[go: up one dir, main page]

JP2021135179A - Optical fiber mode group delay characteristic evaluation method and evaluation device - Google Patents

Optical fiber mode group delay characteristic evaluation method and evaluation device Download PDF

Info

Publication number
JP2021135179A
JP2021135179A JP2020031816A JP2020031816A JP2021135179A JP 2021135179 A JP2021135179 A JP 2021135179A JP 2020031816 A JP2020031816 A JP 2020031816A JP 2020031816 A JP2020031816 A JP 2020031816A JP 2021135179 A JP2021135179 A JP 2021135179A
Authority
JP
Japan
Prior art keywords
mode
group delay
refractive index
optical fiber
mode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031816A
Other languages
Japanese (ja)
Other versions
JP7270913B2 (en
Inventor
篤志 中村
Atsushi Nakamura
篤志 中村
大輔 飯田
Daisuke Iida
大輔 飯田
正治 大橋
Masaharu Ohashi
正治 大橋
寛和 久保田
Hirokazu Kubota
寛和 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
University Public Corporation Osaka
Original Assignee
Nippon Telegraph and Telephone Corp
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, University Public Corporation Osaka filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2020031816A priority Critical patent/JP7270913B2/en
Publication of JP2021135179A publication Critical patent/JP2021135179A/en
Application granted granted Critical
Publication of JP7270913B2 publication Critical patent/JP7270913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】本開示は、群遅延特性よりも簡単な方法で得られるファイバパラメータを用いて数モードファイバのモード群遅延特性を評価するためのモード群遅延特性評価方法及び評価装置を提供することを目的とする。
【解決手段】本開示は、被試験光ファイバのモード群遅延特性を評価するモード群遅延特性評価方法であって、コアとクラッドの屈折率差が小さい場合に、前記被試験光ファイバのモード群遅延特性の近似解がコアの群屈折率、クラッドの群屈折率、正規化周波数及び正規化伝搬定数を用いて導出できることに基づいて、前記被試験光ファイバにおける前記伝搬モードのモード群遅延特性を算出するモード群遅延算出手順を有するモード群遅延特性評価方法である。
【選択図】図1
PROBLEM TO BE SOLVED: To provide a mode group delay characteristic evaluation method and an evaluation apparatus for evaluating a mode group delay characteristic of a number mode fiber using a fiber parameter obtained by a method simpler than a group delay characteristic. The purpose.
The present disclosure is a mode group delay characteristic evaluation method for evaluating a mode group delay characteristic of an optical fiber under test, and when the difference in refractive index between a core and a clad is small, the mode group of the optical fiber under test is described. Based on the fact that an approximate solution of the delay characteristic can be derived using the group refractive index of the core, the group refractive index of the cladding, the normalized frequency, and the normalized propagation constant, the mode group delay characteristic of the propagation mode in the optical fiber under test is obtained. This is a mode group delay characteristic evaluation method having a mode group delay calculation procedure for calculation.
[Selection diagram] Fig. 1

Description

本開示は、光ファイバのモード群遅延特性を評価するための方法及び装置に関する。 The present disclosure relates to methods and devices for evaluating mode group delay characteristics of optical fibers.

多種多様なインターネットサービスの普及により、光ファイバ1本を流れるトラフィック量が年々急速に増加している。一方、光ファイバで伝搬可能な伝送容量は有限であり、現在広く使われている単一モードファイバ(SMF:Single−Mode Fiber)では将来のトラフィック増大に対応できなくなることが予測されている。この状況を打破するために、空間多重伝送システムが注目されており、複数のモードが伝搬できる光ファイバ(以下、数モードファイバと称する)を用いたモード多重伝送システムが検討されている。 Due to the widespread use of a wide variety of Internet services, the amount of traffic flowing through a single optical fiber is rapidly increasing year by year. On the other hand, the transmission capacity that can be propagated by an optical fiber is finite, and it is predicted that the single-mode fiber (SMF) that is widely used at present cannot cope with the future increase in traffic. In order to overcome this situation, a spatial multiplex transmission system is attracting attention, and a mode multiplex transmission system using an optical fiber capable of propagating a plurality of modes (hereinafter referred to as several mode fibers) is being studied.

数モードファイバを用いたモード多重伝送システムでは、モード群遅延特性が重要な特性の一つとなる。その理由として、モード間の群遅延差(DMD:Differential Mode Delay)が大きいほど、伝送信号復元に必要なデジタル信号処理の計算量が増大することが挙げられる。他の理由として、DMDが小さいほど、モード間の四光波混合(FWM:Four Wave Mixing)発生効率が高くなることが挙げられる。したがって、モード多重伝送システムを設計するためには、数モードファイバ全長に亘る群遅延特性及び局所的な群遅延特性を把握することが必要となる。 In a mode multiplex transmission system using several mode fibers, the mode group delay characteristic is one of the important characteristics. The reason is that the larger the group delay difference (DMD: Differential Mode Delay) between modes, the larger the amount of digital signal processing required for restoring the transmission signal. Another reason is that the smaller the DMD, the higher the efficiency of four-wave mixing (FWM) generation between modes. Therefore, in order to design a mode multiplex transmission system, it is necessary to understand the group delay characteristics and the local group delay characteristics over the entire length of the several-mode fiber.

N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, “Measurement of differential group delay and chromatic dispersion for LP01 and LP11 modes of few−mode fibers with depressed claddings,” Opt. Review, vol. 22, no. 1, pp. 65−70, 2015.N. Shibata, M.D. Ohashi, R.M. Maruyama, and N. et al. Kuwaki, “Measurement of differential group delay and chromatic dispersion for LP01 and LP11 mods of foot-mode fibers with depressed” Review, vol. 22, no. 1, pp. 65-70, 2015. S. Ohno, D. Iida, K. Toge, and T. Manabe, ”High−resolution measurement of differential mode delay of few−mode fiber using phase reference technique for swept−frequency interferometry,” Opt. Fiber Technol., vol. 40, pp. 56−61, 2018.S. Ohno, D. Iida, K.K. Toge, and T.M. Manabe, "High-resolution measurement of differential mode delay of fiber-mode fiber using phase reference technology technology for factor. Fiber Technology. , Vol. 40, pp. 56-61, 2018. M. Ohashi et al., “Longitudinal fiber parameter measurements of two−mode fiber links by using OTDR,” ECOC2014, Th.1.4.5, 2014.M. Ohashi et al. , "Longitudinal fiber parameter measurement of two-mode fiber links by using OTDR," ECOC2014, Th. 1.4.5, 2014. A. Nakamura et al., “Effective mode field diameter for LP11 mode and its measurement technique,” Photon. Technol. Lett., vol. 28, no. 22, pp. 2553−2556, 2016.A. Nakamura et al. , "Effective mode field diameter for LP11 mode and it's measurement technique," Photon. Technol. Lett. , Vol. 28, no. 22, pp. 2553-2556, 2016. B. Brixner, “Refractive−Index Interpolation for Fused Silica,” J. Opt. Soc. Am., vol. 57, no. 5, pp. 674−676, 1967.B. Brixner, "Refractive-Index Interpolation for Forced Silica," J. Mol. Opt. Soc. Am. , Vol. 57, no. 5, pp. 674-676, 1967. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am., vol. 55, no. 10, pp. 1205−1209, 1965.I. H. Malitzon, “Interspecimen Company of the Refractive Index of Forced Silica,” J. Mol. Opt. Soc. Am. , Vol. 55, no. 10, pp. 1205-1209, 1965. S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, ”Characteristics of Optical Fibers in Infrared Wavelength Region,” REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORIES, vol. 26, pp. 453−467, 1978.S. Kobayashi, N.K. Shibata, S.M. Shibata, and T. et al. Izawa, "Characteristics of Optical Fibers in Infrared Wavelength Region," REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORIES, vol. 26, pp. 453-467, 1978. D. Krumbholz, E. Brinkmeyer, and E.−G. Neumann, “Core/cladding power distribution, propagation constant, and group delay: Simple relation for power−law graded−index fibers,” J. Opt. Soc. Am., vol. 70, no. 2, pp. 179−183, 1980.D. Krumbholz, E.I. Brinkmeyer, and E.I. -G. Neumann, "Core / grading power distribution, promotion constant, and group delay: Simple distribution for power-low graded-index fiber," J. et al. Opt. Soc. Am. , Vol. 70, no. 2, pp. 179-183, 1980. D.Gloge,“Weakly Guiding Fibers,” Appl. Opt. vol.10, no.10, pp.2252−2258, 1971.D. Logge, "Weekly Guiding Fibers," Appl. Opt. vol. 10, no. 10, pp. 2252-2258, 1971. J.D.Love and C.D.Hussey, “Variational approximations for higher−order modes of weakly−guiding fibres,” Optical and Quantum Electronics, vol.16, pp.41−48, 1984.J. D. Love and C.I. D. Hussey, "Variational approximations for higher-order modes of weekend-guiding fibers," Optical and Quantum Electronics, vol. 16, pp. 41-48, 1984.

例えば、非特許文献1及び非特許文献2では、数モードファイバにおける群遅延特性の平均値や分布特性を直接評価する方法が開示されている。一方、SMFを用いた伝送システムを設計する際には、通常ファイバパラメータを用いて行う。したがって、従来のSMFを用いた伝送システムと同様の手法で数モードファイバを用いたモード多重伝送システムを設計するためには、ファイバパラメータからモード群遅延特性を評価する手法が必要となる。 For example, Non-Patent Document 1 and Non-Patent Document 2 disclose a method for directly evaluating the average value and distribution characteristics of group delay characteristics in a number mode fiber. On the other hand, when designing a transmission system using SMF, fiber parameters are usually used. Therefore, in order to design a mode multiplex transmission system using several mode fibers by the same method as the conventional transmission system using SMF, a method of evaluating the mode group delay characteristics from the fiber parameters is required.

本開示は上記事情に着目してなされたもので、群遅延特性よりも簡単な方法で得られるファイバパラメータを用いて数モードファイバのモード群遅延特性を評価するためのモード群遅延特性評価方法及び評価装置を提供することを目的とする。 The present disclosure has focused on the above circumstances, and is a mode group delay characteristic evaluation method for evaluating the mode group delay characteristics of several mode fibers using fiber parameters obtained by a method simpler than the group delay characteristics. It is an object of the present invention to provide an evaluation device.

上記目的を達成するために、本発明に係るモード群遅延特性評価方法及び評価装置は、モード群遅延特性を直接測定する装置よりも安価な装置構成で測定可能な比屈折率差やMFD(Mode Field Diameter)等のファイバパラメータから、モード群遅延特性を評価することとした。 In order to achieve the above object, the mode group delay characteristic evaluation method and the evaluation device according to the present invention have a specific refractive index difference and MFD (Mode) that can be measured with a device configuration that is cheaper than a device that directly measures the mode group delay characteristic. It was decided to evaluate the mode group delay characteristics from fiber parameters such as Field Diameter).

具体的には、本開示に係るモード群遅延特性評価方法は、
光ファイバのモード群遅延特性を評価するモード群遅延特性評価方法であって、
光ファイバのコアとクラッドの屈折率差が小さい場合に、光ファイバのモード群遅延特性の近似解がコアの群屈折率、クラッドの群屈折率、正規化周波数及び正規化伝搬定数を用いて導出できることに基づいて、被試験光ファイバにおける伝搬モードのモード群遅延特性を算出するモード群遅延算出手順を有することを特徴とする。
Specifically, the mode group delay characteristic evaluation method according to the present disclosure is described.
This is a mode group delay characteristic evaluation method for evaluating the mode group delay characteristics of an optical fiber.
When the difference in refractive index between the core and the clad of the optical fiber is small, the approximate solution of the mode group delay characteristic of the optical fiber is derived using the group refractive index of the core, the group refractive index of the clad, the normalized frequency and the normalized propagation constant. It is characterized by having a mode group delay calculation procedure for calculating the mode group delay characteristic of the propagation mode in the optical fiber under test based on what can be done.

具体的には、本開示に係るモード群遅延特性評価装置は、
光ファイバのモード群遅延特性を評価するモード群遅延特性評価装置であって、
光ファイバのコアとクラッドの屈折率差が小さい場合に、光ファイバのモード群遅延特性の近似解がコアの群屈折率、クラッドの群屈折率、正規化周波数及び正規化伝搬定数を用いて導出できることに基づいて、被試験光ファイバにおける伝搬モードのモード群遅延特性を算出するモード群遅延算出手段を備えることを特徴とする。
Specifically, the mode group delay characteristic evaluation device according to the present disclosure is
A mode group delay characteristic evaluation device that evaluates the mode group delay characteristics of optical fibers.
When the difference in refractive index between the core and the clad of the optical fiber is small, the approximate solution of the mode group delay characteristic of the optical fiber is derived using the group refractive index of the core, the group refractive index of the clad, the normalized frequency and the normalized propagation constant. It is characterized by comprising a mode group delay calculating means for calculating the mode group delay characteristic of the propagation mode in the optical fiber under test based on what can be done.

本開示では、数モードファイバのモード群遅延特性に関して、直接測定する手法に比べて安価な装置構成で評価するためのモード群遅延特性評価方法及び評価装置を提供することができる。 In the present disclosure, it is possible to provide a mode group delay characteristic evaluation method and an evaluation device for evaluating the mode group delay characteristics of a number mode fiber with an apparatus configuration inexpensive as compared with a direct measurement method.

第1の実施形態のモード群遅延特性評価装置を説明する図である。It is a figure explaining the mode group delay characteristic evaluation apparatus of 1st Embodiment. 第2の実施形態のモード群遅延特性評価装置を説明する図である。It is a figure explaining the mode group delay characteristic evaluation apparatus of 2nd Embodiment.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The present disclosure is not limited to the embodiments shown below. Examples of these implementations are merely examples, and the present disclosure can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.

(第1の実施形態)
図1は、本実施形態のモード群遅延特性評価装置を説明する図である。本モード群遅延特性評価装置は、光ファイバのモード群遅延特性を評価するモード群遅延特性評価装置であって、
被試験光ファイバにおける所望の伝搬モードのモードフィールド半径、比屈折率差、コア屈折率、クラッド屈折率、コア群屈折率、クラッド群屈折率、コア半径を取得するファイバパラメータ取得手段11と、
前記モードフィールド半径と高次のガウシアン関数を用いて前記伝搬モードの近似的な電界分布を取得する電界分布近似手段12と、
前記ファイバパラメータ取得手段で取得した前記モードフィールド半径、前記比屈折率差、前記コア屈折率、前記クラッド屈折率、前記コア群屈折率、前記クラッド群屈折率、前記コア半径と、前記電界分布近似手段で取得した前記電界分布を用い、前記被試験光ファイバにおける前記伝搬モードのモード群遅延特性を算出するモード群遅延算出手段13と、
を備えることを特徴とする。
(First Embodiment)
FIG. 1 is a diagram illustrating a mode group delay characteristic evaluation device of the present embodiment. This mode group delay characteristic evaluation device is a mode group delay characteristic evaluation device that evaluates the mode group delay characteristics of an optical fiber.
Fiber parameter acquisition means 11 for acquiring the mode field radius, specific refractive index difference, core refractive index, clad refractive index, core group refractive index, clad group refractive index, and core radius of the desired propagation mode in the optical fiber under test.
An electric field distribution approximating means 12 for obtaining an approximate electric field distribution of the propagation mode using the mode field radius and a higher-order Gaussian function, and
The mode field radius, the specific refractive index difference, the core refractive index, the clad refractive index, the core group refractive index, the clad group refractive index, the core radius, and the electric field distribution approximation acquired by the fiber parameter acquisition means. Using the electric field distribution acquired by the means, the mode group delay calculating means 13 for calculating the mode group delay characteristic of the propagation mode in the optical fiber under test, and the mode group delay calculating means 13.
It is characterized by having.

ここで、ファイバパラメータ取得手段11は、取得した所望の伝搬モードのモード次数とモードフィールド半径の情報a1と、取得した比屈折率差、コア屈折率、クラッド屈折率、コア群屈折率、クラッド群屈折率、コア半径の情報a2を出力する。電界分布近似手段12は、モード次数とモードフィールド半径の情報a1を受信し、それらと高次のガウシアン関数を用いて伝搬モードの近似的な電界分布を算出し、電界分布の情報a3を出力する。モード群遅延算出手段13は、情報a2及び情報a3を受信し、それらの情報とモード群遅延の評価式を用いてモード群遅延を算出し、モード群遅延の情報a4を出力する。電界分布近似手段12が情報a1を出力し、モード群遅延算出手段13がさらに情報a1を受信してもよい。 Here, the fiber parameter acquisition means 11 includes the acquired mode order and mode field radius information a1 of the desired propagation mode, and the acquired specific refractive index difference, core refractive index, clad refractive index, core group refractive index, and clad group. The information a2 of the refractive index and the core radius is output. The electric field distribution approximating means 12 receives the information a1 of the mode order and the mode field radius, calculates the approximate electric field distribution of the propagation mode using them and the higher-order Gaussian function, and outputs the electric field distribution information a3. .. The mode group delay calculation means 13 receives the information a2 and the information a3, calculates the mode group delay using the information and the mode group delay evaluation formula, and outputs the mode group delay information a4. The electric field distribution approximating means 12 may output the information a1, and the mode group delay calculating means 13 may further receive the information a1.

本モード群遅延特性評価方法は、光ファイバのモード群遅延特性を評価するモード群遅延特性評価方法であって、
被試験光ファイバにおける所望の伝搬モードのモードフィールド半径、比屈折率差、コア屈折率、クラッド屈折率、コア群屈折率、クラッド群屈折率、コア半径を取得するファイバパラメータ取得手順と、
前記モードフィールド半径と高次のガウシアン関数を用いて前記伝搬モードの近似的な電界分布を取得する電界分布近似手順と、
前記ファイバパラメータ取得手順で取得した前記モードフィールド半径、前記比屈折率差、前記コア屈折率、前記クラッド屈折率、前記コア群屈折率、前記クラッド群屈折率、前記コア半径と、前記電界分布近似手順で取得した前記電界分布を用い、前記被試験光ファイバにおける前記伝搬モードのモード群遅延特性を算出するモード群遅延算出手順と、
を行うことを特徴とする。
This mode group delay characteristic evaluation method is a mode group delay characteristic evaluation method for evaluating the mode group delay characteristics of an optical fiber.
A fiber parameter acquisition procedure for acquiring the mode field radius, specific refractive index difference, core refractive index, clad refractive index, core group refractive index, clad group refractive index, and core radius of the desired propagation mode in the optical fiber under test.
An electric field distribution approximation procedure for obtaining an approximate electric field distribution for the propagation mode using the mode field radius and a higher-order Gaussian function, and
The mode field radius, the specific refractive index difference, the core refractive index, the clad refractive index, the core group refractive index, the clad group refractive index, the core radius, and the electric field distribution approximation acquired in the fiber parameter acquisition procedure. Using the electric field distribution acquired in the procedure, the mode group delay calculation procedure for calculating the mode group delay characteristic of the propagation mode in the optical fiber under test, and the mode group delay calculation procedure.
It is characterized by performing.

まず、ファイバパラメータ取得手段11は、被試験光ファイバにおける所望の伝搬モードのモードフィールド半径、比屈折率差、コア屈折率、クラッド屈折率、コア群屈折率、クラッド群屈折率、コア半径を取得する。 First, the fiber parameter acquisition means 11 acquires the mode field radius, specific refractive index difference, core refractive index, clad refractive index, core group refractive index, clad group refractive index, and core radius of the desired propagation mode in the optical fiber under test. do.

モードフィールド半径の取得を実現する手段として、例えば、NFP(Refractive Near Field Pattern)法、FFP(Far Field Pattern)法、VA(Vertical Aligned)法のように、被試験光ファイバから出射される光の光強度分布からモードフィールド半径を取得する方法を用いることができる。 As a means for realizing the acquisition of the mode field radius, for example, the NFP (Refractive Near Field) method, the FFP (Far Field Field) method, the VA (Vertical Aligned) method, or the like, the light emitted from the optical fiber to be tested. A method of obtaining the mode field radius from the light intensity distribution can be used.

また、比屈折率差、コア屈折率、クラッド屈折率の取得を実現する手段として、RNFP法のように光ファイバの屈折率分布を取得する方法を用いることができる。これにより、半径方向の座標rの比屈折率差Δ(r)、光ファイバ中心の比屈折率差Δを取得することができる。 Further, as a means for acquiring the specific refractive index difference, the core refractive index, and the clad refractive index, a method for acquiring the refractive index distribution of the optical fiber such as the RNFP method can be used. Thus, the relative refractive index of the radial coordinate r difference delta (r), it is possible to obtain the relative refractive index difference delta 0 of the optical fiber center.

また、モードフィールド半径及び比屈折率差の取得を実現する手段として、例えば、非特許文献3及び非特許文献4にある光時間領域反射測定法を用いることができる。このような手法を用いることにより、被試験光ファイバの長手方向(z方向)に対するモードフィールド半径の分布w(z)及び比屈折率差の分布Δ(z)を取得することができる。また、さらに、比屈折率差Δ(z)とカットオフ波長より、光ファイバがステップ型の場合には、コア半径a(z)は次式で求められる。

Figure 2021135179
これらの値を用いることにより、被試験光ファイバ長手方向のモード群遅延特性を取得することも可能となる。 Further, as a means for realizing the acquisition of the mode field radius and the specific refractive index difference, for example, the optical time domain reflection measurement methods described in Non-Patent Document 3 and Non-Patent Document 4 can be used. By using such a method, the distribution w (z) of the mode field radius and the distribution Δ (z) of the specific refractive index difference with respect to the longitudinal direction (z direction) of the optical fiber under test can be obtained. Further, from the specific refractive index difference Δ (z) and the cutoff wavelength, when the optical fiber is a step type, the core radius a (z) can be obtained by the following equation.
Figure 2021135179
By using these values, it is also possible to acquire the mode group delay characteristics in the longitudinal direction of the optical fiber under test.

[屈折率、群屈折率算出手順詳細]
次に、群屈折率の算出方法について説明する。
光ファイバにおけるコア及びクラッドの群屈折率N(λ)及びN(λ)は以下の式で表される。

Figure 2021135179
ここで、n(λ)は波長λでのコアの屈折率、n(λ)は波長λでのクラッドの屈折率である。 [Details of refractive index and group refractive index calculation procedure]
Next, a method of calculating the group refractive index will be described.
The group refractive indexes N 1 (λ) and N 2 (λ) of the core and the clad in the optical fiber are expressed by the following equations.
Figure 2021135179
Here, n 1 (λ) is the refractive index of the core at the wavelength λ, and n 2 (λ) is the refractive index of the cladding at the wavelength λ.

群屈折率の値を求めるためには、屈折率の波長依存性が必要である。この屈折率の波長依存性は、次式(3)に示すようなセルマイヤの関係式を使うことにより得られる。

Figure 2021135179
In order to obtain the value of the group refractive index, the wavelength dependence of the refractive index is necessary. The wavelength dependence of the refractive index can be obtained by using the relational expression of selmire as shown in the following equation (3).
Figure 2021135179

式(3)は、Aiが紫外及び赤外吸収波長に、Biが振動子強度に対応しており、屈折率の波長依存性を表す物理的内容を示す式であり、材料分散の大きな波長を含め広い波長領域でよく測定値とあうことが知られている。また、非特許文献5及び非特許文献6に示されているように、kの値は、3項まで用いると十分な度得られることがわかっている。また、光ファイバに使用されるガラスのセルマイヤの係数AiおよびBiは非特許文献7に示されている。 Equation (3) is an equation in which Ai corresponds to the ultraviolet and infrared absorption wavelengths and Bi corresponds to the oscillator strength, and shows the physical content indicating the wavelength dependence of the refractive index. It is known that the measured values match well in a wide wavelength range including. Further, as shown in Non-Patent Document 5 and Non-Patent Document 6, it is known that the value of k can be sufficiently obtained by using up to 3 terms. Further, the coefficients Ai and Bi of the cermier of the glass used for the optical fiber are shown in Non-Patent Document 7.

したがって、コア及びクラッドの群屈折率は、式(3)を式(2)に代入することにより求まる。すなわち、上述した比屈折率差Δを測定する方法を用いて光ファイバの比屈折率差Δを求め、Δに対応する式(3)の係数Ai及びBiを、光ファイバを構成している材料値から求めることにより、光ファイバのコア及びクラッドの群屈折率を導出することができる。 Therefore, the group refractive index of the core and the clad can be obtained by substituting the equation (3) into the equation (2). That is, the specific refractive index difference Δ of the optical fiber is obtained by using the method for measuring the specific refractive index difference Δ described above, and the coefficients Ai and Bi of the equation (3) corresponding to Δ are set as the materials constituting the optical fiber. The group refractive index of the core and clad of the optical fiber can be derived by obtaining from the value.

[モード群遅延特性算出手順詳細]
次に、モード群遅延特性を算出する演算処理について説明する。
光ファイバにおける波動方程式は次式で記述できる。

Figure 2021135179
lmは周方向のモード次数がlでありかつ径方向のモード次数がmのときの電界分布、r及びθは光ファイバの中心を原点とする極座標、n(r)は光ファイバの中心から距離rでの屈折率、kは真空中の波数、βlmはLPlmモードの伝搬定数である。 [Details of mode group delay characteristic calculation procedure]
Next, the arithmetic processing for calculating the mode group delay characteristic will be described.
The wave equation in an optical fiber can be described by the following equation.
Figure 2021135179
E lm is the electric field distribution when the mode order in the circumferential direction is l and the mode order in the radial direction is m, r and θ are the polar coordinates with the center of the optical fiber as the origin, and n (r) is from the center of the optical fiber. The refractive index at the distance r, k is the number of waves in vacuum, and β lm is the propagation constant of LP lm mode.

ここで、式(4)の波動方程式の解を次式のように仮定すると

Figure 2021135179
Here, assuming that the solution of the wave equation of equation (4) is as follows:
Figure 2021135179

式(5)を式(4)に代入すると以下の式が得られる。

Figure 2021135179
Substituting equation (5) into equation (4) gives the following equation.
Figure 2021135179

光ファイバの屈折率分布を次式のようにする。

Figure 2021135179
ここで、aはコア半径を表し、n及びnはそれぞれコア及びクラッドの屈折率を表す。 The refractive index distribution of the optical fiber is as follows.
Figure 2021135179
Here, a represents the core radius, and n 1 and n 2 represent the refractive indexes of the core and the clad, respectively.

光ファイバにおけるLPlmモードの正規化伝搬定数blmは、次式で与えられる。

Figure 2021135179
Normalized propagation constant b lm of LP lm modes in an optical fiber is given by the following equation.
Figure 2021135179

ここで、vは正規化周波数を表し、次式で定義されている。

Figure 2021135179
kは波数を、Δは比屈折率差を表し次式で定義されている。
Figure 2021135179
Figure 2021135179
Here, v represents the normalized frequency and is defined by the following equation.
Figure 2021135179
k represents the wave number and Δ represents the difference in the specific refractive index, which are defined by the following equations.
Figure 2021135179
Figure 2021135179

式(2)にElmをかけて、光ファイバの断面積Aで積分する。

Figure 2021135179
Multiply the equation (2) by Elm and integrate with the cross-sectional area A of the optical fiber.
Figure 2021135179

式(12)は次式のように整理できる。

Figure 2021135179
Equation (12) can be arranged as the following equation.
Figure 2021135179

したがって、正規化伝搬定数blmは次式のように表現できる。

Figure 2021135179
Therefore, the normalized propagation constant blm can be expressed as the following equation.
Figure 2021135179

導波路分散は、正規化周波数v及び正規化伝搬定数blmを用いて次式のように表せる(例えば、非特許文献8を参照。)

Figure 2021135179
The waveguide dispersion can be expressed by the following equation using the normalized frequency v and the normalized propagation constant blm (see, for example, Non-Patent Document 8).
Figure 2021135179

したがって、d(vblm)/dvは次式で求まる。

Figure 2021135179
Therefore, d (vb lm ) / dv can be obtained by the following equation.
Figure 2021135179

一方、LPlmモードの群遅延τlmは次式で記述できる。

Figure 2021135179
ここで、cは光速を表し、βlmはLPlmモードの伝搬定数を表す。 On the other hand, the group delay τ lm in the LP lm mode can be described by the following equation.
Figure 2021135179
Here, c represents the speed of light, and β lm represents the propagation constant of the LP lm mode.

また、正規化伝搬定数blmは式(8)で定義されているが、実用上興味のある光ファイバのコアとクラッドの屈折率差は1%以下であることが多いため、コアとクラッドの屈折率差が小さいというweakly guiding近似(例えば、非特許文献9参照。)を用いると伝搬定数βlmは次式のように記述できる。

Figure 2021135179
Although the normalized propagation constant blm is defined by the equation (8), the difference in refractive index between the core and the clad of the optical fiber, which is of practical interest, is often 1% or less, so that the core and the clad have a refractive index difference of 1% or less. Using the weakly guiding approximation (see, for example, Non-Patent Document 9) that the difference in refractive index is small, the propagation constant β lm can be described by the following equation.
Figure 2021135179

式(18)を波数kで微分すると

Figure 2021135179
Differentiating equation (18) with wave number k
Figure 2021135179

また、ここで次式の近似を用いる。

Figure 2021135179
Moreover, the approximation of the following equation is used here.
Figure 2021135179

したがって、式(19)は次式のように近似できる。

Figure 2021135179
Therefore, equation (19) can be approximated as the following equation.
Figure 2021135179

したがって、群遅延τlmは、次式のように近似できる。

Figure 2021135179
Therefore, the group delay τ lm can be approximated by the following equation.
Figure 2021135179

次に、上記で計算したd(vblm)/dvを式(22)に代入すると、LPlmモードの群遅延τlmは次式のように記述できる。

Figure 2021135179
ただし、βlmはLPlmモードの伝搬定数、kは真空中の波数、cは光速、Δ(r)は半径方向の座標rの比屈折率差、Δは光ファイバ中心の比屈折率差、vは正規化周波数、Aは光ファイバ断面積を表す。 Next, by substituting d (vb lm ) / dv calculated above into the equation (22), the group delay τ lm in the LP lm mode can be described by the following equation.
Figure 2021135179
However, β lm is the propagation constant in LP lm mode, k is the number of waves in vacuum, c is the speed of light, Δ (r) is the difference in the specific refractive index of the radial coordinates r, and Δ 0 is the difference in the specific refractive index in the center of the optical fiber. , V represent the normalized frequency, and A represents the optical fiber cross-sectional area.

したがって、上記式(23)に、比屈折率差Δ(r)及びΔ、コア群屈折率N、クラッド群屈折率N、コア半径aを代入し、さらに電界分布Elmを代入すると、LPlmモードの群遅延τlmを得ることができる。 Therefore, substituting the specific refractive index differences Δ (r) and Δ 0 , the core group refractive index N 1 , the clad group refractive index N 2 , and the core radius a into the above equation (23), and further substituting the electric field distribution Elm. , LP lm mode group delay τ lm can be obtained.

ここで、電界分布近似手順において、電界分布近似手段12は、高次のガウス関数を用いて電界分布Elmを導出することができる(例えば、非特許文献10参照。)。

Figure 2021135179
r及びθは光ファイバの中心を原点とする極座標、wlmはLPlmモードのモードフィールド半径、L m−1(x)はラゲールの倍多項式である。 Here, in the electric field distribution approximation procedure, the electric field distribution approximation means 12 can derive the electric field distribution Elm by using a higher-order Gaussian function (see, for example, Non-Patent Document 10).
Figure 2021135179
r and θ are polar coordinates with the center of the optical fiber as the origin, w lm is the mode field radius in LP lm mode, and L l m-1 (x) is a Laguerre polynomary.

したがって、モード群遅延算出手順において、モード群遅延算出手段は、ファイバパラメータ取得手順で取得したモードフィールド半径wlm、比屈折率差Δ(r)及びΔ、コア屈折率n、クラッド屈折率n、コア群屈折率N、クラッド群屈折率N、コア半径aと、電界分布近似手順で取得した電界分布Elmを用い、被試験光ファイバにおける伝搬モードLPlmのモード群遅延特性を算出することができる。また、各モードの群遅延特性の差から、DMDを算出することができる。 Therefore, in the mode group delay calculation procedure, the mode group delay calculation means has the mode field radius w lm , the specific refractive index difference Δ (r) and Δ 0 , the core refractive index n 1 , and the clad refractive index acquired in the fiber parameter acquisition procedure. Mode group delay characteristics of propagation mode LP lm in the optical fiber under test using n 2 , core group refractive index N 1 , clad group refractive index N 2 , core radius a, and electric field distribution E lm obtained by the electric field distribution approximation procedure. Can be calculated. Further, the DMD can be calculated from the difference in the group delay characteristics of each mode.

なお、式(15)の導出過程は以下のとおりである。
非特許文献8における式(1)および式(4)から以下の式が得られる。

Figure 2021135179
ここで、Szは時間平均ポインティングベクトルの軸成分である。
Figure 2021135179
として、式(25)を以下のように書き換える。
Figure 2021135179
The derivation process of equation (15) is as follows.
The following equations can be obtained from the equations (1) and (4) in Non-Patent Document 8.
Figure 2021135179
Here, Sz is an axis component of the time average pointing vector.
Figure 2021135179
As a result, the equation (25) is rewritten as follows.
Figure 2021135179

式(27)の左辺について考える。

Figure 2021135179
Consider the left side of equation (27).
Figure 2021135179

式(28)を式(27)に代入して整理すると、目的の式(15)が得られる。 By substituting the equation (28) into the equation (27) and rearranging it, the desired equation (15) can be obtained.

(第2の実施形態)
図2は、本実施形態のモード群遅延特性評価装置を説明する図である。本実施形態のモード群遅延特性評価装置は、ファイバパラメータ取得手段11と、モード群遅延算出手段13と、を備える。式(23)及び式(24)を連立させることにより、モード群遅延の解析解を求めることができる。
(Second Embodiment)
FIG. 2 is a diagram illustrating a mode group delay characteristic evaluation device of the present embodiment. The mode group delay characteristic evaluation device of the present embodiment includes a fiber parameter acquisition means 11 and a mode group delay calculation means 13. By combining equations (23) and (24), an analytical solution for mode group delay can be obtained.

例えば、被試験光ファイバの屈折率分布がステップ型の場合、Δ(r)=0である。このため、式(23)における光ファイバ断面積での積分の項は次式で表すことができる。

Figure 2021135179
For example, when the refractive index distribution of the optical fiber under test is a step type, Δ (r) = 0. Therefore, the term of integration in the optical fiber cross-sectional area in the equation (23) can be expressed by the following equation.
Figure 2021135179

LP01モードの場合、式(24)より、電界分布E01は次式で表される。

Figure 2021135179
In the LP 01 mode, the electric field distribution E 01 is expressed by the following equation from the equation (24).
Figure 2021135179

LP11モードの場合、式(24)より、電界分布E11は次式で表される。

Figure 2021135179
In the LP 11 mode, the electric field distribution E 11 is expressed by the following equation from the equation (24).
Figure 2021135179

したがって、式(23)示すLP01モードの群遅延τ01は、以下の式で表すことができる。LP11モードの群遅延τ11も同様である。

Figure 2021135179
Figure 2021135179
Therefore, the group delay τ 01 of the LP 01 mode shown in Eq. (23) can be expressed by the following equation. The same applies to the group delay τ 11 in the LP 11 mode.
Figure 2021135179
Figure 2021135179

上記式(32)及び(33)に、比屈折率差、群屈折率、コア半径、モードフィールド半径を代入することにより、屈折率分布がステップ型の被試験光ファイバのLP01モード及びLP11モードの群遅延特性を得ることができる。また、各モードの群遅延特性の差から、DMDを算出することができる。 By substituting the specific refractive index difference, group refractive index, core radius, and mode field radius into the above equations (32) and (33), the LP 01 mode and LP 11 of the optical fiber under test having a stepped refractive index distribution. The group delay characteristic of the mode can be obtained. Further, the DMD can be calculated from the difference in the group delay characteristics of each mode.

このように、本実施形態では、ファイバパラメータ取得手段11が、比屈折率差、群屈折率、コア半径、モードフィールド半径を取得する。そして、モード群遅延算出手段13は、式(23)及び式(24)を連立させることにより得られたモード群遅延の解析解を用いて、LPlmモードの群遅延τlmを求める。本実施形態では、LP01モード及びLP11モードの例を示したが、本開示は任意のl及びmの値に適用することができる。 As described above, in the present embodiment, the fiber parameter acquisition means 11 acquires the specific refractive index difference, the group refractive index, the core radius, and the mode field radius. Then, the mode group delay calculation means 13 obtains the group delay τ lm of the LP lm mode by using the analytical solution of the mode group delay obtained by combining equations (23) and (24). In this embodiment , examples of LP 01 mode and LP 11 mode are shown, but the present disclosure can be applied to arbitrary values of l and m.

なお、式(32)の導出過程は以下のとおりである。
LP01モードの場合、式(29)は以下のように書ける。

Figure 2021135179
The derivation process of equation (32) is as follows.
In the LP 01 mode, equation (29) can be written as follows.
Figure 2021135179

式(34)の第一項に式(30)を代入すると、

Figure 2021135179
Substituting equation (30) into the first term of equation (34),
Figure 2021135179

式(34)の第二項に式(30)を代入すると、

Figure 2021135179
Substituting equation (30) into the second term of equation (34),
Figure 2021135179

式(35)及び式(36)を式(34)に代入したものを、式(23)に適用すると、式(32)を導出することができる。 When the equation (35) and the equation (36) are substituted into the equation (34) and applied to the equation (23), the equation (32) can be derived.

また、式(33)の導出過程は以下のとおりである。
LP11モードの場合、式(29)は以下のように書ける。

Figure 2021135179
The derivation process of equation (33) is as follows.
In the LP 11 mode, equation (29) can be written as follows.
Figure 2021135179

周方向の関数がcosθでもsinθでも最終的な結果は同じであるため、cosθの場合を例に計算を進める。

Figure 2021135179
Figure 2021135179
となるように正規化する。
Figure 2021135179
Since the final result is the same regardless of whether the function in the circumferential direction is cos θ or sin θ, the calculation proceeds using the case of cos θ as an example.
Figure 2021135179
Figure 2021135179
Normalize so that
Figure 2021135179

式(39)の第一項に式(40)を代入すると、

Figure 2021135179
Substituting equation (40) into the first term of equation (39),
Figure 2021135179

式(39)の第二項に式(40)を代入すると、

Figure 2021135179
Substituting equation (40) into the second term of equation (39),
Figure 2021135179

式(37)の第三項に式(40)を代入すると、

Figure 2021135179
Substituting equation (40) into the third term of equation (37),
Figure 2021135179

式(41)、式(42)及び式(43)を式(37)に代入したものを、式(23)に適用すると、式(33)を導出することができる。

Figure 2021135179
By substituting Eqs. (41), (42) and (43) into Eq. (37) and applying it to Eq. (23), Eq. (33) can be derived.
Figure 2021135179

なお、この発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。 The present invention is not limited to the above embodiment, and can be variously modified and implemented without departing from the gist of the present invention.

要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。 In short, the present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components from different embodiments may be combined as appropriate.

本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communication industry.

11:ファイバパラメータ取得手段
12:電界分布近似手段
13:モード群遅延算出手段
11: Fiber parameter acquisition means 12: Electric field distribution approximation means 13: Mode group delay calculation means

Claims (8)

