JP2021143414A - Method for leaching sparingly soluble platinum group element - Google Patents
Method for leaching sparingly soluble platinum group element Download PDFInfo
- Publication number
- JP2021143414A JP2021143414A JP2020044452A JP2020044452A JP2021143414A JP 2021143414 A JP2021143414 A JP 2021143414A JP 2020044452 A JP2020044452 A JP 2020044452A JP 2020044452 A JP2020044452 A JP 2020044452A JP 2021143414 A JP2021143414 A JP 2021143414A
- Authority
- JP
- Japan
- Prior art keywords
- platinum group
- leaching
- group element
- water
- selenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002386 leaching Methods 0.000 title claims abstract description 69
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 43
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 42
- 239000002994 raw material Substances 0.000 claims abstract description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 22
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 22
- 239000011669 selenium Substances 0.000 claims abstract description 22
- 239000003513 alkali Substances 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 235000011121 sodium hydroxide Nutrition 0.000 claims abstract description 14
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 9
- 229910001924 platinum group oxide Inorganic materials 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 7
- 229910003445 palladium oxide Inorganic materials 0.000 description 7
- 239000002893 slag Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- 230000003381 solubilizing effect Effects 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ROZSPJBPUVWBHW-UHFFFAOYSA-N [Ru]=O Chemical class [Ru]=O ROZSPJBPUVWBHW-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 150000003343 selenium compounds Chemical class 0.000 description 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、難溶性の白金族元素を含む原料から白金族元素を効率よく浸出する方法に関する。 The present invention relates to a method for efficiently leaching a platinum group element from a raw material containing a sparingly soluble platinum group element.
酸化パラジウムや酸化ルテニウム、白金族元素のセレン化物などは酸化剤を含む塩酸を用いた一般的な酸化浸出では浸出困難な難溶性白金族元素である。このような難溶性白金族元素の浸出方法として、以下の処理方法が知られている。
(イ)白金族元素のセレン化物を含む原料を、苛性ソーダと硝酸ソーダで加熱溶融することによって、上記白金族元素のセレン化物を分解してセレンを除去し、白金族元素を可溶化する方法(特開2003−268457号公報)。
(ロ)難溶性白金族元素を含む原料を塩化焙焼して白金族元素を塩化物の形態で可溶化する方法(特開2005−240170号公報)。
(ハ)難溶性白金族元素に鉄粉末を加えて合金化することによって可溶化させる方法(特開平10−195552号公報)。
Palladium oxide, ruthenium oxide, and selenium group elements of the platinum group are poorly soluble platinum group elements that are difficult to leached by general oxidative leaching using hydrochloric acid containing an oxidizing agent. The following treatment methods are known as methods for leaching such sparingly soluble platinum group elements.
(B) A method in which a raw material containing a platinum group element selenium is heated and melted with caustic soda and sodium nitrate to decompose the platinum group element selenium to remove selenium and solubilize the platinum group element ( Japanese Unexamined Patent Publication No. 2003-268457).
(B) A method for solubilizing a platinum group element in the form of chloride by roasting a raw material containing a poorly soluble platinum group element by chloride (Japanese Patent Laid-Open No. 2005-240170).
(C) A method for solubilizing by adding iron powder to a sparingly soluble platinum group element and alloying it (Japanese Patent Laid-Open No. 10-195552).
上記(イ)の方法は、セレン化物が少なく、酸化パラジウムなどの白金族酸化物が多い原料に対しては、酸化パラジウムなどが溶融時に酸化物のまま残るため、浸出することができない。上記(ロ)の方法は、塩素の腐食性が高いため焙焼設備の負担が大きい問題がある。上記(ハ)の方法は、添加した鉄も同時に浸出するため、鉄を除去する後工程が必要になる。 The method (a) above cannot leach a raw material having a small amount of selenium and a large amount of platinum group oxide such as palladium oxide because palladium oxide or the like remains as an oxide when melted. The above method (b) has a problem that the burden on the roasting equipment is large because chlorine is highly corrosive. In the above method (c), the added iron is also leached at the same time, so that a post-process for removing the iron is required.
本発明は、難溶性の白金族元素について、従来の浸出方法における上記問題を解決した浸出方法を提供する。本発明の方法は、白金族元素の酸化物が多い原料についても白金族元素の浸出効果に優れており、また塩素や鉄粉末を用いないので、上記(ロ)(ハ)の方法における問題を生じない。 The present invention provides a leaching method that solves the above-mentioned problems in the conventional leaching method for a sparingly soluble platinum group element. The method of the present invention is excellent in the leaching effect of platinum group elements even for raw materials containing a large amount of oxides of platinum group elements, and does not use chlorine or iron powder. Does not occur.
本発明は、以下の構成によって上記問題を解決した浸出方法に関する。
〔1〕難溶性の白金族酸化物を含む原料を、700℃〜1200℃に加熱して、難溶性の白金族酸化物を還元する加熱還元工程と、この加熱還元物に苛性ソーダを加えて320℃〜500℃に加熱溶融してセレンと白金族元素を可溶性化合物に変化させるアルカリ溶融工程と、このアルカリ溶融物から水溶性のセレンを水浸出して固液分離する水浸出工程と、この水浸出残渣に残留する白金族元素を過酸化水素を含む塩酸を用いて浸出する塩化酸化浸出工程とを有することを特徴とする難溶性白金族元素の浸出方法。
〔2〕上記加熱還元工程の焙焼温度が800℃〜1000℃である上記[1]に記載する難溶性白金族元素の浸出方法。
〔3〕上記加熱還元物と苛性ソーダの混合比が、質量比で20:80〜80:20である上記[1]または上記[2]に記載する難溶性白金族元素の浸出方法。
〔4〕上記アルカリ溶融工程の加熱温度が350℃〜450℃である上記[1]〜上記[3]の何れかに記載する難溶性白金族元素の浸出方法。
The present invention relates to a leaching method that solves the above problems by the following configuration.
[1] A heat-reduction step of heating a raw material containing a poorly soluble platinum group oxide to 700 ° C. to 1200 ° C. to reduce the poorly soluble platinum group oxide, and adding caustic soda to this heat-reduced product to 320. An alkali melting step of heating and melting at ° C to 500 ° C to change selenium and platinum group elements into soluble compounds, a water leaching step of leaching water-soluble selenium from this alkaline melt and separating it into solid and liquid, and this water. A method for leaching a poorly soluble platinum group element, which comprises a chloride oxidation leaching step of leaching the platinum group element remaining in the leaching residue with hydrochloric acid containing hydrogen peroxide.
[2] The method for leaching a poorly soluble platinum group element according to the above [1], wherein the roasting temperature in the heat reduction step is 800 ° C. to 1000 ° C.
[3] The method for leaching a poorly soluble platinum group element according to the above [1] or the above [2], wherein the mixing ratio of the heat-reduced product and caustic soda is 20:80 to 80:20 in terms of mass ratio.
[4] The method for leaching a poorly soluble platinum group element according to any one of the above [1] to [3], wherein the heating temperature in the alkali melting step is 350 ° C to 450 ° C.
以下、本発明の方法を具体的に説明する。
本発明の方法は、難溶性の白金族元素を含む原料を、700℃〜1200℃に加熱して、難溶性の白金族酸化物を還元する加熱還元工程と、この加熱還元物に苛性ソーダを加えて320℃〜500℃に加熱溶融してセレンや白金族元素を可溶化するアルカリ溶融工程と、このアルカリ溶融物から水溶性のセレンを水浸出して固液分離する水浸出工程と、この水浸出残渣に残留する白金族元素を過酸化水素を含む塩酸を用いて浸出する塩化酸化浸出工程とを有することを特徴とする難溶性白金族元素の浸出方法である。本発明の浸出方法の一例を図1に示す。
Hereinafter, the method of the present invention will be specifically described.
In the method of the present invention, a raw material containing a sparingly soluble platinum group element is heated to 700 ° C. to 1200 ° C. to reduce a sparingly soluble platinum group oxide, and a caustic soda is added to the heat-reduced product. An alkali melting step of solubilizing selenium and platinum group elements by heating and melting at 320 ° C to 500 ° C, a water leaching step of leaching water-soluble selenium from this alkaline melt and separating it into solid and liquid, and this water. It is a method for leaching a poorly soluble platinum group element, which comprises a chloride oxidation leaching step of leaching the platinum group element remaining in the leaching residue with hydrochloric acid containing hydrogen peroxide. An example of the leaching method of the present invention is shown in FIG.
難溶性の白金族元素を含む原料は、例えば、銅電解スライムを塩化酸化浸出し、金を溶媒抽出法で回収した後に、この抽出後液に亜硫酸ガスを吹込みテルルが還元する手前で亜硫酸ガスの吹込みを止めて得た還元滓を酸化焙焼してセレンやテルルを揮発処理した後の酸化焙焼残渣等である。このような残渣は難溶性のパラジウムの酸化物やルテニウムの酸化物を含むため、酸化剤を含む塩酸を用いた一般的な酸化浸出では浸出できない。 As a raw material containing a sparingly soluble platinum group element, for example, copper electrolytic slime is leached by chloride oxidation, gold is recovered by a solvent extraction method, and then sulfite gas is blown into the liquid after extraction to reduce the sulfite gas. This is an oxidative roasting residue or the like after oxidatively roasting the reducing slag obtained by stopping the blowing of the gas to volatilize selenium and tellurium. Since such a residue contains a poorly soluble palladium oxide or ruthenium oxide, it cannot be leached by general oxidative leaching using hydrochloric acid containing an oxidizing agent.
〔加熱還元工程〕
本発明の方法は、難溶性の白金族元素を含む原料を、大気または不活性ガスの雰囲気下で、700℃〜1200℃に加熱して、難溶性の白金族元素を還元する加熱還元工程を有する。原料に含まれている難溶性の酸化パラジウムの大部分はこの高温加熱処理によって金属パラジウムに還元される。金属パラジウムは酸化剤を含む塩酸によって浸出することができる。また、上記原料に含まれているセレンの約8〜約9割を気化させることができる。
[Heat reduction process]
The method of the present invention involves a heating-reduction step of heating a raw material containing a sparingly soluble platinum group element to 700 ° C. to 1200 ° C. in an atmosphere of an atmosphere or an inert gas to reduce the sparingly soluble platinum group element. Have. Most of the sparingly soluble palladium oxide contained in the raw material is reduced to metallic palladium by this high-temperature heat treatment. Metallic palladium can be leached with hydrochloric acid containing an oxidizing agent. In addition, about 80 to about 90% of selenium contained in the above raw materials can be vaporized.
加熱温度が700℃未満では酸化パラジウムを還元することができない。一方、エネルギーコストの観点から1200℃以上の温度は不要である。なお、不活性ガス雰囲気下では700℃以上〜1000℃以下、大気雰囲気下では800℃以上〜1000℃以下が好ましい。 Palladium oxide cannot be reduced if the heating temperature is less than 700 ° C. On the other hand, from the viewpoint of energy cost, a temperature of 1200 ° C. or higher is unnecessary. In an inert gas atmosphere, 700 ° C. to 1000 ° C. or lower is preferable, and in an atmospheric atmosphere, 800 ° C. to 1000 ° C. or lower is preferable.
〔アルカリ溶融工程〕
本発明の方法は、上記加熱還元工程の後に、該工程で得た加熱還元物に苛性ソーダを加えて320℃〜500℃に加熱溶融するアルカリ溶融工程を有する。このアルカリ溶融によって加熱還元物に含まれる白金族元素の一部が塩化酸化浸出可能な可溶性化合物に変化する。例えば、白金族元素のセレン化物やルテニウム酸化物が該当する。なお、セレンに関しては水で浸出可能な水溶性化合物に変化する。
[Alkali melting process]
The method of the present invention has an alkali melting step of adding caustic soda to the heat-reduced product obtained in the step and heating and melting the mixture at 320 ° C. to 500 ° C. after the heat-reduction step. By this alkali melting, a part of the platinum group elements contained in the heat-reduced product is changed to a soluble compound capable of leaching by chloride oxidation. For example, selenium compounds of platinum group elements and ruthenium oxides are applicable. Regarding selenium, it changes to a water-soluble compound that can be leached with water.
上記加熱還元物と苛性ソーダの混合比は質量比で20:80〜80:20の範囲が好ましい。苛性ソーダ量が上記範囲より少な過ぎると白金族元素を完全に可溶性化合物に変化させることができない。一方、苛性ソーダ量が上記範囲より多過ぎるとコスト高になる。 The mixing ratio of the heat-reduced product and caustic soda is preferably in the range of 20:80 to 80:20 in terms of mass ratio. If the amount of caustic soda is less than the above range, the platinum group element cannot be completely converted into a soluble compound. On the other hand, if the amount of caustic soda is more than the above range, the cost becomes high.
苛性ソーダの融点は318℃であるため、アルカリ溶融工程の加熱温度は320℃以上が必要であり、一方、加熱温度が500℃以上の温度はコスト高になる。この加熱温度は350℃〜450℃が好ましい。 Since the melting point of caustic soda is 318 ° C., the heating temperature of the alkali melting step needs to be 320 ° C. or higher, while the heating temperature of 500 ° C. or higher is costly. The heating temperature is preferably 350 ° C to 450 ° C.
〔水浸出工程〕
本発明の方法は、上記アルカリ溶融工程の後に、そのアルカリ溶融物から水溶性のセレンを水浸出する工程を有する。上記アルカリ溶融によって得られるアルカリ溶融物に含まれるセレンは水溶化されるので、水浸出によってセレンを浸出し、白金族元素を含む浸出滓を固液分離して白金族元素を回収することができる。
[Water leaching process]
The method of the present invention includes a step of leaching water-soluble selenium from the alkaline melt after the alkali melting step. Since the selenium contained in the alkaline melt obtained by the alkali melting is solubilized, the selenium can be leached by water leaching, and the leaching slag containing the platinum group element can be solid-liquid separated to recover the platinum group element. ..
〔塩化酸化浸出工程〕
本発明の方法は、上記水浸出工程の後に、水浸出残渣に残留する白金族元素を塩化酸化浸出する工程を有する。この浸出反応は過酸化水素などの酸化剤を含む塩酸を用いることができる。この浸出反応によって、パラジウム、白金、ルテニウム、ロジウムなどの白金族元素を高い浸出率で浸出することができる。
[Chloride oxidation leaching process]
The method of the present invention includes, after the water leaching step, a step of oxidatively leaching the platinum group elements remaining in the water leaching residue. Hydrochloric acid containing an oxidizing agent such as hydrogen peroxide can be used for this leaching reaction. By this leaching reaction, platinum group elements such as palladium, platinum, ruthenium, and rhodium can be leached at a high leaching rate.
上記塩化酸化浸出の浸出液に含まれるパラジウムは、ジアルキルスルフィドを用いた溶媒抽出によって選択的に抽出して分離することができる。また、該浸出液に含まれる白金は塩化アンモニウムによって沈殿させて固液分離することによって、浸出液に含まれるルテニウム、ロジウムと分離することができる。ルテニウムは一般的な酸化蒸留によってロジウムと分離することが可能である。 Palladium contained in the leaching solution of chloride oxidation leaching can be selectively extracted and separated by solvent extraction using dialkyl sulfide. Further, platinum contained in the leachate can be separated from ruthenium and rhodium contained in the leachate by precipitating with ammonium chloride and separating into solid and liquid. Ruthenium can be separated from rhodium by common oxidative distillation.
