[go: up one dir, main page]

JP2021144859A - Measuring device and measuring method - Google Patents

Measuring device and measuring method Download PDF

Info

Publication number
JP2021144859A
JP2021144859A JP2020042706A JP2020042706A JP2021144859A JP 2021144859 A JP2021144859 A JP 2021144859A JP 2020042706 A JP2020042706 A JP 2020042706A JP 2020042706 A JP2020042706 A JP 2020042706A JP 2021144859 A JP2021144859 A JP 2021144859A
Authority
JP
Japan
Prior art keywords
positive electrode
ion
solid
ions
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020042706A
Other languages
Japanese (ja)
Other versions
JP7525272B2 (en
Inventor
達哉 服部
Tatsuya Hattori
達哉 服部
秀樹 酒井
Hideki Sakai
秀樹 酒井
祐二 磯谷
Yuji Isotani
祐二 磯谷
朴 銭
Boku Sen
朴 銭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020042706A priority Critical patent/JP7525272B2/en
Publication of JP2021144859A publication Critical patent/JP2021144859A/en
Application granted granted Critical
Publication of JP7525272B2 publication Critical patent/JP7525272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

To obtain a diffusion profile showing the diffusion state of first atomic ions diffused from a solid-state battery and second atomic ions which are isotopes of the first atomic ions.SOLUTION: A measuring device for measuring a solid-state battery includes application means which provides a solid-state electrolyte between a positive electrode and a negative electrode and applies a DC voltage of a predetermined potential to the positive electrode and the negative electrode, stimulating means for irradiating the solid-state electrolyte, the positive electrode with primary ions or applying energy them to promote ionization, and achieving means for detecting the mass of first atomic ions diffused from the positive electrode or the solid-state electrolyte and the mass of second atomic ions which are isotopes of the first atomic ions based on the primary ions irradiated to or the energy applied by the simulating means in a state where the DC voltage is applied between the positive electrode and the negative electrode, thereby achieving a diffusion profile.SELECTED DRAWING: Figure 1

Description

本発明は、固体電池のイオン拡散状態を測定する測定装置および測定方法に関する。 The present invention relates to a measuring device and a measuring method for measuring an ion diffusion state of a solid-state battery.

従来、電解液を利用する二次電池内のリチウムイオンの移動状態の把握は、充放電特性、インピーダンス測定により間接的に行われていた。
従来の方法では、イオンの移動を直接観察、測定することは難しく、特に軽元素は検出方法が限られ直接観察することはできなかった。また、イオン移動時にはイオンは同時に移動することから、特定イオン移動にのみ観察、測定することは難しかった。
一方、全固体リチウム二次電池内部では、リチウムイオンの移動挙動は把握されておらず、例えば充放電試験やインピーダンス測定を行う間接的な評価手法では、元素の拡散状態を精度よく定量評価することは難しかった。
さらに、電解液を利用するリチウム二次電池内部のリチウムイオンの拡散を測定するためには、密閉度の高い装置を必要とし、例えば移動体上でリチウム二次電池内部のリチウムイオンの拡散を測定することが難しいという課題もあった。
Conventionally, the moving state of lithium ions in a secondary battery using an electrolytic solution has been indirectly grasped by measuring charge / discharge characteristics and impedance.
With the conventional method, it is difficult to directly observe and measure the movement of ions, and in particular, light elements cannot be directly observed due to the limited detection method. In addition, since ions move at the same time during ion movement, it was difficult to observe and measure only specific ion movement.
On the other hand, the movement behavior of lithium ions is not known inside the all-solid-state lithium secondary battery. For example, indirect evaluation methods such as charge / discharge tests and impedance measurements are used to accurately quantitatively evaluate the diffusion state of elements. Was difficult.
Further, in order to measure the diffusion of lithium ions inside a lithium secondary battery using an electrolytic solution, a device having a high degree of airtightness is required, for example, measuring the diffusion of lithium ions inside a lithium secondary battery on a moving body. There was also the problem that it was difficult to do.

特開2017−62997号公報JP-A-2017-62997

本発明は上記の背景技術に鑑みてなされたものであり、本発明は、固体電池から拡散する第1の原子イオンと該第1の原子イオンと同位体の第2原子イオンの拡散状態を示す拡散プロファイルを取得できる測定装置および測定方法を提供することを目的とする。 The present invention has been made in view of the above background techniques, and the present invention shows a diffusion state of a first atomic ion diffused from a solid-state battery and a second atomic ion of the first atomic ion and an isotope. It is an object of the present invention to provide a measuring device and a measuring method capable of acquiring a diffusion profile.

本発明者らは、安定濃縮同位体6Liのラベル化を用いたリチウム金属複合酸化物におけるリチウム拡散の評価について鋭意検討した結果、リチウム金属複合酸化物の表面に形成された被覆層を6Liでラベル化してリチウムイオンの挙動の変化を評価することにより、出力特性の改善を検討する上で有効なデータが得られるとの知見を得て、本発明を完成するに至った。 As a result of diligent studies on the evaluation of lithium diffusion in the lithium metal composite oxide using the labeling of the stable concentrated isotope 6Li, the present inventors labeled the coating layer formed on the surface of the lithium metal composite oxide with 6Li. The present invention has been completed based on the finding that effective data can be obtained for examining the improvement of output characteristics by evaluating the change in the behavior of lithium ions.

本発明は、正極と負極との間に固体電解質を設け、前記正極と前記負極に所定電位の直流電圧を印加する印加手段と、前記固体電解質、前記正極に一次イオンを照射またはエネルギーを付与してイオン化を促す催促手段と、前記直流電圧を正極と負極との間に印加した状態で、前記催促手段から照射される前記一次イオンまたは付与されるエネルギーに基づいて、前記正極、または固体電解質から拡散する前記第1の原子イオンの質量と、前記第1の原子イオンと同位体となる第2の原子イオンの質量とを検出して拡散プロファイルを取得する取得手段と、を備える測定装置である。 In the present invention, a solid electrolyte is provided between a positive electrode and a negative electrode, an application means for applying a DC voltage of a predetermined potential to the positive electrode and the negative electrode, and primary ions are irradiated or energy is applied to the solid electrolyte and the positive electrode. From the positive electrode or the solid electrolyte based on the primary ions or the energy applied from the stimulating means and the DC voltage applied between the positive electrode and the negative electrode. It is a measuring device including a means for obtaining a diffusion profile by detecting the mass of the first atomic ion to be diffused and the mass of the second atomic ion as an isotope to the first atomic ion. ..

本発明によれば、固体電池から拡散する第1の原子イオンと該第1の原子イオンと同位体の第2原子イオンの拡散状態を示す拡散プロファイルを取得できる。 According to the present invention, it is possible to obtain a diffusion profile showing the diffusion state of the first atomic ion diffused from the solid-state battery and the second atomic ion of the first atomic ion and the isotope.

固体電池の測定装置の動作を説明する図である。It is a figure explaining the operation of the measuring apparatus of a solid-state battery. 図1に示した二次電池の拡散イオンの検出強度を示す図である。It is a figure which shows the detection intensity of the diffuse ion of the secondary battery shown in FIG. 固体電池の測定装置の動作を説明する図である。It is a figure explaining the operation of the measuring apparatus of a solid-state battery. 本実施形態を示す固体電池の診断方法を説明するフローチャートである。It is a flowchart explaining the diagnosis method of the solid-state battery which shows this embodiment.

以下、本実施形態では、固体電池(二次電池)の例として、リチウム電池を例として説明する。 Hereinafter, in the present embodiment, a lithium battery will be described as an example of a solid-state battery (secondary battery).

〔第1実施形態〕
図1は、第1実施形態を示す固体電池の測定装置の動作を説明する図である。本例では、固体電池から拡散するリチウムイオン、第1の原子イオンとしての7Li原子イオンと同位体の第2の原子イオンとしての6Li原子イオンを利用して拡散するリチウムイオンの挙動を分析して評価する例を説明する。以下、元素の拡散を精度よく定量評価する例を説明する。
[First Embodiment]
FIG. 1 is a diagram illustrating the operation of the solid-state battery measuring device showing the first embodiment. In this example, the behavior of lithium ions diffused from a solid cell, 7Li atomic ions as the first atomic ion and 6Li atomic ions as the second atomic ion of the isotope are analyzed. An example of evaluation will be described. Hereinafter, an example of accurately quantitatively evaluating the diffusion of elements will be described.

図1において、電源1は、7Li金属電極網4(負極)と6Li金属電極3(正極)との間に所定電位の直流電圧を印加する。本例では、マイナス電位を7Li金属電極網4に印加し、プラス電位を正極としての6Li金属電極3に印加する構成とする。 In FIG. 1, the power supply 1 applies a DC voltage of a predetermined potential between the 7Li metal electrode network 4 (negative electrode) and the 6Li metal electrode 3 (positive electrode). In this example, a negative potential is applied to the 7Li metal electrode network 4, and a positive potential is applied to the 6Li metal electrode 3 as the positive electrode.

催促手段としての一次イオン照射部10は、例えばビスマス、ガリウム、金、カーボン60などの一次イオン11を照射し、あるいは催促手段として図示しないレーザー光、局所的な加熱、X線、中性子等、なんらかのエネルギーを付与する。これによって、固体電解質5からのイオンを放出させることができ、拡散する7Li原子イオン8(第1の電子イオン)と同位体の6Li原子イオン7(第2の電子イオン)を捉えることができる。6Li原子イオン7が固体電解質5を透過し表面に達すると、6Li原子イオン7の放出量が増加し質量検出器2により変化を検知することができる。 The primary ion irradiation unit 10 as a reminder means irradiates the primary ions 11 such as bismuth, gallium, gold, carbon 60, etc., or laser light, local heating, X-rays, neutrons, etc. (not shown) as a reminder means. Gives energy. As a result, the ions from the solid electrolyte 5 can be released, and the diffused 7Li atomic ion 8 (first electron ion) and the isotope 6Li atom ion 7 (second electron ion) can be captured. When the 6Li atomic ion 7 permeates the solid electrolyte 5 and reaches the surface, the amount of the 6Li atomic ion 7 released increases and the change can be detected by the mass detector 2.

この際、一次イオン11の照射、Li原子イオンの放出、検知を阻害しないよう真空を保持するため真空チャンバー12を設けている。このように、本実施形態では、特定の部位に観察対象とする6Li原子イオン7を存在させ、電位差等の適当なポテンシャル差を掛けることで、6Li原子イオン7を移動させることができる。この際、6Li原子イオン7は7Li原子イオン8と比較し質量が小さいことから、イオンの移動速度が速くその効果は理論上、質量比の平方根に比例することから約1.08倍となる。 At this time, a vacuum chamber 12 is provided to maintain a vacuum so as not to hinder the irradiation of primary ions 11, the release of Li atom ions, and the detection. As described above, in the present embodiment, the 6Li atomic ion 7 can be moved by allowing the 6Li atomic ion 7 to be observed to exist at a specific site and multiplying it by an appropriate potential difference such as a potential difference. At this time, since the mass of 6Li atomic ion 7 is smaller than that of 7Li atomic ion 8, the moving speed of the ion is high, and the effect is theoretically proportional to the square root of the mass ratio, so that it is about 1.08 times.

ここで、取得手段としての質量検出器2は、一次イオン照射部10から一次イオン11としてビスマス、ガリウム、金、カーボン60のいずれかを一次イオン照射部10より照射すること、あるいは図示しない催促手段としてのレーザー光、局所的な加熱、X線、中性子等のいずれかのエネルギーを固体電解質5に与えることで、観察可能な照射位置まで移動した7Li原子イオン8と、6Li原子イオン7を放出させ正極あるいは固体電解質5、その両方から拡散する7Li原子イオン8と、該7Li原子イオン8と同位体となる6Li原子イオン7の質量を特定する拡散プロファイルを取得する。 Here, the mass detector 2 as the acquisition means irradiates any one of bismuth, gallium, gold, and carbon 60 as the primary ion 11 from the primary ion irradiation unit 10 from the primary ion irradiation unit 10, or a reminder means (not shown). By applying any energy such as laser light, local heating, X-rays, neutrons, etc. to the solid electrolyte 5, 7Li atomic ions 8 and 6Li atomic ions 7 that have moved to the observable irradiation position are released. Obtain a diffusion profile that specifies the masses of the 7Li atomic ion 8 that diffuses from the positive electrode or the solid electrolyte 5, or both, and the 6Li atomic ion 7 that is an isotope of the 7Li atomic ion 8.

診断手段としての診断部9は、質量検出器2が取得した拡散プロファイルとしてのリチウム検出プロファイルに基づいて、7Li原子イオン8に対する6Li原子イオン7の割合や6Li原子イオン7の移動量の結果に基づき、後述するフローチャートに基づいて固体電池の劣化状態を診断する。 The diagnostic unit 9 as a diagnostic means is based on the result of the ratio of 6Li atomic ions 7 to 7Li atomic ions 8 and the amount of movement of 6Li atomic ions 7 based on the lithium detection profile as the diffusion profile acquired by the mass detector 2. , Diagnose the deteriorated state of the solid-state battery based on the flowchart described later.

そして、診断部9は、測定された7Li原子イオン8と、6Li原子イオン7の拡散プロファイルに基づいて、移動距離、移動時間、移動量等を解析して、正極あるいは固体電解質5、その両方から拡散して移動してきた7Li原子イオン8と、6Li原子イオン7との割合や6Li原子イオン7の移動量の結果から二次電池の劣化状態、充放電状態を診断する。 Then, the diagnostic unit 9 analyzes the movement distance, movement time, movement amount, etc. based on the measured diffusion profiles of the 7Li atomic ion 8 and the 6Li atom ion 7, and from both the positive electrode and the solid electrolyte 5 The deterioration state and charge / discharge state of the secondary battery are diagnosed from the results of the ratio of the 7Li atomic ion 8 that has diffused and moved to the 6Li atomic ion 7 and the amount of movement of the 6Li atomic ion 7.

なお、本実施形態に示す検査装置や診断装置は電解質が液体、半固体の場合においても、適用することが可能である。 The inspection device and the diagnostic device shown in the present embodiment can be applied even when the electrolyte is a liquid or a semi-solid.

よって、本実施形態を適用する診断装置を移動体、例えば車載し、かつ、移動中に二次電池の劣化状態、充放電状態を診断することも可能となる。
また、質量検出器2による分析手法は、二次電池材料の固体表面分析をおこなう際に用いる、二次イオン質量分析手法を用いることができる。
Therefore, it is also possible to mount the diagnostic device to which the present embodiment is applied on a moving body, for example, in a vehicle, and to diagnose the deteriorated state and the charge / discharge state of the secondary battery during the movement.
Further, as the analysis method by the mass detector 2, the secondary ion mass spectrometry method used when performing the solid surface analysis of the secondary battery material can be used.

〔実験例〕
質量検出器2が所定時間内に検出する7Li原子イオン8と、6Li原子イオン7との割合は、二次電池が劣化していない状態と、二次電池が劣化している状態とを比較すると、二次電池が劣化していない状態では、6Li原子イオン7が相対的に増加する傾向を観察した(後述する図2に実験値に基づく検出強度を示す)。
[Experimental example]
The ratio of the 7Li atomic ion 8 and the 6Li atomic ion 7 detected by the mass detector 2 within a predetermined time is compared between the state in which the secondary battery is not deteriorated and the state in which the secondary battery is deteriorated. In the state where the secondary battery was not deteriorated, the tendency of the 6Li atomic ion 7 to increase relatively was observed (FIG. 2, which will be described later, shows the detection intensity based on the experimental value).

また、質量検出器2が所定時間内に検出するLi原子イオン7の検出カウント数を対比すると、二次電池が劣化していない状態では、6Li原子イオン7の方が、より早く観察部位に到達している傾向、並びに、二次電池が劣化している状態に比べて相対的に検出カウント数が多い傾向を観察した。つまり、二次電池の劣化により6Li原子イオン7の移動が阻害されていることを示している。 Further, when comparing the detection counts of Li atomic ions 7 detected by the mass detector 2 within a predetermined time, 6Li atomic ions 7 reach the observation site earlier when the secondary battery is not deteriorated. We observed a tendency that the number of detection counts was relatively large compared to the state in which the secondary battery was deteriorated. That is, it is shown that the movement of the 6Li atomic ion 7 is inhibited by the deterioration of the secondary battery.

ここで、阻害要因としては、活物質および電解質など各構成材料の劣化および構成材料間の乖離、汚染などが考えられる。
これらの観察および考察に基づき、本質量分析手法に基づく二次電池の劣化診断が移動体、特に車載され実際に移動する状態での劣化診断に有効な手法である。
Here, as an inhibitory factor, deterioration of each constituent material such as an active material and an electrolyte, divergence between the constituent materials, contamination, and the like can be considered.
Based on these observations and considerations, the deterioration diagnosis of the secondary battery based on this mass spectrometry method is an effective method for the deterioration diagnosis of a moving body, particularly in a state of being mounted on a moving body and actually moving.

図2は、図1に示した二次電池の拡散イオン強度の経時変化を示す図に対応する。なお、縦軸は6Li原子イオン7の検出カウント数(イオン強度)を示し、横軸は時間を示す。また、実線は、正常な二次電池の拡散イオンの検出強度を示し、破線は、劣化した二次電池の拡散イオンの検出強度を示す。 FIG. 2 corresponds to the figure showing the time course of the diffused ionic strength of the secondary battery shown in FIG. The vertical axis represents the number of detection counts (ionic strength) of 6Li atomic ions 7, and the horizontal axis represents time. The solid line indicates the detection intensity of diffuse ions of a normal secondary battery, and the broken line indicates the detection intensity of diffuse ions of a deteriorated secondary battery.

図2に示すように、二次電池の充電特性のうち、特性を司る拡散抵抗の要因を示すと、下から21は活物質内Liイオン拡散領域を示し、22は固体電解質内Liイオン拡散領域を示し、23は活物質間拡散領域を示す。これらの傾向はイオン強度の時間に対する傾きすなわち到達速度を取ることでも明確に把握することができる。 As shown in FIG. 2, among the charging characteristics of the secondary battery, the diffusion resistance factor that controls the characteristics is shown. From the bottom, 21 indicates the Li ion diffusion region in the active material, and 22 indicates the Li ion diffusion region in the solid electrolyte. Indicates a diffusion region between active materials. These tendencies can also be clearly grasped by taking the slope of the ionic strength with respect to time, that is, the arrival speed.

このように、充電特性を拡散抵抗の要因に切り分けると、劣化した二次電池の要因を判断する際に、正極の劣化であるか、電解質の劣化、あるいは界面の劣化であるかを切り分けて判断することができる。 In this way, if the charging characteristics are separated into the factors of diffusion resistance, when judging the cause of the deteriorated secondary battery, it is judged whether it is the deterioration of the positive electrode, the deterioration of the electrolyte, or the deterioration of the interface. can do.

〔第1実施形態の効果〕
本実施形態によれば、同位体のリチウムイオンの移動距離と時間と量を正確に測定することができる。これにより、リチウムイオン移動に適当な電池材料の開発、電極の設計、さらにセル設計、電池制御の適正化が行えるようになる。
また、リチウムイオンの移動速度、移動量の変化から電池の劣化状態を把握することも可能となる。
[Effect of the first embodiment]
According to this embodiment, the moving distance, time and amount of the isotope lithium ion can be accurately measured. As a result, it becomes possible to develop a battery material suitable for lithium ion transfer, design an electrode, design a cell, and optimize battery control.
It is also possible to grasp the deterioration state of the battery from changes in the moving speed and the amount of movement of lithium ions.

さらに、材料間界面が複数存在している場合においては、元素移動における界面の影響も測定することができる。
また、元素の拡散を定量評価する本実施形態を二次電池の劣化状態の診断に適用できるため、様々な状態で使用される電子機器、移動体、特に、二次電池を車載する環境でも二次電池の劣化診断ができる。
Furthermore, when there are a plurality of material-to-material interfaces, the influence of the interfaces on element transfer can also be measured.
Further, since this embodiment for quantitatively evaluating the diffusion of elements can be applied to the diagnosis of the deteriorated state of the secondary battery, it can be applied to electronic devices and mobile objects used in various states, especially in an environment in which the secondary battery is mounted. Deterioration diagnosis of the next battery can be performed.

〔第2実施形態〕
図3は、第2実施形態を示す固体電池の測定装置の動作を説明する図である。
なお、図1に示した構成と、図3に示す構成との差異は、正極集電体16と固体電解質5との間に、6Li同位体置換正極活物質を含む正極層14、負極集電体15と固体電解質5との間に負極活物質を含む負極層13を挟み込む形態である点である。なお、正極集電体16としては、アルミやステンレスが好ましく、負極集電体15としては、銅やステンレスが好ましい。
[Second Embodiment]
FIG. 3 is a diagram illustrating the operation of the solid-state battery measuring device showing the second embodiment.
The difference between the configuration shown in FIG. 1 and the configuration shown in FIG. 3 is that the positive electrode layer 14 containing the 6Li isotope-substituted positive electrode active material and the negative electrode current collector are between the positive electrode current collector 16 and the solid electrolyte 5. The point is that the negative electrode layer 13 containing the negative electrode active material is sandwiched between the body 15 and the solid electrolyte 5. The positive electrode current collector 16 is preferably aluminum or stainless steel, and the negative electrode current collector 15 is preferably copper or stainless steel.

本例では、固体二次電池の構造をとっており、充放電することが可能となっている。
正極集電体16と固体電解質5との間に、6Li同位体置換正極活物質を含む正極層14、負極集電体15と固体電解質5との間に負極層13を挟み込むことで、Liイオンが正極層、負極層内に出入りすることが可能となり二次電池の機能を発現できる。
In this example, it has a solid secondary battery structure and can be charged and discharged.
Li ions are formed by sandwiching the positive electrode layer 14 containing the 6Li isotope-substituted positive electrode active material between the positive electrode current collector 16 and the solid electrolyte 5, and the negative electrode layer 13 between the negative electrode current collector 15 and the solid electrolyte 5. Can enter and exit the positive electrode layer and the negative electrode layer, and can exhibit the function of the secondary battery.

〔第2実施形態の効果〕
本実施形態によれば、同位体のリチウムイオンの移動距離と時間と量を効率よく、かつ正確に測定することができる。
[Effect of the second embodiment]
According to this embodiment, the moving distance, time and amount of the isotope lithium ion can be measured efficiently and accurately.

〔第3実施形態〕
図4は、本実施形態を示す固体電池の診断方法を説明するフローチャートである。なお、ST1〜ST9は各ステップを示し、図示しないCPUやプロセッサがROMから読み出す制御プログラムを実行することで実現される。また、本例では、測定装置に診断手段を設ける場合を示すが、分離して外部装置とすることも本実施形態の適用範囲である。
[Third Embodiment]
FIG. 4 is a flowchart illustrating a method of diagnosing a solid-state battery showing the present embodiment. Note that ST1 to ST9 indicate each step, and are realized by executing a control program read from ROM by a CPU or processor (not shown). Further, in this example, the case where the measuring device is provided with the diagnostic means is shown, but it is also within the scope of the present embodiment that the measuring device is separated into an external device.

電源1から負極集電体15と正極集電体16との間に所定の直流電圧を印加する(ST1)。図示しないタイマ等により所定時間経過を待つことで(ST2)、診断部9内の測定環境を安定させる。
次に、催促手段としての一次イオン照射部10より一次イオン11としてビスマス、ガリウム、金、カーボン60のいずれかを負極層に照射する(ST3)。
A predetermined DC voltage is applied from the power source 1 between the negative electrode current collector 15 and the positive electrode current collector 16 (ST1). By waiting for the elapse of a predetermined time with a timer (not shown) or the like (ST2), the measurement environment in the diagnostic unit 9 is stabilized.
Next, the negative electrode layer is irradiated with any one of bismuth, gallium, gold, and carbon 60 as the primary ion 11 from the primary ion irradiation unit 10 as a reminder means (ST3).

その後、質量検出器2は拡散する7Li原子イオン8と同位体の6Li原子イオン7の検出処理を開始する(ST4)。次に、拡散する7Li原子イオン8と同位体の6Li原子イオン7の検出を終了するのを待ち(ST5)、検出した拡散する7Li原子イオン8と同位体の6Li原子イオン7の移動距離、移動時間、移動量を演算する(ST6)。 After that, the mass detector 2 starts the detection process of the diffused 7Li atomic ion 8 and the isotope 6Li atomic ion 7 (ST4). Next, it waits for the detection of the diffused 7Li atomic ion 8 and the isotope 6Li atom ion 7 to be completed (ST5), and the movement distance and movement of the detected diffused 7Li atom ion 8 and the isotope 6Li atom ion 7. Calculate time and movement amount (ST6).

次に、質量検出器2は、演算した拡散する7Li原子イオン8と同位体の6Li原子イオン7の到達時間、移動距離、移動時間、移動量に基づき、同位体の6Li原子イオン7の移動量が7Li原子イオン8の移動量に比べて所定の存在比率よりも高いかどうか、すなわち、拡散する6Li原子イオン7の量が7Li原子イオン8の量に比べて減少しているか否かを判断する(ST7)。 Next, the mass detector 2 moves the isotope 6Li atom ion 7 based on the calculated arrival time, movement distance, movement time, and movement amount of the diffused 7Li atom ion 8 and the isotope 6Li atom ion 7. Is higher than the predetermined abundance ratio with respect to the amount of movement of 7Li atomic ion 8, that is, whether or not the amount of diffused 6Li atomic ion 7 is reduced with respect to the amount of 7Li atomic ion 8. (ST7).

ここで、拡散する6Li原子イオン7の量が7Li原子イオン8の量に比べて減少していないと判断した場合、固体電池は正常な充電特性を示すと診断して(ST8)、本処理をエンドする。 Here, if it is determined that the amount of diffused 6Li atomic ions 7 is not reduced as compared with the amount of 7Li atomic ions 8, it is diagnosed that the solid-state battery exhibits normal charging characteristics (ST8), and this treatment is performed. End.

一方、拡散する質量検出器2が同位体の6Li原子イオン7の量が7Li原子イオン8の量に比べて減少していると判断した場合、固体電池は劣化した充電特性を示すと診断して(ST9)、本処理をエンドする。 On the other hand, if the diffusing mass detector 2 determines that the amount of isotopic 6Li atomic ions 7 is reduced compared to the amount of 7Li atomic ions 8, it is diagnosed that the solid-state battery exhibits deteriorated charging characteristics. (ST9), end this process.

〔第3実施形態の効果〕
本実施形態によれば、拡散する6Li原子イオン7の量が7Li原子イオン8の量を比較することで、固体電池の劣化状態を診断することができる。
本実施形態の開示は、一例であって、二次電池を使用する電子機器に本発明を適用できるため、種々の組み合わせが想定される。
[Effect of Third Embodiment]
According to this embodiment, the deterioration state of the solid-state battery can be diagnosed by comparing the amount of diffused 6Li atomic ions 7 with the amount of 7Li atomic ions 8.
The disclosure of this embodiment is an example, and since the present invention can be applied to an electronic device using a secondary battery, various combinations are assumed.

1 電源
2 質量検出器(取得手段)
3 6Li金属電極(正極)
4 7Li金属電極網(負極)
5 固体電解質
7 6Li原子イオン(第2の原子イオン)
8 7Li原子イオン(第1の原子イオン)
9 診断部(診断手段)
10 一次イオン照射部(催促手段)
11 一次イオン
12 真空チャンバー
13 負極層
14 正極層
15 負極集電体
16 正極集電体
1 Power supply 2 Mass detector (acquisition means)
36Li metal electrode (positive electrode)
47Li metal electrode network (negative electrode)
5 Solid electrolyte 7 6 Li atomic ion (second atomic ion)
87 Li atomic ion (first atomic ion)
9 Diagnosis department (diagnosis means)
10 Primary ion irradiation part (prompting means)
11 Primary ion
12 vacuum chamber
13 Negative electrode layer
14 Positive electrode layer
15 Negative current collector
16 Positive electrode current collector

Claims (7)

固体電池の測定装置であって、
正極と負極との間に固体電解質を設け、前記正極と前記負極に所定電位の直流電圧を印加する印加手段と、
前記固体電解質、前記正極に一次イオンを照射またはエネルギーを付与してイオン化を促す催促手段と、
前記直流電圧を正極と負極との間に印加した状態で、前記催促手段により照射される前記一次イオンまたは付与されるエネルギーに基づいて、前記正極、または固体電解質から拡散する第1の原子イオンの質量と、前記第1の原子イオンと同位体となる第2の原子イオンの質量とを検出して拡散プロファイルを取得する取得手段と、を備える、測定装置。
It is a measuring device for solid-state batteries.
An application means for providing a solid electrolyte between the positive electrode and the negative electrode and applying a DC voltage of a predetermined potential to the positive electrode and the negative electrode.
The solid electrolyte, the urging means for irradiating the positive electrode with primary ions or applying energy to promote ionization, and the like.
With the DC voltage applied between the positive electrode and the negative electrode, the first atomic ion diffused from the positive electrode or the solid electrolyte based on the primary ion or the energy applied by the prompting means. A measuring device comprising a means for obtaining a diffusion profile by detecting the mass and the mass of the first atomic ion and the mass of a second atomic ion that is an isotope.
前記取得手段が取得した前記拡散プロファイルに基づいて、前記第1の原子イオンに対する前記第2の原子イオンの割合が高いか否かに基づき、前記固体電池の劣化状態を診断する診断手段を備える、請求項1に記載の測定装置。 A diagnostic means for diagnosing a deteriorated state of the solid-state battery based on whether or not the ratio of the second atomic ion to the first atomic ion is high based on the diffusion profile acquired by the acquisition means is provided. The measuring device according to claim 1. 前記第1の原子イオンを7Liイオンで構成し、かつ、前記第2の原子イオンを該7Liイオンと同位体である6Liイオンで構成する、請求項1または2に記載の測定装置。 The measuring device according to claim 1 or 2, wherein the first atomic ion is composed of 7Li ions, and the second atomic ion is composed of 6Li ions which are isotopes of the 7Li ions. 前記取得手段を所定の移動体内に設ける、請求項1から3のいずれかに記載の測定装置。 The measuring device according to any one of claims 1 to 3, wherein the acquisition means is provided in a predetermined moving body. 前記催促手段が照射する一次イオンは、ビスマス、ガリウム、金、カーボン60のいずれかである、請求項1から3のいずれかに記載の測定装置。 The measuring device according to any one of claims 1 to 3, wherein the primary ion irradiated by the urging means is any one of bismuth, gallium, gold, and carbon 60. 前記催促手段が付与するエネルギーは、レーザー光、局所的な加熱、X線、中性子のいずれかである、請求項1から3のいずれかに記載の測定装置。 The measuring device according to any one of claims 1 to 3, wherein the energy applied by the prompting means is any of laser light, local heating, X-rays, and neutrons. 固体電池の測定方法であって、
正極と負極との間に固体電解質を設け、前記正極と前記負極に所定電位の直流電圧を印加する印加工程と、
前記固体電解質、前記正極に一次イオンを照射またはエネルギーを付与してイオン化を促す催促工程と、
前記直流電圧を正極と負極との間に印加した状態で、前記催促工程により照射される前記一次イオンまたは付与されるエネルギーに基づいて、前記正極、または固体電解質から拡散する第1の原子イオンの質量と、前記第1の原子イオンと同位体となる第2の原子イオンの質量とを検出して拡散プロファイルを取得する取得工程と、を備える、固体電池の測定方法。

It is a measurement method for solid-state batteries.
An application step in which a solid electrolyte is provided between the positive electrode and the negative electrode and a DC voltage of a predetermined potential is applied to the positive electrode and the negative electrode.
A urging step of irradiating the solid electrolyte and the positive electrode with primary ions or applying energy to promote ionization, and
With the DC voltage applied between the positive electrode and the negative electrode, the first atomic ion diffused from the positive electrode or the solid electrolyte based on the primary ion or the energy applied by the prompting step. A method for measuring a solid-state battery, comprising:

JP2020042706A 2020-03-12 2020-03-12 Measuring device and measuring method Active JP7525272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042706A JP7525272B2 (en) 2020-03-12 2020-03-12 Measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042706A JP7525272B2 (en) 2020-03-12 2020-03-12 Measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2021144859A true JP2021144859A (en) 2021-09-24
JP7525272B2 JP7525272B2 (en) 2024-07-30

Family

ID=77766998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042706A Active JP7525272B2 (en) 2020-03-12 2020-03-12 Measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP7525272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500470A (en) * 2022-01-27 2023-07-28 本田技研工业株式会社 Ion movement measurement device and movement measurement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284096A (en) 1999-03-31 2000-10-13 Hitachi Ltd Production method for radioactive isotope and its production device
JP2011222460A (en) 2010-04-02 2011-11-04 Si Sciense Co Ltd Battery
JP6278452B2 (en) 2014-03-06 2018-02-14 国立研究開発法人物質・材料研究機構 Lithium ion behavior evaluation method in all solid state lithium ion battery and all solid state lithium ion battery capable of evaluating lithium ion behavior

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500470A (en) * 2022-01-27 2023-07-28 本田技研工业株式会社 Ion movement measurement device and movement measurement method

Also Published As

Publication number Publication date
JP7525272B2 (en) 2024-07-30

Similar Documents

Publication Publication Date Title
Westerhoff et al. Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries
Umegaki et al. Nondestructive high-sensitivity detections of metallic lithium deposited on a battery anode using muonic X-rays
US20150377977A1 (en) Methods for testing a battery and devices configured to test a battery
Min et al. Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles
US11733311B2 (en) Method of screening high rate electrochemical cells
CN106814319A (en) A kind of lithium ion battery self discharge detecting system
Li et al. Capacity detection of electric vehicle lithium-ion batteries based on X-ray computed tomography
JP4107567B2 (en) Lithium-ion battery deterioration diagnosis method and apparatus incorporating the deterioration diagnosis method
JP2021144859A (en) Measuring device and measuring method
Dawkins et al. Mapping the total lithium inventory of Li-ion batteries
Sunitha et al. Depth profiling Li in electrode materials of lithium ion battery by 7Li (p, γ) 8Be and 7Li (p, α) 4He nuclear reactions
Sohaib et al. Analysis of Aging and Degradation in Lithium Batteries Using Distribution of Relaxation Time
JP6001604B2 (en) Method for two-dimensional measurement using X-rays on electrodes
Karaoğlu et al. Uneven discharge of metallic lithium causes increased voltage noise in Li/MnO2 primary batteries upon shorting
JP5502188B2 (en) System and method for verifying proper ordering of stack components
Heubner et al. Microscopic in-operando thermography at the cross section of a single lithium ion battery stack
Connolley et al. An operando spatially resolved study of alkaline battery discharge using a novel hyperspectral detector and X-ray tomography
Karimi et al. Degradation investigation of three Li-ion cell chemistries under different aging scenarios through differential voltage and post mortem analysis
Wood et al. Extracting Thermodynamic, Kinetic, and Transport Properties from Batteries Using a Simple Analytical Pulsing Protocol
Li et al. Capacity fading detection of rectangular LiFePO 4 battery by tomographic image
JPH08189907A (en) X-ray diffractometer with secondary battery charge / discharge automatic tester
KR20170110769A (en) Gas analysis device comprising raman monochromator and the method thereof
Mantouvalou et al. Operando Measurement of Transition Metal Deposition in a NMC Li‐Ion Battery Using Laboratory Confocal Micro‐X‐ray Fluorescence Spectroscopy
Javadipour et al. Online magnetic field monitoring in lithium-ion batteries for electric vehicles
Sakurai et al. Local state of charge measurement on a Li battery by X-ray photon counting computed tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240718

R150 Certificate of patent or registration of utility model

Ref document number: 7525272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150