[go: up one dir, main page]

JP2021121983A - Operation method of redox flow battery - Google Patents

Operation method of redox flow battery Download PDF

Info

Publication number
JP2021121983A
JP2021121983A JP2018088930A JP2018088930A JP2021121983A JP 2021121983 A JP2021121983 A JP 2021121983A JP 2018088930 A JP2018088930 A JP 2018088930A JP 2018088930 A JP2018088930 A JP 2018088930A JP 2021121983 A JP2021121983 A JP 2021121983A
Authority
JP
Japan
Prior art keywords
electrode layer
electrolytic solution
redox flow
electrode
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018088930A
Other languages
Japanese (ja)
Inventor
健三 塙
Kenzo Hanawa
健三 塙
雅敏 市川
Masatoshi Ichikawa
雅敏 市川
恵三 井関
Keizo Izeki
恵三 井関
イルワンシャ
Irwansyah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2018088930A priority Critical patent/JP2021121983A/en
Priority to PCT/JP2019/018061 priority patent/WO2019212053A1/en
Publication of JP2021121983A publication Critical patent/JP2021121983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

To provide an operation method of a redox flow battery, capable of improving output performance (cell resistance) even without controlling the temperature of an electrolyte during operation of the redox flow battery to a low temperature.SOLUTION: An operation method of a redox flow battery of the present invention is an operation method of a redox flow battery 200 that includes a carbon nanotube-containing electrode layer 2 on an electrode. In the operation method, charging and discharging is performed in the state where the temperature of an electrolyte is set to 40°C or above and 90°C or below, the electrolyte being fed to the electrode layer 2 where an electrode reaction is carried out.SELECTED DRAWING: Figure 1

Description

本発明は、レドックスフロー電池の運転方法に関し、詳しくはカーボンナノチューブを含む電極層を電極に備えるレドックスフロー電池の運転方法に関する。 The present invention relates to a method of operating a redox flow battery, and more particularly to a method of operating a redox flow battery having an electrode layer containing carbon nanotubes in the electrode.

大容量蓄電池としてレドックスフロー電池が知られている。レドックスフロー電池は、一般に電解液を隔てるイオン交換膜と、そのイオン交換膜の両側に設けられた電極とを有する。そして、酸化還元により価数が変化する活物質である金属イオンを含有する電解液を使用して、一方の電極上で酸化反応、他方の電極上で還元反応を同時に進めることにより充放電を行うことができる。 A redox flow battery is known as a large-capacity storage battery. A redox flow battery generally has an ion exchange membrane that separates an electrolytic solution and electrodes provided on both sides of the ion exchange membrane. Then, using an electrolytic solution containing a metal ion, which is an active material whose valence changes due to redox, charging and discharging are performed by simultaneously proceeding with an oxidation reaction on one electrode and a reduction reaction on the other electrode. be able to.

ところで、定置型蓄電池は、コストを考慮した上で導入の可否が判断されるのが一般的である。レドックスフロー電池のコストは、基本的に電流密度で決まる。流せる電流密度は、セル抵抗によって決まる。セル抵抗は、電流が流れるすべての要素において発生する抵抗値等を総合した結果として定まる数値であって、例えば、集電板(双極板)の電気抵抗、電極の電気抵抗、電極と集電板の接触抵抗、電極表面での反応抵抗、電解液中でのイオン移動抵抗、イオン交換膜中のプロトン移動抵抗等が主なものである。電極表面での反応抵抗は、特に制御し難い。電極表面では、金属イオン(活物質)の価数が変化するときに電子を電極に渡す(あるいは電極から受け取る)が、その後、価数が変化した金属イオン(を含む電解液)が電極表面から速やかに取り除かれる必要がある。そのため、レドックスフロー電池は、均一かつ一方向に一定の速度で電解液が流れるように構成することが好ましい。また、電極表面での電子の授受は、一種の化学反応であるので、反応性を高める観点からすれば、温度は高い方が好ましいと考えられる。 By the way, it is general that whether or not a stationary storage battery can be introduced is determined in consideration of cost. The cost of a redox flow battery is basically determined by the current density. The current density that can be passed is determined by the cell resistance. The cell resistance is a numerical value determined as a result of totaling the resistance values generated in all the elements through which the current flows. For example, the electric resistance of the current collector plate (bipolar plate), the electric resistance of the electrode, and the electrode and the current collector plate. The main components are the contact resistance of the electrode, the reaction resistance on the electrode surface, the ion transfer resistance in the electrolytic solution, the proton transfer resistance in the ion exchange membrane, and the like. The reaction resistance on the electrode surface is particularly difficult to control. On the electrode surface, electrons are passed to (or received from) the electrode when the valence of the metal ion (active material) changes, but then the metal ion (containing electrolytic solution) whose valence has changed is transferred from the electrode surface. It needs to be removed promptly. Therefore, it is preferable that the redox flow battery is configured so that the electrolytic solution flows uniformly and at a constant speed in one direction. Further, since the transfer of electrons on the electrode surface is a kind of chemical reaction, it is considered that a higher temperature is preferable from the viewpoint of enhancing the reactivity.

しかしながら、従来のレドックスフロー電池においては、運転時の電解液の温度上昇を抑制することが一般的であった。例えば、特許文献1には、電池セルに供給する電解液を収容する電解液タンクの構成を連通された2以上のユニット容器とすることで放熱性能を上げ、電解液の温度上昇を抑制したレドックスフロー電池が提案されている。また、特許文献2及び3には、電解液の温度上昇を抑制するために電池セルの枠体に電解液の流路の一部となるスリットを設け、スリットの溝形状やスリットの曲部の曲率半径を規定することにより、電解液の熱を放熱させるレドックスフロー電池が提案されている。 However, in the conventional redox flow battery, it is common to suppress the temperature rise of the electrolytic solution during operation. For example, in Patent Document 1, a redox that improves heat dissipation performance and suppresses an increase in the temperature of the electrolytic solution by forming two or more unit containers in which the electrolytic solution tank for accommodating the electrolytic solution supplied to the battery cell is communicated. Flow batteries have been proposed. Further, in Patent Documents 2 and 3, in order to suppress the temperature rise of the electrolytic solution, a slit that becomes a part of the flow path of the electrolytic solution is provided in the frame of the battery cell, and the groove shape of the slit and the curved portion of the slit are provided. A redox flow battery that dissipates the heat of the electrolytic solution by defining the radius of curvature has been proposed.

特開2000−30729号公報Japanese Unexamined Patent Publication No. 2000-30729 特開2017−41452号公報Japanese Unexamined Patent Publication No. 2017-41452 特開2016−207669号公報Japanese Unexamined Patent Publication No. 2016-207669 国際公開第2015/072452号International Publication No. 2015/074252 国際公開第2016/159348号International Publication No. 2016/159348

電池セルを構成する電極としてカーボンファイバーを用いたレドックスフロー電池では、電極表面での反応性を改善するために、OH基やCOOH基等の官能基がカーボンファイバーに付与されるのが一般的である。しかしながら、カーボンファイバーを用いた電極表面においては、OH基やCOOH基等の官能基を介して反応が行われるので、電解液の温度が40℃を超えるとOH基、COOH基の分解が起こり始め、反応性が落ちてしまう。そのため、レドックスフロー電池では、特許文献1〜3にも記載されているように、運転時の電解液温度を極力下げるべきだと考えられていた。 In a redox flow battery using carbon fiber as an electrode constituting a battery cell, a functional group such as an OH group or a COOH group is generally added to the carbon fiber in order to improve the reactivity on the electrode surface. be. However, since the reaction is carried out via functional groups such as OH groups and COOH groups on the electrode surface using carbon fibers, decomposition of OH groups and COOH groups begins to occur when the temperature of the electrolytic solution exceeds 40 ° C. , The reactivity drops. Therefore, in the redox flow battery, as described in Patent Documents 1 to 3, it has been considered that the temperature of the electrolytic solution during operation should be lowered as much as possible.

本出願人は、特許文献4において、起電力が高く、充電容量の大きいレドックスフロー電池の電極材料として、平均繊維径が100nm以上の第1カーボンナノチューブと平均径30nm以下の第2のカーボンナノチューブとを含む電極材料を提案した。そして、特許文献4でも、特許文献1〜3と同様、レドックスフロー電池の運転時の電解液の温度を極力下げるべきとの知見の下で、実施例で示したレドックスフロー電池の運転時における電解液の温度は、いずれも15〜25℃の範囲の低温に温度制御していた。
しかしながら、レドックスフロー電池の運転時における電解液の温度を低温に制御するのは、冷却装置や制御装置等の設置が必要であり、装置構成が複雑になる他、装置コストが高くなるなどの問題がある。
According to Patent Document 4, the applicant uses first carbon nanotubes having an average fiber diameter of 100 nm or more and second carbon nanotubes having an average fiber diameter of 30 nm or less as electrode materials for a redox flow battery having a high electromotive force and a large charging capacity. The electrode material containing the above was proposed. Further, in Patent Document 4, as in Patent Documents 1 to 3, the electrolysis during operation of the redox flow battery shown in the examples is based on the knowledge that the temperature of the electrolytic solution during operation of the redox flow battery should be lowered as much as possible. The temperature of the liquid was controlled to a low temperature in the range of 15 to 25 ° C.
However, controlling the temperature of the electrolyte during operation of the redox flow battery to a low temperature requires the installation of a cooling device, a control device, etc., which complicates the device configuration and increases the device cost. There is.

本発明は、レドックスフロー電池の運転時における電解液の温度を低温に制御しなくても、出力性能(セル抵抗)を向上させることが可能なレドックスフロー電池の運転方法を提供することを目的とする。 An object of the present invention is to provide a method for operating a redox flow battery, which can improve output performance (cell resistance) without controlling the temperature of the electrolytic solution to a low temperature during operation of the redox flow battery. do.

本発明者らは、レドックスフロー電池に用いる、カーボンナノチューブを含む電極について検討した。その結果、カーボンナノチューブを用いた電極は非常に緻密な構造であるが、電極の表面は化学的に極めて安定であり、強酸である電解液中で温度が上がっても反応性において全く問題がなく、むしろバナジウムの価数変化の反応は温度の上昇とともに反応速度が速くなること、つまり、電極に向かって送り込まれる電解液の温度をある程度高く制御することで、電極での反応性を高め、出力性能を向上できることがわかった。
そこで、本発明では、カーボンナノチューブを含む電極層を電極に用い、電極層に向かって送り込まれる電解液の温度を40℃以上90℃以下とすることにより、電極層で極めて高い反応性を確保できることを見出し、本発明を完成するに至った。具体的には、本発明は、以下のものを提供する。
The present inventors have investigated electrodes containing carbon nanotubes used in redox flow batteries. As a result, the electrode using carbon nanotubes has a very dense structure, but the surface of the electrode is chemically extremely stable, and there is no problem in reactivity even if the temperature rises in the electrolytic solution which is a strong acid. Rather, the reaction of the change in the valence of vanadium increases the reaction rate as the temperature rises, that is, by controlling the temperature of the electrolyte sent toward the electrode to a certain degree, the reactivity at the electrode is increased and the output is increased. It turned out that the performance can be improved.
Therefore, in the present invention, an extremely high reactivity can be ensured in the electrode layer by using an electrode layer containing carbon nanotubes for the electrode and setting the temperature of the electrolytic solution sent toward the electrode layer to 40 ° C. or higher and 90 ° C. or lower. The present invention has been completed. Specifically, the present invention provides the following.

(1) 本発明は、カーボンナノチューブを含む電極層を電極に備えるレドックスフロー電池の運転方法であって、電極反応が行われる前記電極層に向かって送り込まれる電解液の温度を40℃以上90℃以下に設定して充放電を行う、レドックスフロー電池の運転方法に適用される。 (1) The present invention is a method of operating a redox flow battery in which an electrode layer containing carbon nanotubes is provided on an electrode, and the temperature of an electrolytic solution sent toward the electrode layer in which an electrode reaction is carried out is 40 ° C. or higher and 90 ° C. or higher. It is applied to the operation method of the redox flow battery, which is set as follows and charged / discharged.

(2) 上記(1)に記載のレドックスフロー電池の運転方法において、前記カーボンナノチューブの含有量が、電極層に含まれるカーボンの合計100質量部に対し、30質量部以上である構成であってもよい。 (2) In the operation method of the redox flow battery according to (1) above, the content of the carbon nanotubes is 30 parts by mass or more with respect to 100 parts by mass of the total carbon contained in the electrode layer. May be good.

(3) 上記(1)又は(2)のいずれかに記載のレドックスフロー電池の運転方法において、前記電極層は、平均繊維径が100〜1000nmの第1のカーボンナノチューブと平均繊維径が30nm以下の第2のカーボンナノチューブとを含む構成であってもよい。 (3) In the operation method of the redox flow battery according to any one of (1) or (2) above, the electrode layer is the first carbon nanotube having an average fiber diameter of 100 to 1000 nm and an average fiber diameter of 30 nm or less. The configuration may include the second carbon nanotubes of the above.

(4) 上記(3)に記載のレドックスフロー電池の運転方法において、前記第2のカーボンナノチューブは、前記第1のカーボンナノチューブと前記第2のカーボンナノチューブの合計100質量部に対し、0.05〜30質量部である構成であってもよい。 (4) In the operation method of the redox flow battery according to the above (3), the second carbon nanotube is 0.05 with respect to a total of 100 parts by mass of the first carbon nanotube and the second carbon nanotube. The configuration may be ~ 30 parts by mass.

本発明によれば、レドックスフロー電池の運転時における電解液の温度を低温に制御しなくても、出力性能(セル抵抗)を向上させることが可能なレドックスフロー電池の運転方法を提供することができる。 According to the present invention, it is possible to provide a method of operating a redox flow battery capable of improving output performance (cell resistance) without controlling the temperature of the electrolytic solution to a low temperature during operation of the redox flow battery. can.

本発明が適用されるレドックスフロー電池を構成する電池セルを模式的に示した断面図である。It is sectional drawing which shows typically the battery cell which comprises the redox flow battery to which this invention is applied. 図1に示す電池セルの液流入部に形成された流路(溝)の構成がわかるように模式的に示した図である。It is the figure which showed typically so that the structure of the flow path (groove) formed in the liquid inflow part of the battery cell shown in FIG. 1 can be understood. 実施例並びに比較例1及び2において、電解液温度に対するセル抵抗をプロットしたときの図である。It is a figure when the cell resistance with respect to the electrolytic solution temperature is plotted in Example and Comparative Examples 1 and 2.

以下、本発明を適用したレドックスフロー電池の運転方法について説明する。 Hereinafter, a method of operating the redox flow battery to which the present invention is applied will be described.

本実施形態に係るレドックスフロー電池の運転方法は、レドックスフロー電池を構成する電池セルの電極として、カーボンナノチューブを含む電極層を含むものであって、電極反応が行われる電極層に向かって送り込まれる電解液の温度(以下、単に「電解液の温度」と言うことがある。)が40℃以上90℃以下になるように温度設定して充放電を行うことを特徴とする。 The operation method of the redox flow battery according to the present embodiment includes an electrode layer containing carbon nanotubes as an electrode of a battery cell constituting the redox flow battery, and is fed toward the electrode layer in which the electrode reaction is performed. It is characterized in that charging and discharging are performed by setting the temperature so that the temperature of the electrolytic solution (hereinafter, may be simply referred to as “the temperature of the electrolytic solution”) is 40 ° C. or higher and 90 ° C. or lower.

カーボンナノチューブを電極層に用いた場合には、後述する実施例で示すように、電解液の温度が高いほど、セル抵抗は低下することが明らかになった。したがって、電解液の温度を40℃以上90℃以下に設定して充放電を行うことにより、電解液の温度が40℃未満である場合に比べ、電極表面で電子を授受する化学反応を速やかに進行させ、出力性能を向上させることができる。電解液の温度が40℃未満であると、反応速度が低下する傾向があり、十分な出力が得られない。一方、電解液の温度が90℃を超えると、電解液が蒸発したり、電解液の温度を上げるための加熱装置へ多くの電力を供給する必要がある等の点から好ましくない。これらの点から、電解液の温度は、好ましくは60℃以上90℃以下、より好ましくは70℃以上90℃以下、さらに好ましくは80℃以上90℃以下である。なお、レドックスフロー電池の構成部材として、経済的な理由から十分な耐熱性を有する材料を使用できない場合には、電解液の上限温度は、90℃以下の範囲でできるだけ高い方に設定することが好ましい。 When carbon nanotubes were used for the electrode layer, it was clarified that the higher the temperature of the electrolytic solution, the lower the cell resistance, as shown in Examples described later. Therefore, by setting the temperature of the electrolytic solution to 40 ° C. or higher and 90 ° C. or lower and performing charging / discharging, the chemical reaction that transfers electrons on the electrode surface can be performed more quickly than when the temperature of the electrolytic solution is lower than 40 ° C. It can be advanced and the output performance can be improved. If the temperature of the electrolytic solution is less than 40 ° C., the reaction rate tends to decrease, and sufficient output cannot be obtained. On the other hand, if the temperature of the electrolytic solution exceeds 90 ° C., the electrolytic solution evaporates, and it is necessary to supply a large amount of electric power to the heating device for raising the temperature of the electrolytic solution, which is not preferable. From these points, the temperature of the electrolytic solution is preferably 60 ° C. or higher and 90 ° C. or lower, more preferably 70 ° C. or higher and 90 ° C. or lower, and further preferably 80 ° C. or higher and 90 ° C. or lower. If a material having sufficient heat resistance cannot be used as a component of the redox flow battery for economic reasons, the upper limit temperature of the electrolytic solution may be set as high as possible within the range of 90 ° C. or lower. preferable.

なお、カーボンナノチューブが一定量含まれていれば、電極反応は、カーボンナノチューブの表面で、選択的にもしくは優先的になされることが分かった。したがって、導電性の向上やより大きな空隙の付与等のために、グラファイトやカーボンファイバーなどの他のカーボン材料を含ませることに問題はない。カーボンナノチューブの含有量は、電極層に含まれるカーボンの合計100質量部に対し、好ましくは30質量部以上、より好ましくは50質量部以上である。複数の層が積層された電極の場合、いずれか一つの層が、カーボンナノチューブを一定量含んでいればよい。 It was found that if a certain amount of carbon nanotubes was contained, the electrode reaction was selectively or preferentially performed on the surface of the carbon nanotubes. Therefore, there is no problem in including other carbon materials such as graphite and carbon fiber in order to improve the conductivity and impart larger voids. The content of the carbon nanotubes is preferably 30 parts by mass or more, more preferably 50 parts by mass or more, based on 100 parts by mass of the total carbon contained in the electrode layer. In the case of an electrode in which a plurality of layers are laminated, any one layer may contain a certain amount of carbon nanotubes.

電解液の温度を制御する方法としては、特に制限はされず、電池セルの放電反応に伴う発熱や自己放電に伴う発熱、内部抵抗による発熱等を熱源として利用したり、他の装置からの排熱等を熱源として利用したりしてもよい。従来公知の加熱ヒータ等の加熱手段を利用することもできる。加熱のための電力供給や新たな部材設置の必要がない点で、電池セル内での発熱や排熱を利用することが好ましい。電池セルや、電解液タンク及びその配管等からの放熱を抑制するために、これらの構成部材の一部を断熱層で構成したり、断熱材で覆うようにしてもよい。なお、従来は、電解液の温度が上昇しすぎないように、電池セルを構成する部材に放熱機能を持たせたり、冷却機能を持たせたりしていた。本発明においてはその必要がなく、そのメリットは大きいが、冷却装置等を設置してもよいことは言うまでもない。 The method for controlling the temperature of the electrolytic solution is not particularly limited, and heat generated by the discharge reaction of the battery cell, heat generated by self-discharge, heat generated by internal resistance, etc. can be used as a heat source or discharged from other devices. Heat or the like may be used as a heat source. It is also possible to use a heating means such as a conventionally known heating heater. It is preferable to utilize heat generation and exhaust heat in the battery cell because it is not necessary to supply electric power for heating or install new members. In order to suppress heat dissipation from the battery cell, the electrolytic solution tank, its piping, and the like, a part of these constituent members may be formed of a heat insulating layer or covered with a heat insulating material. Conventionally, the members constituting the battery cell have been provided with a heat dissipation function or a cooling function so that the temperature of the electrolytic solution does not rise too much. In the present invention, this is not necessary and the merit is great, but it goes without saying that a cooling device or the like may be installed.

また、電解液の温度を制御する方法としては、電解液の温度を検出する温度検出手段を設け、電解液の温度を監視してもよいし、温度測定手段の検出結果に基づき熱供給量を制御するようにしてもよい。電解液の温度検出手段としては、特に制限されず、熱電対等の接触式温度センサや、放射温度計等の非接触式温度センサ等が挙げられる。温度測定手段の設置箇所は、電解液タンクや、電解液を電池セルに供給する配管(例えば、流入管や流出管)等が挙げられる。温度を測定する箇所は、電解液の反応が起こる電極層の表面またはその近傍位置で電解液温度を測定することが好ましいが、実際の充放電時に電極層での電解液の温度を正確に測定するのは難しいため、便宜上、電池セル、より厳密には電極層に電解液を送り込む(供給する)ために電解セルに接続されている配管、あるいは電解液を排出するために電池セルに接続されている配管(例えば、流入管や流出管)に設置することが、温度センサの設置のしやすさの観点から好ましい。特に電極層に近い流入管の流入口や流出管の流出口に熱電対を設置して測定することが好ましい。 Further, as a method of controlling the temperature of the electrolytic solution, a temperature detecting means for detecting the temperature of the electrolytic solution may be provided to monitor the temperature of the electrolytic solution, or the heat supply amount may be determined based on the detection result of the temperature measuring means. It may be controlled. The temperature detecting means of the electrolytic solution is not particularly limited, and examples thereof include a contact type temperature sensor such as a thermoelectric pair and a non-contact type temperature sensor such as a radiation thermometer. Examples of the location where the temperature measuring means is installed include an electrolytic solution tank and a pipe (for example, an inflow pipe and an outflow pipe) for supplying the electrolytic solution to the battery cell. The temperature is preferably measured at or near the surface of the electrode layer where the reaction of the electrolytic solution occurs, but the temperature of the electrolytic solution in the electrode layer is accurately measured during actual charging and discharging. For convenience, it is connected to the battery cell, more precisely the piping connected to the electrolytic cell to feed (supply) the electrolyte to the electrode layer, or to the battery cell to drain the electrolyte. It is preferable to install the temperature sensor in the installed pipe (for example, inflow pipe or outflow pipe) from the viewpoint of ease of installation of the temperature sensor. In particular, it is preferable to install a thermocouple at the inflow port of the inflow pipe or the outflow port of the outflow pipe near the electrode layer for measurement.

ところで、カーボンナノチューブの平均繊維径は、一般に1μm以下と、従来のカーボンファイバーの平均繊維径よりも小さいため、多孔質シートとして電極層に形成した場合にシート内の空孔の大きさも小さくなり、電解液の通液性が悪くなるため、圧力損失が生じやすくなる。そこで、電極の構成を、電極層と、通液された電解液を電極層に流入させる液流入部と、電極層を通過した電解液を流出させる液流出部材とで構成することにより、電解液が電極層を厚み方向に通過するようになるため、圧力損失を極力低減することができる。 By the way, since the average fiber diameter of carbon nanotubes is generally 1 μm or less, which is smaller than the average fiber diameter of conventional carbon fibers, the size of pores in the sheet becomes smaller when formed in the electrode layer as a porous sheet. Since the permeability of the electrolytic solution is deteriorated, pressure loss is likely to occur. Therefore, the electrode is composed of an electrode layer, a liquid inflow portion that allows the passed electrolytic solution to flow into the electrode layer, and a liquid outflow member that causes the electrolytic solution that has passed through the electrode layer to flow out. Will pass through the electrode layer in the thickness direction, so that the pressure loss can be reduced as much as possible.

以下、カーボンナノチューブを含む電極層を電極に備える、レドックスフロー電池の要部である電池セルの構成について具体的に説明する。図1は、レドックスフロー電池を構成する電池セル(単セル)の断面を示す模式図である。図2は、レドックスフロー電池を構成する電池セルの液流入部の一態様を模式的に示した平面図である。なお、図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。また、以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the configuration of a battery cell, which is a main part of a redox flow battery, having an electrode layer containing carbon nanotubes on the electrode will be specifically described. FIG. 1 is a schematic view showing a cross section of a battery cell (single cell) constituting a redox flow battery. FIG. 2 is a plan view schematically showing an aspect of a liquid inflow portion of a battery cell constituting a redox flow battery. It should be noted that the drawings may be shown by enlarging the featured portions for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios and the like of each component may be different from the actual ones. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

本実施形態のレドックスフロー電池200は、電池セル20と、電解液を収容する電解液タンク(図示せず)と、電解液タンクから電池セル20内に電解液を流入させるための配管である流入管11と、電池セル20から電解液を流出させて電解液タンクに戻すための配管である流出管12と、電解液タンクから電池セル20への電解液の供給を制御する制御部(図示せず)とで主に構成されている。
電池セル20は、電極層2と、通液された電解液を電極層2に流入する液流入部41を備える集電板40と、電極層2を挟んで、集電板40とは反対側に配置され、電極層2を通過した電解液を流出する液流出部材3とを備えている。電解液は、後述するように、図示しない電解液タンクから流入管11を介して液流入部41に供給され(例えば、ポンプ輸送)、電極層2、液流出部材3を通って、流出管12を介して電解液タンクに戻されて循環する。ここで、液流入部41は、流路42と、電極層2と集電板40との間に配置される多孔質シートからなる液流入部材43とで構成することが好ましい。この場合、液流入部材43は電解液(活物質)の価数を変化させる反応性は必要ないが、電子導電性がなければならない。
The redox flow battery 200 of the present embodiment is a battery cell 20, an electrolytic solution tank (not shown) for accommodating the electrolytic solution, and an inflow pipe for flowing the electrolytic solution from the electrolytic solution tank into the battery cell 20. A pipe 11 and an outflow pipe 12 which is a pipe for flowing out the electrolytic solution from the battery cell 20 and returning it to the electrolytic solution tank, and a control unit (shown) that controls the supply of the electrolytic solution from the electrolytic solution tank to the battery cell 20. It is mainly composed of.
The battery cell 20 has an electrode layer 2, a current collector plate 40 having a liquid inflow portion 41 for flowing the passed electrolytic solution into the electrode layer 2, and an electrode layer 2 on the opposite side of the current collector plate 40. It is provided with a liquid outflow member 3 that flows out the electrolytic solution that has passed through the electrode layer 2. As will be described later, the electrolytic solution is supplied from an electrolytic solution tank (not shown) to the liquid inflow section 41 via the inflow pipe 11 (for example, pump transportation), passes through the electrode layer 2 and the liquid outflow member 3, and is passed through the outflow pipe 12 It is returned to the electrolyte tank and circulated through. Here, the liquid inflow portion 41 is preferably composed of a flow path 42 and a liquid inflow member 43 made of a porous sheet arranged between the electrode layer 2 and the current collector plate 40. In this case, the liquid inflow member 43 does not need to have reactivity to change the valence of the electrolytic solution (active material), but must have electron conductivity.

なお、図1に示すレドックスフロー電池200を構成する電池セル20は、2枚の集電板40、40と、イオン交換膜30と、これらの間に設けられた一対の電極(図1では、液流入部材43と電極層2と液流出部材3とで構成した場合を示す。)を有する単セルで構成した場合を示したが、これらの単セルが直列に複数連なり、複数対の電極を有する複数セルとして構成することもできる。また、複数セルで構成した他の実施形態のレドックスフロー電池の電池セル(図示せず)では、各単セルの正極同士および負極同士が電気的に直列に接続され、該接続が正極側集電板と負極側集電板とが表裏で一体になっている集電板(「双極板」ともいう)を備えているセル構成(積層セルまたはセルスタックともいう)のものも含む。 The battery cell 20 constituting the redox flow battery 200 shown in FIG. 1 includes two current collector plates 40 and 40, an ion exchange membrane 30, and a pair of electrodes provided between them (in FIG. 1, in FIG. 1). The case where it is composed of a single cell having a liquid inflow member 43, an electrode layer 2 and a liquid outflow member 3) is shown, but a plurality of these single cells are connected in series to form a plurality of pairs of electrodes. It can also be configured as a plurality of cells having. Further, in the battery cell (not shown) of the redox flow battery of another embodiment composed of a plurality of cells, the positive electrode and the negative electrode of each single cell are electrically connected in series, and the connection is the positive electrode side current collection. It also includes a cell configuration (also referred to as a laminated cell or a cell stack) having a current collector plate (also referred to as a “bipolar plate”) in which a plate and a current collector plate on the negative electrode side are integrated on the front and back sides.

以下、レドックスフロー電池200を構成する電池セル20における、電極層2、液流出部材3、イオン交換膜30、集電板40、液流入部41についてそれぞれ説明する。 Hereinafter, the electrode layer 2, the liquid outflow member 3, the ion exchange membrane 30, the current collector plate 40, and the liquid inflow portion 41 in the battery cell 20 constituting the redox flow battery 200 will be described.

[電極層]
電極層2は、カーボンナノチューブを含む。カーボンナノチューブの平均繊維径は1μm以下が好ましく、より好ましくは1〜300nm、さらに好ましくは10〜200nm、より好適には15〜150nmである。
[Electrode layer]
The electrode layer 2 contains carbon nanotubes. The average fiber diameter of the carbon nanotubes is preferably 1 μm or less, more preferably 1 to 300 nm, still more preferably 10 to 200 nm, and more preferably 15 to 150 nm.

電極層2に含まれるカーボンナノチューブとしては、平均繊維径が異なる複数の種類のカーボンナノチューブを混合する構成としてもよい。その場合、例えば、平均繊維径100〜1000nmの第1のカーボンナノチューブと、平均繊維径30nm以下の第2のカーボンナノチューブとを含むことが好ましい。 The carbon nanotubes contained in the electrode layer 2 may be configured by mixing a plurality of types of carbon nanotubes having different average fiber diameters. In that case, for example, it is preferable to include a first carbon nanotube having an average fiber diameter of 100 to 1000 nm and a second carbon nanotube having an average fiber diameter of 30 nm or less.

なお、電極層2が平均繊維径の異なる複数の種類のカーボンナノチューブを混合する構成である場合、この電極層2を透過型電子顕微鏡で観察し、同一視野において繊維径が50nmを超えるものを第1のカーボンナノチューブ、繊維径が50nm未満のものを第2のカーボンナノチューブとみなして、それぞれ前述の通りに平均繊維径を算出する。 When the electrode layer 2 is composed of a mixture of a plurality of types of carbon nanotubes having different average fiber diameters, the electrode layer 2 is observed with a transmission electron microscope, and the one having a fiber diameter of more than 50 nm in the same field of view is the first. The carbon nanotube of 1 and the one having a fiber diameter of less than 50 nm are regarded as the second carbon nanotube, and the average fiber diameter is calculated as described above.

第1のカーボンナノチューブの平均繊維径は、好ましくは100〜300nm、より好ましくは100〜200nm、さらに好ましくは100〜150nmである。平均繊維長は、好ましくは0.1〜30μm、より好ましくは0.5〜25μm、さらに好ましくは0.5〜20μmである。 The average fiber diameter of the first carbon nanotubes is preferably 100 to 300 nm, more preferably 100 to 200 nm, and even more preferably 100 to 150 nm. The average fiber length is preferably 0.1 to 30 μm, more preferably 0.5 to 25 μm, and even more preferably 0.5 to 20 μm.

第2のカーボンナノチューブの平均繊維径は、好ましくは1〜30nm、より好ましくは5〜25nm、さらに好ましくは5〜20nmである。平均繊維長は、好ましくは0.1〜10μm、より好ましくは0.2〜8μm、さらに好ましくは0.2〜5μmである。 The average fiber diameter of the second carbon nanotube is preferably 1 to 30 nm, more preferably 5 to 25 nm, and even more preferably 5 to 20 nm. The average fiber length is preferably 0.1 to 10 μm, more preferably 0.2 to 8 μm, and even more preferably 0.2 to 5 μm.

また、第1のカーボンナノチューブ及び第2のカーボンナノチューブの平均繊維径が上述の範囲であると、電極層2が高い強度及び高い導電性を維持できる構造となる。これは、第1のカーボンナノチューブが幹となり、第2のカーボンナノチューブが、複数の第1のカーボンナノチューブ間に枝状に懸架されるためである。例えば、第1のカーボンナノチューブの平均繊維径が100nm以上であると、幹が安定となり電極の構造に割れが生じにくくなり、十分な強度を保つことが容易になる。一方で、第2のカーボンナノチューブの平均繊維径が30nm以下であると、第2のカーボンナノチューブが十分に第1のカーボンナノチューブに絡まることができ、導電性が向上する。すなわち、このような平均繊維径の異なる2種類のカーボンナノチューブを含む電極層2を有する電極を用いることで、レドックスフロー電池のセル抵抗を低くし、また電気容量を大きくすることができる。 Further, when the average fiber diameters of the first carbon nanotubes and the second carbon nanotubes are in the above range, the electrode layer 2 has a structure capable of maintaining high strength and high conductivity. This is because the first carbon nanotube becomes a trunk and the second carbon nanotube is suspended in a branch shape between the plurality of first carbon nanotubes. For example, when the average fiber diameter of the first carbon nanotube is 100 nm or more, the trunk becomes stable, the structure of the electrode is less likely to crack, and it becomes easy to maintain sufficient strength. On the other hand, when the average fiber diameter of the second carbon nanotube is 30 nm or less, the second carbon nanotube can be sufficiently entangled with the first carbon nanotube, and the conductivity is improved. That is, by using an electrode having an electrode layer 2 containing two types of carbon nanotubes having different average fiber diameters, the cell resistance of the redox flow battery can be lowered and the electric capacity can be increased.

第2のカーボンナノチューブの含有割合は、第1のカーボンナノチューブと第2のカーボンナノチューブの合計100質量部に対し、好ましくは0.05〜30質量部、より好ましくは0.1〜20質量部、さらに好ましくは1〜15質量部である。第2のカーボンナノチューブがこの範囲で含まれれば、電極が高い強度及び高い導電性を維持できる構造となる。これは、第2のカーボンナノチューブがこの範囲で含まれていることで、第1のカーボンナノチューブが導電の主材料として機能し、さらに第2のカーボンナノチューブが、それぞれの第1のカーボンナノチューブ間を電気的に繋ぎ、導電を効率的にサポートするためと考えられる。また、第1のカーボンナノチューブ及び第2のカーボンナノチューブの割合が上記範囲である場合、第2のカーボンナノチューブの少なくとも一部が、2本以上の第1のカーボンナノチューブに跨った構造や、第2のカーボンナノチューブの少なくとも一部が、2本以上の第1のカーボンナノチューブと交差するような構造が形成されやすくなる。このため、上述の通り、セル抵抗の低下、電気容量の増大等の効果が期待できる。 The content ratio of the second carbon nanotubes is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the total of the first carbon nanotubes and the second carbon nanotubes. More preferably, it is 1 to 15 parts by mass. If the second carbon nanotube is included in this range, the electrode has a structure capable of maintaining high strength and high conductivity. This is because the second carbon nanotubes are included in this range, so that the first carbon nanotubes function as the main conductive material, and the second carbon nanotubes are placed between the first carbon nanotubes. It is thought that this is to connect electrically and efficiently support conductivity. When the ratio of the first carbon nanotubes and the second carbon nanotubes is within the above range, at least a part of the second carbon nanotubes may have a structure straddling two or more first carbon nanotubes or a second carbon nanotube. It becomes easy to form a structure in which at least a part of the carbon nanotubes of No. 1 intersects with two or more first carbon nanotubes. Therefore, as described above, effects such as a decrease in cell resistance and an increase in electric capacity can be expected.

また、電極層2は、カーボンナノチューブ以外の導電性材料を含んでもよい。具体的には、導電性ポリマー、グラファイト、導電性のカーボンファイバー等が挙げられる。耐酸性、耐酸化性、及びカーボンナノチューブとの混合しやすさから導電性のカーボンファイバーを含むことが好ましい。カーボンファイバーの体積抵抗率は、好ましくは10Ω・cm以下であり、より好ましくは10Ω・cm以下である。カーボンファイバーの体積抵抗率は、日本工業規格 JIS R7609:2007に記載の方法により測定することができる。電極層2は、カーボンナノチューブとそれ以外の導電性材料とが占める領域を除いた空間の割合(空隙率)を70%以上90%以下とすると、電極の導電性と電解液の通気性を両立することができる。 Further, the electrode layer 2 may contain a conductive material other than carbon nanotubes. Specific examples thereof include conductive polymers, graphite, and conductive carbon fibers. It is preferable to contain conductive carbon fiber from the viewpoint of acid resistance, oxidation resistance, and ease of mixing with carbon nanotubes. The volume resistivity of the carbon fibers is preferably not more than 10 7 Ω · cm, more preferably not more than 10 3 Ω · cm. The volume resistivity of carbon fiber can be measured by the method described in Japanese Industrial Standard JIS R7609: 2007. When the ratio (porosity) of the space excluding the region occupied by the carbon nanotubes and other conductive materials of the electrode layer 2 is 70% or more and 90% or less, both the conductivity of the electrode and the air permeability of the electrolytic solution are compatible. can do.

電極層2が含むカーボンファイバーの平均繊維径は、1μmより大きいことが好ましい。カーボンナノチューブよりも平均繊維径が太いカーボンファイバーを用いると、電極層2内により大きな空隙を形成することができ、電解液を電極に通液させた時の圧力損失を小さくすることができる。この場合、電解液を電極に通液させた時の圧力損失を小さくするとともに、良好な導電性を備えることができ、好ましい。カーボンファイバーの平均繊維径は、好ましくは2〜100μm、より好ましくは5〜30μmである。平均繊維長は、好ましくは0.01〜20mm、より好ましくは0.05〜8mm、さらに好ましくは0.1〜1mmである。 The average fiber diameter of the carbon fibers contained in the electrode layer 2 is preferably larger than 1 μm. When carbon fibers having a larger average fiber diameter than carbon nanotubes are used, larger voids can be formed in the electrode layer 2, and the pressure loss when the electrolytic solution is passed through the electrodes can be reduced. In this case, it is preferable that the pressure loss when the electrolytic solution is passed through the electrode can be reduced and good conductivity can be provided. The average fiber diameter of the carbon fiber is preferably 2 to 100 μm, more preferably 5 to 30 μm. The average fiber length is preferably 0.01 to 20 mm, more preferably 0.05 to 8 mm, still more preferably 0.1 to 1 mm.

電極層2が含むカーボンファイバーの含有量は、好ましくは電極層の70質量%以下、より好ましくは50質量%以下である。この場合、電解液を電極に通液させた時の圧力損失が小さいレドックスフロー電池の電極を得ることができる点で好ましい。電極層2の表面酸素量は、酸素原子と炭素原子の原子比(O/C)とし、X線光電子分光法(ESCA)により測定される。 The content of the carbon fiber contained in the electrode layer 2 is preferably 70% by mass or less, more preferably 50% by mass or less of the electrode layer. In this case, it is preferable to obtain an electrode of a redox flow battery having a small pressure loss when the electrolytic solution is passed through the electrode. The amount of surface oxygen of the electrode layer 2 is an atomic ratio (O / C) of oxygen atoms to carbon atoms, and is measured by X-ray photoelectron spectroscopy (ESCA).

電極層2の電池セル20への組み込み前の厚みは、好ましくは0.01mm〜1mm、より好ましくは0.01mm〜0.8mm、さらに好ましくは0.02〜0.5mmである。電極層2の電池セル20への組み込み前の厚みが0.01mm以上であれば、導電性が良好になるので好ましい。電極層2の電池セル20への組み込み前の厚みが1mm以下であれば、カーボンナノチューブを用いた場合であっても通液抵抗が大きくなり過ぎず、良好な通液性が得られるので好ましい。なお、電池への組み込みの際に電極層2は両面から圧縮されるため、その厚さは上記よりも小さくなる。 The thickness of the electrode layer 2 before being incorporated into the battery cell 20 is preferably 0.01 mm to 1 mm, more preferably 0.01 mm to 0.8 mm, and further preferably 0.02 to 0.5 mm. When the thickness of the electrode layer 2 before being incorporated into the battery cell 20 is 0.01 mm or more, the conductivity is good, which is preferable. When the thickness of the electrode layer 2 before being incorporated into the battery cell 20 is 1 mm or less, the liquid passage resistance does not become too large even when carbon nanotubes are used, and good liquid permeability can be obtained, which is preferable. Since the electrode layer 2 is compressed from both sides when it is incorporated into the battery, its thickness is smaller than the above.

以下、電極層2の製造方法について説明する。電極層2は、あらかじめカーボンナノチューブを含む分散液を調製しておいて、濾過による分散媒の除去、もしくは塗布、スピンキャスト、スプレー法等を行った後に分散媒を留去することによりシート状に成形することができる。分散液は大量に使用するので安全性、耐環境負荷を考慮して水を使うのが好ましい。 Hereinafter, a method for manufacturing the electrode layer 2 will be described. The electrode layer 2 is formed into a sheet by preparing a dispersion liquid containing carbon nanotubes in advance, removing the dispersion medium by filtration, or performing coating, spin casting, spraying, etc., and then distilling off the dispersion medium. Can be molded. Since a large amount of dispersion liquid is used, it is preferable to use water in consideration of safety and environmental load resistance.

カーボンナノチューブを含む分散液を調製する方法は特に限定されない。例えば、ボールミル、ペイントシェーカー、超音波ホモジナイザー、ジェットミル等を用いることができる。カーボンナノチューブの損傷を抑えつつカーボンナノチューブが均一に分散できることから湿式ジェットミルが好ましい。湿式ジェットミルによる分散を行う前に、湿式分散機等を用いて予備的な混合を行ってもよい。 The method for preparing the dispersion liquid containing the carbon nanotubes is not particularly limited. For example, a ball mill, a paint shaker, an ultrasonic homogenizer, a jet mill and the like can be used. A wet jet mill is preferable because the carbon nanotubes can be uniformly dispersed while suppressing damage to the carbon nanotubes. Preliminary mixing may be carried out using a wet disperser or the like before the dispersion is carried out by a wet jet mill.

なお、電極層2は、平均繊維径が異なる複数の種類のカーボンナノチューブ及び/又はカーボンファイバーを含む場合、分散媒に平均繊維径が異なる複数の種類のカーボンナノチューブ及び/又はカーボンファイバーを加え、前述の通りに分散液を調製し、成形することができる。 When the electrode layer 2 contains a plurality of types of carbon nanotubes and / or carbon fibers having different average fiber diameters, a plurality of types of carbon nanotubes and / or carbon fibers having different average fiber diameters are added to the dispersion medium as described above. The dispersion can be prepared and molded according to the above.

カーボンナノチューブを含む分散液を調製するとき、分散剤を加えるとカーボンナノチューブが均一に混合しやすくなる。分散剤としては公知のものを用いてもよいが、水溶性導電性ポリマーはカーボンナノチューブの分散剤として極めて優れた特性を発揮する。また、カーボンファイバーは、簡便であることから超音波処理によってカーボンナノチューブの分散液に分散させることが好ましい。 When preparing a dispersion liquid containing carbon nanotubes, adding a dispersant facilitates uniform mixing of the carbon nanotubes. Although known dispersants may be used, the water-soluble conductive polymer exhibits extremely excellent properties as a dispersant for carbon nanotubes. Further, since the carbon fiber is simple, it is preferable to disperse it in a dispersion liquid of carbon nanotubes by ultrasonic treatment.

水溶性導電性高分子は、カーボンナノチューブの表面を親水化することができ、電極層2をシート化するための分散液を得る時に界面活性剤の働きをすると考えられる。カーボンナノチューブを分散液中で均一に分散でき、空孔率が均一な電極層2を得ることができる。水溶性導電性高分子としては、スルホ基を有する導電性高分子が好ましく、具体的にはポリイソチアナフテンスルホン酸を挙げることができる。 It is considered that the water-soluble conductive polymer can make the surface of the carbon nanotubes hydrophilic and acts as a surfactant when obtaining a dispersion liquid for forming the electrode layer 2 into a sheet. The carbon nanotubes can be uniformly dispersed in the dispersion liquid, and the electrode layer 2 having a uniform porosity can be obtained. As the water-soluble conductive polymer, a conductive polymer having a sulfo group is preferable, and specific examples thereof include polyisothianaphthenic acid.

水溶性導電性高分子の添加量は、カーボンナノチューブ100質量部に対して、好ましくは2質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。 The amount of the water-soluble conductive polymer added is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass or less with respect to 100 parts by mass of the carbon nanotube.

[液流出部材]
液流出部材3は、電極層2を通過した電解液が、電極10の外部に流出するために設けられた部材である。液流出部材3を通過した電解液は、流出管12に流出し、図示しない電解液タンクに戻される。
[Liquid outflow member]
The liquid outflow member 3 is a member provided for allowing the electrolytic solution that has passed through the electrode layer 2 to flow out to the outside of the electrode 10. The electrolytic solution that has passed through the liquid outflow member 3 flows out to the outflow pipe 12 and is returned to an electrolytic solution tank (not shown).

液流出部材3は、電極層2と比較して、電解液が流れやすい構成を有していればよい。液流出部材3は、例えば特許文献5に記載したような液流出部材と同じように構成することができる。 The liquid outflow member 3 may have a structure in which the electrolytic solution can easily flow as compared with the electrode layer 2. The liquid outflow member 3 can be configured in the same manner as the liquid outflow member described in, for example, Patent Document 5.

また、液流出部材3の厚みは、厚くするほど液流出部材3を電解液が通過するために必要な圧力をさらに低減することができる点で好ましい。液流出部材3の電池セル20への組み込み後の厚みは、好ましくは0.08mm以上、より好ましくは0.1mm〜0.7mm、さらに好ましくは0.15〜0.5mmである。液流出部材3の電池セル20への組み込み後の厚みが0.08mm以上であれば電解液を通過させるために必要な圧力を低減することができるので好ましい。液流出部材3の電池セル20への組み込み後の厚みが0.7mm以下であれば、電極層2とイオン交換膜30との距離が大きくなり過ぎず(イオンの移動抵抗が大きくなり過ぎず)、セル抵抗の増加を抑制できるので好ましい。 Further, the thickness of the liquid outflow member 3 is preferable because the thicker the thickness, the more the pressure required for the electrolytic solution to pass through the liquid outflow member 3 can be further reduced. The thickness of the liquid outflow member 3 after being incorporated into the battery cell 20 is preferably 0.08 mm or more, more preferably 0.1 mm to 0.7 mm, and further preferably 0.15 to 0.5 mm. It is preferable that the thickness of the liquid outflow member 3 after being incorporated into the battery cell 20 is 0.08 mm or more because the pressure required for passing the electrolytic solution can be reduced. If the thickness of the liquid outflow member 3 after being incorporated into the battery cell 20 is 0.7 mm or less, the distance between the electrode layer 2 and the ion exchange membrane 30 does not become too large (the ion movement resistance does not become too large). , It is preferable because the increase in cell resistance can be suppressed.

また、電極層2を通過後の電解液は、酸化反応又は還元反応が生じた後の電解液が占める割合が高い。このように、液流出部材3が電解液を速やかに流出することで、電極層2の近傍から価数が変化した後のイオンを効率的に除去できるため、反応性を高めることができる。例えば、活物質としてバナジウムを含む電解液を用いる場合は、充電過程では、正極ではV4+がV5+に、負極ではV3+がV2+に変化する。そのため、この反応後のイオン(V5+及びV2+)を効率的に除去することで、電極層2に速やかに反応前のイオン(V4+及びV3+)を供給することができ、反応前後のイオンが効率的に置換され反応効率を高めることができる。放電過程ではイオンの価数変化は逆となるが、充電過程と同様に反応前後のイオンが効率的に置換され反応効率を高めることができる。 Further, the electrolytic solution after passing through the electrode layer 2 has a high proportion of the electrolytic solution after the oxidation reaction or the reduction reaction occurs. As described above, the liquid outflow member 3 rapidly outflows the electrolytic solution, so that the ions after the valence changes can be efficiently removed from the vicinity of the electrode layer 2, so that the reactivity can be enhanced. For example, when an electrolytic solution containing vanadium is used as the active material, V 4+ changes to V 5+ at the positive electrode and V 3+ changes to V 2+ at the negative electrode during the charging process. Therefore, by efficiently removing the ions (V 5+ and V 2+ ) after the reaction, the ions (V 4+ and V 3+ ) before the reaction can be quickly supplied to the electrode layer 2 before and after the reaction. Ions can be efficiently replaced to increase reaction efficiency. In the discharge process, the change in the valence of the ions is reversed, but the ions before and after the reaction are efficiently replaced as in the charging process, and the reaction efficiency can be improved.

液流出部材3は、多孔質部材、例えば多孔質シートからなることが好ましい。液流出部材3が多孔質シートからなることで、液流出部材3が電極層2とイオン交換膜30の間の応力の緩衝材として機能する。そのため、イオン交換膜30に傷等が生じることを抑制でき、且つ電極層2を安定に支持することができる。 The liquid outflow member 3 is preferably made of a porous member, for example, a porous sheet. Since the liquid outflow member 3 is made of a porous sheet, the liquid outflow member 3 functions as a cushioning material for stress between the electrode layer 2 and the ion exchange membrane 30. Therefore, it is possible to suppress the occurrence of scratches or the like on the ion exchange membrane 30, and it is possible to stably support the electrode layer 2.

多孔質性シートは、空隙を有するスポンジ状の部材でも、繊維が絡み合ってなる部材でもよい。例えば、比較的長い繊維を織った織物、繊維を織らずに絡み合わせたフェルト、比較的短い繊維を漉いてシート状にしたペーパー等を用いることができる。多孔質シートが、繊維からなる場合、その平均繊維径は1μmより大きい繊維からなることが好ましい。多孔質シートの平均繊維径が1μm以上であれば、多孔質シート内の電解液の通液性を十分確保することができる。なお、電池への組み込みの際に液流出部材3は、両面から圧縮されるため、その厚さは上記よりも小さくなる。 The porous sheet may be a sponge-like member having voids or a member formed by entwining fibers. For example, a woven fabric in which relatively long fibers are woven, felt in which fibers are entwined without being woven, paper in which relatively short fibers are squeezed into a sheet, or the like can be used. When the porous sheet is made of fibers, it is preferable that the average fiber diameter is made of fibers larger than 1 μm. When the average fiber diameter of the porous sheet is 1 μm or more, the liquid permeability of the electrolytic solution in the porous sheet can be sufficiently ensured. Since the liquid outflow member 3 is compressed from both sides when it is incorporated into the battery, its thickness is smaller than the above.

多孔質シートは電解液で腐食しないことが好ましい。具体的には、レドックスフロー電池は、酸性の溶液を用いることが多い。そのため、多孔質シートは、耐酸性を有することが好ましい。また多孔質シートは反応により酸化することも考えられるため、耐酸化性を有することが好ましい。耐酸性又は耐酸化性を有するとは、使用後の多孔質シートが形状を維持している状態を指す。 It is preferable that the porous sheet is not corroded by the electrolytic solution. Specifically, the redox flow battery often uses an acidic solution. Therefore, the porous sheet preferably has acid resistance. Further, since the porous sheet may be oxidized by the reaction, it is preferable that the porous sheet has oxidation resistance. Having acid resistance or oxidation resistance refers to a state in which the porous sheet after use maintains its shape.

また、この多孔質シートは、導電性を有することが好ましい。ここで、導電性とは、体積抵抗率が、好ましくは10Ω・cm以下であり、より好ましくは10Ω・cm以下程度の導電性を意味する。多孔質シートが導電性を有すれば、液流出部材3内の電気伝導性を高めることができる。例えば、導電性を有する材料からなる繊維を用いて多孔質シートを形成する場合は、耐酸性及び耐酸化性のある金属や合金からなる繊維や、カーボンファイバーを用いることができる。 Moreover, it is preferable that this porous sheet has conductivity. Here, conductivity and the volume resistivity is preferably not more than 10 7 Ω · cm, more preferably a degree of conductivity 10 3 Ω · cm or less. If the porous sheet has conductivity, the electrical conductivity in the liquid outflow member 3 can be enhanced. For example, when forming a porous sheet using fibers made of a conductive material, fibers made of a metal or alloy having acid resistance and oxidation resistance, or carbon fibers can be used.

[イオン交換膜]
イオン交換膜30は、公知の陽イオン交換膜を用いることができる。具体的には、スルホ基を有するパーフルオロカーボン重合体、スルホ基を有する炭化水素系高分子化合物、リン酸等の無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体等が挙げられる。これらのうち、スルホ基を有するパーフルオロカーボン重合体が好ましく、ナフィオン(登録商標)がより好ましい。
[Ion exchange membrane]
As the ion exchange membrane 30, a known cation exchange membrane can be used. Specifically, a perfluorocarbon polymer having a sulfo group, a hydrocarbon polymer compound having a sulfo group, a polymer compound doped with an inorganic acid such as phosphoric acid, and a part of which is substituted with a proton conductive functional group. Examples thereof include organic / inorganic hybrid polymers obtained by impregnating a polymer matrix with a phosphoric acid solution or a sulfuric acid solution. Of these, a perfluorocarbon polymer having a sulfo group is preferable, and Nafion (registered trademark) is more preferable.

[集電板]
集電板40は、電極層2に対し電子を授受する集電体の役割を有し、レドックスフロー電池の電極を構成する部材である。集電板40は、通常、板状であり、公知の素材を用いることができ、材質としては、例えば炭素を含有する導電性材料を用いることができる。具体的には、黒鉛とポリオレフィン等の熱可塑性樹脂とからなる導電性プラスチック、又は黒鉛とエポキシ樹脂等の熱硬化性樹脂が挙げられる。これらのうち、板状にプレス成型できることを考えると、黒鉛と熱可塑性樹脂とを混練成形した成形材を用いることが好ましい。アセチレンブラックのように導電性の高いカーボンブラックを混ぜてもよい。
[Current collector plate]
The current collector plate 40 has a role of a current collector that transfers electrons to and from the electrode layer 2, and is a member that constitutes an electrode of a redox flow battery. The current collector plate 40 is usually plate-shaped, and a known material can be used. As the material, for example, a conductive material containing carbon can be used. Specific examples thereof include conductive plastics made of graphite and thermoplastic resins such as polyolefins, and thermosetting resins such as graphite and epoxy resins. Of these, considering that it can be press-molded into a plate shape, it is preferable to use a molding material obtained by kneading and molding graphite and a thermoplastic resin. Carbon black having high conductivity such as acetylene black may be mixed.

[液流入部]
液流入部41は、流入管11を通して流入口42cから通液された電解液が、電極層2に流入するために設けられた部分である。ここで液流入部41は、流路42と液流入部材43の他、図2で示すような外枠42aも含む。
[Liquid inflow part]
The liquid inflow portion 41 is a portion provided for allowing the electrolytic solution passed from the inflow port 42c through the inflow pipe 11 to flow into the electrode layer 2. Here, the liquid inflow portion 41 includes the outer frame 42a as shown in FIG. 2 in addition to the flow path 42 and the liquid inflow member 43.

液流入部41の具体的態様は、例えば、図1に示されるように、集電板の凹部に形成された溝からなる流路42と、流路42(42d、42e)に沿って流れてきた電解液を電極層全面に広げるための電子伝導性がある液流入部材43とから構成されることが好ましい。液流入部材43には、液流出部材3と同じ多孔質シートと同じものを使うこともできるし、同様の特性を持つ違うものを使うこともできる。また図2に示したような流路を形成する外枠42aと支持部材42bは、電極層2と集電板40の間で電子の授受を容易にするため導電性を有することが好ましい。外枠42aと支持部材42bは、集電板と同じ材質のものを使うことができる。また集電板と一体化していても良く、外枠42aと支持部材42bを形成するために、集電板40に溝を形成することにより流路42d、42eを形成しても良い。 A specific embodiment of the liquid inflow portion 41 is, for example, as shown in FIG. 1, flowing along a flow path 42 formed of a groove formed in a recess of a current collector plate and a flow path 42 (42d, 42e). It is preferably composed of a liquid inflow member 43 having electron conductivity for spreading the electrolytic solution over the entire surface of the electrode layer. As the liquid inflow member 43, the same porous sheet as the liquid outflow member 3 may be used, or a different material having the same characteristics may be used. Further, the outer frame 42a and the support member 42b forming the flow path as shown in FIG. 2 are preferably conductive in order to facilitate the transfer of electrons between the electrode layer 2 and the current collector plate 40. The outer frame 42a and the support member 42b can be made of the same material as the current collector plate. Further, it may be integrated with the current collector plate, and in order to form the outer frame 42a and the support member 42b, the flow paths 42d and 42e may be formed by forming a groove in the current collector plate 40.

液流入部41では、電極層2と比較して、電解液が流れやすい構成を有することが好ましい。液流入部41は、例えば特許文献5に記載したような液流入部と同じように構成することができる。 It is preferable that the liquid inflow portion 41 has a structure in which the electrolytic solution easily flows as compared with the electrode layer 2. The liquid inflow section 41 can be configured in the same manner as the liquid inflow section as described in Patent Document 5, for example.

液流入部材43の電池セル20への組み込み後の厚みは、好ましくは0.08mm以上、より好ましくは0.1mm〜0.7mm、さらに好ましくは0.15〜0.5mmである。液流入部材43の電池セル20への組み込み後の厚みが0.08mm以上であれば電解液を全面に広げるために通過させるために必要な圧力を低減することができるので好ましい。液流入部材43の電池セル20への組み込み後の厚みが0.7mm以下であれば、液流入部43の厚みが厚くなり過ぎず、セル全体を小さくできるので好ましい。なお、電池セル20への組み込みの際に、液流入部材43は両面から圧縮されるため、その厚さは上記よりも小さくなる。 The thickness of the liquid inflow member 43 after being incorporated into the battery cell 20 is preferably 0.08 mm or more, more preferably 0.1 mm to 0.7 mm, still more preferably 0.15 to 0.5 mm. When the thickness of the liquid inflow member 43 after being incorporated into the battery cell 20 is 0.08 mm or more, the pressure required for passing the electrolytic solution to spread over the entire surface can be reduced, which is preferable. When the thickness of the liquid inflow member 43 after being incorporated into the battery cell 20 is 0.7 mm or less, the thickness of the liquid inflow portion 43 does not become too thick and the entire cell can be made smaller, which is preferable. Since the liquid inflow member 43 is compressed from both sides when it is incorporated into the battery cell 20, its thickness becomes smaller than the above.

また、流路42を構成する溝の形状は、電極層2への電解液の流入量の面内のばらつきを抑制することができれば、特に限定されない。例えば、溝は、図1に示すように、リブ状に形成されてもよいし、放射線状に広がるように形成されてもよい。 Further, the shape of the groove forming the flow path 42 is not particularly limited as long as the in-plane variation in the amount of the electrolytic solution flowing into the electrode layer 2 can be suppressed. For example, as shown in FIG. 1, the groove may be formed in a rib shape or may be formed so as to spread radially.

レドックスフロー電池200は、電池セル20を上述した構成とすることで、電解液の通液性の悪い電極層2を用いた場合であっても、圧力損失が少なく、高電流密度化を図ることができる。そして、このようなレドックスフロー電池においては、電池セル20の電極層2に向かって送り込まれる電解液の温度(流入口42cにおける電解液の温度)を40℃以上90℃以下に設定することで、電極層2における高い反応性を確保することができ、高電流密度化を図ることができる。 By adopting the battery cell 20 as described above, the redox flow battery 200 has a small pressure loss and a high current density even when the electrode layer 2 having poor liquid permeability of the electrolytic solution is used. Can be done. In such a redox flow battery, the temperature of the electrolytic solution sent toward the electrode layer 2 of the battery cell 20 (the temperature of the electrolytic solution at the inflow port 42c) is set to 40 ° C. or higher and 90 ° C. or lower. High reactivity in the electrode layer 2 can be ensured, and high current density can be achieved.

また、従来は、電解液の温度が上昇しすぎないように、レドックスフロー電池を構成する部材に放熱機能を持たせたり、冷却機能を持たせたりして、低温を維持するように温度制御を行っていたが、本発明においてはその必要がないため、電池構成の簡素化や電池製造コストの削減が図れるなどの効果もある。なお、本発明においても、必要に応じて、運転温度をモニターするモニター装置や、冷却装置等を設置してもよいことは言うまでもない。 Further, conventionally, the temperature control is performed so as to maintain a low temperature by giving a heat dissipation function or a cooling function to the members constituting the redox flow battery so that the temperature of the electrolytic solution does not rise too much. However, since it is not necessary in the present invention, there are also effects such as simplification of the battery configuration and reduction of the battery manufacturing cost. Needless to say, also in the present invention, a monitor device for monitoring the operating temperature, a cooling device, or the like may be installed as needed.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to a specific embodiment, and various within the scope of the gist of the present invention described in the claims. Can be transformed / changed.

以下、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, examples of the present invention will be described. The present invention is not limited to the following examples.

[実施例1]
(電極層の作製)
平均繊維径150nm、平均繊維長15μmの第1のカーボンナノチューブと、平均繊維径15nm、平均繊維長3μmの第2のカーボンナノチューブとを、第1のカーボンナノチューブと第2のカーボンナノチューブの合計100質量部に対し、それぞれ90質量部、10質量部として純水中で混合し、さらに水溶性導電性高分子であるポリイソチアナフテンスルホン酸を、第1のカーボンナノチューブと第2のカーボンナノチューブの合計100質量部に対し、1質量部加えて混合液を作製した。得られた混合液を湿式ジェットミルで処理しカーボンナノチューブの分散液を得た。この分散液にさらに、平均繊維径7μm、平均繊維長0.13mmのカーボンファイバーを、第1と第2のカーボンナノチューブ及びカーボンファイバーの合計100質量部に対し50質量部加え、マグネティックスターラーにより撹拌し分散した。この分散液を濾紙上で濾過し、濾紙とともに脱水した後、残渣をプレス機により圧縮してさらに乾燥し、カーボンナノチューブを含む電極層2を作製した。組み込み前の電極層2の平均厚みは0.4mmであった。
[Example 1]
(Preparation of electrode layer)
A first carbon nanotube having an average fiber diameter of 150 nm and an average fiber length of 15 μm and a second carbon nanotube having an average fiber diameter of 15 nm and an average fiber length of 3 μm are combined with a total of 100 masses of the first carbon nanotube and the second carbon nanotube. 90 parts by mass and 10 parts by mass of each part are mixed in pure water, and polyisotianaftensulfonic acid, which is a water-soluble conductive polymer, is added to the total of the first carbon nanotubes and the second carbon nanotubes. A mixed solution was prepared by adding 1 part by mass to 100 parts by mass. The obtained mixed liquid was treated with a wet jet mill to obtain a dispersion liquid of carbon nanotubes. To this dispersion, 50 parts by mass of carbon fibers having an average fiber diameter of 7 μm and an average fiber length of 0.13 mm were added to a total of 100 parts by mass of the first and second carbon nanotubes and carbon fibers, and the mixture was stirred with a magnetic stirrer. Distributed. This dispersion was filtered on a filter paper, dehydrated together with the filter paper, and then the residue was compressed by a press and further dried to prepare an electrode layer 2 containing carbon nanotubes. The average thickness of the electrode layer 2 before assembly was 0.4 mm.

(集電板・液流入部の作製)
集電板及び液流入部としては、特許文献5の実施例1で作製された集電板(双極板)及び液流入部と同じものを使用した。すなわち、図1のように、カーボンプラスチック成形体からなる集電板40の片面側に凹部を形成し、その凹部に、液流入部41の流路42として溝を形成し、液流入部材43として多孔質シートであるカーボンファイバーペーパー(SGLカーボン社製:39AA)を準備した。このカーボンファイバーペーパーのセル組み込み前の平均厚みは0.37mmである。
(Manufacturing of current collector plate / liquid inflow part)
As the current collector plate and the liquid inflow portion, the same current collector plate (bipolar plate) and the liquid inflow portion as in Example 1 of Patent Document 5 were used. That is, as shown in FIG. 1, a recess is formed on one side of the current collector plate 40 made of a carbon plastic molded body, and a groove is formed in the recess as a flow path 42 of the liquid inflow portion 41 to form a liquid inflow member 43. A carbon fiber paper (manufactured by SGL Carbon Co., Ltd .: 39AA), which is a porous sheet, was prepared. The average thickness of this carbon fiber paper before being incorporated into the cell is 0.37 mm.

流路42A、42Bは、図2に示すように、二つ並設されるように形成された外枠42aと、外枠42a内にリブ状に形成された支持部材42bとから構成される。具体的には、液流入部41(凹部)全体の大きさは、50mm×50mmとし、大きさ24.5mm×50mmの外枠42aが1mmの幅をあけて二つ並設される。支持部材42b上に液流入部材43を載せ、外枠42aと液流入部材43の上面が同一面となるようにした。液流入口42cは0.8mmφの孔を形成して設けた。液流入口42cに流入管11を接続し、液排出路は、図2中矢印方向で図示する排出方向となるよう、外枠42aの両側面と、二つの外枠42aの間に設けた。二つの外枠42aの間の液排出路は、前記の1mm幅の空間を利用したものである。 As shown in FIG. 2, the flow paths 42A and 42B are composed of an outer frame 42a formed so as to be arranged side by side, and a support member 42b formed in a rib shape in the outer frame 42a. Specifically, the size of the entire liquid inflow portion 41 (recess) is 50 mm × 50 mm, and two outer frames 42a having a size of 24.5 mm × 50 mm are arranged side by side with a width of 1 mm. The liquid inflow member 43 was placed on the support member 42b so that the outer frame 42a and the upper surface of the liquid inflow member 43 were flush with each other. The liquid inflow port 42c was provided by forming a hole having a diameter of 0.8 mmφ. The inflow pipe 11 is connected to the liquid inflow port 42c, and the liquid discharge path is provided between both side surfaces of the outer frame 42a and the two outer frames 42a so as to be in the discharge direction shown by the arrow in FIG. The liquid discharge path between the two outer frames 42a utilizes the above-mentioned 1 mm wide space.

(液流出部材)
液流出部材3としては、多孔質シートであるカーボンファイバーペーパー(SGL社製、GDL10AA)を準備した。このカーボンファイバーペーパーの組み込み前の平均厚みは0.25mmである。
(Liquid outflow member)
As the liquid outflow member 3, carbon fiber paper (manufactured by SGL, GDL10AA), which is a porous sheet, was prepared. The average thickness of this carbon fiber paper before assembly is 0.25 mm.

(電池の組み立て)
上述した電極層2、液流入部41(流路42、液流入部材43)が付随した集電板40、液流出部材3を用いて、集電板40上に電極(液流入部材43と電極層2と液流出部材3)を組み立てた。電極層2は、集電板40の液流入部41に対向して、24.5mm×50mmの電極層が1mmの幅をあけて並列に二つ配置した。
(Battery assembly)
Using the electrode layer 2, the current collector plate 40 to which the liquid inflow portion 41 (flow path 42, liquid inflow member 43) is attached, and the liquid outflow member 3, the electrodes (liquid inflow member 43 and electrodes) are placed on the current collector plate 40. The layer 2 and the liquid outflow member 3) were assembled. In the electrode layer 2, two 24.5 mm × 50 mm electrode layers were arranged in parallel with a width of 1 mm so as to face the liquid inflow portion 41 of the current collector plate 40.

さらに、イオン交換膜30としてナフィオンN212(登録商標、デュポン社製)を用い、上述した構成からなる二つの集電板40上に組み立てた電極をそれぞれ正極、負極として、図示しないフレーム、ガスケット、端子(集電板と外部電源との間の電力の入出力を行う部材)、押し板を介して、図1に示すような単セル構造の電池セルを有するレドックスフロー電池を組み立てた。 Further, using Nafion N212 (registered trademark, manufactured by DuPont) as the ion exchange membrane 30, the electrodes assembled on the two current collector plates 40 having the above-described configuration are used as positive and negative electrodes, respectively, and a frame, gasket, and terminal (not shown) are used. A redox flow battery having a battery cell having a single cell structure as shown in FIG. 1 was assembled via a push plate (a member that inputs and receives electric power between a current collector plate and an external power source).

このようにして組み上げたレドックスフロー電池に、電解液としてバナジウムイオン(V+3とV+4とが等モル量含まれている)濃度1.8Mの硫酸水溶液100mLを二つ用意し、電池セルに送り込む電解液を水浴に入れ水浴の温度を25℃とし、チューブポンプで電解液をそれぞれ正極と負極に送り込み、100mA/cmの電流密度で充電及び放電を繰り返し行った。カットオフ電圧は充電が1.75V、放電が1.0Vである。100mlの1.8M電解液の電池容量は、およそ計算上は5Ahである。2サイクル目は4.7Ahであった。3サイクルの充放電曲線を用いてセル抵抗を計算したところ0.72Ωcmであった。 In the redox flow battery assembled in this way, prepare two 100 mL of sulfuric acid aqueous solutions having a vanadium ion (containing equal molar amounts of V + 3 and V + 4) concentration of 1.8 M as an electrolyte and send them into the battery cell. The electrolytic solution was placed in a water bath to set the temperature of the water bath to 25 ° C., and the electrolytic solution was sent to the positive electrode and the negative electrode by a tube pump, respectively, and charging and discharging were repeated at a current density of 100 mA / cm 2. The cutoff voltage is 1.75V for charging and 1.0V for discharging. The battery capacity of 100 ml of 1.8 M electrolyte is approximately 5 Ah in calculation. The second cycle was 4.7 Ah. When the cell resistance was calculated using the charge / discharge curve of 3 cycles, it was 0.72 Ωcm 2.

また、電池セルに送り込む電解液を水浴に入れ、水浴の温度を、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃になるようにして、同様に充放電を行った。なお、上記の充放電では、電極層2付近に温度計を取り付けて電解液の温度を測定し、水浴の温度と同じになっていることを確認した。各温度で3サイクル充放電を行い3サイクル目の充放電曲線を用いてセル抵抗を算出した。セル抵抗は、カットオフ電圧に達した時間の中点の電圧を読み取り、充電曲線と放電曲線の中点電圧の差を電流密度で割ってさらに2分の1にした値である。 Further, the electrolytic solution to be sent to the battery cell is put into a water bath, and the temperature of the water bath is changed to 30 ° C., 35 ° C., 40 ° C., 45 ° C., 50 ° C., 55 ° C., 60 ° C., 65 ° C., 70 ° C., 75 ° C., 80 ° C. , 85 ° C. and 90 ° C., and charging and discharging were carried out in the same manner. In the above charge / discharge, a thermometer was attached near the electrode layer 2 to measure the temperature of the electrolytic solution, and it was confirmed that the temperature was the same as the temperature of the water bath. Three cycles of charge / discharge were performed at each temperature, and the cell resistance was calculated using the charge / discharge curve of the third cycle. The cell resistance is a value obtained by reading the midpoint voltage at the time when the cutoff voltage is reached, dividing the difference between the midpoint voltage of the charge curve and the discharge curve by the current density, and further halving it.

[比較例1]
実施例1で使用した電極層2の代わりに、表面酸素量(O/C)が0.7%であるカーボンファイバーペーパー(SGLカーボン社製:GDL10AA、平均繊維径12μm)を使用した以外は、実施例1と同様にしてレドックスフロー電池を作製し、各温度におけるセル抵抗を算出した。
[Comparative Example 1]
Instead of the electrode layer 2 used in Example 1, carbon fiber paper (manufactured by SGL Carbon Co., Ltd .: GDL10AA, average fiber diameter 12 μm) having a surface oxygen content (O / C) of 0.7% was used. A redox flow battery was produced in the same manner as in Example 1, and the cell resistance at each temperature was calculated.

[比較例2]
比較例1で使用したカーボンファイバーペーパーを、空気中、500℃で1時間焼成してから、電極に組み込んだ。これ以外は実施例1と同様にしてレドックスフロー電池を作製し、各温度におけるセル抵抗を算出した。なお、焼成後のカーボンファイバーペーパーを酸素分析したところ、表面酸素量(O/C)は1.3%であり、OH基、COOH基等の官能基が多くなっていることを確認された。
[Comparative Example 2]
The carbon fiber paper used in Comparative Example 1 was calcined in air at 500 ° C. for 1 hour, and then incorporated into the electrode. A redox flow battery was produced in the same manner as in Example 1 except for this, and the cell resistance at each temperature was calculated. When the carbon fiber paper after firing was oxygen-analyzed, it was confirmed that the surface oxygen amount (O / C) was 1.3% and that functional groups such as OH groups and COOH groups were increased.

[比較例3]
比較例1で使用したカーボンファイバーペーパーを、窒素ガス中、700℃で1時間焼成し、表面のOH基、COOH基等の官能基を揮散させてから、電極に組み込んだ。焼成後のカーボンファイバーペーパーを酸素量分析したところ、表面酸素量(O/C)は0.2%であった。これ以外は実施例1と同様にしてレドックスフロー電池を作製し、各温度におけるセル抵抗を測定したが、起電力が初めから1.8Vを超えており、全く充放電することができなかった。
[Comparative Example 3]
The carbon fiber paper used in Comparative Example 1 was fired in nitrogen gas at 700 ° C. for 1 hour to volatilize functional groups such as OH groups and COOH groups on the surface, and then incorporated into the electrode. When the oxygen content of the carbon fiber paper after firing was analyzed, the surface oxygen content (O / C) was 0.2%. Except for this, a redox flow battery was produced in the same manner as in Example 1, and the cell resistance at each temperature was measured. However, the electromotive force exceeded 1.8 V from the beginning, and charging and discharging could not be performed at all.

[結果・評価]
実施例1及び比較例1、2の測定結果を図3に示す。図3に示されるように、カーボンナノチューブを電極層に用いた実施例1では、電解液の温度40℃以上で運転した場合であっても、低セル抵抗を安定して維持でき、しかも、40℃未満で運転する場合に比べてもセル抵抗がさらに低くなっており、優れた電池特性を示すことがわかる。これに対して、表面のOH基、COOH基等の官能基が多いカーボンファイバーペーパーを電極層に用いた比較例1、2では、電解液の温度が上がるにつれて、セル抵抗が増加していることがわかる。これは、比較例1、2では、カーボンファイバーペーパー表面の反応に寄与するOH基、COOH基等の官能基が40℃以上になると分解され始め、反応性が落ちてしまうからと考えられる。また、カーボンファイバーペーパーを窒素ガス中600℃以上で焼成した比較例3では、カーボンペーパーに追加された官能基がほぼ消滅しているため、電極として機能しないと考えられる。
[Result / Evaluation]
The measurement results of Example 1 and Comparative Examples 1 and 2 are shown in FIG. As shown in FIG. 3, in Example 1 in which carbon nanotubes were used for the electrode layer, low cell resistance could be stably maintained even when the electrolytic solution was operated at a temperature of 40 ° C. or higher, and moreover, 40. It can be seen that the cell resistance is even lower than when the battery is operated at a temperature lower than ° C., and that the battery characteristics are excellent. On the other hand, in Comparative Examples 1 and 2 in which carbon fiber paper having many functional groups such as OH groups and COOH groups on the surface was used for the electrode layer, the cell resistance increased as the temperature of the electrolytic solution increased. I understand. It is considered that this is because in Comparative Examples 1 and 2, when the functional groups such as OH group and COOH group contributing to the reaction on the surface of the carbon fiber paper start to be decomposed at 40 ° C. or higher, the reactivity is lowered. Further, in Comparative Example 3 in which the carbon fiber paper was fired in nitrogen gas at 600 ° C. or higher, it is considered that the carbon fiber paper does not function as an electrode because the functional groups added to the carbon paper have almost disappeared.

なお、本実施形態では、正極活物質及び負極活物質にバナジウム(V)イオンを用いるバナジウム系レドックスフロー電池の運転方法について説明したが、これに限定されないことはいうまでもない。負極電解液及び正極電解液は、少なくとも1以上の電気化学的活性種を含む水溶液であればよい。電気化学的活性種としては、例えば、マンガン、チタン、クロム、臭素、鉄、亜鉛、セリウム、鉛等の金属イオンが挙げられる。 In the present embodiment, the operation method of the vanadium-based redox flow battery using vanadium (V) ion as the positive electrode active material and the negative electrode active material has been described, but it goes without saying that the present invention is not limited to this. The negative electrode electrolytic solution and the positive electrode electrolytic solution may be any aqueous solution containing at least one or more electrochemically active species. Examples of the electrochemically active species include metal ions such as manganese, titanium, chromium, bromine, iron, zinc, cerium and lead.

2 電極層
3 液流出部材
11 流入管
12 流出管
20 電池セル
30 イオン交換膜
40 集電板
41 液流入部
42 流路
43 液流入部材
200 レドックスフロー電池

2 Electrode layer 3 Liquid outflow member 11 Inflow pipe 12 Outflow pipe 20 Battery cell 30 Ion exchange membrane 40 Current collector 41 Liquid inflow part 42 Flow path 43 Liquid inflow member 200 Redox flow battery

Claims (4)

カーボンナノチューブを含む電極層を電極に備えるレドックスフロー電池の運転方法であって、
電極反応が行われる前記電極層に向かって送り込まれる電解液の温度を40℃以上90℃以下に設定して充放電を行う、レドックスフロー電池の運転方法。
It is a method of operating a redox flow battery having an electrode layer containing carbon nanotubes in the electrode.
A method for operating a redox flow battery, wherein charging and discharging are performed by setting the temperature of the electrolytic solution sent toward the electrode layer where the electrode reaction is performed to 40 ° C. or higher and 90 ° C. or lower.
前記カーボンナノチューブの含有量が、電極層に含まれるカーボンの合計100質量部に対し、30質量部以上である請求項1に記載のレドックスフロー電池の運転方法。 The method for operating a redox flow battery according to claim 1, wherein the content of the carbon nanotubes is 30 parts by mass or more with respect to a total of 100 parts by mass of carbon contained in the electrode layer. 前記電極層は、平均繊維径が100〜1000nmの第1のカーボンナノチューブと平均繊維径が30nm以下の第2のカーボンナノチューブとを含む、請求項1又は2のいずれか一項に記載のレドックスフロー電池の運転方法。 The redox flow according to any one of claims 1 or 2, wherein the electrode layer contains a first carbon nanotube having an average fiber diameter of 100 to 1000 nm and a second carbon nanotube having an average fiber diameter of 30 nm or less. How to operate the battery. 前記第2のカーボンナノチューブは、前記第1のカーボンナノチューブと前記第2のカーボンナノチューブの合計100質量部に対し、0.05〜30質量部である、請求項3に記載のレドックスフロー電池の運転方法。

The operation of the redox flow battery according to claim 3, wherein the second carbon nanotube is 0.05 to 30 parts by mass with respect to a total of 100 parts by mass of the first carbon nanotube and the second carbon nanotube. Method.

JP2018088930A 2018-05-02 2018-05-02 Operation method of redox flow battery Pending JP2021121983A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018088930A JP2021121983A (en) 2018-05-02 2018-05-02 Operation method of redox flow battery
PCT/JP2019/018061 WO2019212053A1 (en) 2018-05-02 2019-04-26 Operation method of redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088930A JP2021121983A (en) 2018-05-02 2018-05-02 Operation method of redox flow battery

Publications (1)

Publication Number Publication Date
JP2021121983A true JP2021121983A (en) 2021-08-26

Family

ID=68385971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018088930A Pending JP2021121983A (en) 2018-05-02 2018-05-02 Operation method of redox flow battery

Country Status (2)

Country Link
JP (1) JP2021121983A (en)
WO (1) WO2019212053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090453A1 (en) * 2021-11-22 2023-05-25 株式会社レゾナック Positive electrode mixture layer, electroconductive auxiliary agent, positive electrode mixture, and lithium ion secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955938B2 (en) * 1989-04-20 1999-10-04 東洋紡績株式会社 Carbon-based electrode materials for electrolytic cells
DE102009009357B4 (en) * 2009-02-18 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox flow battery for storing electrical energy in ionic liquids
US8628880B2 (en) * 2010-09-28 2014-01-14 Battelle Memorial Institute Redox flow batteries based on supporting solutions containing chloride
GB2503653A (en) * 2012-06-26 2014-01-08 Acal Energy Ltd Redox Battery use for polyoxometallate
US10680248B2 (en) * 2015-04-01 2020-06-09 Showa Denko K.K. Electrode material, electrode of redox flow battery, and redox flow battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090453A1 (en) * 2021-11-22 2023-05-25 株式会社レゾナック Positive electrode mixture layer, electroconductive auxiliary agent, positive electrode mixture, and lithium ion secondary battery
JPWO2023090453A1 (en) * 2021-11-22 2023-05-25
JP7448102B2 (en) 2021-11-22 2024-03-12 株式会社レゾナック Positive electrode mixture layer, conductive additive, positive electrode mixture, and lithium ion secondary battery
US12142764B2 (en) 2021-11-22 2024-11-12 Resonac Corporation Positive electrode mixture layer, conductive additive, positive electrode mixture, and lithium-ion secondary battery

Also Published As

Publication number Publication date
WO2019212053A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
Zeng et al. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields
JP6701093B2 (en) Electrodes for redox flow batteries and redox flow batteries
Duan et al. Review of bipolar plate in redox flow batteries: Materials, structures, and manufacturing
JP3203665U (en) Improved electrode for flow battery
US20180053944A1 (en) Porous Electrodes and Electrochemical Cells and Liquid Flow Batteries Therefrom
JP2018510473A (en) Porous electrode, membrane electrode assembly, electrode assembly, electrochemical cell and liquid flow battery using the same
JP6599991B2 (en) POLYMER ELECTROLYTE MEMBRANE, ELECTROCHEMICAL AND FLOW CELL CONTAINING THE SAME, METHOD FOR PRODUCING POLYMER ELECTROLYTE MEMBRANE, AND ELECTROLYTE SOLUTION FOR FLOW Batteries
JP2019160469A (en) Electrolytic solution for redox flow battery, and redox flow battery
Sodiq et al. Black pearl carbon as a catalyst for all-vanadium redox flow batteries
CN107710479A (en) Redox flow batteries electrode and redox flow battery system
US20200350597A1 (en) Electrode for redox flow battery, and redox flow battery
Seepana et al. Design and synthesis of highly stable poly (tetrafluoroethylene)-zirconium phosphate (PTFE-ZrP) ion-exchange membrane for vanadium redox flow battery (VRFB)
WO2019212053A1 (en) Operation method of redox flow battery
JP6663923B2 (en) Redox battery
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
KR101969140B1 (en) An improved electrode for Vanadium Flow Battery and the Vanadium Flow Battery comprising the same
JP2019194963A (en) Electrode of redox flow cell and manufacturing method for the same, and redox flow cell
JP6300824B2 (en) Graphite-containing electrode and related method
JP2016192255A (en) Vanadium redox battery
Lourenssen et al. Design, development, and testing of a low-concentration vanadium redox flow battery
WO2020111084A1 (en) Electrode for redox flow battery, method for manufacturing same, redox flow battery, and conductive sheet material for electrode
CN117254043A (en) Composite electrode and preparation method thereof
Kolli Optimum structure of cell components for a membrane-less iron-ion/hydrogen redox flow battery