先に述べたように、本発明の難溶性白金族元素を含む原料は、例えば、銅電解スライムを塩化酸化浸出し、金を溶媒抽出法で回収した後に、この抽出後液に亜硫酸ガスを吹込みテルルが還元する手前で亜硫酸ガスの吹込みを止めて得た還元滓を酸化焙焼してセレンやテルルを揮発処理した後の酸化焙焼残渣等である。 As described above, in the raw material containing the sparingly soluble platinum group element of the present invention, for example, copper electrolytic slime is leached by chloride oxidation, gold is recovered by a solvent extraction method, and then sulfur dioxide gas is blown into the liquid after extraction. This is an oxidative roasting residue or the like after oxidatively roasting the reducing slag obtained by stopping the blowing of sulfurous acid gas before the reduction of the contained tellurium to volatilize selenium and tellurium.
上記還元滓の酸化焙焼は、例えば、400℃以上〜700℃未満、好ましくは550℃以上〜600℃以下の温度で、酸素、酸素富化空気、または空気の雰囲気下で行われる。この酸化焙焼によって、上記還元滓に含まれているセレンは酸化され、二酸化セレンになって気化する。気化した二酸化セレンはアルカリ溶液に吸収させて回収することができる。一方、白金族元素のパラジウムは酸化パラジウムになって酸化焙焼残渣に残る。パラジウム以外の白金などは一部がメタルの状態や酸化物などを形成して酸化焙焼残渣に残る。 The oxidative roasting of the reduced slag is carried out, for example, at a temperature of 400 ° C. or higher and lower than 700 ° C., preferably 550 ° C. or higher and 600 ° C. or lower, in an oxygen-rich air or an atmosphere of air. By this oxidative roasting, the selenium contained in the reducing slag is oxidized to selenium dioxide and vaporized. The vaporized selenium dioxide can be recovered by absorbing it in an alkaline solution. On the other hand, the platinum group element palladium becomes palladium oxide and remains in the oxidative roasting residue. Part of platinum other than palladium forms a metal state or oxide, and remains in the oxidative roasting residue.
この酸化焙焼残渣について、本発明の上記加熱還元工程、上記アルカリ溶融工程、上記水浸出工程、および上記塩化酸化浸出工程を適用することができる。 The heat-reduction step, the alkali melting step, the water leaching step, and the chloride oxidative leaching step of the present invention can be applied to the oxidative roasting residue.
本発明の浸出方法は、難溶性の白金族酸化物が多い原料についても白金族元素の浸出効果に優れている。また、従来の浸出方法で用いられている塩素や鉄粉末を本発明の浸出方法は用いないので、塩素や鉄粉末を用いる従来の浸出方法における問題を生じない。 The leaching method of the present invention is excellent in the leaching effect of platinum group elements even for raw materials containing a large amount of sparingly soluble platinum group oxides. Further, since the chlorine or iron powder used in the conventional leaching method is not used in the leaching method of the present invention, there is no problem in the conventional leaching method using chlorine or iron powder.
以下、本発明の実施例を示す。以下の実施例において焙焼残渣および溶液の金属濃度はICP発光分光分析法によって測定した。 Hereinafter, examples of the present invention will be shown. In the following examples, the metal concentrations of the roasted residue and the solution were measured by ICP emission spectroscopy.
〔実施例1〕
難溶性の白金族元素を含む原料として、銅電解スライムを塩化酸化浸出して金を回収した後の還元滓を酸化焙焼した酸化焙焼残渣を用いた。該原料の白金族元素の含有量を表1に示す。該原料を900℃の温度で加熱還元した。この加熱還元物の白金族元素含有量を表1に示す。その後、この加熱還元物に苛性ソーダを1:1の質量割合で加え、400℃で4時間加熱してアルカリ溶融を行い、そのアルカリ溶融物を水浸出した。水浸出残渣の白金族元素含有量を表1に示す。その後、塩酸40mLに過酸化水素20mlを加えた浸出液に上記水浸出残渣を加えて、70℃で酸化浸出を行った。この結果を表1に示す。
[Example 1]
As a raw material containing a sparingly soluble platinum group element, an oxidative roasting residue obtained by oxidatively roasting the reducing slag after oxidative leaching of copper electrolytic slime to recover gold was used. The content of platinum group elements in the raw material is shown in Table 1. The raw material was heat-reduced at a temperature of 900 ° C. The platinum group element content of this heat-reduced product is shown in Table 1. Then, caustic soda was added to the heat-reduced product at a mass ratio of 1: 1 and heated at 400 ° C. for 4 hours to melt the alkali, and the alkaline melt was leached out with water. Table 1 shows the platinum group element content of the water leachate residue. Then, the above water leaching residue was added to a leaching solution obtained by adding 20 ml of hydrogen peroxide to 40 mL of hydrochloric acid, and oxidative leaching was performed at 70 ° C. The results are shown in Table 1.
〔比較例1〕
実施例1と同様に作製した原料を用い、実施例1の加熱還元を行わずに、該原料に苛性ソーダを1:1の質量割合で加え、400℃で4時間加熱してアルカリ溶融を行い、そのアルカリ溶融物を水浸出した。水浸出残渣の白金族元素含有量を表2に示す。その後、塩酸50mLに過酸化水素30mlを加えた浸出液に上記水浸出残渣を加えて、70℃で塩化酸化浸出を行った。この結果を表2に示す。表2に示すように、パラジウムの浸出率は実施例1より低い。
[Comparative Example 1]
Using the raw material prepared in the same manner as in Example 1, caustic soda was added to the raw material at a mass ratio of 1: 1 without heat reduction in Example 1, and the raw material was heated at 400 ° C. for 4 hours to perform alkali melting. The alkaline melt was leached with water. Table 2 shows the platinum group element content of the water leachate residue. Then, the above water leaching residue was added to a leaching solution obtained by adding 30 ml of hydrogen peroxide to 50 mL of hydrochloric acid, and chlorination leaching was performed at 70 ° C. The results are shown in Table 2. As shown in Table 2, the leaching rate of palladium is lower than that of Example 1.
〔比較例2〕
実施例1と同様に作製した原料を用い、該原料を900℃の温度で加熱還元した。この加熱還元物の白金族元素含有量を表3に示す。その後、実施例1のアルカリ溶融を行わず、この加熱還元物を、塩酸50mLに過酸化水素30mlを加えた浸出液に加えて、70℃で塩化酸化浸出を行った。この結果を表3に示す。表3に示すように、実施例1に比べてルテニウムの浸出率が格段に低い。
[Comparative Example 2]
Using the raw material prepared in the same manner as in Example 1, the raw material was heat-reduced at a temperature of 900 ° C. The platinum group element content of this heat-reduced product is shown in Table 3. Then, without performing the alkali melting of Example 1, this heat-reduced product was added to a leachate in which 30 ml of hydrogen peroxide was added to 50 mL of hydrochloric acid, and chlorination leaching was carried out at 70 ° C. The results are shown in Table 3. As shown in Table 3, the ruthenium leaching rate is significantly lower than that of Example 1.
Claims (4)
The method for leaching a poorly soluble platinum group element according to any one of claims 1 to 3, wherein the heating temperature of the alkali melting step is 350 ° C to 450 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020044452A JP7331744B2 (en) | 2020-03-13 | 2020-03-13 | Method for leaching sparingly soluble platinum group elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020044452A JP7331744B2 (en) | 2020-03-13 | 2020-03-13 | Method for leaching sparingly soluble platinum group elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021143414A true JP2021143414A (en) | 2021-09-24 |
JP7331744B2 JP7331744B2 (en) | 2023-08-23 |
Family
ID=77766040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020044452A Active JP7331744B2 (en) | 2020-03-13 | 2020-03-13 | Method for leaching sparingly soluble platinum group elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7331744B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5997536A (en) * | 1982-11-26 | 1984-06-05 | Permelec Electrode Ltd | Method for recovering ruthenium from metallic electrode |
JPH07278620A (en) * | 1994-04-11 | 1995-10-24 | Sumitomo Metal Mining Co Ltd | Production of palladium powder |
JPH09285730A (en) * | 1996-04-24 | 1997-11-04 | Sekiyu Sangyo Kasseika Center | High temperature combustion catalyst and method for producing the same |
JP2003268457A (en) * | 2002-03-15 | 2003-09-25 | Mitsubishi Materials Corp | Method for dissolving substance containing selenium and platinum group element |
JP2014507564A (en) * | 2011-02-03 | 2014-03-27 | ウェスタン プラチナム リミテッド | Method for refining platinum group metal concentrates |
JP2018062685A (en) * | 2016-10-12 | 2018-04-19 | 三菱マテリアル株式会社 | Separation recovery method for selenium, tellurium and platinum group element |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5997536B2 (en) | 2012-08-01 | 2016-09-28 | キヤノン株式会社 | Voltage output apparatus, image forming apparatus, and color image forming apparatus |
US10429224B2 (en) | 2017-12-05 | 2019-10-01 | General Electric Company | Interface for a Coriolis flow sensing assembly |
-
2020
- 2020-03-13 JP JP2020044452A patent/JP7331744B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5997536A (en) * | 1982-11-26 | 1984-06-05 | Permelec Electrode Ltd | Method for recovering ruthenium from metallic electrode |
JPH07278620A (en) * | 1994-04-11 | 1995-10-24 | Sumitomo Metal Mining Co Ltd | Production of palladium powder |
JPH09285730A (en) * | 1996-04-24 | 1997-11-04 | Sekiyu Sangyo Kasseika Center | High temperature combustion catalyst and method for producing the same |
JP2003268457A (en) * | 2002-03-15 | 2003-09-25 | Mitsubishi Materials Corp | Method for dissolving substance containing selenium and platinum group element |
JP2014507564A (en) * | 2011-02-03 | 2014-03-27 | ウェスタン プラチナム リミテッド | Method for refining platinum group metal concentrates |
JP2018062685A (en) * | 2016-10-12 | 2018-04-19 | 三菱マテリアル株式会社 | Separation recovery method for selenium, tellurium and platinum group element |
Also Published As
Publication number | Publication date |
---|---|
JP7331744B2 (en) | 2023-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7479262B2 (en) | Method for separating platinum group element | |
JP5132226B2 (en) | Ruthenium recovery method | |
JP6376349B2 (en) | Method for separating selenium, tellurium and platinum group elements | |
JP6780448B2 (en) | How to recover high-grade rhodium powder | |
JP2009179880A (en) | Process for the recovery of ruthenium from material containing ruthenium or ruthenium oxide or from ruthenium-containing noble metal ore concentrate | |
JP6810887B2 (en) | Separation and recovery methods for selenium, tellurium, and platinum group elements | |
JP2018062691A (en) | Method for collecting tungsten concentrate from cobalt-tungsten raw material | |
US4188362A (en) | Process for the treatment of platinum group metals and gold | |
JP4016680B2 (en) | Method for dissolving selenium platinum group element-containing material | |
JP3943564B2 (en) | Method for chlorinating Se-containing materials | |
CA2507370C (en) | Separation process for platinum group elements | |
CA1068116A (en) | Process for the treatment of platinum group metals and gold | |
JP6264566B2 (en) | Method for producing leaching product liquid containing platinum group element | |
JP7331744B2 (en) | Method for leaching sparingly soluble platinum group elements | |
JP2015134954A (en) | Method for treating antimony-containing material discharged from tin smelting process | |
Hoffmann | The wet chlorination of electrolytic refinery slimes | |
JP3663795B2 (en) | Method for solubilizing poorly soluble platinum group elements | |
JP4155177B2 (en) | Method for recovering silver from silver-lead-containing materials | |
JP4155176B2 (en) | Method for recovering silver from silver-lead-containing materials | |
JP2022130015A (en) | Tin recovery method | |
JP2004190133A (en) | Method of treating selenium, tellurium, and platinum group-containing material | |
JP7336075B2 (en) | Separation method of selenium and platinum group elements | |
JP2003293049A (en) | Method for recovering silver from slag containing silver and lead | |
RU2086685C1 (en) | Method for pyrometallurgical refining gold- and silver-containing wastes | |
JP2004035969A (en) | Method for refining selenium or the like |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220930 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230706 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7331744 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |