[go: up one dir, main page]

JP2021105224A - Paper containing cellulose nanofiber - Google Patents

Paper containing cellulose nanofiber Download PDF

Info

Publication number
JP2021105224A
JP2021105224A JP2018070243A JP2018070243A JP2021105224A JP 2021105224 A JP2021105224 A JP 2021105224A JP 2018070243 A JP2018070243 A JP 2018070243A JP 2018070243 A JP2018070243 A JP 2018070243A JP 2021105224 A JP2021105224 A JP 2021105224A
Authority
JP
Japan
Prior art keywords
paper
cellulose
weight
less
chemically modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018070243A
Other languages
Japanese (ja)
Inventor
遼 外岡
Ryo Sotooka
遼 外岡
吉松 丈博
Takehiro Yoshimatsu
丈博 吉松
悠生 久永
Hisao Hisanaga
悠生 久永
宗信 神代
Munenobu Kamishiro
宗信 神代
敬介 田上
Keisuke Tagami
敬介 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2018070243A priority Critical patent/JP2021105224A/en
Priority to PCT/JP2019/014024 priority patent/WO2019189770A1/en
Publication of JP2021105224A publication Critical patent/JP2021105224A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

To provide paper with excellent strength and stiffness.SOLUTION: Paper comprises a base paper layer containing raw material pulp and cellulose nanofibers, wherein the cellulose nanofibers are mechanically defibrated and chemically modified cellulose nanofibers and the moisture content of the paper is 10 wt.% or less, when its humidity adjustment is performed under the condition of 23°C, 50±2% according to JIS P 8111.SELECTED DRAWING: None

Description

本発明はセルロースナノファイバーを含有する紙に関する。 The present invention relates to paper containing cellulose nanofibers.

セルロースナノファイバーは新素材として期待されており種々の検討がなされている。例えば、特許文献1、2には製紙時にセルロースナノファイバーを添加剤として用いることで紙の光沢度を向上させる、あるいは製紙工程における歩留を向上させることが提案されている。 Cellulose nanofibers are expected as a new material, and various studies have been conducted. For example, Patent Documents 1 and 2 propose that cellulose nanofibers are used as an additive during papermaking to improve the glossiness of paper or improve the yield in the papermaking process.

一方で紙は、印刷用紙や記録用紙等の情報記録媒体用途や包装用途等の種々の分野に使用されており、いずれの用途においても使用時や加工時に十分な強度を有することが求められている。紙の強度の中でも特にこわさに影響する因子としては、紙厚、パルプ種、紙中灰分、紙中水分等が挙げられる。紙厚が高いほどこわさが高くなり、パルプ種として剛直な機械パルプ等を使用すると紙のこわさが高くなる。また、紙中灰分が低いほどこわさが高くなり、紙中水分が低いほどこわさが高くなる。紙中水分が高くなると、水分子が紙中のセルロース繊維間に入り込み、水素結合を弱くしてしまうため、その結果紙のこわさが低下してしまう。 On the other hand, paper is used in various fields such as information recording media such as printing paper and recording paper and packaging, and it is required to have sufficient strength at the time of use and processing in any of the applications. There is. Among the strengths of paper, factors that particularly affect the stiffness include paper thickness, pulp type, ash content in paper, moisture in paper, and the like. The thicker the paper, the higher the stiffness, and when rigid mechanical pulp or the like is used as the pulp type, the stiffness of the paper increases. Further, the lower the ash content in the paper, the higher the stiffness, and the lower the water content in the paper, the higher the stiffness. When the water content in the paper becomes high, water molecules enter between the cellulose fibers in the paper and weaken the hydrogen bonds, resulting in a decrease in the stiffness of the paper.

特開2018−3215号公報JP-A-2018-3215 特開2011−74528号公報Japanese Unexamined Patent Publication No. 2011-74528

発明者らはセルロースナノファイバーを用いることで紙の強度やこわさを改善できることを着想した。しかし、特許文献1に記載の紙は化学変性されていないセルロースナノファイバーであるため強度等が十分なレベルとはいえず、引用文献2に記載の紙は紙中水分が不明であり、強度に着目した技術ではなかった。かかる事情を鑑み、本発明は、優れた強度およびこわさを有する紙を提供することを課題とする。 The inventors have come up with the idea that the strength and stiffness of paper can be improved by using cellulose nanofibers. However, since the paper described in Patent Document 1 is cellulose nanofibers that have not been chemically modified, the strength and the like cannot be said to be at a sufficient level, and the paper described in Cited Document 2 has an unknown moisture content in the paper and is not strong. It was not the technology of interest. In view of such circumstances, it is an object of the present invention to provide a paper having excellent strength and stiffness.

前記課題は以下の本発明によって解決される。
[1]原料パルプとセルロースナノファイバーを含む原紙層を備える紙であって、
前記セルロースナノファイバーが機械解繊化学変性セルロースナノファイバーであり、
JIS P 8111に従って23℃50±2%条件下で調湿した紙の含水率が10重量%以下である、紙。
[2]顔料塗工層を備える[1]に記載の紙。
[3]クリア塗工層を備える[1]または[2]に記載の紙。
[4]セルロース原料を化学変性した後に機械解繊してセルロースナノファイバーを調製する工程、および
前記セルロースナノファイバーを含む紙料を調製する工程、
を備える、[1]〜[3]のいずれかに記載の紙の製造方法。
The problem is solved by the following invention.
[1] A paper provided with a base paper layer containing raw material pulp and cellulose nanofibers.
The cellulose nanofibers are mechanically defibrated and chemically modified cellulose nanofibers.
Paper having a moisture content of 10% by weight or less, which has been conditioned according to JIS P 8111 under the conditions of 23 ° C. and 50 ± 2%.
[2] The paper according to [1], which comprises a pigment coating layer.
[3] The paper according to [1] or [2], which comprises a clear coating layer.
[4] A step of preparing cellulose nanofibers by chemically defibrating a cellulose raw material and then mechanically defibrating it, and a step of preparing a paper material containing the cellulose nanofibers.
The method for producing paper according to any one of [1] to [3].

本発明によって、優れた強度およびこわさを有する紙を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a paper having excellent strength and stiffness.

発明を実施するための態様Aspects for carrying out the invention

以下、本発明を詳細に説明する。本発明において「X〜Y」はその端値であるXおよびYを含む。 Hereinafter, the present invention will be described in detail. In the present invention, "X to Y" includes the fractional values X and Y.

1.セルロースナノファイバーを含有する紙
本発明の紙は原紙層にセルロースナノファイバーを含んでいればよい。例えば、セルロースナノファイバーは原紙層の他に顔料塗工層に含有されていてもよい。これらの層に関しては後述する。
1. 1. Paper containing cellulose nanofibers The paper of the present invention may contain cellulose nanofibers in the base paper layer. For example, cellulose nanofibers may be contained in the pigment coating layer in addition to the base paper layer. These layers will be described later.

(1)セルロースナノファイバー
セルロースナノファイバー(以下「CNF」ともいう)とはセルロース系原料を解繊することにより得られるセルロースのシングルミクロフィブリルであり、500nm未満の平均繊維径を有する。機械解繊化学変性セルロースナノファイバー(以下「機械解繊化学変性CNF」ともいう)は化学変性したセルロース系原料を機械的に解繊することにより得られるセルロースのシングルミクロフィブリルである。
(1) Cellulose Nanofibers Cellulose nanofibers (hereinafter, also referred to as “CNF”) are single microfibrils of cellulose obtained by defibrating a cellulosic raw material, and have an average fiber diameter of less than 500 nm. Mechanically defibrated and chemically modified cellulose nanofibers (hereinafter, also referred to as "mechanically defibrated and chemically modified CNF") are single microfibrils of cellulose obtained by mechanically defibrating a chemically modified cellulose-based raw material.

本発明では、濃度1%(w/v)の水分散液(すなわち、100mLの水中に1gのCNF(乾燥重量)を含む水分散液)としたときに100〜10000mPa・sのB型粘度(60rpm、20℃)を与える機械解繊化学変性CNFを用いることが好ましい。当該B型粘度は機械解繊化学変性CNFの官能基量、平均繊維長、平均繊維径等の特性を特定する指標であり、用途に合わせて適宜調整される。 In the present invention, a B-type viscosity of 100 to 10,000 mPa · s (that is, an aqueous dispersion containing 1 g of CNF (dry weight) in 100 mL of water) having a concentration of 1% (w / v) (that is, an aqueous dispersion containing 1 g of CNF (dry weight)). It is preferable to use a mechanically defibrated chemically modified CNF that gives (60 rpm, 20 ° C.). The B-type viscosity is an index for specifying characteristics such as the amount of functional groups, the average fiber length, and the average fiber diameter of the mechanically defibrated and chemically modified CNF, and is appropriately adjusted according to the application.

