[go: up one dir, main page]

JP2021139853A - Judgment method and judgment device for continuous usability after an earthquake - Google Patents

Judgment method and judgment device for continuous usability after an earthquake Download PDF

Info

Publication number
JP2021139853A
JP2021139853A JP2020040158A JP2020040158A JP2021139853A JP 2021139853 A JP2021139853 A JP 2021139853A JP 2020040158 A JP2020040158 A JP 2020040158A JP 2020040158 A JP2020040158 A JP 2020040158A JP 2021139853 A JP2021139853 A JP 2021139853A
Authority
JP
Japan
Prior art keywords
earthquake
building
continuous usability
energy
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020040158A
Other languages
Japanese (ja)
Inventor
正 田村
Tadashi Tamura
正 田村
拓磨 橋本
Takuma Hashimoto
拓磨 橋本
優希 古島
Yuki Furushima
優希 古島
重信 森
Shigenobu Mori
重信 森
和也 太田
Kazuya Ota
和也 太田
一夫 村上
Kazuo Murakami
一夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2020040158A priority Critical patent/JP2021139853A/en
Publication of JP2021139853A publication Critical patent/JP2021139853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

To provide a method and device for determining continuous usability after earthquakes in a building in a case where a plurality of earthquakes occurs in a relatively short period.SOLUTION: A device 10 for determining the continuous usability of a building 12 after an earthquake, comprises: acquisition means 16 of acquiring time waveform data indicating earthquake motion by an earthquake sensor 14 provided in the building 12; calculation means 18 of calculating the energy of the earthquake motion with respect to the building 12 based on the acquired time waveform data; comparison means 20 of comparing the calculated energy of the earthquake motion with the energy absorption capacity of the building 12; and determination means 22 of determining continuous usability after the earthquake based on the result of comparison.SELECTED DRAWING: Figure 1

Description

本発明は、建物における地震後の継続使用性の判定方法および判定装置に関するものである。 The present invention relates to a method and a determination device for determining continuous usability after an earthquake in a building.

近年、巨大地震に対する社会的な認識が変わりつつある。東日本太平洋沖地震(2011年3月11日)では、マグニチュード(M)9の本震発生後から約3ヶ月までに、M7以上の大きな余震が6回発生した。2016年熊本地震では、28時間足らずで同レベルの巨大地震が2度発生した。襲来が切迫されている東海・東南海・南海地震では、数時間から数ヶ月までに巨大地震が連続して発生する可能性を政府機関が報じている。 In recent years, social perceptions of large earthquakes have been changing. In the 2011 off the Pacific coast of East Japan Earthquake (March 11, 2011), six large aftershocks of M7 or larger occurred within about three months after the mainshock of magnitude (M) 9. In the 2016 Kumamoto earthquake, two huge earthquakes of the same level occurred in less than 28 hours. Government agencies have reported that the Tokai, Tonankai, and Nankai earthquakes, which are imminent, may have a series of huge earthquakes within hours to months.

一方、従来の建物の耐震設計や地震時の挙動を研究した論文として、例えば非特許文献1〜5に記載のものが知られている。 On the other hand, as papers on the seismic design of conventional buildings and their behavior during earthquakes, for example, those described in Non-Patent Documents 1 to 5 are known.

秋山宏著:エネルギーの釣合いに基づく建築物の耐震設計,技報堂,1999.11Hiroshi Akiyama: Seismic Design of Buildings Based on Energy Balance, Gihodo, 1999.11. 清水健輔,千葉雄平,寺本隆幸:兵庫県南部地震時のS造建物の挙動に関する研究−その3−,日本建築学会学術講演梗概集,pp.871−872,2000.9Kensuke Shimizu, Yuhei Chiba, Takayuki Teramoto: Study on the behavior of S-structured buildings during the Hyogo-ken Nanbu Earthquake-Part 3-, Architectural Institute of Japan Academic Lecture Abstracts, pp.871-872, 2007.9 石田隆司,鳥山壮一,江口満,曽我和正,田村正,太田和也,村上一夫,北村春幸:下層部に履歴型ダンパーを部分配置した火力発電所建物のエネルギーの釣合いに基づく耐震評価法,日本建築学会構造工学論文集 Vol.64B,pp.215−224,2018.3Takashi Ishida, Soichi Toriyama, Mitsuru Eguchi, Kazumasa Soga, Tadashi Tamura, Kazuya Ota, Kazuo Murakami, Haruyuki Kitamura: Seismic evaluation method based on energy balance of thermal power plant buildings with partial historical dampers in the lower layer, Japan Architectural Institute of Japan Structural Engineering Proceedings Vol.64B, pp.215-224, 2018.3. 北村春幸,寺本隆幸,鵜飼邦夫,村上勝英,秋山宏,和田章:兵庫県南部地震における建築物の被害研究,日本建築学会構造系論文集 第503号,pp.165−170,1998.1Haruyuki Kitamura, Takayuki Teramoto, Kunio Ukai, Katsuhide Murakami, Hiroshi Akiyama, Akira Wada: Study on Damage to Buildings in the Hyogoken Nanbu Earthquake, Architectural Institute of Japan Structural Papers No. 503, pp.165-170, 1998.1. 竹ノ谷幸宏、石鍋雄一郎、半貫敏夫、秋山宏:建築構造物への余震の影響に関する検討、日本地震工学会論文集 第12巻、第4号、pp.127−142、2012Yukihiro Takenotani, Yuichiro Ishinabe, Toshio Hannuki, Hiroshi Akiyama: Examination of the effects of aftershocks on building structures, Proceedings of the Japan Association for Earthquake Engineering Vol. 12, No. 4, pp.127-142, 2012

上記のように、比較的短期間で複数の巨大地震が襲来する可能性が心配され、これに対する建物の耐震安全性の確認、または地震後の継続使用性の判断が社会的に求められている。しかし、従来の耐震設計では、本震の一波に対して耐震安全性を検証することが通例である。また、本震後に何回も発生する余震に対して耐震性を評価する手法は確立されていない。 As mentioned above, there is concern that multiple large earthquakes may strike in a relatively short period of time, and there is a social need to confirm the seismic safety of buildings against them or to judge their continuous usability after an earthquake. .. However, in conventional seismic designs, it is customary to verify seismic safety for one wave of the mainshock. In addition, a method for evaluating seismic resistance against aftershocks that occur many times after the mainshock has not been established.

本発明は、上記に鑑みてなされたものであって、比較的短期間に複数の地震が襲来した場合における建物の地震後の継続使用性の判定方法および判定装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a method and a determination device for determining the continuous usability of a building after an earthquake when a plurality of earthquakes strike in a relatively short period of time. ..

上記した課題を解決し、目的を達成するために、本発明に係る地震後の継続使用性の判定方法は、地震後の建物の継続使用性を判定する方法であって、建物に設けた地震センサによって地震動を示す時間波形データを取得するステップと、取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出するステップと、算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較するステップと、比較した結果に基づいて、地震後の継続使用性を判定するステップとを備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for determining the continuous usability after an earthquake according to the present invention is a method for determining the continuous usability of a building after an earthquake, which is an earthquake provided in the building. The step of acquiring the time waveform data indicating the seismic motion by the sensor, the step of calculating the energy of the seismic motion for the building based on the acquired time waveform data, and comparing the calculated energy of the seismic motion with the energy absorption capacity of the building. It is characterized by including a step and a step of determining continuous usability after an earthquake based on the result of comparison.

また、本発明に係る地震後の継続使用性の判定装置は、地震後の建物の継続使用性を判定する装置であって、建物に設けた地震センサによって地震動を示す時間波形データを取得する取得手段と、取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出する算出手段と、算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較する比較手段と、比較した結果に基づいて、地震後の継続使用性を判定する判定手段とを備えることを特徴とする。 Further, the device for determining the continuous usability after an earthquake according to the present invention is a device for determining the continuous usability of a building after an earthquake, and acquires time waveform data indicating seismic motion by an earthquake sensor provided in the building. Based on the results of comparison, the means, the calculation means for calculating the energy of the seismic motion with respect to the building based on the acquired time waveform data, and the comparison means for comparing the calculated energy of the seismic motion with the energy absorption capacity of the building. It is characterized in that it is provided with a determination means for determining continuous usability after an earthquake.

本発明に係る地震後の継続使用性の判定方法によれば、地震後の建物の継続使用性を判定する方法であって、建物に設けた地震センサによって地震動を示す時間波形データを取得するステップと、取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出するステップと、算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較するステップと、比較した結果に基づいて、地震後の継続使用性を判定するステップとを備えるので、比較的短期間に複数の地震が襲来した場合における建物の地震後の継続使用性を判定することができるという効果を奏する。また、本発明に係る地震後の継続使用性の判定方法によれば、観測された地震動だけでなく、想定地震動(例えば告示波等の設計用地震動)に対しても、建物の継続使用性を評価することができる。 According to the method for determining the continuous usability after an earthquake according to the present invention, it is a method for determining the continuous usability of a building after an earthquake, and is a step of acquiring time waveform data indicating seismic motion by an earthquake sensor provided in the building. After the earthquake, based on the results of the step of calculating the seismic motion energy for the building based on the acquired time waveform data, the step of comparing the calculated seismic motion energy with the energy absorption capacity of the building, and the comparison result. Since it is provided with a step of determining the continuous usability of the building, it is possible to determine the continuous usability of the building after the earthquake when a plurality of earthquakes strike in a relatively short period of time. Further, according to the method for determining the continuous usability after an earthquake according to the present invention, the continuous usability of the building is determined not only for the observed seismic motion but also for the assumed seismic motion (for example, the seismic motion for designing a notification wave or the like). Can be evaluated.

また、本発明に係る地震後の継続使用性の判定装置によれば、地震後の建物の継続使用性を判定する装置であって、建物に設けた地震センサによって地震動を示す時間波形データを取得する取得手段と、取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出する算出手段と、算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較する比較手段と、比較した結果に基づいて、地震後の継続使用性を判定する判定手段とを備えるので、比較的短期間に複数の地震が襲来した場合における建物の地震後の継続使用性を判定することができるという効果を奏する。また、本発明に係る地震後の継続使用性の判定装置によれば、観測された地震動だけでなく、想定地震動(例えば告示波等の設計用地震動)に対しても、建物の継続使用性を評価することができる。 Further, according to the device for determining the continuous usability after an earthquake according to the present invention, it is a device for determining the continuous usability of a building after an earthquake, and time waveform data indicating the seismic motion is acquired by an earthquake sensor provided in the building. The result of comparison is the acquisition means to be performed, the calculation means to calculate the energy of the seismic motion with respect to the building based on the acquired time waveform data, and the comparison means to compare the calculated energy of the seismic motion with the energy absorption capacity of the building. Based on this, since it is provided with a determination means for determining the continuous usability after an earthquake, it is possible to determine the continuous usability of a building after an earthquake when a plurality of earthquakes strike in a relatively short period of time. .. Further, according to the device for determining the continuous usability after an earthquake according to the present invention, the continuous usability of the building can be determined not only for the observed seismic motion but also for the assumed seismic motion (for example, the seismic motion for designing a notification wave or the like). Can be evaluated.

図1は、本発明に係る地震後の継続使用性の判定装置の実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of a device for determining continuous usability after an earthquake according to the present invention. 図2は、本震1および余震2の各エネルギースペクトルと、本震1の後続に余震2を連結した地震動の累積エネルギースペクトルの関係を示す図である。FIG. 2 is a diagram showing the relationship between the energy spectra of the mainshock 1 and the aftershock 2 and the cumulative energy spectrum of the seismic motion in which the aftershock 2 is connected after the mainshock 1. 図3は、地震に対する各層のエネルギー吸収量(E)および累積塑性変形倍率(η)の算定手順を示す図である。FIG. 3 is a diagram showing a procedure for calculating the energy absorption amount (E i ) and the cumulative plastic deformation ratio (η i ) of each layer with respect to an earthquake. 図4は、建物被災度に対応した層の最大塑性率と累積塑性変形倍率の関係を示すテーブル図である。FIG. 4 is a table diagram showing the relationship between the maximum plasticity ratio of the layer and the cumulative plastic deformation ratio corresponding to the degree of damage to the building. 図5は、地震後の継続使用性の判断基準(暫定案)を示すテーブル図である。FIG. 5 is a table diagram showing criteria (provisional plan) for determining continuous usability after an earthquake.

本発明は、例えば鉄骨系建物(ダンパー付きの制振構造を含む)を主な対象に、本震に加えて余震も考慮した地震後の継続使用性の判断に役立つ実用手法である。以下に、本発明に係る地震後の継続使用性の判定方法および判定装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The present invention is, for example, a practical method useful for determining continuous usability after an earthquake in consideration of aftershocks in addition to the mainshock, mainly for steel-framed buildings (including vibration damping structures with dampers). Hereinafter, a method for determining continuous usability after an earthquake and an embodiment of the determination device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

図1に示すように、本実施の形態の地震後の継続使用性の判定装置10は、建物12に設けた加速度計14(地震センサ)によって地震動を示す時間波形データを取得する取得手段16と、取得した時間波形データに基づいて、建物12に対する地震動のエネルギーを算出する算出手段18と、算出した地震動のエネルギーと、建物12のエネルギー吸収能力とを比較する比較手段20と、比較した結果に基づいて、地震後の継続使用性を判定する判定手段22とを備える。 As shown in FIG. 1, the determination device 10 for continuous usability after an earthquake of the present embodiment includes an acquisition means 16 for acquiring time waveform data indicating seismic motion by an accelerometer 14 (earthquake sensor) provided in the building 12. Based on the acquired time waveform data, the calculation means 18 that calculates the energy of the seismic motion with respect to the building 12 and the comparison means 20 that compares the calculated energy of the seismic motion with the energy absorption capacity of the building 12 are compared. Based on this, a determination means 22 for determining continuous usability after an earthquake is provided.

加速度計14は、事前に建物12の1階床あるいは基部の数か所に設置されるものであり、地震時に観測される時間波形データを計測する。取得手段16は、時間波形データを記録するデータロガー等の記録装置で構成することができる。算出手段18、比較手段20、判定手段22は、例えばコンピュータに備わる演算機能を用いて構成することができる。判定結果等は、例えば図示しないモニタやプリンタ等の出力手段に出力される。本実施の形態では、加速度計14で計測した時間波形データから地震動の建物12へのエネルギー入力を算出し、建物12のエネルギー吸収能力と比較することによって地震後の被災度(継続使用性)を早期に判定する。 The accelerometer 14 is installed in advance on the first floor of the building 12 or at several locations at the base, and measures the time waveform data observed at the time of an earthquake. The acquisition means 16 can be configured by a recording device such as a data logger that records time waveform data. The calculation means 18, the comparison means 20, and the determination means 22 can be configured by using, for example, a calculation function provided in a computer. The determination result or the like is output to an output means such as a monitor or a printer (not shown). In the present embodiment, the energy input of the seismic motion to the building 12 is calculated from the time waveform data measured by the accelerometer 14, and compared with the energy absorption capacity of the building 12, the degree of damage (continuous usability) after the earthquake is determined. Judge early.

特に本実施の形態では、次の3項目を有している。
1)本震および余震による建物へのエネルギー入力の算出方法
2)建物のエネルギー吸収能力の算出方法
3)地震後の建物被災度による継続使用性の判断方法
以下に、各項目について説明する。
In particular, the present embodiment has the following three items.
1) Calculation method of energy input to the building due to the mainshock and aftershock 2) Calculation method of energy absorption capacity of the building 3) Judgment method of continuous usability based on the degree of damage to the building after the earthquake Each item will be explained below.

1)建物へのエネルギー入力の算出方法(累積エネルギースペクトルの導入)
建物の構造体が弾性状態ならば、一次固有周期は一定値(T)とみなせる。このような弾性振動系において、地震動1を本震、後続に発生する地震動i(iは2以上の整数)を余震と想定する。図2は、本震および余震の各エネルギースペクトルと、本震の後続に余震を連結した地震動の累積エネルギースペクトルの関係を示したものである。図中、ACCは加速度計測値、VE1(T)は本震1のエネルギースペクトル、VE2(T)は余震2のエネルギースペクトルである。
1) Calculation method of energy input to building (introduction of cumulative energy spectrum)
If the structure of the building is in an elastic state, the primary natural period can be regarded as a constant value (T 0). In such an elastic vibration system, it is assumed that the seismic motion 1 is the mainshock and the subsequent seismic motion i (i is an integer of 2 or more) is an aftershock. FIG. 2 shows the relationship between the energy spectra of the mainshock and the aftershock and the cumulative energy spectrum of the seismic motion in which the aftershock is connected after the mainshock. In the figure, ACC is the measured acceleration value, VE1 (T) is the energy spectrum of the mainshock 1, and VE2 (T) is the energy spectrum of the aftershock 2.

本震の後続に余震を連結した地震動の総エネルギー入力(以下、累積総エネルギー入力と呼称)は、(1)式で示されるように各地震動の総エネルギー入力の総和となる。累積総エネルギー入力の速度換算値(以下、累積速度換算値と呼称)は、各地震動の速度換算値の二乗和平方となり、(2)式で与えられる。図2によれば、累積速度換算値()は、建物の固有周期(T)に相当する累積エネルギースペクトルの縦軸の数値に相当する。 The total energy input of the seismic motion (hereinafter referred to as the cumulative total energy input) in which the aftershocks are connected after the mainshock is the sum of the total energy input of each seismic motion as shown in Eq. (1). The velocity conversion value of the cumulative total energy input (hereinafter referred to as the cumulative velocity conversion value) is the sum of squares of the velocity conversion values of each seismic motion, and is given by Eq. (2). According to FIG. 2, the accumulated speed converted value (S V E) corresponds to the numerical value of the ordinate of the cumulative energy spectrum corresponding to the natural period of a building (T 0).

Figure 2021139853
Figure 2021139853
Figure 2021139853
Figure 2021139853

ここで、E:本震1の後続に余震i(2≦i≦n)を連結した地震動の累積総エネルギー入力
:本震1および余震i(2≦i≦n)の各総エネルギー入力
:本震1の後続に余震i(2≦i≦n)を連結した地震動の累積速度換算値(=SQRT(2E/M))
Ei:本震1および余震i(2≦i≦n)の各速度換算値(VEi=SQRT(2E/M))
M:建物の全質量
n:本震と余震の総数
Here, S E: main shock following the aftershocks i (2 ≦ i ≦ n) seismic motion of the cumulative total energy input which is connected to the 1
E i : Total energy input of mainshock 1 and aftershock i (2 ≤ i ≤ n)
S V E: main shock following the aftershocks i (2 ≦ i ≦ n) seismic motion of the cumulative rate conversion value obtained by connecting the 1 (S V E = SQRT ( 2 S E / M))
V Ei : Velocity conversion value of mainshock 1 and aftershock i (2 ≦ i ≦ n) ( VEi = SQRT (2E i / M))
M: Total mass of the building
n: Total number of mainshocks and aftershocks

実建物は大地震時に何等かの損傷を被るため、地震後に弾塑性状態となる。地震後の建物の継続使用性を許容する被災度を小破までとするならば、建物がやや塑性化した状態の周期(以下、有効周期Tと呼称)は、弾性時周期(T)と比して大差ないと考えられる。層の復元力特性が完全弾塑性型である場合の有効周期(T)は、弾性時周期(T)と瞬間最大周期(T)の平均で近似評価され(非特許文献1を参照)、(3)式と(4)式で与えられる。非特許文献2によれば、建物の被災度が小破となる層の最大塑性率は1.5以下としており、これと(4)式よりT≒1.2Tとなることから、小破に相当する有効周期(T)をT≦T≦1.2Tとする。 Since the actual building suffers some damage during a large earthquake, it becomes elasto-plastic after the earthquake. If the up wave dissipating the affected degree to allow continued use of after the earthquake a building, the period of the state in which the building is slightly plasticized (hereinafter, referred to as the effective period T e) is elastic at the period (T 0) It is considered that there is not much difference compared to. Valid period when restoring force characteristics of the layers are completely elasto-plastic type (T e) is approximated evaluated by the average of the elastic time period (T 0) and the maximum instantaneous period (T m) (see Non-Patent Document 1 ), (3) and (4). According to Non-Patent Document 2, the maximum plasticity rate of the layer in which the degree of damage to the building is small is 1.5 or less, and from this and Eq. (4), T m ≈ 1.2 T 0. effective period corresponding to fracture the (T e) and T 0 ≦ T e ≦ 1.2T 0 .

Figure 2021139853
Figure 2021139853
Figure 2021139853
Figure 2021139853

ここで、T:弾性一次固有周期
:地震時最大変形に対応する履歴ループを描くのに要する周期(瞬間最大周期と呼称)
μ:塑性率
Here, T 0 : elastic primary natural period
T m : Cycle required to draw a history loop corresponding to the maximum deformation during an earthquake (called the instantaneous maximum cycle)
μ: Plasticity ratio

以上のことから、本震に余震を加えた累積速度換算値()は、(5)式で示されるように有効周期がT≦T≦1.2Tの範囲における累積エネルギースペクトルの最大値で与える。 From the above, the cumulative rate conversion value obtained by adding aftershock to main shock (S V E) is accumulated energy spectrum in the range effective period is T 0 T e ≦ 1.2T 0 as indicated by (5) Give at the maximum value of.

Figure 2021139853
Figure 2021139853

ここで、T≦T≦1.2T:無被害から小破までの有効周期の範囲 Here, T 0 ≦ T e ≦ 1.2T 0: effective period of up wave dissipating from undamaged range

2)建物のエネルギー吸収能力の算出方法
各層のエネルギー吸収量を算定する方法は、本発明者らが構築した非特許文献3に記載の方法を用いる。
図3は、地震に対する各層のエネルギー吸収量の算定手順を示したものである。この図に示すように、事前に、建物の構造計算書、構造図面等を参考に、主要構造体を立体または平面フレームにモデル化し、地震時水平力を作用外力とした静的増分解析を実施する(ステップS11)。その結果から、各層の層せん断力(Q)と層間変位(δ)の関係(Q−δ関係)を設定する(ステップS12)。ダンパーの有る層は、主架構とダンパー部分のQ−δ関係をそれぞれバイリニア化する(ステップS13)。一方、ダンパーの無い層は、全体架構のQ−δ関係をバイリニア化する(ステップS14)。
2) Method for calculating the energy absorption capacity of a building As a method for calculating the energy absorption amount of each layer, the method described in Non-Patent Document 3 constructed by the present inventors is used.
FIG. 3 shows a procedure for calculating the amount of energy absorbed by each layer against an earthquake. As shown in this figure, the main structure is modeled into a three-dimensional or two-dimensional frame in advance with reference to the structural calculation sheet, structural drawing, etc. of the building, and static incremental analysis is performed using the horizontal force during an earthquake as the acting external force. (Step S11). From the result, the relationship (Q i − δ i relationship) between the layer shear force (Q i ) and the interlayer displacement (δ i ) of each layer is set (step S12). Layer having the damper, respectively bilinear the Q i - [delta i relation main Frames and damper portion (step S13). On the other hand, no damper layer, the bilinear the Q i - [delta i relationship entire Frame (step S14).

続いて、静的増分解析の荷重ステップにおける層間変位分布を最大層間変位(δmi)に仮定し(ステップS15)、バイリニア化したQ−δ関係を用いて各層のエネルギー配分量(E)を算出する(ステップS16、算出方法は非特許文献3を参照)。 Subsequently, the interlayer displacement distribution in the load step of the static incremental analysis is assumed to be the maximum interlayer displacement (δ mi ) (step S15), and the energy distribution amount (E i) of each layer is used using the bilinear Q i − δ i relationship. ) (See Step S16, Non-Patent Document 3 for the calculation method).

一方、上記の1)にしたがって累積エネルギースペクトルを算出し(ステップS21)、累積速度換算値()を算出し(ステップS22)、建物の損傷に寄与する建物への入力エネルギー(E)を算出しておく(ステップS23)。 On the other hand, the above-mentioned 1) according to calculate the cumulative energy spectrum (step S21), and calculates the cumulative rate converted value (S V E) (step S22), and input energy (E D to contribute building building damage ) Is calculated (step S23).

次に、算出したEとΣEを比較し、エネルギーの釣合い(E≒ΣE)が満たされない場合はδmiを再度仮定し、EとΣEの各エネルギー量が釣合うまで繰返し収束計算を行う(ステップS17)。収束の結果、各層のEが算定され(ステップS18)、これから累積塑性変形倍率(η)が求められる(ステップS19)。 Next, compare the calculated E D and? En i, if the energy balance (E D ≒ ΣE i) is not satisfied assuming [delta] mi again, repeating until the amount of energy E D and? En i are balanced Convergence calculation is performed (step S17). As a result of convergence, E i of each layer is calculated (step S18), and the cumulative plastic deformation ratio (η i ) is obtained from this (step S19).

3)地震後の建物被災度による継続使用性の判断方法
非特許文献2、4によれば、兵庫県南部地震で被災した建物を対象に、被災度と層の累積塑性変形倍率(η)の関係を図4のように対応付けている。
3) Method for determining continuous usability based on the degree of damage to buildings after the earthquake According to Non-Patent Documents 2 and 4, the degree of damage and the cumulative plastic deformation ratio of layers (η i ) for buildings damaged by the Hyogo-ken Nanbu Earthquake. Is associated with each other as shown in FIG.

本実施の形態では、地震後の建物の継続使用性を許容する被災度を無被害から小破までと定義し、中破以上は使用不可と定義する。上記の非特許文献2、4を参考にすれば、小破と中破の境界に対応する層の累積塑性変形倍率は10程度であるため、継続使用性の判断基準を例えば図5のように設定することができる。この図の表は暫定案であり、実際に運用するにあたって見直されるものである。 In the present embodiment, the degree of damage that allows the continuous usability of the building after the earthquake is defined as from no damage to small damage, and the damage level above medium damage is defined as unusable. With reference to the above-mentioned Non-Patent Documents 2 and 4, the cumulative plastic deformation ratio of the layer corresponding to the boundary between the small break and the medium break is about 10, so the criterion for determining the continuous usability is as shown in FIG. 5, for example. Can be set. The table in this figure is a tentative plan and will be reviewed in actual operation.

例えば、上記の2)で算定した各層の累積塑性変形倍率(η)の最大値が10未満であれば、図5から被災度を小破以下と判定して、継続使用可能と判断することができる。 For example, if the maximum value of the cumulative plastic deformation ratio (η i ) of each layer calculated in 2) above is less than 10, it is judged from FIG. Can be done.

本実施の形態によれば、本震のみならず何度か襲来する余震後の被災度判定が可能である。したがって、比較的短期間に複数の地震が襲来した場合における建物の地震後の継続使用性を判定することができる。また、地震後のみならず事前において余震に対する耐震性を評価するのにも役立つ。評価結果は、事業継続計画(BCP)に資する資料となる。また、地震後の度に、建物の損傷状態(剛性や水平耐力の初期状態に対する低下等)を把握する作業が省け、早期に被災度判定が可能である。また、加速度計は必ずしも各階に設ける必要がなく、一般に実用されているモニタリングシステムと比較してコストメリットが得られる可能性がある。 According to this embodiment, it is possible to determine the degree of damage not only after the mainshock but also after aftershocks that occur several times. Therefore, it is possible to determine the continuous usability of a building after an earthquake when a plurality of earthquakes strike in a relatively short period of time. It is also useful for evaluating seismic resistance against aftershocks not only after an earthquake but also in advance. The evaluation results will serve as materials that contribute to the business continuity plan (BCP). In addition, it is possible to determine the degree of damage at an early stage by omitting the work of grasping the damaged state of the building (decrease in rigidity and horizontal strength with respect to the initial state, etc.) after each earthquake. In addition, accelerometers do not necessarily have to be installed on each floor, and there is a possibility that a cost advantage can be obtained as compared with a generally practical monitoring system.

なお、上記の実施の形態においては、地震センサが加速度計で構成される場合を例にとり説明したが、本発明の地震センサはこれに限るものではなく、変位計や速度計を用いて地震動を示す時間波形データを取得してもよい。このようにしても上記と同様の作用効果を奏することができる。 In the above embodiment, the case where the seismic sensor is composed of an accelerometer has been described as an example, but the seismic sensor of the present invention is not limited to this, and seismic motion is detected by using a displacement meter or a speedometer. The indicated time waveform data may be acquired. Even in this way, the same effect as described above can be obtained.

また、上記の実施の形態においては、地震時に観測される時間波形データから建物の継続使用性を評価する場合を例にとり説明したが、本発明はこれに限るものではない。すなわち本発明は、観測された地震動だけでなく、想定地震動(例えば告示波等の設計用地震動)に対しても、建物の継続使用性を評価することができる。 Further, in the above-described embodiment, the case of evaluating the continuous usability of the building from the time waveform data observed at the time of an earthquake has been described as an example, but the present invention is not limited to this. That is, the present invention can evaluate the continuous usability of a building not only for observed ground motion but also for assumed ground motion (for example, design ground motion such as notification wave).

以上説明したように、本発明に係る地震後の継続使用性の判定方法によれば、地震後の建物の継続使用性を判定する方法であって、建物に設けた地震センサによって地震動を示す時間波形データを取得するステップと、取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出するステップと、算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較するステップと、比較した結果に基づいて、地震後の継続使用性を判定するステップとを備えるので、比較的短期間に複数の地震が襲来した場合における建物の地震後の継続使用性を判定することができる。また、本発明に係る地震後の継続使用性の判定方法によれば、観測された地震動だけでなく、想定地震動(例えば告示波等の設計用地震動)に対しても、建物の継続使用性を評価することができる。 As described above, according to the method for determining the continuous usability after an earthquake according to the present invention, it is a method for determining the continuous usability of a building after an earthquake, and the time for indicating the seismic motion by an earthquake sensor provided in the building. Results of comparison between the step of acquiring waveform data, the step of calculating the energy of seismic motion for a building based on the acquired time waveform data, and the step of comparing the calculated energy of seismic motion with the energy absorption capacity of a building. Since the step of determining the continuous usability after the earthquake is provided based on the above, it is possible to determine the continuous usability of the building after the earthquake when a plurality of earthquakes hit in a relatively short period of time. Further, according to the method for determining the continuous usability after an earthquake according to the present invention, the continuous usability of the building is determined not only for the observed seismic motion but also for the assumed seismic motion (for example, the seismic motion for designing a notification wave or the like). Can be evaluated.

また、本発明に係る地震後の継続使用性の判定装置によれば、地震後の建物の継続使用性を判定する装置であって、建物に設けた地震センサによって地震動を示す時間波形データを取得する取得手段と、取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出する算出手段と、算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較する比較手段と、比較した結果に基づいて、地震後の継続使用性を判定する判定手段とを備えるので、比較的短期間に複数の地震が襲来した場合における建物の地震後の継続使用性を判定することができる。また、本発明に係る地震後の継続使用性の判定装置によれば、観測された地震動だけでなく、想定地震動(例えば告示波等の設計用地震動)に対しても、建物の継続使用性を評価することができる。 Further, according to the device for determining the continuous usability after an earthquake according to the present invention, it is a device for determining the continuous usability of a building after an earthquake, and time waveform data indicating the seismic motion is acquired by an earthquake sensor provided in the building. The result of comparison is the acquisition means to be performed, the calculation means to calculate the energy of the seismic motion with respect to the building based on the acquired time waveform data, and the comparison means to compare the calculated energy of the seismic motion with the energy absorption capacity of the building. Based on this, since it is provided with a determination means for determining the continuous usability after an earthquake, it is possible to determine the continuous usability of a building after an earthquake when a plurality of earthquakes strike in a relatively short period of time. Further, according to the device for determining the continuous usability after an earthquake according to the present invention, the continuous usability of the building can be determined not only for the observed seismic motion but also for the assumed seismic motion (for example, the seismic motion for designing a notification wave or the like). Can be evaluated.

以上のように、本発明に係る地震後の継続使用性の判定方法および判定装置は、建物の継続使用性を判定するのに有用であり、特に、比較的短期間に複数の地震が襲来した場合における継続使用性の判定に適している。 As described above, the method and device for determining the continuous usability after an earthquake according to the present invention are useful for determining the continuous usability of a building, and in particular, a plurality of earthquakes struck in a relatively short period of time. Suitable for determining continuous usability in cases.

10 地震後の継続使用性の判定装置
12 建物
14 加速度計(地震センサ)
16 取得手段
18 算出手段
20 比較手段
22 判定手段
10 Judgment device for continuous usability after an earthquake 12 Building 14 Accelerometer (earthquake sensor)
16 Acquisition means 18 Calculation means 20 Comparison means 22 Judgment means

Claims (2)

地震後の建物の継続使用性を判定する方法であって、
建物に設けた地震センサによって地震動を示す時間波形データを取得するステップと、
取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出するステップと、
算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較するステップと、
比較した結果に基づいて、地震後の継続使用性を判定するステップとを備えることを特徴とする地震後の継続使用性の判定方法。
It is a method to judge the continuous usability of a building after an earthquake.
Steps to acquire time waveform data indicating seismic motion by seismic sensors installed in the building,
Steps to calculate the energy of seismic motion for a building based on the acquired time waveform data,
Steps to compare the calculated energy of seismic motion with the energy absorption capacity of the building,
A method for determining continuous usability after an earthquake, which comprises a step of determining continuous usability after an earthquake based on the results of comparison.
地震後の建物の継続使用性を判定する装置であって、
建物に設けた地震センサによって地震動を示す時間波形データを取得する取得手段と、
取得した時間波形データに基づいて、建物に対する地震動のエネルギーを算出する算出手段と、
算出した地震動のエネルギーと、建物のエネルギー吸収能力とを比較する比較手段と、
比較した結果に基づいて、地震後の継続使用性を判定する判定手段とを備えることを特徴とする地震後の継続使用性の判定装置。
A device that determines the continuous usability of a building after an earthquake.
An acquisition means for acquiring time waveform data indicating seismic motion using an earthquake sensor installed in a building,
A calculation method for calculating the energy of seismic motion against a building based on the acquired time waveform data,
A means of comparison between the calculated energy of seismic motion and the energy absorption capacity of a building,
A device for determining continuous usability after an earthquake, which comprises a determining means for determining continuous usability after an earthquake based on the results of comparison.
JP2020040158A 2020-03-09 2020-03-09 Judgment method and judgment device for continuous usability after an earthquake Pending JP2021139853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040158A JP2021139853A (en) 2020-03-09 2020-03-09 Judgment method and judgment device for continuous usability after an earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040158A JP2021139853A (en) 2020-03-09 2020-03-09 Judgment method and judgment device for continuous usability after an earthquake

Publications (1)

Publication Number Publication Date
JP2021139853A true JP2021139853A (en) 2021-09-16

Family

ID=77668446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040158A Pending JP2021139853A (en) 2020-03-09 2020-03-09 Judgment method and judgment device for continuous usability after an earthquake

Country Status (1)

Country Link
JP (1) JP2021139853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7634472B2 (en) 2021-12-21 2025-02-21 大成建設株式会社 Building health assessment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177085A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Load history and cumulative damage monitoring system
WO2014112630A1 (en) * 2013-01-21 2014-07-24 国立大学法人横浜国立大学 Method for correcting representative displacement waveform, and method for evaluating residual seismic perfromance of building
JP2014134436A (en) * 2013-01-09 2014-07-24 Ntt Facilities Inc Building safety verification system and building safety verification method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177085A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Load history and cumulative damage monitoring system
JP2014134436A (en) * 2013-01-09 2014-07-24 Ntt Facilities Inc Building safety verification system and building safety verification method
WO2014112630A1 (en) * 2013-01-21 2014-07-24 国立大学法人横浜国立大学 Method for correcting representative displacement waveform, and method for evaluating residual seismic perfromance of building

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石田隆司 他: "下層部に履歴型ダンパーを部分配置した火力発電所建物のエネルギーの釣合いに基づく耐震評価法", 日本建築学会構造工学論文集, vol. 64, JPN7023003627, 2018, pages 215 - 224, ISSN: 0005216250 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7634472B2 (en) 2021-12-21 2025-02-21 大成建設株式会社 Building health assessment system

Similar Documents

Publication Publication Date Title
Veismoradi et al. Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames
Vafaei et al. Seismic response of mega buckling‐restrained braces subjected to fling‐step and forward‐directivity near‐fault ground motions
Kalkan et al. Effects of fling step and forward directivity on seismic response of buildings
Elwood et al. Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures
Katsanos et al. Inelastic spectra to predict period elongation of structures under earthquake loading
Ji et al. Damping identification of a full‐scale passively controlled five‐story steel building structure
JP2012083172A (en) Damage evaluation method for building and damage evaluation device for building
Rinaldin et al. On the behaviour of steel CBF for industrial buildings subjected to seismic sequences
Soltangharaei et al. Comparative evaluation of behavior factor of SMRF structures for near and far fault ground motions
Feinstein et al. Seismic response of floor‐anchored nonstructural components fastened with yielding elements
JP2021139853A (en) Judgment method and judgment device for continuous usability after an earthquake
Oliaee et al. In-plane out-of-plane interaction in the seismic response of masonry infills in RC frames
Seyedkazemi et al. Comparison of static pushover analysis and IDA-based probabilistic methods for assessing the seismic performance factors of diagrid structures
CN119102604A (en) A method for determining ground stress based on vertical borehole wall deformation
JP2004534935A (en) A method for determining the seismic resistance of buildings
Fengxin et al. Influence of near-fault velocity pulse on the seismic response of reinforced concrete frame
Gerami et al. Numerical study on energy dissipation of steel moment resisting frames under effect of earthquake vibrations
Javaheri-tafti et al. Comparison of conventional and energy method in evaluating the seismic fragility of reinforced concrete frames
Ansari et al. Comparison of damage indexes proposed for concrete gravity dam
Kato et al. A development program of three-dimensional seismic isolation for advanced reactor systems in Japan
Aizawa et al. Static Loading Test on Seismic Capacity of Reinforced Concrete Shear Walls in Nuclear Power Plant Part 1 Study of Small Deformation Region
Zhang et al. Cumulative damage effects of mainshock-aftershock sequences on RC-frame structures
Katkhuda et al. Stiffness identification under uncertain blast loading
Rekvava Method of plastic hinge joints in design panel building under seismic influence
Fatollahpour et al. Structure-Soil-Structure Interaction (SSSI) effects on seismic response of low-, mid-and high-rise steel moment resisting frame structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305