[go: up one dir, main page]

JP2021136800A - Drill pipe multi-stage connector - Google Patents

Drill pipe multi-stage connector Download PDF

Info

Publication number
JP2021136800A
JP2021136800A JP2020032395A JP2020032395A JP2021136800A JP 2021136800 A JP2021136800 A JP 2021136800A JP 2020032395 A JP2020032395 A JP 2020032395A JP 2020032395 A JP2020032395 A JP 2020032395A JP 2021136800 A JP2021136800 A JP 2021136800A
Authority
JP
Japan
Prior art keywords
drill pipe
coil
power
power receiving
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020032395A
Other languages
Japanese (ja)
Inventor
朝哉 井上
Tomoya Inoue
朝哉 井上
隼也 石渡
Junya ISHIWATA
隼也 石渡
郁雄 粟井
Ikuo Awai
郁雄 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiwaves Co Ltd
Japan Agency for Marine Earth Science and Technology
Original Assignee
Fujiwaves Co Ltd
Japan Agency for Marine Earth Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiwaves Co Ltd, Japan Agency for Marine Earth Science and Technology filed Critical Fujiwaves Co Ltd
Priority to JP2020032395A priority Critical patent/JP2021136800A/en
Publication of JP2021136800A publication Critical patent/JP2021136800A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

To provide a drill pipe multi-stage connection body, which can increase a transmission efficiency of power and expands a frequency band which can transmit the power.SOLUTION: In a drill pipe multi-stage connection body in which a drill pipe provided with a power reception coil 4 and a power transmission coil 5 connected by a rail track 6 each other to end parts 3a and 3b of a drill pipe body 3 forming the drill pipe is multi-stage connected, the power reception coil 4 and the power transmission coil 5 are spiral coils, and are arranged in annular grooves 3aa and 3ba formed in the end parts 3a and 3b of the drill pipe main body 3. High conductivity metal bodies 4A and 5A having an electric conductivity higher than that of the drill pipe main body 3 are arranged between a bottom surface and both side surfaces of the grooves 3aa and 3ba and the power reception coil 4 or the power transmission coil 5. Magnetic bodies 4B and 5B are arranged between the high conductivity metal bodies 4A and 5A and the power reception coil 4 or the power transmission coil 5, and are arranged on an open side of the grooves 3aa and 3ba of the power reception coil 4 or the power transmission coil 5.SELECTED DRAWING: Figure 2

Description

本発明は、電力を伝送できるドリルパイプ多段接続体に関する。 The present invention relates to a drill pipe multi-stage connector capable of transmitting electric power.

海底科学掘削を行う際、一本約10m程度のドリルパイプを幾本も連ねた長大なドリルパイプ多段接続体が用いられる。その継ぎ足し作業は海上に浮かぶ調査船にて行われる。この掘削作業に付随して掘削地点や地層における検知用の各種センサーや撮影用のカメラなどを先端等に取り付けると、一回の掘削作業により大きな成果を得ることができる。しかし、このドリルパイプ多段接続体に取り付ける各種計測器などの機器の動作電力の確保が非常に困難である。 When performing submarine scientific drilling, a long multi-stage drill pipe connection body in which a number of drill pipes of about 10 m are connected is used. The replenishment work is carried out on a research vessel floating on the sea. If various sensors for detecting the excavation point or the stratum, a camera for photographing, etc. are attached to the tip or the like in association with this excavation work, a great result can be obtained by one excavation work. However, it is very difficult to secure the operating power of various measuring instruments and the like attached to the drill pipe multi-stage connector.

このような機器の動作電力の確保の困難さの主因には、電源から機器までの距離が長いことがある。ドリルパイプの継ぎ目では電線ケーブルを構造上の問題で通常の方法では接続できない。このため、特別な方法が必要である。例えば、特許文献1には、ドリルパイプの両方の端部に電気接点を形成しそれらをドリルパイプの中で線路によって結んだ構成により、ドリルパイプの結合により一方の端部の電気接点と他方の端部の電気接点が接触できるようにしたドリルパイプ多段接続体が開示されている。 The main reason for the difficulty in securing the operating power of such a device is that the distance from the power source to the device is long. At the seams of the drill pipes, the wires and cables cannot be connected in the usual way due to structural problems. Therefore, a special method is required. For example, in Patent Document 1, an electric contact is formed at both ends of a drill pipe and they are connected by a line in the drill pipe. A multi-stage drill pipe connector is disclosed that allows contact of electrical contacts at the ends.

また、特許文献2には、ドリルパイプの継ぎ目において特許文献1に開示されているような電気接点よりも安定して電力の伝送が行えるように、ドリルパイプの一方の端部に受電コイルを設け、他方の端部に送電コイルを設け、それらをドリルパイプの中で線路によって結んだ構成により、ドリルパイプの継ぎ目において非接触で電力の伝送を行うことができるドリルパイプ多段接続体が開示されている。 Further, in Patent Document 2, a power receiving coil is provided at one end of the drill pipe so that power can be transmitted more stably than the electrical contacts disclosed in Patent Document 1 at the joint of the drill pipe. Disclosed is a drill pipe multi-stage connector capable of non-contact power transmission at a joint of a drill pipe by providing a power transmission coil at the other end and connecting them with a line in the drill pipe. There is.

特許文献2においては、ドリルパイプの継ぎ目における伝送効率の低下を少なくするために、受電コイル及び送電コイルの近傍では、金属製のドリルパイプ本体と受電コイルの間及びドリルパイプ本体と送電コイルの間に、導電率がドリルパイプ本体よりも高い銅系金属製又はアルミ系金属製の円筒状のシートとフェライト製の円筒状のシートを設ける構造が開示されている。 In Patent Document 2, in order to reduce a decrease in transmission efficiency at the joint of the drill pipe, in the vicinity of the power receiving coil and the power transmitting coil, between the metal drill pipe main body and the power receiving coil and between the drill pipe main body and the power transmitting coil. Discloses a structure in which a cylindrical sheet made of a copper-based metal or an aluminum-based metal and a cylindrical sheet made of ferrite, which have a higher conductivity than that of a drill pipe body, are provided.

特表2003−531320号公報Special Table 2003-53132 No. 特開2018−148784号公報JP-A-2018-148784

しかしながら、ドリルパイプ多段接続体においては、ドリルパイプを多く多段接続できるよう、電力の伝送効率が上がるようにしたり、電力の伝送可能な周波数帯域が広がるようにしたりするのが望ましい、 However, in a multi-stage drill pipe connection, it is desirable to increase the power transmission efficiency or widen the frequency band in which power can be transmitted so that many drill pipes can be connected in multiple stages.

本発明は、係る事由に鑑みてなされたものであり、その目的は、ドリルパイプの継ぎ目において非接触で電力の伝送を行うことができるドリルパイプ多段接続体において、電力の伝送効率が上がるようにしたり、電力の伝送可能な周波数帯域が広がるようにしたりしたドリルパイプ多段接続体を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to increase the power transmission efficiency in a drill pipe multi-stage connection capable of transmitting power in a non-contact manner at a joint of the drill pipes. Another object of the present invention is to provide a drill pipe multi-stage connector in which a frequency band in which power can be transmitted is widened.

上記目的を達成するために、請求項1に記載のドリルパイプ多段接続体は、ドリルパイプを形成するドリルパイプ本体の一方の端部に受電コイルが設けられ、他方の端部に送電コイルが設けられ、前記受電コイルと前記送電コイルが線路で結ばれた前記ドリルパイプを多段接続したドリルパイプ多段接続体において、前記受電コイルは、スパイラルコイルであり、前記ドリルパイプ本体の前記一方の端部に形成された環状の溝の中に配置され、導電率が前記ドリルパイプ本体よりも高い高導電率金属体が該溝の底面及び両側面と該受電コイルとの間に配置され、磁性体が該高導電率金属体と該受電コイルとの間及び該受電コイルの該溝の開口側に配置され、前記送電コイルは、スパイラルコイルであり、前記ドリルパイプ本体の前記他方の端部に形成された環状の溝の中に配置され、導電率が前記ドリルパイプ本体よりも高い高導電率金属体が該溝の底面及び両側面と該送電コイルとの間に配置され、磁性体が該高導電率金属体と該送電コイルとの間及び該送電コイルの該溝の開口側に配置されている。 In order to achieve the above object, the drill pipe multi-stage connection according to claim 1 is provided with a power receiving coil at one end of the drill pipe main body forming the drill pipe and a power transmitting coil at the other end. In a drill pipe multi-stage connection body in which the power receiving coil and the power transmitting coil are connected by a line and the drill pipe is connected in multiple stages, the power receiving coil is a spiral coil and is attached to the one end of the drill pipe body. A high conductivity metal body which is arranged in the formed annular groove and whose conductivity is higher than that of the drill pipe body is arranged between the bottom surface and both side surfaces of the groove and the power receiving coil, and the magnetic body is the magnetic material. Arranged between the high conductivity metal body and the power receiving coil and on the opening side of the groove of the power receiving coil, the power transmitting coil is a spiral coil and is formed at the other end of the drill pipe body. A high conductivity metal body arranged in the annular groove and having a higher conductivity than that of the drill pipe body is arranged between the bottom surface and both side surfaces of the groove and the transmission coil, and the magnetic body has the high conductivity. It is arranged between the metal body and the power transmission coil and on the opening side of the groove of the power transmission coil.

請求項2に記載のドリルパイプ多段接続体は、請求項1に記載のドリルパイプ多段接続体において、前記ドリルパイプ本体の前記一方の端部に形成された前記溝の中の前記磁性体は、前記受電コイルを密閉するように埋め込んでおり、前記ドリルパイプ本体の前記他方の端部に形成された前記溝の中の前記磁性体は、前記送電コイルを密閉するように埋め込んでいる。 The drill pipe multi-stage connection according to claim 2 is the drill pipe multi-stage connection according to claim 1, wherein the magnetic material in the groove formed at the one end of the drill pipe main body is a magnetic material. The power receiving coil is embedded so as to be hermetically sealed, and the magnetic material in the groove formed at the other end of the drill pipe body is embedded so as to hermetically seal the power transmitting coil.

請求項3に記載のドリルパイプ多段接続体は、請求項1に記載のドリルパイプ多段接続体において、前記ドリルパイプ本体の前記一方の端部に形成された前記溝の中の前記磁性体は、蓋付きの箱状のものであり、前記ドリルパイプ本体の前記他方の端部に形成された前記溝の中の前記磁性体は、蓋付きの箱状のものである。 The drill pipe multi-stage connection according to claim 3 is the drill pipe multi-stage connection according to claim 1. In the drill pipe multi-stage connection, the magnetic material in the groove formed at the one end of the drill pipe main body is It is a box-shaped object with a lid, and the magnetic material in the groove formed at the other end of the drill pipe body is a box-shaped object with a lid.

請求項4に記載のドリルパイプ多段接続体は、請求項3に記載のドリルパイプ多段接続体において、前記ドリルパイプ本体の前記一方の端部に形成された前記溝の中の前記磁性体は、更に前記受電コイルの線間にも設けられており、前記ドリルパイプ本体の前記他方の端部に形成された前記溝の中の前記磁性体は、更に前記送電コイルの線間にも設けられている。 The drill pipe multi-stage connection according to claim 4 is the drill pipe multi-stage connection according to claim 3, wherein the magnetic material in the groove formed at the one end of the drill pipe main body is a magnetic material. Further, it is also provided between the lines of the power receiving coil, and the magnetic material in the groove formed at the other end of the drill pipe body is further provided between the lines of the power transmitting coil. There is.

本発明のドリルパイプ多段接続体によれば、ドリルパイプの継ぎ目において非接触で電力の伝送を行うことができるものにおいて、電力の伝送効率が上がるようにしたり、電力の伝送可能な周波数帯域が広がるようにしたりすることができる。 According to the drill pipe multi-stage connector of the present invention, in a device capable of transmitting power in a non-contact manner at a joint of drill pipes, the power transmission efficiency can be improved and the frequency band in which power can be transmitted is widened. Can be done.

本発明の実施形態に係るドリルパイプ多段接続体を示す側面視断面図であって、(a)が一つのドリルパイプとその両側のドリルパイプの一部を示すもの、(b)が一つのドリルパイプだけを示すものである。It is a side view sectional view which shows the drill pipe multi-stage connection body which concerns on embodiment of this invention, (a) shows one drill pipe and a part of the drill pipe on both sides, (b) is one drill. It shows only the pipe. 同上のドリルパイプ多段接続体のドリルパイプの継ぎ目近傍を示す側面視断面図であって、(a)が拡大して示すもの、(b)が更に拡大して磁性体における態様を示すものである。It is a side view cross-sectional view which shows the vicinity of the joint of the drill pipe of the above-mentioned drill pipe multi-stage connection body, (a) is enlarged and (b) is further enlarged, and shows the aspect in a magnetic material. .. 同上のドリルパイプ多段接続体のドリルパイプの磁性体における別の態様を示す側面視断面図であって、(a)が磁性体を蓋付きの箱状としたもの、(b)が磁性体を更にコイルの線間にも設けたものである。It is a side view cross-sectional view which shows another aspect in the magnetic body of the drill pipe of the same-mentioned drill pipe multi-stage connection body, (a) is a box-shaped magnetic material with a lid, (b) is a magnetic material. Further, it is also provided between the wires of the coil. 同上のドリルパイプ多段接続体のシミュレーションの構成を示すものであって、(a)が側面視断面図、(b)が回路ブロック図である。The configuration of the simulation of the drill pipe multi-stage connection body as described above is shown, where (a) is a side sectional view and (b) is a circuit block diagram. 同上のドリルパイプ多段接続体のシミュレーションの結果の特性グラフであって、磁性体の態様を変えたものである。It is a characteristic graph of the result of the simulation of the drill pipe multi-stage connection body of the same as above, and the mode of the magnetic material is changed. 同上のドリルパイプ多段接続体のドリルパイプの磁性体におけるシミュレーションの比較例の態様を示す側面視断面図である。It is a side view sectional view which shows the aspect of the comparative example of the simulation in the magnetic body of the drill pipe of the same-mentioned drill pipe multi-stage connection body. 同上のドリルパイプ多段接続体のシミュレーションの結果の特性グラフであって、比透磁率を変えたものである。It is a characteristic graph of the result of the simulation of the drill pipe multi-stage connection body of the same as above, and the relative magnetic permeability is changed.

以下、本発明を実施するための形態を説明する。本発明の実施形態に係るドリルパイプ多段接続体1は、図1(a)に示すように、ドリルパイプ2を多段接続したものである。 Hereinafter, modes for carrying out the present invention will be described. As shown in FIG. 1A, the drill pipe multi-stage connection body 1 according to the embodiment of the present invention is a multi-stage connection of the drill pipe 2.

ドリルパイプ2は、図1(a)、(b)に示すように、硬質のドリルパイプ本体3により形成されている。例えば、ドリルパイプ多段接続体1は海洋等に浮かぶ調査船に設置された機械により制御され、ドリルパイプ本体3は水底を掘削するための動力伝達物となる。ドリルパイプ本体3は、例えば、金属製であり、通常、鉄系の金属製である。また、ドリルパイプ本体3は、海水などが流れる長手方向(図では上下方向)の中空孔30を有している。なお、ドリルパイプ本体3は、図1(a)、(b)等では、図示の都合上、長手方向に比べ径方向を拡大して示しているが、例えば、長手方向を約10m程度、直径を約15cm〜20cm程度とすることができる。 As shown in FIGS. 1 (a) and 1 (b), the drill pipe 2 is formed of a hard drill pipe main body 3. For example, the drill pipe multi-stage connector 1 is controlled by a machine installed on a research vessel floating in the ocean or the like, and the drill pipe main body 3 serves as a power transmitter for excavating the bottom of the water. The drill pipe main body 3 is made of metal, for example, and is usually made of iron-based metal. Further, the drill pipe main body 3 has a hollow hole 30 in the longitudinal direction (vertical direction in the drawing) through which seawater or the like flows. In addition, in FIGS. 1A, 1B, etc., the drill pipe main body 3 is shown by enlarging the radial direction as compared with the longitudinal direction for convenience of illustration, but for example, the longitudinal direction is about 10 m in diameter. Can be about 15 cm to 20 cm.

ドリルパイプ2は、典型的な例では、ドリルパイプ本体3の一方の端部3aと他方の端部3bにねじを形成することにより、他のドリルパイプ2と接続される。本実施形態では、一方の端部3aに雌ねじ、他方の端部3bに雄ねじを形成しているが、一方の端部3aに雄ねじ、他方の端部3bに雌ねじを形成してもよい。また、ねじの形状や大きさなどは、ドリルパイプ多段接続体1の使用環境等に応じて適宜決めることができる。 The drill pipe 2 is typically connected to the other drill pipe 2 by forming a screw at one end 3a and the other end 3b of the drill pipe body 3. In the present embodiment, a female screw is formed on one end 3a and a male screw is formed on the other end 3b, but a male screw may be formed on one end 3a and a female screw may be formed on the other end 3b. Further, the shape and size of the screw can be appropriately determined according to the usage environment of the drill pipe multi-stage connector 1 and the like.

また、ドリルパイプ2は、図2(a)に示すように、ドリルパイプ本体3の一方の端部3aに環状の溝3aa、他方の端部3bに環状の溝3ba、が形成されている。環状の溝3aa、3baは、ドリルパイプ本体3の中空孔30のまわりに形成されている。環状の溝3aa、3baと中空孔30の間には、ドリルパイプ本体3の一部3ab、3bbが環状になっている。 Further, as shown in FIG. 2A, the drill pipe 2 has an annular groove 3aa formed at one end 3a of the drill pipe main body 3 and an annular groove 3ba formed at the other end 3b. The annular grooves 3aa and 3ba are formed around the hollow hole 30 of the drill pipe main body 3. A part of the drill pipe main body 3 3ab and 3bb is annular between the annular grooves 3aa and 3ba and the hollow hole 30.

ドリルパイプ2は、図2(a)に示すように、ドリルパイプ本体3の一方の端部3aに受電コイル4が設けられ、他方の端部3bに送電コイル5が設けられている。受電コイル4と送電コイル5は、線路6で結ばれている。 As shown in FIG. 2A, the drill pipe 2 is provided with a power receiving coil 4 at one end 3a of the drill pipe main body 3 and a power transmission coil 5 at the other end 3b. The power receiving coil 4 and the power transmitting coil 5 are connected by a line 6.

受電コイル4と送電コイル5はともに、スパイラルコイルである。スパイラルコイルは、電気導線が平面的なスパイラル状に巻かれて形成されるコイルである。 Both the power receiving coil 4 and the power transmitting coil 5 are spiral coils. A spiral coil is a coil formed by winding an electric conducting wire in a flat spiral shape.

受電コイル4は、ドリルパイプ本体3の一方の端部3aに形成された上記環状の溝3aaの中に配置され、送電コイル5は、ドリルパイプ本体3の他方の端部3bに形成された上記環状の溝3baの中に配置されている。 The power receiving coil 4 is arranged in the annular groove 3aa formed in one end 3a of the drill pipe body 3, and the power transmission coil 5 is formed in the other end 3b of the drill pipe body 3. It is arranged in the annular groove 3ba.

また、受電コイル4の近傍においては、図2(b)に示すように、高導電率金属体4Aが上記環状の溝3aaの底面及び両側面と受電コイル4との間に配置され、また、磁性体4Bが高導電率金属体4Aと受電コイル4との間及び受電コイル4の溝3aaの開口側に配置されている。また、送電コイル5の近傍においては、高導電率金属体5Aが上記環状の溝3baの底面及び両側面と送電コイル5との間に配置され、また、磁性体5Bが高導電率金属体5Aと送電コイル5との間及び送電コイル5の溝3baの開口側に配置されている。高導電率金属体4A、5Aは、導電率がドリルパイプ本体3よりも高いものである。高導電率金属体4A、5Aは、例えば、銅系金属製又はアルミ系金属製などである。磁性体4B、5Bは、例えば、フェライト製などである。 Further, in the vicinity of the power receiving coil 4, as shown in FIG. 2B, a highly conductive metal body 4A is arranged between the bottom surface and both side surfaces of the annular groove 3aa and the power receiving coil 4. The magnetic body 4B is arranged between the high conductivity metal body 4A and the power receiving coil 4 and on the opening side of the groove 3aa of the power receiving coil 4. Further, in the vicinity of the power transmission coil 5, a high conductivity metal body 5A is arranged between the bottom surface and both side surfaces of the annular groove 3ba and the power transmission coil 5, and the magnetic body 5B is a high conductivity metal body 5A. It is arranged between the power transmission coil 5 and the opening side of the groove 3ba of the power transmission coil 5. The high conductivity metal bodies 4A and 5A have higher conductivity than the drill pipe main body 3. The high conductivity metal bodies 4A and 5A are made of, for example, a copper-based metal or an aluminum-based metal. The magnetic bodies 4B and 5B are made of ferrite, for example.

磁性体4Bは、具体的な態様として、図2(b)に示すように、受電コイル4を埋め込むようにできる。この場合、磁性体4Bは、その原材料を金型の中に入れ、それに受電コイル4を埋め込んだ状態で焼結することによって製作することができる。磁性体5Bも同様に、具体的な態様として、送電コイル5を埋め込むようにできる。この場合、磁性体5Bも、磁性体4Bと同様にして製作することができる。 As a specific embodiment, the magnetic body 4B can embed the power receiving coil 4 as shown in FIG. 2 (b). In this case, the magnetic material 4B can be manufactured by putting the raw material in a mold and sintering the power receiving coil 4 in a state of being embedded in the mold. Similarly, the magnetic body 5B can also embed the power transmission coil 5 as a specific embodiment. In this case, the magnetic body 5B can also be manufactured in the same manner as the magnetic body 4B.

磁性体4Bは、具体的な別の態様として、図3(a)に示すように、蓋付きの箱状のものとするようにできる。磁性体5Bも同様に、具体的な別の態様として、蓋付きの箱状のものとするようにできる。また、磁性体4Bは、蓋付きの箱状のものとするのに加え、図3(b)に示すように、受電コイル4の線間(電気導線の間)にも設けられ、磁性体5Bは、蓋付きの箱状のものとするのに加え、送電コイル5の線間にも設けられるようにすることができる。 As a specific alternative aspect, the magnetic material 4B can be made into a box shape with a lid as shown in FIG. 3 (a). Similarly, the magnetic material 5B can be made into a box-shaped one with a lid as a specific alternative aspect. Further, in addition to being a box-shaped magnetic material 4B with a lid, as shown in FIG. 3B, the magnetic material 4B is also provided between the lines of the power receiving coil 4 (between the electric conducting wires), and the magnetic material 5B is provided. Can be provided between the lines of the power transmission coil 5 in addition to the box shape with a lid.

線路6は、通常、図1(a)、(b)等で模式的に示すように、2本の導体からなり、例えば、1本の導体の一方の端部が受電コイル4の一端に他方の端部が送電コイル5の一端に接続され、もう1本の導体の一方の端部が受電コイル4の他端に他方の端部が送電コイル5の他端に接続される(図2(a)参照)。線路6は、同軸ケーブルなどのシールドケーブルを用いることができる。線路6は、ドリルパイプ2内の配線の仕方が特に限定されるものではないが、例えば、ドリルパイプ本体3の一方の端部3a及び他方の端部3bにおいて、上記溝3aa及び上記溝3baから中空孔30までドリルパイプ本体3の内部に線路6に応じた内径の細い通路(図示せず)を形成してその中を通し、その他の大部分は中空孔30の内壁に沿わせるようにすることができる。中空孔30の内壁には、線路6が入り込む直線状の溝を形成することも可能である。或いは、例えば、ドリルパイプ本体3の一方の端部3a及び他方の端部3bにおいて、上記溝3aa及び上記溝3baからドリルパイプ本体3の外側面に到達するまでドリルパイプ本体3の内部に線路6に応じた内径の細い通路を形成してその中を通し、その他の大部分はドリルパイプ本体3の外側面に沿わせるようにすることができる。ドリルパイプ本体3の外側面には、線路6が入り込む直線状の溝を形成することも可能である。なお、細い通路におけるその内壁と線路6の間は、必要に応じて、海水などを通さないように封止する。 The line 6 is usually composed of two conductors as schematically shown in FIGS. 1 (a) and 1 (b), and for example, one end of one conductor is attached to one end of the power receiving coil 4 and the other. Is connected to one end of the power transmission coil 5, one end of the other conductor is connected to the other end of the power receiving coil 4, and the other end is connected to the other end of the power transmission coil 5 (FIG. 2 (FIG. 2). a) See). A shielded cable such as a coaxial cable can be used for the line 6. The wiring method in the drill pipe 2 is not particularly limited in the line 6, but for example, in one end 3a and the other end 3b of the drill pipe main body 3, from the groove 3aa and the groove 3ba. A passage (not shown) having an inner diameter corresponding to the line 6 is formed inside the drill pipe main body 3 up to the hollow hole 30 and is passed through the passage, and most of the rest is along the inner wall of the hollow hole 30. be able to. It is also possible to form a linear groove into which the line 6 enters the inner wall of the hollow hole 30. Alternatively, for example, at one end 3a and the other end 3b of the drill pipe body 3, the line 6 is inside the drill pipe body 3 until it reaches the outer surface of the drill pipe body 3 from the groove 3aa and the groove 3ba. A passage having a narrow inner diameter can be formed according to the above, and most of the other passages can be made along the outer surface of the drill pipe main body 3. It is also possible to form a linear groove into which the line 6 enters on the outer surface of the drill pipe main body 3. If necessary, the inner wall of the narrow passage and the line 6 are sealed so as not to allow seawater or the like to pass therethrough.

以上説明した構成のドリルパイプ2を多段接続したドリルパイプ多段接続体1では、ドリルパイプ2の受電コイル4は、隣接するドリルパイプ2の送電コイル5に物理的には接触せず、磁気的に結合する。それにより、ドリルパイプ多段接続体1におけるドリルパイプ2同士の継ぎ目でも電力が伝送される。 In the drill pipe multi-stage connection body 1 in which the drill pipes 2 having the above-described configuration are connected in multiple stages, the power receiving coil 4 of the drill pipe 2 does not physically contact the power transmission coil 5 of the adjacent drill pipe 2 and magnetically. Join. As a result, electric power is also transmitted at the joint between the drill pipes 2 in the drill pipe multi-stage connection body 1.

受電コイル4と送電コイル5のまわりに発生している磁束は、ドリルパイプ本体3が、通常、鉄系の金属製であるために、もしそれに及ぶと電流が流れて大きな損失が生じる。高導電率金属体4A、5Aは、磁束がドリルパイプ本体3に漏れるのを阻止することができる。高導電率金属体4A、5Aでは、受電コイル4又は送電コイル5側の表面近傍に電流が誘起されても、高導電率のため損失が少ない。 Since the drill pipe main body 3 is usually made of iron-based metal, the magnetic flux generated around the power receiving coil 4 and the power transmitting coil 5 causes a large loss due to current flowing. The high conductivity metal bodies 4A and 5A can prevent the magnetic flux from leaking to the drill pipe main body 3. In the high conductivity metal bodies 4A and 5A, even if a current is induced near the surface of the power receiving coil 4 or the power transmission coil 5, the loss is small due to the high conductivity.

磁性体4B、5Bは、磁束を吸い寄せることにより高導電率金属体4A、5Aに漏れる磁束を少なくし、高導電率金属体4A、5Aによる損失を更に少なくすることができる。 The magnetic bodies 4B and 5B can reduce the magnetic flux leaking to the high conductivity metal bodies 4A and 5A by attracting the magnetic flux, and can further reduce the loss due to the high conductivity metal bodies 4A and 5A.

また、磁性体4B、5Bは、それぞれ受電コイル4の溝3aaの開口側、送電コイル5の溝3baの開口側にも配置されるようにして(詳細には、磁性体4B、5Bに図2で示したように受電コイル4、送電コイル5を埋め込むようにした態様、磁性体4B、5Bを図3(a)で示したように蓋付きの箱状にした態様、磁性体4B、5Bを図3(b)で示したように蓋付きの箱状にし、かつ、受電コイル4の線間、送電コイル5の線間にも設けられるようにした態様、にして)、受電コイル4と送電コイル5のまわりに発生している磁束を大きくし、後述するシミュレーションで示すように、ドリルパイプ多段接続体1において伝送される電力の伝送効率が上がるようにしたり、電力の伝送可能な周波数帯域が広がるようにしたりすることができる。 Further, the magnetic bodies 4B and 5B are arranged on the opening side of the groove 3aa of the power receiving coil 4 and the opening side of the groove 3ba of the power transmission coil 5, respectively (details are shown in FIGS. 2B and 5B of the magnetic bodies 4B and 5B). A mode in which the power receiving coil 4 and the power transmitting coil 5 are embedded as shown in FIG. 3, a mode in which the magnetic bodies 4B and 5B are shaped like a box with a lid as shown in FIG. As shown in FIG. 3B, the shape is a box with a lid, and the power receiving coil 4 and the power transmitting coil 5 are provided between the lines of the power receiving coil 4 and the power transmitting coil 5). The magnetic flux generated around the coil 5 is increased to increase the transmission efficiency of the power transmitted in the drill pipe multi-stage connector 1 as shown in the simulation described later, and the frequency band in which the power can be transmitted is increased. It can be made to spread.

また、ドリルパイプ本体3の中空孔30を海水などが流れた場合の電力の伝送効率や周波数帯域への影響は、中空孔30と磁性体4B、5Bの間には、上記のドリルパイプ本体3の一部3ab、3bbと高導電率金属体4A、5Aが有るので、大きく軽減される。 Further, the influence on the power transmission efficiency and the frequency band when seawater or the like flows through the hollow hole 30 of the drill pipe main body 3 is that the above-mentioned drill pipe main body 3 is between the hollow hole 30 and the magnetic materials 4B and 5B. Since there are a part of 3ab and 3bb and high conductivity metal bodies 4A and 5A, the amount is greatly reduced.

また、受電コイル4と送電コイル5はともに、ソレノイドコイルを用いることも可能であるが、溝3aa、3baの形成のし易さと相互の大きな磁気的な結合が得やすい点とから、上記のようにスパイラルコイルを用いるのが好ましい。 Further, although it is possible to use a solenoid coil for both the power receiving coil 4 and the power transmitting coil 5, it is easy to form grooves 3aa and 3ba and it is easy to obtain a large magnetic coupling with each other, as described above. It is preferable to use a spiral coil.

また、受電コイル4、磁性体4B、及び高導電率金属体4Aは、ユニット化して受電ユニットとすることができ、送電コイル5、磁性体5B、及び高導電率金属体5Aは、ユニット化して送電ユニットとすることができる。また、磁性体4B及び高導電率金属体4Aは、磁性体5B及び高導電率金属体5Aに対向する側に絶縁性の保護層を設けることが可能であるし、磁性体5B及び高導電率金属体5Aは、磁性体4B及び高導電率金属体4Aに対向する側に絶縁性の保護層を設けることが可能である。 Further, the power receiving coil 4, the magnetic body 4B, and the high conductivity metal body 4A can be unitized into a power receiving unit, and the power transmission coil 5, the magnetic body 5B, and the high conductivity metal body 5A can be unitized into a unit. It can be a power transmission unit. Further, the magnetic body 4B and the high conductivity metal body 4A can be provided with an insulating protective layer on the side facing the magnetic body 5B and the high conductivity metal body 5A, and the magnetic body 5B and the high conductivity metal body 4A can be provided with an insulating protective layer. The metal body 5A can be provided with an insulating protective layer on the side facing the magnetic body 4B and the high conductivity metal body 4A.

次に、ドリルパイプ多段接続体1における電力伝送の本願発明者が行ったシミュレーションについて述べる。シミュレーションには、電磁界シミュレータと回路シミュレータを使用した。このシミュレーションでは、図4(a)に示すように、ドリルパイプ多段接続体1においてドリルパイプ2の継ぎ目が3個になる構成とした。ドリルパイプ本体3は、10mの鉄製のものを用いた。受電コイル4と送電コイル5は、電気導線が銅製の直径が0.5mmで、線間が0.1mmで6巻きのものを用いた。高導電率金属体4A、5Aは、厚さが0.5mmのアルミニウム製のものを用い、受電コイル4、送電コイル5から0.25mm隔てるようにした。磁性体4B、5Bは、フェライト製(比透磁率μ’が130又は500、損失係数tanδが0.01)を用いた。線路6は、3D2Vの同軸ケーブルを用いた。 Next, a simulation performed by the inventor of the present application of power transmission in the drill pipe multi-stage connector 1 will be described. An electromagnetic field simulator and a circuit simulator were used for the simulation. In this simulation, as shown in FIG. 4A, the drill pipe multi-stage connection 1 has three joints of the drill pipe 2. As the drill pipe main body 3, a 10 m iron one was used. As the power receiving coil 4 and the power transmitting coil 5, the electric conducting wire was made of copper and had a diameter of 0.5 mm, the distance between the wires was 0.1 mm, and 6 turns were used. The high conductivity metal bodies 4A and 5A were made of aluminum having a thickness of 0.5 mm, and were separated from the power receiving coil 4 and the power transmission coil 5 by 0.25 mm. The magnetic materials 4B and 5B used were made of ferrite (specific magnetic permeability μ'is 130 or 500, loss coefficient tan δ is 0.01). Line 6 used a 3D2V coaxial cable.

このドリルパイプ多段接続体1のシミュレーションの構成を回路ブロック図であらわすと、図4(b)に示すように、単位回路7が3段に接続されたものとなる。単位回路7は、配線部8、コイル結合部9、配線部8から構成される。配線部8は、ドリルパイプ2の線路6の全長の半分が有する電気的特性をあらわした部分であり、コイル結合部9は、結合した送電コイル5と受電コイル4が有する電気的特性をあらわした部分である。図中のL、Rは送電コイル5のインダクタンス成分、抵抗成分であり、L、Rは受電コイル4のインダクタンス成分、抵抗成分であり、Mは送電コイル5と受電コイル4の間の相互インダクタンスである。シミュレーションでは、この3段の単位回路7に交流電圧Eを印加したときに終端抵抗Zまで伝送された電力を調べる。終端抵抗Zは、1kΩとした。 When the simulation configuration of the drill pipe multi-stage connector 1 is represented by a circuit block diagram, the unit circuit 7 is connected in three stages as shown in FIG. 4 (b). The unit circuit 7 is composed of a wiring unit 8, a coil coupling unit 9, and a wiring unit 8. The wiring portion 8 represents the electrical characteristics of half of the total length of the line 6 of the drill pipe 2, and the coil coupling portion 9 represents the electrical characteristics of the coupled power transmission coil 5 and power receiving coil 4. It is a part. In the figure, L 1 and R 1 are the inductance component and the resistance component of the power transmission coil 5, L 2 and R 2 are the inductance component and the resistance component of the power reception coil 4, and M is between the power transmission coil 5 and the power reception coil 4. Mutual inductance of. In the simulation, the power transmitted to the terminating resistor Z L when the AC voltage E is applied to the three-stage unit circuit 7 is examined. The terminating resistor Z L was set to 1 kΩ.

図5と図7に伝送効率ηについてのシミュレーション結果を示す。横軸fは、ドリルパイプ多段接続体1に伝送させる電力の周波数であり、縦軸ηは、終端抵抗Zまで伝送された電力の割合(すなわち、伝送効率)である。 5 and 7 show the simulation results for the transmission efficiency η. The horizontal axis f is the frequency of the electric power transmitted to the drill pipe multi-stage connector 1, and the vertical axis η is the ratio of the electric power transmitted up to the terminating resistor Z L (that is, the transmission efficiency).

図5は、磁性体4B、5Bの比透磁率μ’を一定の130として磁性体4B、5Bの態様を変えてシミュレーションを行ったものである。図中の曲線aは、磁性体4B、5Bに図2で示したように受電コイル4、送電コイル5を埋め込むようにした態様のものである。曲線bは、磁性体4B、5Bを図3(b)で示したように蓋付きの箱状にし、かつ、受電コイル4の線間、送電コイル5の線間にも設けられるようにした態様のものである。曲線cは、磁性体4B、5Bを図3(a)で示したように蓋付きの箱状にした態様のものである。曲線dは、比較例であり、磁性体4B、5Bを図6で示すように環状の溝3aa、3baの底面及び両側面の内側のみに配置した態様のものである。 FIG. 5 shows a simulation in which the modes of the magnetic bodies 4B and 5B are changed while the relative magnetic permeability μ'of the magnetic bodies 4B and 5B is set to a constant 130. The curve a in the figure shows a mode in which the power receiving coil 4 and the power transmitting coil 5 are embedded in the magnetic bodies 4B and 5B as shown in FIG. The curve b is an embodiment in which the magnetic bodies 4B and 5B are shaped like a box with a lid as shown in FIG. 3B, and are also provided between the lines of the power receiving coil 4 and the lines of the power transmission coil 5. belongs to. The curve c is a form in which the magnetic bodies 4B and 5B are shaped like a box with a lid as shown in FIG. 3 (a). The curve d is a comparative example, in which the magnetic bodies 4B and 5B are arranged only on the bottom surface and the inside of both side surfaces of the annular grooves 3aa and 3ba as shown in FIG.

図5より、曲線aは、周波数が約0.48MHzのときに伝送効率が最大の約−0.32dBとなっており、周波数が約0.48MHzから1MHzまで上がるにつれ、最大に近い伝送効率でなだらかに下がっている。曲線bは、周波数が約0.80MHzのときに伝送効率が最大の約−0.57dBとなっており、周波数が約0.80MHzから1MHzまで上がるにつれ、最大値近辺を維持した後、なだらかに下がっている。曲線cは、周波数が約0.80MHzから1MHzまで、伝送効率が最大の約−0.60dB近辺を維持している。曲線dは、周波数が約0.80MHzのときに伝送効率が最大の約−0.60dBとなっており、その上下の周波数では伝送効率が急峻に下がっている。 From FIG. 5, the curve a shows the maximum transmission efficiency of about −0.32 dB when the frequency is about 0.48 MHz, and as the frequency increases from about 0.48 MHz to 1 MHz, the transmission efficiency approaches the maximum. It is gently falling. The curve b shows the maximum transmission efficiency of about -0.57 dB when the frequency is about 0.80 MHz, and as the frequency rises from about 0.80 MHz to 1 MHz, the transmission efficiency is maintained near the maximum value and then gently. It's down. The curve c maintains a frequency of about 0.80 MHz to 1 MHz with a maximum transmission efficiency of about −0.60 dB. The curve d has a maximum transmission efficiency of about −0.60 dB when the frequency is about 0.80 MHz, and the transmission efficiency drops sharply at frequencies above and below that.

よって、磁性体4B、5Bに図2で示したように受電コイル4、送電コイル5を埋め込むようにした態様の場合、曲線aが示すように、周波数が約0.48MHzから1MHzまでで電力を伝送すると、電力の伝送効率を大きく上げることができることが分かる。また、広い周波数の範囲で最大に近い伝送効率であるので、電力の伝送可能な周波数帯域が広がるようにできることが分かる。電力の伝送可能な周波数帯域が広がると、ドリルパイプ多段接続体1の段数を多くしても、伝送される電力の周波数の変動又は各ドリルパイプ2の特性のバラツキなどの影響を受けても、電力の長距離伝送が容易になる。 Therefore, in the case where the power receiving coil 4 and the power transmitting coil 5 are embedded in the magnetic bodies 4B and 5B as shown in FIG. 2, as shown by the curve a, the electric power is applied at a frequency of about 0.48 MHz to 1 MHz. It can be seen that the transmission efficiency of electric power can be greatly increased by transmission. Further, since the transmission efficiency is close to the maximum in a wide frequency range, it can be seen that the frequency band in which electric power can be transmitted can be widened. When the frequency band in which electric power can be transmitted is widened, even if the number of stages of the drill pipe multi-stage connector 1 is increased, the frequency of the transmitted electric power fluctuates, or the characteristics of each drill pipe 2 vary. It facilitates long-distance transmission of electric power.

また、磁性体4B、5Bを図3(b)で示したように蓋付きの箱状にし、かつ、受電コイル4の線間、送電コイル5の線間にも設けられるようにした態様の場合、曲線bが示すように、周波数が約0.80MHzから約1MHzまでで電力の伝送効率を上げることができることが分かる。また、広い周波数の範囲で最大に近い伝送効率であるので、電力の伝送可能な周波数帯域が広がるようにできることが分かる。 Further, in the case where the magnetic bodies 4B and 5B are shaped like a box with a lid as shown in FIG. 3B, and are also provided between the lines of the power receiving coil 4 and the lines of the power transmission coil 5. As shown by the curve b, it can be seen that the power transmission efficiency can be increased when the frequency is from about 0.80 MHz to about 1 MHz. Further, since the transmission efficiency is close to the maximum in a wide frequency range, it can be seen that the frequency band in which electric power can be transmitted can be widened.

また、磁性体4B、5Bを図3(a)で示したように蓋付きの箱状にした態様の場合、曲線cが示すように、広い周波数の範囲で最大に近い伝送効率であるので、電力の伝送可能な周波数帯域が広がるようにできることが分かる。 Further, in the case where the magnetic bodies 4B and 5B are in the shape of a box with a lid as shown in FIG. 3A, the transmission efficiency is close to the maximum in a wide frequency range as shown by the curve c. It can be seen that the frequency band in which power can be transmitted can be expanded.

図7は、磁性体4B、5Bに図2で示したように受電コイル4、送電コイル5を埋め込むようにした態様において、磁性体4B、5Bの比透磁率μ’を130と500に変えてシミュレーションを行ったものである。図7中の曲線a’は、比透磁率μ’が130の場合である。図7中の曲線eは、比透磁率μ’が500の場合である。 In FIG. 7, in a mode in which the power receiving coil 4 and the power transmitting coil 5 are embedded in the magnetic bodies 4B and 5B as shown in FIG. 2, the relative magnetic permeability μ'of the magnetic bodies 4B and 5B is changed to 130 and 500. This is a simulation. The curve a'in FIG. 7 is a case where the relative permeability μ'is 130. The curve e in FIG. 7 is a case where the relative magnetic permeability μ'is 500.

図7より、曲線eは、周波数が約0.27MHzのときに伝送効率が最大の約−0.16dBとなっており、周波数が約0.27MHzから約0.48MHzまで上がるにつれ、最大に近い伝送効率でなだらかに下がっている。よって、磁性体4B、5Bの比透磁率μ’を上げると、伝送可能な周波数帯域の広がりが多少少なくなるが、低周波数側にシフトしたところで伝送効率が上がることが分かる。 From FIG. 7, the curve e has a maximum transmission efficiency of about −0.16 dB when the frequency is about 0.27 MHz, and approaches the maximum as the frequency increases from about 0.27 MHz to about 0.48 MHz. The transmission efficiency is gradually decreasing. Therefore, it can be seen that when the relative magnetic permeability μ'of the magnetic materials 4B and 5B is increased, the range of the frequency band that can be transmitted is slightly reduced, but the transmission efficiency is increased when the magnetic materials 4B and 5B are shifted to the low frequency side.

以上、本発明の実施形態に係るドリルパイプ多段接続体について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、上記の受電コイル及び送電コイル及びそれらの周囲の磁性体、高導電率金属体の寸法等は、様々に設定可能である。また、本発明の実施形態に係るドリルパイプ多段接続体は、海底の掘削を目的とする他、様々な目的(例えば、鉱山の掘削など)に用いることができる。 Although the drill pipe multi-stage connection according to the embodiment of the present invention has been described above, the present invention is not limited to the one described in the above-described embodiment, but is within the scope of the claims. Various design changes are possible. For example, the dimensions of the power receiving coil and the power transmitting coil, the magnetic material around them, the high conductivity metal body, and the like can be set in various ways. Further, the drill pipe multi-stage connection according to the embodiment of the present invention can be used for various purposes (for example, excavation of a mine) in addition to the purpose of excavating the seabed.

1 ドリルパイプ多段接続体
2 ドリルパイプ
3 ドリルパイプ本体
3a ドリルパイプの一方の端部
3aa ドリルパイプの一方の端部に形成された環状の溝
3ab ドリルパイプの一方の端部の環状の一部
3b ドリルパイプの他方の端部
3ba ドリルパイプの他方の端部に形成された環状の溝
3bb ドリルパイプの他方の端部の環状の一部
30 ドリルパイプ本体の中空孔
4 受電コイル
4A 受電コイルの周囲の高導電率金属体
4B 受電コイルの周囲の磁性体
5 送電コイル
5A 送電コイルの周囲の高導電率金属体
5B 送電コイルの周囲の磁性体
6 線路
7 単位回路
8 単位回路の配線部
9 単位回路のコイル結合部
E 交流電圧
送電コイルのインダクタンス成分
送電コイルの抵抗成分
受電コイルのインダクタンス成分
受電コイルの抵抗成分
M 送電コイルと受電コイルの間の相互インダクタンス
終端抵抗
1 Drill pipe multi-stage connector 2 Drill pipe 3 Drill pipe body 3a One end of the drill pipe 3 aa Circular groove formed at one end of the drill pipe 3ab Part of the ring at one end of the drill pipe 3b The other end of the drill pipe 3ba An annular groove formed at the other end of the drill pipe 3bb Part of the ring at the other end of the drill pipe 30 Hollow hole in the body of the drill pipe 4 Power receiving coil 4A Around the power receiving coil High conductivity metal body 4B Magnetic material around the power receiving coil 5 Transmission coil 5A High conductivity metal body around the power transmission coil 5B Magnetic material around the power transmission coil 6 Line 7 Unit circuit 8 Unit circuit wiring 9 Unit circuit Coil coupling part E AC voltage L 1 Transmission coil inductance component R 1 Transmission coil resistance component L 2 Power receiving coil inductance component R 2 Power receiving coil resistance component M Mutual inductance between the power transmitting coil and power receiving coil Z L Termination resistance

Claims (4)

ドリルパイプを形成するドリルパイプ本体の一方の端部に受電コイルが設けられ、他方の端部に送電コイルが設けられ、前記受電コイルと前記送電コイルが線路で結ばれた前記ドリルパイプを多段接続したドリルパイプ多段接続体において、
前記受電コイルは、スパイラルコイルであり、前記ドリルパイプ本体の前記一方の端部に形成された環状の溝の中に配置され、導電率が前記ドリルパイプ本体よりも高い高導電率金属体が該溝の底面及び両側面と該受電コイルとの間に配置され、磁性体が該高導電率金属体と該受電コイルとの間及び該受電コイルの該溝の開口側に配置され、
前記送電コイルは、スパイラルコイルであり、前記ドリルパイプ本体の前記他方の端部に形成された環状の溝の中に配置され、導電率が前記ドリルパイプ本体よりも高い高導電率金属体が該溝の底面及び両側面と該送電コイルとの間に配置され、磁性体が該高導電率金属体と該送電コイルとの間及び該送電コイルの該溝の開口側に配置されているドリルパイプ多段接続体。
A power receiving coil is provided at one end of the drill pipe body forming the drill pipe, a power transmitting coil is provided at the other end, and the drill pipe in which the power receiving coil and the power transmitting coil are connected by a line is connected in multiple stages. In the drill pipe multi-stage connection
The power receiving coil is a spiral coil, and a highly conductive metal body having a higher conductivity than that of the drill pipe body is arranged in an annular groove formed at one end of the drill pipe body. The bottom surface and both side surfaces of the groove are arranged between the power receiving coil, and the magnetic material is arranged between the high conductivity metal body and the power receiving coil and on the opening side of the groove of the power receiving coil.
The power transmission coil is a spiral coil, and a highly conductive metal body having a higher conductivity than that of the drill pipe body is arranged in an annular groove formed at the other end of the drill pipe body. A drill pipe arranged between the bottom surface and both side surfaces of the groove and the transmission coil, and the magnetic material is arranged between the high conductivity metal body and the transmission coil and on the opening side of the groove of the transmission coil. Multi-stage connector.
請求項1に記載のドリルパイプ多段接続体において、
前記ドリルパイプ本体の前記一方の端部に形成された前記溝の中の前記磁性体は、前記受電コイルを密閉するように埋め込んでおり、
前記ドリルパイプ本体の前記他方の端部に形成された前記溝の中の前記磁性体は、前記送電コイルを密閉するように埋め込んでいるドリルパイプ多段接続体。
In the drill pipe multi-stage connection according to claim 1,
The magnetic material in the groove formed at the one end of the drill pipe body is embedded so as to seal the power receiving coil.
The magnetic material in the groove formed at the other end of the drill pipe main body is a drill pipe multi-stage connection body in which the power transmission coil is embedded so as to seal the transmission coil.
請求項1に記載のドリルパイプ多段接続体において、
前記ドリルパイプ本体の前記一方の端部に形成された前記溝の中の前記磁性体は、蓋付きの箱状のものであり、
前記ドリルパイプ本体の前記他方の端部に形成された前記溝の中の前記磁性体は、蓋付きの箱状のものであるドリルパイプ多段接続体。
In the drill pipe multi-stage connection according to claim 1,
The magnetic material in the groove formed at the one end of the drill pipe body is a box-shaped material with a lid.
The magnetic material in the groove formed at the other end of the drill pipe body is a box-shaped drill pipe multi-stage connection body with a lid.
請求項3に記載のドリルパイプ多段接続体において、
前記ドリルパイプ本体の前記一方の端部に形成された前記溝の中の前記磁性体は、更に前記受電コイルの線間にも設けられており、
前記ドリルパイプ本体の前記他方の端部に形成された前記溝の中の前記磁性体は、更に前記送電コイルの線間にも設けられているドリルパイプ多段接続体。
In the drill pipe multi-stage connection according to claim 3,
The magnetic material in the groove formed at the one end of the drill pipe body is further provided between the lines of the power receiving coil.
The magnetic material in the groove formed at the other end of the drill pipe body is a drill pipe multi-stage connection body further provided between the lines of the power transmission coil.
JP2020032395A 2020-02-27 2020-02-27 Drill pipe multi-stage connector Pending JP2021136800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020032395A JP2021136800A (en) 2020-02-27 2020-02-27 Drill pipe multi-stage connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032395A JP2021136800A (en) 2020-02-27 2020-02-27 Drill pipe multi-stage connector

Publications (1)

Publication Number Publication Date
JP2021136800A true JP2021136800A (en) 2021-09-13

Family

ID=77661927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032395A Pending JP2021136800A (en) 2020-02-27 2020-02-27 Drill pipe multi-stage connector

Country Status (1)

Country Link
JP (1) JP2021136800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198256A1 (en) * 2022-04-12 2023-10-19 Contitech Techno-Chemie Gmbh Heatable fluid line with an inductive interface

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605268A (en) * 1982-11-08 1986-08-12 Nl Industries, Inc. Transformer cable connector
JP2009004514A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power transmission equipment
WO2011074091A1 (en) * 2009-12-17 2011-06-23 トヨタ自動車株式会社 Shield and vehicle whereupon same is mounted
WO2013088641A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Information transmission device and system
WO2013088640A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Contactless connector device and system
JP2013214613A (en) * 2012-04-02 2013-10-17 Panasonic Corp Coil unit and power transmission device having coil unit
WO2015019478A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Contactless electric supply device
JP2018148784A (en) * 2017-03-03 2018-09-20 国立研究開発法人海洋研究開発機構 Power supply device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605268A (en) * 1982-11-08 1986-08-12 Nl Industries, Inc. Transformer cable connector
JP2009004514A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power transmission equipment
WO2011074091A1 (en) * 2009-12-17 2011-06-23 トヨタ自動車株式会社 Shield and vehicle whereupon same is mounted
WO2013088641A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Information transmission device and system
WO2013088640A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Contactless connector device and system
JP2013214613A (en) * 2012-04-02 2013-10-17 Panasonic Corp Coil unit and power transmission device having coil unit
WO2015019478A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Contactless electric supply device
JP2018148784A (en) * 2017-03-03 2018-09-20 国立研究開発法人海洋研究開発機構 Power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198256A1 (en) * 2022-04-12 2023-10-19 Contitech Techno-Chemie Gmbh Heatable fluid line with an inductive interface

Similar Documents

Publication Publication Date Title
US6866306B2 (en) Low-loss inductive couplers for use in wired pipe strings
CN1975095B (en) A Wired Pipe Joint with a Current Loop Inductive Coupler
US7064676B2 (en) Downhole data transmission system
US6844498B2 (en) Data transmission system for a downhole component
US7098767B2 (en) Element for use in an inductive coupler for downhole drilling components
US7583085B2 (en) Downhole sensor assembly
US7535377B2 (en) Wired tool string component
US8950787B2 (en) Pipe and pipe assembly provided with layers of electrically conductive material for conveying substances
US8519865B2 (en) Downhole coils
US6830467B2 (en) Electrical transmission line diametrical retainer
RU2040691C1 (en) System for transmission of electric power and information in column of joined pipes
US20060260801A1 (en) Wired Tool String Component
US20080012569A1 (en) Downhole Coils
US20050285706A1 (en) Downhole transmission system comprising a coaxial capacitor
US20090151926A1 (en) Inductive Power Coupler
EP2659496B1 (en) Device for transfer of electrical signals and/or electrical energy
US7847671B1 (en) Subsea data and power transmission inductive coupler and subsea cone penetrating tool
JP2021136800A (en) Drill pipe multi-stage connector
CN102704918A (en) Connecting device for well bore signal transmission
JP2018148784A (en) Power supply device
US10808525B2 (en) Alternating polarity of casing-side antennas in a wellbore
US11603712B2 (en) Downhole MCEI inductive coupler with helical coil
US20220178213A1 (en) Inductively coupled transmission system for drilling tools
CN103061682B (en) Realize the single hop drilling rod of TEM ripple transmission
Hall et al. Data transmission system for a downhole component

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240723