本発明の機械解繊化学変性CNFの水分散液のB型粘度は、公知の手法により測定することができる。例えば、東機産業社のVISCOMETER TV−10粘度計を用いて測定することができる。測定時の温度は20℃であり、ロータの回転数は60rpmである。本発明のCNFの水分散液は、チキソトロピー性を有し、撹拌しせん断応力を与えることで粘度が低下し、静置状態では粘度が上昇しゲル化するという特性を持つため、十分に撹拌した状態でB型粘度を測定することが好ましい。 The B-type viscosity of the aqueous dispersion of the mechanically defibrated and chemically modified CNF of the present invention can be measured by a known method. For example, it can be measured using a VISCOMETER TV-10 viscometer manufactured by Toki Sangyo Co., Ltd. The temperature at the time of measurement is 20 ° C., and the rotation speed of the rotor is 60 rpm. The aqueous dispersion of CNF of the present invention has thixotropy property, and has the property that the viscosity decreases by stirring and applying shear stress, and the viscosity increases and gels in the stationary state, so that the mixture is sufficiently stirred. It is preferable to measure the B-type viscosity in this state.

機械解繊化学変性CNFは、セルロース系原料を化学変性して化学変性セルロースを調製し、これを機械的に解繊することで製造できる。
1)セルロース系原料
セルロース系原料は、特に限定されないが、例えば、植物、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物に由来するものが挙げられる。植物由来のものとしては、例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)が挙げられる。本発明で用いるセルロース原料は、これらのいずれかまたは組合せであってもよいが、好ましくは植物または微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。
Mechanically defibrated chemically modified CNF can be produced by chemically modifying a cellulosic raw material to prepare chemically modified cellulose and mechanically defibrating it.
1) Cellulose-based raw materials Cellulose-based raw materials are not particularly limited, and examples thereof include those derived from plants, animals (for example, ascidians), algae, microorganisms (for example, acetobacter), and microbial products. Plant-derived materials include, for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), broadleaf unbleached kraft pulp (NBKP). LUKP), broadleaf bleached kraft pulp (LBKP), softwood unbleached sulphite pulp (NUSP), softwood bleached sulphite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, used paper, etc.). The cellulose raw material used in the present invention may be any one or a combination of these, but is preferably a cellulosic fiber derived from a plant or a microorganism, and more preferably a cellulose fiber derived from a plant.

セルロース繊維の平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は30〜60μm程度、広葉樹クラフトパルプの場合は10〜30μm程度である。その他のパルプの場合、一般的な精製を経たものの平均繊維径は50μm程度である。例えばチップ等の数cm大のものを精製した原料を用いる場合、リファイナー、ビーター等の離解機で機械的処理を行い、平均繊維径を50μm以下程度に調整することが好ましく、30μm以下程度とすることがより好ましい。 The average fiber diameter of the cellulose fibers is not particularly limited, but is about 30 to 60 μm in the case of softwood kraft pulp, which is a general pulp, and about 10 to 30 μm in the case of hardwood kraft pulp. In the case of other pulps, the average fiber diameter after undergoing general purification is about 50 μm. For example, when a raw material obtained by purifying a chip or the like having a size of several cm is used, it is preferable to perform mechanical treatment with a dissociator such as a refiner or a beater to adjust the average fiber diameter to about 50 μm or less, preferably about 30 μm or less. Is more preferable.

2)化学変性
化学変性とはセルロース系原料に官能基を導入することをいい、本発明においてはアニオン性基を導入することが好ましい。アニオン性基としてはカルボキシル基、カルボキシル基含有基、リン酸基、リン酸基含有基等の酸基が挙げられる。カルボキシル基含有基としては、−COOH基、−R−COOH(Rは炭素数が1〜3のアルキレン基)、−O−R−COOH(Rは炭素数が1〜3のアルキレン基)が挙げられる。リン酸基含有基としては、ポリリン酸基、亜リン酸基、ホスホン酸基、ポリホスホン酸基等が挙げられる。これらの酸基は反応条件によっては、塩の形態(例えばカルボキシレート基(−COOM、Mは金属原子))で導入されることもある。本発明において化学変性は、酸化またはエーテル化が好ましい。以下、これらについて詳細に説明する。
2) Chemical modification Chemical modification refers to the introduction of a functional group into a cellulosic raw material, and in the present invention, it is preferable to introduce an anionic group. Examples of the anionic group include an acid group such as a carboxyl group, a carboxyl group-containing group, a phosphoric acid group, and a phosphoric acid group-containing group. Examples of the carboxyl group-containing group include -COOH group, -R-COOH (R is an alkylene group having 1 to 3 carbon atoms), and -OR-COOH (R is an alkylene group having 1 to 3 carbon atoms). Be done. Examples of the phosphoric acid group-containing group include a polyphosphoric acid group, a phosphorous acid group, a phosphonic acid group, and a polyphosphoric acid group. Depending on the reaction conditions, these acid groups may be introduced in the form of salts (for example, carboxylate groups (-COOM, M is a metal atom)). In the present invention, the chemical denaturation is preferably oxidation or etherification. Hereinafter, these will be described in detail.

[酸化]
セルロース原料を酸化することによって酸化セルロースが得られる。酸化方法は特に限定されないが、一例として、N−オキシル化合物と、臭化物、ヨウ化物およびこれらの混合物からなる群より選択される物質との存在下で、酸化剤を用いて水中でセルロース原料を酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、アルデヒド基、カルボキシル基、およびカルボキシレート基からなる群より選ばれる基が生じる。反応時のセルロース原料の濃度は特に限定されないが、5重量%以下が好ましい。
[Oxidation]
Oxidized cellulose can be obtained by oxidizing the cellulose raw material. The oxidation method is not particularly limited, but as an example, the cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a substance selected from the group consisting of bromide, iodide and a mixture thereof. There is a way to do it. According to this method, the primary hydroxyl group at the C6 position of the glucopyranose ring on the surface of cellulose is selectively oxidized to generate a group selected from the group consisting of an aldehyde group, a carboxyl group, and a carboxylate group. The concentration of the cellulose raw material during the reaction is not particularly limited, but is preferably 5% by weight or less.

N−オキシル化合物とは、ニトロキシラジカルを発生しうる化合物である。ニトロキシルラジカルとしては例えば、2,2,6,6−テトラメチルピペリジン1−オキシル(TEMPO)が挙げられる。N−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。N−オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロースに対して、0.01mmol以上が好ましく、0.02mmol以上がより好ましい。上限は、10mmol以下が好ましく、1mmol以下がより好ましく、0.5mmol以下がさらに好ましい。従って、N−オキシル化合物の使用量は絶乾1gのセルロースに対して、0.01〜10mmolが好ましく、0.01〜1mmolがより好ましく、0.02〜0.5mmolがさらに好ましい。 The N-oxyl compound is a compound capable of generating a nitroxy radical. Examples of the nitroxyl radical include 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). As the N-oxyl compound, any compound can be used as long as it is a compound that promotes the desired oxidation reaction. The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material. For example, 0.01 mmol or more is preferable, and 0.02 mmol or more is more preferable with respect to 1 g of cellulose that has been completely dried. The upper limit is preferably 10 mmol or less, more preferably 1 mmol or less, and even more preferably 0.5 mmol or less. Therefore, the amount of the N-oxyl compound used is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and even more preferably 0.02 to 0.5 mmol with respect to 1 g of the dry cellulose.

臭化物とは臭素を含む化合物であり、例えば、水中で解離してイオン化可能な臭化アルカリ金属、例えば臭化ナトリウム等が挙げられる。また、ヨウ化物とはヨウ素を含む化合物であり、例えば、ヨウ化アルカリ金属が挙げられる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1mmol以上が好ましく、0.5mmol以上がより好ましい。当該量の上限は、100mmol以下が好ましく、10mmol以下がより好ましく、5mmol以下がさらに好ましい。従って、臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1〜100mmolが好ましく、0.1〜10mmolがより好ましく、0.5〜5mmolがさらに好ましい。 The bromide is a compound containing bromine, and examples thereof include alkali metals bromide that can be dissociated and ionized in water, such as sodium bromide. Further, the iodide is a compound containing iodine, and examples thereof include an alkali metal iodide. The amount of bromide or iodide used can be selected within the range in which the oxidation reaction can be promoted. The total amount of bromide and iodide is preferably 0.1 mmol or more, more preferably 0.5 mmol or more, based on 1 g of dry cellulose. The upper limit of the amount is preferably 100 mmol or less, more preferably 10 mmol or less, still more preferably 5 mmol or less. Therefore, the total amount of bromide and iodide is preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol, relative to 1 g of dry cellulose.

酸化剤としては、特に限定されないが例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸、これらの塩、ハロゲン酸化物、過酸化物などが挙げられる。中でも、安価で環境負荷が少ないことから、次亜ハロゲン酸またはその塩が好ましく、次亜塩素酸またはその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol以上が好ましく、1mmol以上がより好ましく、3mmol以上がさらに好ましい。当該量の上限は、500mmol以下が好ましく、50mmol以下がより好ましく、25mmol以下がさらに好ましい。従って、酸化剤の使用量は絶乾1gのセルロースに対して、0.5〜500mmolが好ましく、0.5〜50mmolがより好ましく、1〜25mmolがさらに好ましく、3〜10mmolが特に好ましい。N−オキシル化合物を用いる場合、酸化剤の使用量はN−オキシル化合物1molに対して1mol以上が好ましく、上限は40molが好ましい。従って、酸化剤の使用量はN−オキシル化合物1molに対して1〜40molが好ましい。 The oxidizing agent is not particularly limited, and examples thereof include halogens, hypochlorous acids, hypochlorous acids, perhalogenic acids, salts thereof, halogen oxides, and peroxides. Among them, hypochlorous acid or a salt thereof is preferable, hypochlorous acid or a salt thereof is more preferable, and sodium hypochlorite is further preferable because it is inexpensive and has a small environmental load. The amount of the oxidizing agent used is preferably 0.5 mmol or more, more preferably 1 mmol or more, still more preferably 3 mmol or more, based on 1 g of the dry cellulose. The upper limit of the amount is preferably 500 mmol or less, more preferably 50 mmol or less, still more preferably 25 mmol or less. Therefore, the amount of the oxidizing agent used is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and particularly preferably 3 to 10 mmol with respect to 1 g of the dry cellulose. When an N-oxyl compound is used, the amount of the oxidizing agent used is preferably 1 mol or more with respect to 1 mol of the N-oxyl compound, and the upper limit is preferably 40 mol. Therefore, the amount of the oxidizing agent used is preferably 1 to 40 mol with respect to 1 mol of the N-oxyl compound.

酸化反応時のpH、温度等の条件は特に限定されず、一般に、比較的温和な条件であっても酸化反応は効率よく進行する。反応温度は4℃以上が好ましく、15℃以上がより好ましい。当該温度の上限は40℃以下が好ましく、30℃以下がより好ましい。従って、反応温度は4〜40℃が好ましく、15〜30℃程度、すなわち室温であってもよい。反応液のpHは、8以上が好ましく、10以上がより好ましい。pHの上限は、12以下が好ましく、11以下がより好ましい。従って、反応液のpHは、好ましくは8〜12、より好ましくは10〜11程度である。通常、酸化反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する傾向にある。そのため、酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを上記の範囲に維持することが好ましい。酸化の際の反応媒体は、取扱いの容易さや、副反応が生じにくいこと等の理由から、水が好ましい。 Conditions such as pH and temperature during the oxidation reaction are not particularly limited, and in general, the oxidation reaction proceeds efficiently even under relatively mild conditions. The reaction temperature is preferably 4 ° C. or higher, more preferably 15 ° C. or higher. The upper limit of the temperature is preferably 40 ° C. or lower, more preferably 30 ° C. or lower. Therefore, the reaction temperature is preferably 4 to 40 ° C, and may be about 15 to 30 ° C, that is, room temperature. The pH of the reaction solution is preferably 8 or more, more preferably 10 or more. The upper limit of pH is preferably 12 or less, more preferably 11 or less. Therefore, the pH of the reaction solution is preferably about 8 to 12, more preferably about 10 to 11. Usually, the pH of the reaction solution tends to decrease because a carboxyl group is generated in the cellulose as the oxidation reaction progresses. Therefore, in order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution in the above range. Water is preferable as the reaction medium for oxidation because it is easy to handle and side reactions are unlikely to occur.

酸化における反応時間は、酸化の進行程度に従って適宜設定することができ、通常は0.5時間以上であり、その上限は通常は6時間以下、好ましくは4時間以下である。従って、酸化における反応時間は通常0.5〜6時間、例えば0.5〜4時間程度である。酸化は、2段階以上の反応に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 The reaction time in oxidation can be appropriately set according to the degree of progress of oxidation, and is usually 0.5 hours or more, and the upper limit thereof is usually 6 hours or less, preferably 4 hours or less. