-coated cutting tools | |
JP2006198740A (en) | Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP4857950B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP4822119B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP4747386B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
WO2023190000A1 (en) | Surface-coated cutting tool | |
JP5309698B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7401850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |