[go: up one dir, main page]

JP2021144907A - Solid power storage device and method for manufacturing the same - Google Patents

Solid power storage device and method for manufacturing the same Download PDF

Info

Publication number
JP2021144907A
JP2021144907A JP2020044224A JP2020044224A JP2021144907A JP 2021144907 A JP2021144907 A JP 2021144907A JP 2020044224 A JP2020044224 A JP 2020044224A JP 2020044224 A JP2020044224 A JP 2020044224A JP 2021144907 A JP2021144907 A JP 2021144907A
Authority
JP
Japan
Prior art keywords
sealing member
solid
storage device
power storage
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020044224A
Other languages
Japanese (ja)
Other versions
JP7328167B2 (en
Inventor
航 清水
Wataru Shimizu
航 清水
正弘 大田
Masahiro Ota
正弘 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020044224A priority Critical patent/JP7328167B2/en
Priority to CN202110256407.0A priority patent/CN113394494B/en
Publication of JP2021144907A publication Critical patent/JP2021144907A/en
Application granted granted Critical
Publication of JP7328167B2 publication Critical patent/JP7328167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

To provide a solid power storage device capable of sufficiently ensuring the airtightness of an all-solid-state battery laminate by a resin layer with a simple configuration, and a method for manufacturing the same.SOLUTION: A solid power storage device has a solid battery laminate 1 in which positive electrode systems 30 and negative electrode systems 10 are alternately laminated, and the projected shape of the solid power storage device in the lamination direction is approximately square. The positive electrode systems and the negative electrode systems are provided with a sealing frame 17 which is surrounded by four sealing members 13, 14, 15, and 16 extending along the sides of the outer circumference of the square to seal the inside. The sealing frame has a three-way sealing member 18 in which the sealing members 13, 14 and 15 on the three sides of the outer circumference are connected to one another, and a closing sealing member 19 for closing the open side. At least one of the three-way sealing member 18 and the closing sealing member 19 is provided with a stepped portion 153 formed at the contact portion therebetween.SELECTED DRAWING: Figure 6

Description

本発明は、固体蓄電装置及びその製造方法に関する。 The present invention relates to a solid-state power storage device and a method for manufacturing the same.

正極系と負極系を接続する界面に固体電解質を配し、充放電時における正極系と負極系のイオンの授受をこの固体電解質を介して行うようにした固体蓄電装置が提案されている(例えば、特許文献1参照)。 A solid power storage device has been proposed in which a solid electrolyte is arranged at the interface connecting the positive electrode system and the negative electrode system, and ions of the positive electrode system and the negative electrode system are transferred via this solid electrolyte during charging and discharging (for example). , Patent Document 1).

一方、全固体電池積層体の側面を樹脂層で被覆する形態の固体蓄電装置おいて、全固体電池積層体と樹脂層との接着性を向上させる技術が提案されている(例えば、特許文献2参照)。特許文献2における提案では、正極集電体層及び負極集電体層のうちの少なくとも一層の少なくとも一方の面に、隣接する他層と重なる部分としての積層部と当該他層よりも延び出た延出部とを設けている。延出部の表面粗さを粗くして全固体電池積層体と樹脂層との接着性を確保している。 On the other hand, in a solid-state power storage device in which the side surface of the all-solid-state battery laminate is covered with a resin layer, a technique for improving the adhesiveness between the all-solid-state battery laminate and the resin layer has been proposed (for example, Patent Document 2). reference). In the proposal in Patent Document 2, at least one surface of at least one of the positive electrode current collector layer and the negative electrode current collector layer extends from the laminated portion as a portion overlapping with the adjacent other layer and the other layer. An extension section is provided. The surface roughness of the extended portion is roughened to ensure the adhesiveness between the all-solid-state battery laminate and the resin layer.

特許第6363244号公報Japanese Patent No. 6363244 特開2019−192610号公報Japanese Unexamined Patent Publication No. 2019-192610

特許文献1の固体蓄電装置では、正極系又は負極系の何れか一方の系が他方の系を包囲するようなセル構造を採る場合には、充放電時における熱サイクルにより、固体蓄電装置における封止部材が被着部である金属集電体や固体電解質から剥離する虞がある。このような剥離が発生すると、各系ごとに隔離されるべき電解質や活物質が他の系に混入してしまうといった現象を来す。この現象が生じると、固体蓄電装置の製造に係る歩留まりの悪化や品質の低下を招来することになる。
一方、特許文献2における固体電池装置では、全固体電池積層体と樹脂層との接着性を確保するために、他層と重なる部分としての積層部から他層よりも延び出た延出部を設けてその表面粗さを粗くしている。しかしながら、延出部の表面粗さを、樹脂層との接着性を確保するに十分な程度の粗さとすることは製造上の困難を伴う。また、比較的薄手の延出部で樹脂層の歪に抗するには限界がある。
In the solid-state power storage device of Patent Document 1, when one of the positive electrode system and the negative electrode system surrounds the other system, the solid-state power storage device is sealed by the heat cycle during charging and discharging. There is a risk that the stopping member will peel off from the metal current collector or solid electrolyte that is the adherend. When such peeling occurs, a phenomenon occurs in which electrolytes and active materials that should be isolated in each system are mixed in other systems. When this phenomenon occurs, the yield and quality of the solid-state power storage device are deteriorated.
On the other hand, in the solid-state battery device in Patent Document 2, in order to ensure the adhesiveness between the all-solid-state battery laminate and the resin layer, an extended portion extending from the laminated portion as a portion overlapping the other layer is provided. It is provided to roughen the surface roughness. However, it is difficult to manufacture the surface roughness of the extended portion so that the surface roughness is sufficient to secure the adhesiveness with the resin layer. In addition, there is a limit to resisting the distortion of the resin layer with a relatively thin extending portion.

本発明は、上記事情に鑑みてなされものであり、簡単な構成で、樹脂層による全固体電池積層体の密閉性を十分に確保することが可能な固体蓄電装置及びその製造方法を提供すること目的とする。 The present invention has been made in view of the above circumstances, and provides a solid-state power storage device and a method for manufacturing the same, which can sufficiently secure the airtightness of the all-solid-state battery laminate by the resin layer with a simple configuration. The purpose.

(1)対面する2つの固体電解質層(例えば、後述する固体電解質層20,20)間に正極活物質層(例えば、後述する正極活物質層31)が配され前記正極活物質層に正極集電体層(例えば、後述する正極集電体層32)が接して配された正極系(例えば、後述する正極系30)と、負極活物質層(例えば、後述する負極活物質層11)が配され前記負極活物質層に負極集電体層(例えば、後述する負極集電体層12)が接して配された負極系(例えば、後述する負極系10)とが交互に積層され、積層方向の投影形状が概略方形を成す固体電池積層体(例えば、後述する固体電池積層体1)を有し、
前記正極系及び前記負極系それぞれは、方形の外周の各辺に沿って延びた4つの密閉部材(例えば、後述する4つの密閉部材13、14、15、16)で囲んで内部を密閉する密閉枠(例えば、後述する密閉枠17)が設けられ、
前記密閉枠は、前記外周に沿う3辺の密閉部材(例えば、後述する3辺の密閉部材13、14、15)が連なった三方密閉部材(例えば、後述する三方密閉部材18)と前記三方密閉部材の開放側を閉止するように配される閉止密閉部材(例えば、後述する閉止密閉部材19)とを有し、
前記三方密閉部材と前記閉止密閉部材との両者の少なくとも一方には、前記両者の接触部に段差部(例えば、後述する段差部153)が形成されている、
固体蓄電装置。
(1) A positive electrode active material layer (for example, a positive electrode active material layer 31 described later) is arranged between two facing solid electrolyte layers (for example, solid electrolyte layers 20 and 20 described later), and a positive electrode collection is provided on the positive electrode active material layer. A positive electrode system (for example, a positive electrode system 30 described later) arranged in contact with an electric body layer (for example, a positive electrode current collector layer 32 described later) and a negative electrode active material layer (for example, a negative electrode active material layer 11 described later) are arranged. The negative electrode system (for example, the negative electrode system 10 described later) arranged so that the negative electrode current collector layer (for example, the negative electrode current collector layer 12 described later) is in contact with the negative electrode active material layer is alternately laminated and laminated. It has a solid-cell battery laminate (for example, a solid-cell battery laminate 1 described later) having a substantially square projection shape in the direction.
Each of the positive electrode system and the negative electrode system is sealed by being surrounded by four sealing members (for example, four sealing members 13, 14, 15, 16 described later) extending along each side of the outer circumference of the square to seal the inside. A frame (for example, a closed frame 17 described later) is provided, and a frame (for example, a closed frame 17 described later) is provided.
The sealing frame includes a three-sided sealing member (for example, a three-sided sealing member 18 described later) in which three-sided sealing members (for example, three-sided sealing members 13, 14, 15 described later) are connected along the outer circumference, and the three-sided sealing member. It has a closing and closing member (for example, a closing and closing member 19 which will be described later) arranged so as to close the open side of the member.
At least one of the three-way sealing member and the closing sealing member has a stepped portion (for example, a stepped portion 153 described later) formed at a contact portion between the two.
Solid power storage device.

(2)前記段差部は、前記三方密閉部材と前記閉止密閉部材との両者の少なくとも一方に形成された相互に直交する接触面である切欠き部(例えば、後述する切欠き部152)と段差部(例えば、後述する段差部153)とにより構成された少なくとも1段の段状部を成す、(1)の固体蓄電装置。 (2) The stepped portion is a stepped portion with a notch portion (for example, a notch portion 152 described later) which is a contact surface formed on at least one of both the three-way sealing member and the closing sealing member and which is orthogonal to each other. The solid-state power storage device according to (1), which forms at least one stepped portion composed of a portion (for example, a step portion 153 described later).

(3)前記段差部を有する密閉部材は前記固体電池積層体の負極側に配置されている、(1)又は(2)に記載の固体蓄電装置。 (3) The solid-state power storage device according to (1) or (2), wherein the sealing member having the stepped portion is arranged on the negative electrode side of the solid-state battery laminate.

(4)前記三方密閉部材と前記閉止密閉部材との少なくとも何れか一の密閉部材には、前記密閉枠の一部を構成する密閉部材本体部から前記固体電池積層体の積層方向に延長されてシート状部材が設けられている、請求項(1)から(3)の何れかに記載の固体蓄電装置。 (4) At least one of the three-way sealing member and the closing sealing member is extended from the sealing member main body constituting a part of the sealing frame in the stacking direction of the solid-state battery laminate. The solid-state power storage device according to any one of claims (1) to (3), which is provided with a sheet-like member.

(5)前記三方密閉部材と前記閉止密閉部材とは、両者の接触部が接触状態で熱溶着により接着可能に構成されている、(1)から(4)の何れかに記載の固体蓄電装置。 (5) The solid-state power storage device according to any one of (1) to (4), wherein the three-way sealing member and the closing sealing member are configured so that their contact portions can be adhered to each other by heat welding in a contact state. ..

(6)正極系と負極系の少なくとも一方に、液状の電解質(電解液)が密閉されている、(1)から(5)の何れかに記載の固体蓄電装置。 (6) The solid storage device according to any one of (1) to (5), wherein a liquid electrolyte (electrolyte solution) is sealed in at least one of a positive electrode system and a negative electrode system.

(7)所定の移動体に適合するように構成されている、請求項(1)から(6)の何れかに記載の固体蓄電装置。 (7) The solid-state power storage device according to any one of claims (1) to (6), which is configured to be compatible with a predetermined mobile body.

(8)請求項(1)から(7)の何れかに記載の固体蓄電装置を、前記三方密閉部材と前記閉止密閉部材とを熱溶着により結合させて製造する固体蓄電装置の製造方法。 (8) A method for manufacturing a solid power storage device according to any one of claims (1) to (7), wherein the solid power storage device is manufactured by bonding the three-way sealing member and the closing sealing member by heat welding.

(1)の固体蓄電装置では、三方密閉部材と閉止密閉部材との両者の少なくとも一方には、両者の接触部に段差部が形成されている。この段差部で三方密閉部材と閉止密閉部材とが接合されることにより、接合部分での接触面積が十分に確保されるため密閉枠内の密閉性が向上する。 In the solid-state power storage device of (1), at least one of both the three-way sealing member and the closing sealing member has a stepped portion formed at the contact portion between the two. By joining the three-way sealing member and the closing sealing member at this stepped portion, a sufficient contact area is secured at the jointed portion, so that the sealing property in the sealing frame is improved.

(2)の固体蓄電装置では、段差部は、三方密閉部材と閉止密閉部材との両者の少なくとも一方に形成された相互に直交する接触面である切欠き部と段差部とにより構成されるため、この段差部で三方密閉部材と閉止密閉部材とが面的に密着して接合されることにより密閉部材の接合部における密閉性が向上する。 In the solid-state power storage device of (2), the step portion is composed of a notch portion and a step portion which are contact surfaces orthogonal to each other formed on at least one of the three-way sealing member and the closing sealing member. At this stepped portion, the three-way sealing member and the closing sealing member are joined in close contact with each other in a plane manner, so that the sealing property at the joint portion of the sealing member is improved.

(3)の固体蓄電装置では、特に密閉性に関する性能が要求される固体電池積層体の負極側において、段差部によって十分な密閉性が確保される。 In the solid-state power storage device (3), sufficient airtightness is ensured by the stepped portion on the negative electrode side of the solid-state battery laminate, which is particularly required to have performance related to airtightness.

(4)の固体蓄電装置では、固体電池積層体の積層方向に延長されて設けられているシート状部材を密閉枠の内側に曲げて上面に沿わせて張り付けるように用いることにより、密閉枠内の密閉性が向上する。 In the solid-state power storage device (4), a sheet-like member extended in the stacking direction of the solid-state battery laminate is bent inside the sealed frame and attached along the upper surface of the sealed frame. The airtightness inside is improved.

(5)の固体蓄電装置では、三方密閉部材と閉止密閉部材とが接触状態で熱溶着により接着され密閉枠内の密閉性が向上する。 In the solid-state power storage device of (5), the three-way sealing member and the closing sealing member are adhered by heat welding in a contact state to improve the sealing property in the sealing frame.

(6)正極または負極の一方に電解質を一体化することで、重ね合わせだけで固体蓄電池を製造することが可能となるため、製造が容易になる。 (6) By integrating the electrolyte into one of the positive electrode and the negative electrode, it is possible to manufacture a solid storage battery only by superimposing the electrolyte, which facilitates the manufacture.

(7)の固体蓄電装置では、振動に対する耐力が求められる移動体に適用しても、十分な耐久性が得られる。 The solid-state power storage device of (7) can obtain sufficient durability even when applied to a moving body that is required to withstand vibration.

(8)の固体蓄電装置の製造方法では、三方密閉部材と閉止密閉部材とを熱溶着により結合されるため、密閉枠内の密閉性が向上する。 In the method for manufacturing a solid power storage device according to (8), since the three-way sealing member and the closing sealing member are bonded by heat welding, the sealing property in the sealing frame is improved.

本発明の実施形態としての固体蓄電装置における固体電池積層体の概念的構成を示す斜視図である。It is a perspective view which shows the conceptual structure of the solid-state battery laminate in the solid-state power storage device as embodiment of this invention. 図1Aの固体蓄電装置を図示のY方向視した側面図である。FIG. 3 is a side view of the solid-state power storage device of FIG. 1A as viewed in the Y direction of the drawing. 本発明の実施形態としての固体蓄電装置を構成する負極系の一例を示す平面図である。It is a top view which shows an example of the negative electrode system which comprises the solid-state electricity storage device as embodiment of this invention. 図2の部分拡大図である。It is a partially enlarged view of FIG. 本発明の実施形態としての固体蓄電装置を構成する負極系の他の例を示す平面図である。It is a top view which shows another example of the negative electrode system which comprises the solid-state electricity storage device as embodiment of this invention. 図4の部分拡大図である。It is a partially enlarged view of FIG. 本発明の実施形態としての固体蓄電装置の密閉枠を構成する三方密閉部材と閉止密閉部材との接合部まわりの構成の一例を示す分解模式図である。It is an exploded schematic diagram which shows an example of the structure around the joint part of the three-way sealing member which constitutes the sealing frame of the solid power storage device as the embodiment of this invention, and the closing sealing member. 本発明の一実施形態としての固体蓄電装置の密閉枠を構成する三方密閉部材と閉止密閉部材との接合部まわりの構成の他の例を示す模式図である。It is a schematic diagram which shows another example of the structure around the joint part of the three-way sealing member which constitutes the sealing frame of the solid power storage device as one embodiment of this invention, and the closing sealing member. 図6の密閉部材におけるシート状部材を固体電解質層の側面に熱溶着する様子を示す図である。It is a figure which shows the state of heat welding the sheet-like member in the sealing member of FIG. 6 to the side surface of a solid electrolyte layer. 本発明の実施形態としての固体蓄電装置を構成する負極系の製造過程の一つの段階を示す概念図である。It is a conceptual diagram which shows one step of the manufacturing process of the negative electrode system which comprises the solid-state electricity storage device as embodiment of this invention. 本発明の実施形態としての固体蓄電装置を構成する固体電池積層体の製造過程の一つの段階を示す概念図である。It is a conceptual diagram which shows one step of the manufacturing process of the solid-state battery laminate which comprises the solid-state power storage device as embodiment of this invention. 本発明の実施形態に対する比較例としての固体蓄電装置を構成する負極系の一例を示す平面図である。It is a top view which shows an example of the negative electrode system which comprises the solid-state electricity storage device as a comparative example with respect to embodiment of this invention. 図11の部分拡大図である。It is a partially enlarged view of FIG.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態としての固体蓄電装置における固体電池積層体の概念的構成を示す斜視図である。図1では、後述する何れも概略平盤状の負極系及び正極系の主面方向をX―Y平面方向とし、積層方向をZ方向と想定している。
図1Bは、図1Aの固体蓄電装置を図示のY方向視した側面図である。
図1A及び図1Bの固体電池積層体1について、図9及び図10を併せ参照して説明する。
図9は、固体電池積層体1の構成要素である負極系10の製造過程の一つの段階を示す概念図である。
図10は、固体蓄電装置を構成する固体電池積層体1の製造過程の一つの段階を示す概念図である。
負極系10は、対面する2つの固体電解質層20,20間に負極活物質層11および電解質(電解液)が挿入されて構成される。負極活物質層11に負極集電体層12が沿うように接して配される。同様に、正極系30は、対面する2つの固体電解質層20,20間に正極活物質層31および電解質(電解液)が挿入されて構成される。正極活物質層31に正極集電体層32が沿うように接して配される。図10に示されるように、負極系10と正極系30とが交互に複数積層されて(換言すれば、正極系30と負極系10とが交互に複数積層されて)、図1の固体電池積層体1が構成される。固体電池積層体1は、負極系10と正極系30との積層における積層方向(図1におけるZ方向)での投影形状が概略方形を成す。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a conceptual configuration of a solid-state battery laminate in a solid-state power storage device according to an embodiment of the present invention. In FIG. 1, it is assumed that the main surface directions of the negative electrode system and the positive electrode system having a substantially flat plate shape are the XY plane directions and the stacking direction is the Z direction.
FIG. 1B is a side view of the solid-state power storage device of FIG. 1A as viewed in the Y direction of the drawing.
The solid-state battery laminate 1 of FIGS. 1A and 1B will be described with reference to FIGS. 9 and 10.
FIG. 9 is a conceptual diagram showing one stage of the manufacturing process of the negative electrode system 10, which is a component of the solid-state battery laminate 1.
FIG. 10 is a conceptual diagram showing one stage of the manufacturing process of the solid-state battery laminate 1 constituting the solid-state power storage device.
The negative electrode system 10 is configured by inserting the negative electrode active material layer 11 and the electrolyte (electrolyte solution) between the two solid electrolyte layers 20 and 20 facing each other. The negative electrode current collector layer 12 is in contact with the negative electrode active material layer 11 so as to be aligned with the negative electrode active material layer 11. Similarly, the positive electrode system 30 is configured by inserting the positive electrode active material layer 31 and the electrolyte (electrolyte solution) between the two solid electrolyte layers 20 and 20 facing each other. The positive electrode current collector layer 32 is in contact with the positive electrode active material layer 31 so as to be aligned with the positive electrode active material layer 31. As shown in FIG. 10, a plurality of negative electrode systems 10 and a plurality of positive electrode systems 30 are alternately laminated (in other words, a plurality of positive electrode systems 30 and a plurality of negative electrode systems are alternately laminated), and the solid-state battery of FIG. 1 is formed. The laminated body 1 is formed. The solid-state battery laminate 1 has a substantially square projection shape in the lamination direction (Z direction in FIG. 1) in the lamination of the negative electrode system 10 and the positive electrode system 30.

図2は、上述の固体電池積層体1の負極系10の一例を示す平面図である。負極系10は、方形の外周の各辺に沿って延びた4つの密閉部材13、14、15、16で囲んで内部を密閉する密閉枠17が設けられる。密閉枠17は、外周に沿う3辺の密閉部材13、14、15が連なった三方密閉部材18と、三方密閉部材18の開放側を閉止するように配される閉止密閉部材19とを有して構成される。密閉部材13、14、15、16は、PP(ポリプロピレン)やPE(ポリエチレン)、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂などの耐薬品性に優れ、接着性、密閉性に優れた材料により構成される。 FIG. 2 is a plan view showing an example of the negative electrode system 10 of the above-mentioned solid-state battery laminate 1. The negative electrode system 10 is provided with a sealing frame 17 that is surrounded by four sealing members 13, 14, 15, and 16 extending along each side of the outer circumference of the square to seal the inside. The sealing frame 17 has a three-way sealing member 18 in which three-sided sealing members 13, 14 and 15 are connected along the outer circumference, and a closing sealing member 19 arranged so as to close the open side of the three-way sealing member 18. It is composed of. The sealing members 13, 14, 15 and 16 are made of materials having excellent chemical resistance such as PP (polypropylene), PE (polyethylene), epoxy resin, urethane resin, acrylic resin and silicone resin, and excellent adhesiveness and sealing property. It is composed.

閉止密閉部材19は、密閉枠17における一つの密閉部材16である。図2の平面視では、負極活物質層11が密閉枠17によって囲まれた形を呈している。また、密閉部材16(閉止密閉部材19)から外部に向けて負極集電体層12が延び出た形を呈している。 The closing sealing member 19 is one sealing member 16 in the sealing frame 17. In the plan view of FIG. 2, the negative electrode active material layer 11 has a shape surrounded by a closed frame 17. Further, the negative electrode current collector layer 12 extends outward from the sealing member 16 (closing and closing member 19).

正極系30についても、方形の外周の各辺に沿って延びた4つの密閉部材で囲んで内部を密閉する密閉枠が設けられる点は、負極系10と同様である。また、密閉枠は、外周に沿う3辺の密閉部材が連なった三方密閉部材と、三方密閉部材の開放側を閉止するように配される閉止密閉部材とを有して構成される点も、負極系10と同様である。このため、正極系30における密閉枠を有する構成を表す図については、図2及び、本実施形態との比較例である図11及び図12を適宜援用する。なお、図10の通り、正極系30では正極集電層22の導出方向が負極系10における負極集電体層12導出方向とは逆方向になる。 The positive electrode system 30 is also similar to the negative electrode system 10 in that a sealing frame for sealing the inside is provided by surrounding the positive electrode system 30 with four sealing members extending along each side of the outer circumference of the square. Further, the sealing frame is also configured to include a three-way sealing member in which three-sided sealing members along the outer circumference are connected, and a closing sealing member arranged so as to close the open side of the three-way sealing member. It is the same as the negative electrode system 10. Therefore, with respect to the figure showing the structure of the positive electrode system 30 having the closed frame, FIG. 2 and FIGS. 11 and 12 which are comparative examples with the present embodiment are appropriately referred to. As shown in FIG. 10, in the positive electrode system 30, the lead-out direction of the positive electrode current collector layer 22 is opposite to the lead-out direction of the negative electrode current collector layer 12 in the negative electrode system 10.

本発明の固体蓄電装置では、正極系30と負極系10は、少なくとも一方が密閉されていればよいが、双方が密閉されていると、より好ましい。 In the solid-state power storage device of the present invention, at least one of the positive electrode system 30 and the negative electrode system 10 may be sealed, but it is more preferable that both are sealed.

上述の密閉枠17は、図1にて想定したX―Y平面への投影形状、即ち、上述の積層方向への投影形状で見ると、三方密閉部材18は概略U字状或いはC字状を呈し、この形状の開放側が閉止密閉部材19で閉止される。また、三方密閉部材18を構成する各密閉部材13,14,15、及び閉止密閉部材19のX―Y平面への投影形状、即ち、上述の積層方向への投影形状は、何れも、概ね方形である。 The three-way sealing member 18 has a substantially U-shape or a C-shape when viewed from the projection shape on the XY plane assumed in FIG. 1, that is, the projection shape in the stacking direction described above. The open side of this shape is closed by the closing sealing member 19. Further, the projected shapes of the sealing members 13, 14, 15 and the closing sealing member 19 constituting the three-way sealing member 18 on the XY plane, that is, the above-mentioned projected shapes in the stacking direction are all substantially square. Is.

本実施形態では、この閉止を確実にするために、三方密閉部材18と閉止密閉部材19との両者の少なくとも一方には、両者の接触部に段差部が形成されている。この段差部は、図2及びその部分拡大図である図3に一つの具体例が示されている。 In the present embodiment, in order to ensure the closing, at least one of the three-way sealing member 18 and the closing sealing member 19 is formed with a stepped portion at the contact portion between the two. A specific example of this stepped portion is shown in FIG. 2 and FIG. 3 which is a partially enlarged view thereof.

図2及び図3の例では、三方密閉部材18のうち並行する密閉部材13及び15の各端部(図では左端部)に段差部が形成されている。図3には、密閉部材15の左端部151近傍が部分拡大図として示されている。密閉部材15の左端部151近傍における閉止密閉部材19の端部(図では下端部191)の角部192との接触部位に、密閉部材15の厚み方向に一定の深さで切り欠かれた切欠き部152が形成されている。密閉部材15には、切欠き部152によって閉止密閉部材19との接触部に段差部153が形成されている。 In the examples of FIGS. 2 and 3, a step portion is formed at each end (left end in the drawing) of the parallel sealing members 13 and 15 of the three-way sealing member 18. In FIG. 3, the vicinity of the left end portion 151 of the sealing member 15 is shown as a partially enlarged view. A cut cut out at a certain depth in the thickness direction of the sealing member 15 at a contact portion with a corner portion 192 of the end portion (lower end portion 191 in the figure) of the closing sealing member 19 in the vicinity of the left end portion 151 of the sealing member 15. The notch 152 is formed. The sealing member 15 is formed with a stepped portion 153 at a contact portion with the closing sealing member 19 by a notch portion 152.

このように段差部153を形成する切欠き部152に、閉止密閉部材19の下端部191の角部192が隙間なく嵌るようにして、密閉部材15と閉止密閉部材19とが密に接合される。切欠き部152は、密閉部材15の長手方向に沿う寸法(切欠き幅)が閉止密閉部材19の厚み寸法より小さい。このため、図示のように、閉止密閉部材19の長手方向外側縁(図では左側縁193)は、密閉部材15の左端部151に揃わず外側(図では左側)に位置する。 The sealing member 15 and the closing sealing member 19 are tightly joined so that the corner portion 192 of the lower end portion 191 of the closing sealing member 19 fits tightly into the notch portion 152 forming the step portion 153 in this way. .. The dimension (notch width) of the notch portion 152 along the longitudinal direction of the sealing member 15 is smaller than the thickness dimension of the closing sealing member 19. Therefore, as shown in the drawing, the outer edge in the longitudinal direction (left edge 193 in the figure) of the closing sealing member 19 is not aligned with the left end portion 151 of the sealing member 15 and is located on the outside (left side in the drawing).

三方密閉部材18の密閉部材13についても、密閉部材15におけると同様に、密閉部材13の左端部131近傍に切欠き部132が形成されている。切欠き部132によって閉止密閉部材19との接触部に段差部133が形成されている。このように段差部133を形成する切欠き部132に閉止密閉部材19の上端部194の角部195が隙間なく嵌るようにして、密閉部材13と閉止密閉部材19とが密に接合される。 As for the sealing member 13 of the three-way sealing member 18, a notch 132 is formed in the vicinity of the left end 131 of the sealing member 13 as in the sealing member 15. A step portion 133 is formed at a contact portion with the closing sealing member 19 by the notch portion 132. The sealing member 13 and the closing sealing member 19 are tightly joined so that the corner portion 195 of the upper end portion 194 of the closing sealing member 19 fits tightly into the notch portion 132 forming the step portion 133 in this way.

密閉部材15の左端部151側に形成された切欠き部152と段差部153とは相互に直交する矩形の面を成している。図2及び図3における密閉部材15と閉止密閉部材19との接合部では、このように相互に直交する矩形の面を成す密閉部材15側の接合面(切欠き部152と段差部153)が閉止密閉部材19側の対応面に接触した状態で、当該接触した両者の部材が熱溶着によって接着される。このため、段差のないフラットな面どうしを接触させた場合よりも接触面積が大きくなって、より広い範囲に強固な熱溶着部が形成されるため密閉性に優れる。
また、密閉部材13の左端部131側に形成された切欠き部132と段差部133とは相互に直交する矩形の面を成している。従って、密閉部材15と閉止密閉部材19との接合部におけると同様に、相互に直交する矩形の面を成す密閉部材13側の接合面(切欠き部132と段差部133)が閉止密閉部材19側の対応面に接触した状態で、当該接触した両者の部材が熱溶着によって接着される。このため、段差のないフラットな面どうしを接触させた場合よりも接触面積が大きくなって、より広い範囲に強固な熱溶着部が形成されるため密閉性に優れる。
The notch portion 152 and the step portion 153 formed on the left end portion 151 side of the sealing member 15 form a rectangular surface orthogonal to each other. In the joint portion between the sealing member 15 and the closing sealing member 19 in FIGS. 2 and 3, the joint surface (notch portion 152 and step portion 153) on the sealing member 15 side forming a rectangular surface orthogonal to each other is formed. In a state of being in contact with the corresponding surface on the closing sealing member 19 side, the two contacting members are adhered by heat welding. For this reason, the contact area is larger than when flat surfaces having no steps are brought into contact with each other, and a strong heat-welded portion is formed in a wider range, so that the airtightness is excellent.
Further, the notch portion 132 formed on the left end portion 131 side of the sealing member 13 and the step portion 133 form a rectangular surface orthogonal to each other. Therefore, similarly to the joint portion between the sealing member 15 and the closing sealing member 19, the joining surface (notch portion 132 and step portion 133) on the sealing member 13 side forming a rectangular surface orthogonal to each other is the closing sealing member 19. In a state of being in contact with the corresponding surface on the side, the two members in contact are adhered by heat welding. For this reason, the contact area is larger than when flat surfaces having no steps are brought into contact with each other, and a strong heat-welded portion is formed in a wider range, so that the airtightness is excellent.

図4及び図5には、三方密閉部材と閉止密閉部材との両者の接触部に形成された段差部の他の例が示されている。
図4及び図5の例では、三方密閉部材18のうち並行する密閉部材13及び15の各端部(図では各左端部131,151)には段差部が形成されず、閉止密閉部材19の端部に段差部が形成されている。図5には、閉止密閉部材19の下端部191近傍が部分拡大図として示されている。
4 and 5 show another example of a stepped portion formed at the contact portion between the three-way sealing member and the closing sealing member.
In the examples of FIGS. 4 and 5, no step portion is formed at each end portion (each left end portion 131, 151 in the figure) of the parallel sealing members 13 and 15 of the three-way sealing member 18, and the closing sealing member 19 A step is formed at the end. In FIG. 5, the vicinity of the lower end portion 191 of the closing sealing member 19 is shown as a partially enlarged view.

閉止密閉部材19の下端部191近傍における密閉部材15の端部(図では左端部151)の角部154との接触部位に、閉止密閉部材19の厚み方向に一定の深さで切り欠かれた切欠き部196が形成されている。閉止密閉部材19には、切欠き部196によって密閉部材15との接触部に段差部197が形成されている。このように段差部197を形成する切欠き部196に、密閉部材15の左端部151の角部154が隙間なく嵌るようにして、閉止密閉部材19と密閉部材15とが密に接合される。 A cutout was made at a certain depth in the thickness direction of the closing sealing member 19 at a contact portion with a corner portion 154 of the closing portion 15 (left end portion 151 in the figure) in the vicinity of the lower end portion 191 of the closing sealing member 19. A notch 196 is formed. In the closing sealing member 19, a stepped portion 197 is formed at a contact portion with the sealing member 15 by a notch portion 196. The closing sealing member 19 and the sealing member 15 are tightly joined so that the corner portion 154 of the left end portion 151 of the sealing member 15 fits tightly into the notch portion 196 forming the step portion 197 in this way.

切欠き部196は、閉止密閉部材19の長手方向に沿う寸法(深さ)が密閉部材15の厚み寸法より小さい。このため、図示のように、密閉部材15の長手方向外側縁(図では下端縁155)は、閉止密閉部材19の下端部191に揃わず外側(図では下側)に位置する。 The dimension (depth) of the notch portion 196 along the longitudinal direction of the closing sealing member 19 is smaller than the thickness dimension of the sealing member 15. Therefore, as shown in the drawing, the outer edge in the longitudinal direction (lower end edge 155 in the figure) of the sealing member 15 is not aligned with the lower end portion 191 of the closing sealing member 19 and is located on the outer side (lower side in the drawing).

閉止密閉部材19の上端部194側についても、下端部191側におけると同様に、閉止密閉部材19の上端部194に切欠き部198が形成されている。切欠き部198によって密閉部材13との接触部に段差部199が形成されている。このように段差部199を形成する切欠き部198に密閉部材13の左端部131の角部134が隙間なく嵌るようにして、閉止密閉部材19と密閉部材13とが密に接合される。 As for the upper end portion 194 side of the closing sealing member 19, a notch portion 198 is formed in the upper end portion 194 of the closing sealing member 19 as in the case of the lower end portion 191 side. A step portion 199 is formed at a contact portion with the sealing member 13 by the notch portion 198. The closing sealing member 19 and the sealing member 13 are tightly joined so that the corner portion 134 of the left end portion 131 of the sealing member 13 fits into the notch portion 198 forming the step portion 199 without a gap.

閉止密閉部材19の下端部191側に形成された切欠き部196と段差部197とは相互に直交する矩形の面を成している。図4及び図5における閉止密閉部材19と密閉部材15との接合部では、このように相互に直交する矩形の面を成す閉止密閉部材19側の接合面(切欠き部196と段差部197)が密閉部材15側の対応面に接触した状態で、当該接触した両者の部材が熱溶着によって接着される。このため、段差のないフラットな面どうしを接触させた場合よりも接触面積が大きくなって、より広い範囲に強固な熱溶着部が形成されるため密閉性に優れる。
また、閉止密閉部材19の上端部194側に形成された切欠き部198と段差部199とは相互に直交する矩形の面を成している。従って、密閉部材15と閉止密閉部材19との接合部におけると同様に、相互に直交する矩形の面を成す閉止密閉部材19側の接合面(切欠き部198と段差部199)が密閉部材13側の対応面に接触した状態で、当該接触した両者の部材が熱溶着によって接着される。このため、段差のないフラットな面どうしを接触させた場合よりも接触面積が大きくなって、より広い範囲に強固な熱溶着部が形成されるため密閉性に優れる。
The notch portion 196 and the step portion 197 formed on the lower end portion 191 side of the closing sealing member 19 form a rectangular surface orthogonal to each other. In the joint portion between the closing seal member 19 and the sealing member 15 in FIGS. 4 and 5, the joint surface on the closing sealing member 19 side (notch 196 and stepped portion 197) forming a rectangular surface orthogonal to each other in this way. Is in contact with the corresponding surface on the sealing member 15 side, and both of the contacted members are bonded by heat welding. For this reason, the contact area is larger than when flat surfaces having no steps are brought into contact with each other, and a strong heat-welded portion is formed in a wider range, so that the airtightness is excellent.
Further, the notch portion 198 formed on the upper end portion 194 side of the closing sealing member 19 and the stepped portion 199 form a rectangular surface orthogonal to each other. Therefore, similarly to the joint portion between the sealing member 15 and the closing sealing member 19, the joining surface (notch portion 198 and step portion 199) on the closing sealing member 19 side forming a rectangular surface orthogonal to each other is the sealing member 13. In a state of being in contact with the corresponding surface on the side, the two members in contact are adhered by heat welding. For this reason, the contact area is larger than when flat surfaces having no steps are brought into contact with each other, and a strong heat-welded portion is formed in a wider range, so that the airtightness is excellent.

本発明の固体蓄電装置では、上述のような4つの密閉部材13、14、15、16のうちの少なくとも1つの密閉部材は、密閉枠17をなす密閉部材本体部の上端外縁側から上方に延び出たシート状部材を有する形態をとり得る。図6には、そのようなシート状部材を有する密閉部材の一例が示されている。 In the solid-state power storage device of the present invention, at least one of the four sealing members 13, 14, 15, and 16 as described above extends upward from the upper end outer edge side of the sealing member main body forming the sealing frame 17. It may take the form of having a protruding sheet-like member. FIG. 6 shows an example of a sealing member having such a sheet-like member.

図6は、本発明の実施形態としての固体蓄電装置の密閉枠17の構成の一例を示す分解模式図である。図6には、密閉枠17を構成する三方密閉部材18(そのうちの密閉部材15)と閉止密閉部材19との接合部まわりの構成の一例が模式的に描かれている。密閉部材15は密閉枠17をなす構成要素である密閉部材本体部150の上端外縁側から上方に延び出たシート状部材150aと密閉部材本体部150の下端外縁側から下方に延び出たシート状部材150bを有する。ここに、上方とは、固体電池積層体1の積層方向で上方の意であり、下方とは、固体電池積層体1の積層方向で下方の意である。密閉部材15における密閉部材本体部150とシート状部材150aと150bとはPP(ポリプロピレン)やPE(ポリエチレン)により構成され、一体的につながっている。シート状部材150aと150bは自重で密閉枠17の内方に撓う程度の薄さである。観点を転ずれば、本発明の実施形態としての固体蓄電装置では、シート状部材150aと150bは固体電池積層体1の負極側に配置される。 FIG. 6 is an exploded schematic view showing an example of the configuration of the sealed frame 17 of the solid-state power storage device according to the embodiment of the present invention. FIG. 6 schematically shows an example of the configuration around the joint portion between the three-way sealing member 18 (of which the sealing member 15) and the closing sealing member 19 constituting the sealing frame 17. The sealing member 15 is a sheet-like member 150a extending upward from the upper end outer edge side of the sealing member main body 150, which is a component forming the sealing frame 17, and a sheet-like member extending downward from the lower end outer edge side of the sealing member main body 150. It has a member 150b. Here, "upper" means "upper" in the stacking direction of the solid-state battery laminate 1, and "lower" means "lower" in the stacking direction of the solid-state battery laminate 1. The sealing member main body 150 and the sheet-shaped members 150a and 150b of the sealing member 15 are made of PP (polypropylene) or PE (polyethylene) and are integrally connected. The sheet-shaped members 150a and 150b are thin enough to bend inward of the sealed frame 17 by their own weight. From the viewpoint, in the solid-state power storage device according to the embodiment of the present invention, the sheet-shaped members 150a and 150b are arranged on the negative electrode side of the solid-state battery laminate 1.

上記シート状部材150aは、閉止密閉部材19の上端外縁側に備わっていてもよいし、シート状部材150bは、閉止密閉部材19の下端外縁側に備わっていてもよい。 The sheet-shaped member 150a may be provided on the upper end outer edge side of the closing sealing member 19, or the sheet-shaped member 150b may be provided on the lower end outer edge side of the closing sealing member 19.

上記シート状部材150aおよび150bの上方方向および下方方向の長さは、固体電解質層20の厚みと密閉部材の短手方向の幅を足し合せた長さより短いことが好ましく、固体電解質層20の厚みより短いとより好ましい。 The upward and downward lengths of the sheet-shaped members 150a and 150b are preferably shorter than the sum of the thickness of the solid electrolyte layer 20 and the width of the sealing member in the lateral direction, and the thickness of the solid electrolyte layer 20. Shorter is more preferable.

図6の例における密閉部材15と閉止密閉部材19との接合部は、密閉部材15側と閉止密閉部材19側との双方に形成された切欠き部(段差部)同士が接合される形態をなしている。即ち、密閉部材15側には、図3の例におけるような形状の切欠き部152aによる段差部153aが形成されている。閉止密閉部材19側にも、図3の例におけるような形状の切欠き部196aによる段差部197aが形成されている。図6における上述の接合部では、密閉部材15側と閉止密閉部材19側との双方に各1段設けられた段差部153a及び197aが相手方の切欠き部196a及び152aに当接する形で当該接合部での接合が行われる。 The joint portion between the sealing member 15 and the closing sealing member 19 in the example of FIG. 6 has a form in which notches (stepped portions) formed on both the sealing member 15 side and the closing sealing member 19 side are joined to each other. I'm doing it. That is, on the sealing member 15 side, a stepped portion 153a is formed by the notched portion 152a having a shape as shown in the example of FIG. A stepped portion 197a formed by a notched portion 196a having a shape as shown in the example of FIG. 3 is also formed on the closing sealing member 19 side. In the above-mentioned joint portion in FIG. 6, the stepped portions 153a and 197a provided in one step on both the sealing member 15 side and the closing sealing member 19 side are in contact with the notched portions 196a and 152a of the other party. Joining is done at the part.

密閉部材15側に形成された切欠き部152aと段差部153aとは相互に直交する矩形の面を成している。また、閉止密閉部材19側に形成された切欠き部196aと段差部197aとは相互に直交する矩形の面を成している。図6における上述の接合部では、このように相互に直交する矩形の面を成す密閉部材15側の接合面(切欠き部152aと段差部153)と閉止密閉部材19側の接合面(切欠き部196aと段差部197a)とが接触した状態で、当該接触した両者の部材が熱溶着によって接着される。このため、段差のないフラットな面どうしを接触させた場合よりも接触面積が大きくなって、より広い範囲に強固な熱溶着部が形成されるため密閉性に優れる。 The notch portion 152a and the step portion 153a formed on the sealing member 15 side form a rectangular surface orthogonal to each other. Further, the notch portion 196a and the step portion 197a formed on the closing / sealing member 19 side form a rectangular surface orthogonal to each other. In the above-mentioned joint portion in FIG. 6, the joint surface (notch portion 152a and step portion 153) on the sealing member 15 side and the joint surface (notch) on the closing sealing member 19 side forming rectangular surfaces orthogonal to each other in this way. In a state where the portion 196a and the stepped portion 197a) are in contact with each other, the two members in contact with each other are adhered by heat welding. For this reason, the contact area is larger than when flat surfaces having no steps are brought into contact with each other, and a strong heat-welded portion is formed in a wider range, so that the airtightness is excellent.

図7は、三方密閉部材の一つの密閉部材と閉止密閉部材との接合部まわりの構成の他の例を示す模式図である。図6の例における密閉部材15と閉止密閉部材19との双方の接合部では、双方に各1段設けられた段差部153a及び197aが相手方の切欠き部196a及び152aに当接する形で当該接合部での接合が行われた。これに対し、図7の接合部では、閉止密閉部材19側に2段の段差部197b、197cが形成されている。段差部197bは切欠き部196bに対する段差として形成され、段差部197cは切欠き部196cに対する段差として形成されている。閉止密閉部材19側の2段の段差部197b、197cと接合される破線図示の密閉部材15側の段差部153aは図6の例における1段の段差部である。 FIG. 7 is a schematic view showing another example of the configuration around the joint between one sealing member of the three-way sealing member and the closing sealing member. In the joint portion of both the sealing member 15 and the closing sealing member 19 in the example of FIG. 6, the stepped portions 153a and 197a provided in each step are in contact with the notch portions 196a and 152a of the other party. Joining was done at the part. On the other hand, in the joint portion of FIG. 7, two steps of stepped portions 197b and 197c are formed on the closing and sealing member 19 side. The step portion 197b is formed as a step with respect to the notch portion 196b, and the step portion 197c is formed as a step with respect to the notch portion 196c. The step portion 153a on the sealing member 15 side shown by the broken line shown with the two-step step portion 197b and 197c on the closing sealing member 19 side is the one-step step portion in the example of FIG.

閉止密閉部材19側に形成された2段の段差部197b、197cは、何れも、対応する切欠き部196b、196cとは相互に直交する矩形の面を成している。このため、図2から図4を参照して説明した接合部におけると同様に、段差のないフラットな面どうしを接触させた場合よりも接触面積が大きくなって、より広い範囲に強固な熱溶着部が形成されるため密閉性に優れる。 The two-stage stepped portions 197b and 197c formed on the closing and sealing member 19 side each form a rectangular surface orthogonal to the corresponding notched portions 196b and 196c. Therefore, as in the case of the joint portion described with reference to FIGS. 2 to 4, the contact area is larger than when the flat surfaces having no steps are brought into contact with each other, and strong heat welding is performed over a wider range. Excellent airtightness because the part is formed.

上記密閉枠17を構成する三方密閉部材18、および閉止密閉部材19は、部材の上面および下面で固体電解質層20と熱溶着により接着される。ここで、上面とは、固体電池積層体1の積層方向で上方の面であり、下面とは、固体電池積層体1の積層方向で下方の面である。 The three-way sealing member 18 and the closing sealing member 19 constituting the sealing frame 17 are adhered to the solid electrolyte layer 20 by heat welding on the upper surface and the lower surface of the member. Here, the upper surface is an upper surface in the stacking direction of the solid-state battery laminate 1, and the lower surface is a lower surface in the stacking direction of the solid-state battery laminate 1.

図2から図7における接合部では、三方密閉部材の一つの密閉部材と閉止密閉部材とが熱溶着による接合構造を有する。このため、振動等に対する耐力が高く、この接合構造を有する固体電池積層体1でなる固体蓄電装置は、電気自動車等の移動体における電気エネルギー源として用いるに良く適合する。 In the joint portion shown in FIGS. 2 to 7, one of the three-way sealing members and the closing sealing member have a joining structure by heat welding. Therefore, the solid-state power storage device made of the solid-state battery laminate 1 having a high yield strength against vibration and the like and having this bonding structure is well suited for use as an electric energy source in a moving body such as an electric vehicle.

図8は、図6の密閉部材15におけるシート状部材150a及び150bを固体電解質層20の側面に熱溶着する様子を示す図である。シート状部材150aはPP(ポリプロピレン)やPE(ポリエチレン)により構成される薄手のシート状体であり、上方に配置される固体電解質層20の側面に熱溶着により接着させることが可能である。
シート状部材150bはPP(ポリプロピレン)やPE(ポリエチレン)により構成される薄手のシート状体であり、下方に配置される固体電解質層20の側面に熱溶着により接着させることが可能である。
FIG. 8 is a diagram showing how the sheet-shaped members 150a and 150b in the sealing member 15 of FIG. 6 are heat-welded to the side surfaces of the solid electrolyte layer 20. The sheet-like member 150a is a thin sheet-like body made of PP (polypropylene) or PE (polyethylene), and can be adhered to the side surface of the solid electrolyte layer 20 arranged above by heat welding.
The sheet-like member 150b is a thin sheet-like body made of PP (polypropylene) or PE (polyethylene), and can be adhered to the side surface of the solid electrolyte layer 20 arranged below by heat welding.

図9及び図10については、図1にこれらの図を併せ参照して固体電池積層体1について説明した。既述の説明では、便宜上、負極系10の下に正極系30が積層されて、このように、負極系10と正極系30とが交互に複数積層される趣旨にて説明した。しかしながら、上述の説明は、負極と正極との積層順を規定する趣旨ではない。正極系30の下に負極系10が積層されて、この形態での交互の積層体が複数積層され得る。また、正極を固体電解質で挟んで封止したものを負極と積層してもよい。また、負極と固体電解質と、固体電解質と負極を、上述の順に重ねて封止したものを積層することもできる。なお、積層体の最下面と最上面の構造は中間で積層される周期構造とは異なるプロセスが適用される。 With respect to FIGS. 9 and 10, the solid-state battery laminate 1 has been described with reference to FIGS. 1 and FIG. In the above description, for convenience, the positive electrode system 30 is laminated under the negative electrode system 10, and a plurality of the negative electrode system 10 and the positive electrode system 30 are alternately laminated in this way. However, the above description does not mean that the stacking order of the negative electrode and the positive electrode is defined. The negative electrode system 10 is laminated under the positive electrode system 30, and a plurality of alternating laminates in this form can be laminated. Further, a positive electrode sandwiched between solid electrolytes and sealed may be laminated with the negative electrode. Further, it is also possible to stack a negative electrode and a solid electrolyte, and a solid electrolyte and a negative electrode which are laminated and sealed in the above-mentioned order. In addition, a process different from the periodic structure in which the lowermost surface and the uppermost surface of the laminated body are laminated in the middle is applied.

次に、本発明の実施形態の固体蓄電装置の作用効果について比較例の固体蓄電装置との対比において説明する。
図11は、本発明の実施形態に対する比較例としての固体蓄電装置を構成する負極系の一例を示す平面図である。また、図12は、図11の部分拡大図である。図11及び図12において、図2及び図3との対応部には同一の符号を附している。
Next, the action and effect of the solid-state power storage device according to the embodiment of the present invention will be described in comparison with the solid-state power storage device of the comparative example.
FIG. 11 is a plan view showing an example of a negative electrode system constituting a solid-state power storage device as a comparative example with respect to the embodiment of the present invention. Further, FIG. 12 is a partially enlarged view of FIG. In FIGS. 11 and 12, the parts corresponding to those in FIGS. 2 and 3 are designated by the same reference numerals.

図11及び図12において、閉止密閉部材19の下端部191及び上端部194はそれぞれフラットな面をなしている。閉止密閉部材19の下端部191のフラットな面が、密閉部材15の左端部151近傍側面のフラットな面に当接する。同様に、閉止密閉部材19の上端部194のフラットな面が、密閉部材13の左端部131近傍側面のフラットな面に当接する。これら当接した箇所で閉止密閉部材19と密閉部材15、及び、密閉部材13とが接合される。接合面はフラットなものであるため、接合される両部材の接触面積が図2及び図3におけるように、切欠き部152,132によって段差部153,133が形成されたものに比し少ない。換言すれば、図2及び図3の実施形態では、接合面における段差部153,133によって接触面積が増大し、比較例に比し、十分な密閉能力が確保される。この点は、本発明の実施形態である図2から図7における何れの接合部についても同様である。 In FIGS. 11 and 12, the lower end portion 191 and the upper end portion 194 of the closing sealing member 19 each have a flat surface. The flat surface of the lower end portion 191 of the closing sealing member 19 comes into contact with the flat surface of the side surface near the left end portion 151 of the sealing member 15. Similarly, the flat surface of the upper end portion 194 of the closing sealing member 19 comes into contact with the flat surface of the side surface near the left end portion 131 of the sealing member 13. The closing sealing member 19, the sealing member 15, and the sealing member 13 are joined at these abutting points. Since the joint surface is flat, the contact area of both members to be joined is smaller than that in which the stepped portions 153 and 133 are formed by the notches 152 and 132 as shown in FIGS. 2 and 3. In other words, in the embodiments of FIGS. 2 and 3, the contact area is increased by the stepped portions 153 and 133 on the joint surface, and a sufficient sealing capacity is secured as compared with the comparative example. This point is the same for any of the joints in FIGS. 2 to 7 according to the embodiment of the present invention.

本実施形態の固体蓄電装置によれば、以下の効果を奏する。
(1)の固体蓄電装置では、三方密閉部材18と閉止密閉部材19との両者の少なくとも一方には、両者の接触部に段差部153が形成されている。この段差部153で三方密閉部材18と閉止密閉部材19とが接合されることにより、接合部分での接触面積が十分に確保されるため密閉枠内の密閉性が向上する。
According to the solid-state power storage device of the present embodiment, the following effects are obtained.
In the solid-state power storage device of (1), a step portion 153 is formed at a contact portion between the three-way sealing member 18 and the closing sealing member 19 at least one of them. By joining the three-way sealing member 18 and the closing sealing member 19 at the step portion 153, a sufficient contact area is secured at the jointed portion, so that the sealing property inside the sealing frame is improved.

(2)の固体蓄電装置では、段差部153は、三方密閉部材18と閉止密閉部材19との両者の少なくとも一方に形成された相互に直交する接触面である切欠き部152と段差部153とにより構成されるため、この段差部153で三方密閉部材18と閉止密閉部材19とが面的に密着して接合されることにより密閉部材の接合部における密閉性が向上する。 In the solid-state power storage device of (2), the step portion 153 includes a notch portion 152 and a step portion 153, which are contact surfaces orthogonal to each other formed on at least one of the three-way sealing member 18 and the closing sealing member 19. Since the three-way sealing member 18 and the closing sealing member 19 are joined in close contact with each other at the step portion 153, the sealing property at the joining portion of the sealing member is improved.

(3)の固体蓄電装置では、特に密閉性に関する性能が要求される固体電池積層体1の負極側において、段差部153によって十分な密閉性が確保される。 In the solid-state power storage device (3), sufficient airtightness is ensured by the step portion 153 on the negative electrode side of the solid-state battery laminate 1, which is particularly required to have performance related to airtightness.

(4)の固体蓄電装置では、固体電池積層体1の積層方向に延長されて設けられているシート状部材を150aおよび150bを固体電解質層20の上面に沿わせ、シート状部材150bを固体電解質層20の下面に沿わせて張り付けるように用いることにより、負極系内の密閉性が向上する。 In the solid-state power storage device (4), 150a and 150b of sheet-like members extended in the stacking direction of the solid-state battery laminate 1 are placed along the upper surface of the solid electrolyte layer 20, and the sheet-like member 150b is a solid electrolyte. By using the layer 20 so as to be attached along the lower surface of the layer 20, the airtightness in the negative electrode system is improved.

(5)の固体蓄電装置では、三方密閉部材18と閉止密閉部材19と固体電解質層20が接触状態で熱溶着により接着され負極系内の密閉性が向上する。 In the solid power storage device of (5), the three-way sealing member 18, the closing sealing member 19, and the solid electrolyte layer 20 are adhered by heat welding in a contact state to improve the sealing property in the negative electrode system.

(6)の固体蓄電装置では、正極または負極の一方に電解質を一体化することで、重ね合わせだけで固体蓄電池を製造することが可能となるため、製造が容易になる。 In the solid-state power storage device of (6), by integrating the electrolyte into one of the positive electrode and the negative electrode, it is possible to manufacture the solid storage battery only by superimposing it, so that the manufacturing becomes easy.

(7)の固体蓄電装置では、振動に対する耐力が求められる移動体に適用しても、十分な耐久性が得られる。 The solid-state power storage device of (7) can obtain sufficient durability even when applied to a moving body that is required to withstand vibration.

(8)の固体蓄電装置の製造方法では、三方密閉部材18と閉止密閉部材19とを熱溶着により結合しているため、密閉枠17内の密閉性が向上する。 In the method for manufacturing the solid storage device according to (8), since the three-way sealing member 18 and the closing sealing member 19 are bonded by heat welding, the sealing property inside the sealing frame 17 is improved.

以上、本発明の一実施形態について説明したが、本発明はこれに限られない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。例えば、上述の例では、シート状部材150aを密閉枠17の構成要素となるその密閉部材本体部150の上端外縁側から上方に延び出すような形態で設けたが、密閉部材15(密閉部材本体部150)と同じ材料であるPPやPEのシート状体をシート状部材150aが配置される部位に配して熱溶着するようにしてもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to this. Within the scope of the gist of the present invention, the detailed configuration may be changed as appropriate. For example, in the above example, the sheet-shaped member 150a is provided so as to extend upward from the upper end outer edge side of the sealing member main body 150 which is a component of the sealing frame 17, but the sealing member 15 (sealing member main body) is provided. A sheet-like body of PP or PE, which is the same material as the part 150), may be arranged at a portion where the sheet-like member 150a is arranged so as to be heat-welded.

1…固体電池積層体
10…負極系
11…負極活物質層
12…負極集電体層
13、14、15、16…密閉部材
17…密閉枠
18…三方密閉部材
19…閉止密閉部材
20…固体電解質層
30…正極系
31…正極活物質層
32…正極集電体層
150…密閉部材本体部
150a…シート状部材
152…切欠き部
153…段差部
1 ... Solid-state battery laminate 10 ... Negative electrode system 11 ... Negative electrode active material layer 12 ... Negative electrode current collector layer 13, 14, 15, 16 ... Sealing member 17 ... Sealing frame 18 ... Three-way sealing member 19 ... Closing sealing member 20 ... Solid Electrode layer 30 ... Positive electrode system 31 ... Positive electrode active material layer 32 ... Positive electrode current collector layer 150 ... Sealing member main body 150a ... Sheet-like member 152 ... Notch 153 ... Stepped portion

Claims (8)

対面する2つの固体電解質層間に正極活物質層が配され前記正極活物質層に正極集電体層が接して配された正極系と、負極活物質層が配され前記負極活物質層に負極集電体層が接して配された負極系とが交互に積層され、積層方向の投影形状が概略方形を成す固体電池積層体を有し、
前記正極系及び前記負極系それぞれは、方形の外周の各辺に沿って延びた4つの密閉部材で囲んで内部を密閉する密閉枠が設けられ、
前記密閉枠は、前記外周に沿う3辺の密閉部材が連なった三方密閉部材と前記三方密閉部材の開放側を閉止するように配される閉止密閉部材とを有し、
前記三方密閉部材と前記閉止密閉部材との両者の少なくとも一方には、前記両者の接触部に段差部が形成されている、
固体蓄電装置。
A positive electrode system in which a positive electrode active material layer is arranged between two solid electrolyte layers facing each other and a positive electrode current collector layer is arranged in contact with the positive electrode active material layer, and a negative electrode system in which a negative electrode active material layer is arranged and a negative electrode is placed on the negative electrode active material layer. It has a solid battery laminate in which the negative electrode systems arranged in contact with the current collector layers are alternately laminated, and the projected shape in the stacking direction is approximately square.
Each of the positive electrode system and the negative electrode system is provided with a sealing frame that seals the inside by surrounding the positive electrode system and the negative electrode system with four sealing members extending along each side of the outer circumference of the square.
The sealing frame has a three-way sealing member in which three-sided sealing members along the outer circumference are connected, and a closing-sealing member arranged so as to close the open side of the three-way sealing member.
At least one of the three-way sealing member and the closing sealing member has a stepped portion formed at a contact portion between the two.
Solid power storage device.
前記段差部は、前記三方密閉部材と前記閉止密閉部材との両者の少なくとも一方に形成された相互に直交する接触面である切欠き部と段差部とにより構成された少なくとも1段の段状部を成す、請求項1に記載の固体蓄電装置。 The stepped portion is a stepped portion having at least one step formed by a notch portion and a stepped portion which are mutually orthogonal contact surfaces formed on at least one of the three-way sealing member and the closing sealing member. The solid-state power storage device according to claim 1. 前記段差部を有する密閉部材は前記固体電池積層体の負極側に配置されている、請求項1又は2に記載の固体蓄電装置。 The solid-state power storage device according to claim 1 or 2, wherein the sealing member having the step portion is arranged on the negative electrode side of the solid-state battery laminate. 前記三方密閉部材と前記閉止密閉部材との少なくとも何れか一の密閉部材には、前記密閉枠の一部を構成する密閉部材本体部から前記固体電池積層体の積層方向に延長されてシート状部材が設けられている、請求項1から3の何れか一項に記載の固体蓄電装置。 The sealing member of at least one of the three-way sealing member and the closing sealing member is a sheet-like member extending from the sealing member main body constituting a part of the sealing frame in the stacking direction of the solid-state battery laminate. The solid-state power storage device according to any one of claims 1 to 3, wherein the solid-state power storage device is provided. 前記三方密閉部材と前記閉止密閉部材とは、両者の接触部が接触状態で熱溶着により接着可能に構成されている、請求項1から4の何れか一項に記載の固体蓄電装置。 The solid power storage device according to any one of claims 1 to 4, wherein the three-way sealing member and the closing sealing member are configured so that the contact portions thereof can be adhered to each other by heat welding in a contact state. 前記正極系と前記負極系の少なくとも一方に、電解液が密閉されている、請求項1から5の何れか一項に記載の固体蓄電装置。 The solid power storage device according to any one of claims 1 to 5, wherein an electrolytic solution is sealed in at least one of the positive electrode system and the negative electrode system. 所定の移動体に適合するように構成されている、請求項1から5の何れか一項に記載の固体蓄電装置。 The solid-state power storage device according to any one of claims 1 to 5, which is configured to fit a predetermined mobile body. 請求項1から7の何れか一項に記載の固体蓄電装置を、前記三方密閉部材と前記閉止密閉部材とを熱溶着により結合させて製造する固体蓄電装置の製造方法。


A method for manufacturing a solid power storage device according to any one of claims 1 to 7, wherein the solid power storage device is manufactured by combining the three-way sealing member and the closing sealing member by heat welding.


JP2020044224A 2020-03-13 2020-03-13 Solid state power storage device and manufacturing method thereof Active JP7328167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020044224A JP7328167B2 (en) 2020-03-13 2020-03-13 Solid state power storage device and manufacturing method thereof
CN202110256407.0A CN113394494B (en) 2020-03-13 2021-03-09 Solid-state power storage device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044224A JP7328167B2 (en) 2020-03-13 2020-03-13 Solid state power storage device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021144907A true JP2021144907A (en) 2021-09-24
JP7328167B2 JP7328167B2 (en) 2023-08-16

Family

ID=77617414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044224A Active JP7328167B2 (en) 2020-03-13 2020-03-13 Solid state power storage device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7328167B2 (en)
CN (1) CN113394494B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023511031A (en) * 2020-04-06 2023-03-16 エルジー エナジー ソリューション リミテッド ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310667A (en) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle loading these
JP2013187087A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Can seal welding method of sealed battery
WO2015049957A1 (en) * 2013-10-01 2015-04-09 住友電気工業株式会社 Sealed electric storage device and method for manufacturing same
WO2016147497A1 (en) * 2015-03-19 2016-09-22 日本碍子株式会社 Battery and assembly method therefor
JP2017532715A (en) * 2014-09-25 2017-11-02 エルジー・ケム・リミテッド Square battery cell including two or more case members
WO2018087970A1 (en) * 2016-11-08 2018-05-17 株式会社村田製作所 Solid battery, method for manufacturing solid battery, battery pack, vehicle, electricity storage system, electric tool, and electronic apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631537B2 (en) * 2008-09-05 2014-11-26 日産自動車株式会社 Bipolar secondary battery
JP5504708B2 (en) * 2009-06-25 2014-05-28 日産自動車株式会社 Bipolar secondary battery
US9070950B2 (en) * 2012-03-26 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Power storage element, manufacturing method thereof, and power storage device
KR101947149B1 (en) * 2015-12-16 2019-02-13 주식회사 엘지화학 Sealing Apparatus for Battery Case with Improved Application Area of Pressurization and Heat
WO2018055858A1 (en) * 2016-09-21 2018-03-29 株式会社豊田自動織機 Electricity storage device and method for manufacturing electricity storage device
JP6772855B2 (en) * 2017-01-20 2020-10-21 トヨタ自動車株式会社 All solid state battery
WO2019031087A1 (en) * 2017-08-10 2019-02-14 株式会社豊田自動織機 Electricity storage module and method for manufacturing electricity storage module
JP7070052B2 (en) * 2018-04-27 2022-05-18 トヨタ自動車株式会社 All solid state battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310667A (en) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle loading these
JP2013187087A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Can seal welding method of sealed battery
WO2015049957A1 (en) * 2013-10-01 2015-04-09 住友電気工業株式会社 Sealed electric storage device and method for manufacturing same
JP2017532715A (en) * 2014-09-25 2017-11-02 エルジー・ケム・リミテッド Square battery cell including two or more case members
WO2016147497A1 (en) * 2015-03-19 2016-09-22 日本碍子株式会社 Battery and assembly method therefor
WO2018087970A1 (en) * 2016-11-08 2018-05-17 株式会社村田製作所 Solid battery, method for manufacturing solid battery, battery pack, vehicle, electricity storage system, electric tool, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023511031A (en) * 2020-04-06 2023-03-16 エルジー エナジー ソリューション リミテッド ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP7543413B2 (en) 2020-04-06 2024-09-02 エルジー エナジー ソリューション リミテッド All-solid-state battery and method for producing the same

Also Published As

Publication number Publication date
JP7328167B2 (en) 2023-08-16
CN113394494A (en) 2021-09-14
CN113394494B (en) 2024-03-01

Similar Documents

Publication Publication Date Title
CN105990559B (en) Electric storage element
JP5169166B2 (en) Multilayer secondary battery
CN105609693B (en) Electrode assembly and battery pack having the same
KR101863703B1 (en) Pouch-type secondary battery and method for manufacturing the same
JP5277231B2 (en) Secondary battery
JP6315572B2 (en) Electrochemical cell
WO2013031891A1 (en) Non-aqueous electrolyte secondary battery
JP2021515957A (en) Electrode assemblies with different pressure weld sizes for electrode tab welds and ultrasonic welding equipment for manufacturing them
WO2018016653A1 (en) Electrochemical device
KR101147241B1 (en) Electrode assembly, rechargeable battery, and fabricating methode of electrode used thereof
JP5560243B2 (en) Secondary battery and manufacturing method thereof
KR100910624B1 (en) Overlapped Secondary Battery
JPWO2013031937A1 (en) Lithium ion secondary battery
JPWO2018016654A1 (en) Electrochemical device
JP2021144907A (en) Solid power storage device and method for manufacturing the same
JP7671601B2 (en) Solid-state energy storage device
JP2019129031A (en) Power storage module
KR101546002B1 (en) electrochemical energy storage device
JPWO2013061460A1 (en) Square battery
KR20140061148A (en) Pouch type secondary battery and method for manufacturing the same
JP2019079690A (en) Power storage module
JP6926509B2 (en) Power storage device
JP4887650B2 (en) Single cells and batteries
JP7145396B2 (en) laminated battery
KR20150064335A (en) Secondary Battery Having Electrode Lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150