光ファイバのモード群遅延特性を評価するモード群遅延特性評価方法であって、
光ファイバのコアとクラッドの屈折率差が小さい場合に、光ファイバのモード群遅延特性の近似解がコアの群屈折率、クラッドの群屈折率、正規化周波数及び正規化伝搬定数を用いて導出できることに基づいて、被試験光ファイバにおける伝搬モードのモード群遅延特性を算出するモード群遅延算出手順を有することを特徴とする、
モード群遅延特性評価方法。
This is a mode group delay characteristic evaluation method for evaluating the mode group delay characteristics of an optical fiber.
When the difference in refractive index between the core and the clad of the optical fiber is small, the approximate solution of the mode group delay characteristic of the optical fiber is derived using the group refractive index of the core, the group refractive index of the clad, the normalized frequency and the normalized propagation constant. It is characterized by having a mode group delay calculation procedure for calculating the mode group delay characteristic of the propagation mode in the optical fiber under test based on what can be done.
Mode group delay characteristic evaluation method.
前記被試験光ファイバにおける所望の伝搬モードのモードフィールド半径、比屈折率差、コア屈折率、クラッド屈折率、コア群屈折率、クラッド群屈折率、コア半径を取得するファイバパラメータ取得手順と、
前記モードフィールド半径と高次のガウシアン関数を用いて前記伝搬モードの近似的な電界分布を取得する電界分布近似手順と、
をさらに備え、
前記モード群遅延算出手順において、前記ファイバパラメータ取得手順で取得した前記モードフィールド半径、前記比屈折率差、前記コア屈折率、前記クラッド屈折率、前記コア群屈折率、前記クラッド群屈折率、前記コア半径と、前記電界分布近似手順で取得した前記電界分布を用い、前記被試験光ファイバにおける前記伝搬モードのモード群遅延特性を算出する、
請求項1に記載のモード群遅延特性評価方法。
A fiber parameter acquisition procedure for acquiring the mode field radius, specific refractive index difference, core refractive index, clad refractive index, core group refractive index, clad group refractive index, and core radius of the desired propagation mode in the optical fiber under test.
An electric field distribution approximation procedure for obtaining an approximate electric field distribution for the propagation mode using the mode field radius and a higher-order Gaussian function, and
With more
In the mode group delay calculation procedure, the mode field radius acquired in the fiber parameter acquisition procedure, the specific refractive index difference, the core refractive index, the clad refractive index, the core group refractive index, the clad group refractive index, the above. Using the core radius and the electric field distribution obtained in the electric field distribution approximation procedure, the mode group delay characteristic of the propagation mode in the optical fiber under test is calculated.
The mode group delay characteristic evaluation method according to claim 1.
前記電界分布近似手順で、次式を用いて前記伝搬モードの近似的な電界分布を取得することを特徴とする、
請求項2に記載のモード群遅延特性評価方法。
Figure 2021135179
ただし、l及びmはそれぞれ前記被試験光ファイバの周方向及び動径方向のモード次数、wlmは前記被試験光ファイバにおけるLPlmモードのモードフィールド半径、L m−1(x)はラゲールの倍多項式、r及びθは前記被試験光ファイバの中心を原点とする極座標である。
The electric field distribution approximation procedure is characterized in that an approximate electric field distribution of the propagation mode is obtained by using the following equation.
The mode group delay characteristic evaluation method according to claim 2.
Figure 2021135179
However, l and m are the mode orders in the circumferential direction and the radial direction of the optical fiber under test, w lm is the mode field radius of the LP lm mode in the optical fiber under test , and L l m-1 (x) is Lager. The multiple polynomials, r and θ of are polar coordinates with the center of the optical fiber under test as the origin.
前記モード群遅延算出手順で、モード群遅延を、次式を用いて算出することを特徴とする、
請求項1から3のいずれかに記載のモード群遅延特性評価方法。
Figure 2021135179
ただし、βlmはLPlmモードの伝搬定数、kは真空中の波数、cは光速、Δ(r)は半径方向の座標rの比屈折率差、Δは前記被試験光ファイバの中心での比屈折率差、vは正規化周波数、Aは前記被試験光ファイバの断面積を表す。
The mode group delay calculation procedure is characterized in that the mode group delay is calculated using the following equation.
The mode group delay characteristic evaluation method according to any one of claims 1 to 3.
Figure 2021135179
However, β lm is the propagation constant of LP lm mode, k is the number of waves in vacuum, c is the speed of light, Δ (r) is the difference in the specific refractive index of the radial coordinate r, and Δ 0 is the center of the optical fiber under test. The difference in the refractive index of the above, v is the normalized frequency, and A is the cross-sectional area of the optical fiber under test.
前記モード群遅延算出手順で、数C41で表される電界分布の式と数C42で表されるモード群遅延の式を連立させることによってモード群遅延の解析解を求め、当該解析解を用いてモード群遅延を算出することを特徴とする、
請求項1に記載のモード群遅延特性評価方法。
Figure 2021135179
ただし、l及びmはそれぞれ前記被試験光ファイバの周方向及び動径方向のモード次数、wlmはLPlmモードのモードフィールド半径、L m−1(x)はラゲールの倍多項式、r及びθは前記被試験光ファイバの中心を原点とする極座標である。
Figure 2021135179
ただし、βlmはLPlmモードの伝搬定数、kは真空中の波数、cは光速、Δ(r)は半径方向の座標rの比屈折率差、Δは前記被試験光ファイバの中心での比屈折率差、vは正規化周波数、Aは前記被試験光ファイバの断面積を表す。
In the mode group delay calculation procedure, an analytical solution of the mode group delay is obtained by combining the equation of the electric field distribution represented by the number C41 and the equation of the mode group delay represented by the number C42, and the analytical solution is used. It is characterized by calculating the mode group delay,
The mode group delay characteristic evaluation method according to claim 1.
Figure 2021135179
However, l and m are the mode orders in the circumferential direction and the radial direction of the optical fiber to be tested, w lm is the mode field radius of the LP lm mode, and L l m-1 (x) is the multiple polypoly of Lager, r and. θ is a polar coordinate with the center of the optical fiber under test as the origin.
Figure 2021135179
However, β lm is the propagation constant of LP lm mode, k is the number of waves in vacuum, c is the speed of light, Δ (r) is the difference in the specific refractive index of the radial coordinate r, and Δ 0 is the center of the optical fiber under test. The difference in the specific refractive index of, v is the normalized frequency, and A is the cross-sectional area of the optical fiber under test.
前記被試験光ファイバの屈折率分布がステップ型の場合に、波長λにおける基本モード(LP01モード)の群遅延τ01及び第一高次モード(LP11モード)の群遅延τ11の解析解として、次式を用いて算出することを特徴とする、
請求項5に記載のモード群遅延特性評価方法。
Figure 2021135179
Figure 2021135179
Wherein when the refractive index distribution of the test optical fiber is stepped, the analytical solution of the group delay tau 11 group delay tau 01 and the first higher-order mode of the fundamental mode (LP 01 mode) at a wavelength lambda (LP 11 mode) The feature is that it is calculated using the following equation.
The mode group delay characteristic evaluation method according to claim 5.
Figure 2021135179
Figure 2021135179
前記ファイバパラメータ取得手順で、前記被試験光ファイバの長手方向のモードフィールド半径分布及び比屈折率差分布を、前記被試験光ファイバに試験光を入射した際に発生する後方散乱光から取得し、前記比屈折率差と予め取得しているカットオフ波長からコア半径を導出することを特徴とする、
請求項2又は3に記載のモード群遅延特性評価方法。
In the fiber parameter acquisition procedure, the mode field radius distribution and the specific refractive index difference distribution in the longitudinal direction of the optical fiber under test are acquired from the backward scattered light generated when the test light is incident on the optical fiber under test. The core radius is derived from the specific refractive index difference and the cutoff wavelength acquired in advance.
The mode group delay characteristic evaluation method according to claim 2 or 3.
光ファイバのモード群遅延特性を評価するモード群遅延特性評価装置であって、
光ファイバのコアとクラッドの屈折率差が小さい場合に、光ファイバのモード群遅延特性の近似解がコアの群屈折率、クラッドの群屈折率、正規化周波数及び正規化伝搬定数を用いて導出できることに基づいて、被試験光ファイバにおける伝搬モードのモード群遅延特性を算出するモード群遅延算出手段を備えることを特徴とする、
モード群遅延特性評価装置。
A mode group delay characteristic evaluation device that evaluates the mode group delay characteristics of optical fibers.
When the difference in refractive index between the core and the clad of the optical fiber is small, the approximate solution of the mode group delay characteristic of the optical fiber is derived using the group refractive index of the core, the group refractive index of the clad, the normalized frequency and the normalized propagation constant. It is characterized by comprising a mode group delay calculation means for calculating the mode group delay characteristic of the propagation mode in the optical fiber to be tested based on what can be done.
Mode group delay characteristic evaluation device.
JP2020031816A 2020-02-27 2020-02-27 Method and apparatus for evaluating mode group delay characteristics of optical fiber Active JP7270913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031816A JP7270913B2 (en) 2020-02-27 2020-02-27 Method and apparatus for evaluating mode group delay characteristics of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031816A JP7270913B2 (en) 2020-02-27 2020-02-27 Method and apparatus for evaluating mode group delay characteristics of optical fiber

Publications (2)

Publication Number Publication Date
JP2021135179A true JP2021135179A (en) 2021-09-13
JP7270913B2 JP7270913B2 (en) 2023-05-11

Family

ID=77660960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031816A Active JP7270913B2 (en) 2020-02-27 2020-02-27 Method and apparatus for evaluating mode group delay characteristics of optical fiber

Country Status (1)

Country Link
JP (1) JP7270913B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942490A (en) * 2022-04-01 2022-08-26 中国科学院软件研究所 A Design Method of Multi-clad Step Fiber Based on Eigenmatrix
WO2023021914A1 (en) 2021-08-20 2023-02-23 株式会社神戸製鋼所 Trajectory plan creation assistance method, trajectory plan creation assistance device, additive manufacturing method, additive manufacturing device, and program
WO2024069792A1 (en) * 2022-09-28 2024-04-04 日本電信電話株式会社 Device and method for acquiring mode-field diameter of optical fiber
WO2024176436A1 (en) * 2023-02-24 2024-08-29 日本電信電話株式会社 Optical fiber group delay characteristic test device and optical fiber group delay characteristic test method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315841A (en) * 1976-07-26 1978-02-14 Western Electric Co Circular symmetry optical fiber waveguide path
JPS5533623A (en) * 1978-09-01 1980-03-08 Nippon Telegr & Teleph Corp <Ntt> Measurement of break standardizing frequency of refractive index distribution type and transmission mode of optical fiber
JP2000347057A (en) * 1999-03-31 2000-12-15 Fujikura Ltd Multimode optical fiber having function to remove higher order mode
US20130029038A1 (en) * 2010-12-21 2013-01-31 Scott Robertson Bickham Method of making a multimode optical fiber
JP2014052632A (en) * 2012-09-05 2014-03-20 Ofs Fitel Llc Multiple lp mode fiber designed for mode division multiplex transmission
JP2014509411A (en) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー Step index, minority mode fiber design for spatial multiplexing
JP2014513318A (en) * 2011-03-05 2014-05-29 アルカテル−ルーセント Optical fiber having a tubular optical core
JP2015212757A (en) * 2014-05-02 2015-11-26 日本電信電話株式会社 Number mode optical fiber and design method of number mode optical fiber
JP2017181730A (en) * 2016-03-30 2017-10-05 株式会社フジクラ Optical fiber
WO2017217334A1 (en) * 2016-06-16 2017-12-21 日本電信電話株式会社 Optical fiber and optical transmission system
JP2019105530A (en) * 2017-12-12 2019-06-27 日本電信電話株式会社 Method and apparatus for testing mode delay time difference distribution

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315841A (en) * 1976-07-26 1978-02-14 Western Electric Co Circular symmetry optical fiber waveguide path
JPS5533623A (en) * 1978-09-01 1980-03-08 Nippon Telegr & Teleph Corp <Ntt> Measurement of break standardizing frequency of refractive index distribution type and transmission mode of optical fiber
JP2000347057A (en) * 1999-03-31 2000-12-15 Fujikura Ltd Multimode optical fiber having function to remove higher order mode
US20130029038A1 (en) * 2010-12-21 2013-01-31 Scott Robertson Bickham Method of making a multimode optical fiber
JP2014509411A (en) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー Step index, minority mode fiber design for spatial multiplexing
JP2014513318A (en) * 2011-03-05 2014-05-29 アルカテル−ルーセント Optical fiber having a tubular optical core
JP2014052632A (en) * 2012-09-05 2014-03-20 Ofs Fitel Llc Multiple lp mode fiber designed for mode division multiplex transmission
JP2016128936A (en) * 2012-09-05 2016-07-14 オーエフエス ファイテル,エルエルシー Multiple lp mode fiber designed for mode division multiplex transmission
JP2015212757A (en) * 2014-05-02 2015-11-26 日本電信電話株式会社 Number mode optical fiber and design method of number mode optical fiber
JP2017181730A (en) * 2016-03-30 2017-10-05 株式会社フジクラ Optical fiber
WO2017217334A1 (en) * 2016-06-16 2017-12-21 日本電信電話株式会社 Optical fiber and optical transmission system
JP2019105530A (en) * 2017-12-12 2019-06-27 日本電信電話株式会社 Method and apparatus for testing mode delay time difference distribution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Weakly Guiding Fibers", APPLIED OPTICS, vol. 10, no. 10, JPN6023005854, October 1971 (1971-10-01), pages 2252 - 2258, ISSN: 0005033633 *
"光ファイバ構造と設計(1)−光ファイバの導波理論と特性", 光学, vol. 第18巻、第11号, JPN7023000648, November 1989 (1989-11-01), JP, pages 641 - 650, ISSN: 0004988614 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021914A1 (en) 2021-08-20 2023-02-23 株式会社神戸製鋼所 Trajectory plan creation assistance method, trajectory plan creation assistance device, additive manufacturing method, additive manufacturing device, and program
CN114942490A (en) * 2022-04-01 2022-08-26 中国科学院软件研究所 A Design Method of Multi-clad Step Fiber Based on Eigenmatrix
CN114942490B (en) * 2022-04-01 2023-03-24 中国科学院软件研究所 Multi-cladding step optical fiber design method based on characteristic matrix
WO2024069792A1 (en) * 2022-09-28 2024-04-04 日本電信電話株式会社 Device and method for acquiring mode-field diameter of optical fiber
WO2024176436A1 (en) * 2023-02-24 2024-08-29 日本電信電話株式会社 Optical fiber group delay characteristic test device and optical fiber group delay characteristic test method

Also Published As

Publication number Publication date
JP7270913B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP2021135179A (en) Optical fiber mode group delay characteristic evaluation method and evaluation device
JP7322960B2 (en) Optical fiber testing method and optical fiber testing apparatus
JP6769944B2 (en) Mode delay time difference distribution test method and test equipment
JP6429287B2 (en) Measuring method, measuring apparatus, and measuring program
JP4938431B2 (en) Optical fiber temperature / strain measurement method
WO2020075343A1 (en) Optical fiber testing method and optical fiber testing device
Wu et al. Low-loss multi-mode anti-resonant hollow-core fibers
Nakamura et al. Loss measurement of each mode in few-mode fiber links with crosstalk-inducing points based on optical time domain reflectometry
JP7624651B2 (en) Optical characteristic measuring method and optical characteristic measuring device
JP5709115B1 (en) Evaluation method and evaluation apparatus
US12320725B2 (en) Several mode fiber test method and several mode fiber test device
Jin et al. Measurement of differential mode group delay in few-mode fiber with correlation optical time-domain reflectometer
US11519817B2 (en) Raman gain efficiency distribution testing method, and Raman gain efficiency distribution testing device
JP7251639B2 (en) Mode field diameter test method and test equipment
US20230288287A1 (en) Power coupling coefficient measuring method and power coupling coefficient measuring device
JP2023094677A (en) SPATIAL MODE DISPERSION MEASUREMENT DEVICE AND MEASUREMENT METHOD
JP3388497B2 (en) Characteristic evaluation method of single mode optical fiber
JP3388496B2 (en) Characteristic evaluation method of single mode optical fiber
JP7624653B2 (en) Optical characteristic measuring method and optical characteristic measuring device
JP7586329B2 (en) Apparatus, method and system for calculating power coupling coefficient between cores
JP7536238B2 (en) Optical characteristic measuring method and optical characteristic measuring device
Osório et al. Optical sensing with antiresonant capillary fibers
JP4795896B2 (en) Evaluation method and apparatus for group delay time difference of optical fiber
Cancellieri Time-dispersion measurement in optical fibre by near-and far-field scanning technique
Nakamura et al. Estimating modal group delay characteristics of few-mode fibres from fibre parameters

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7270913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350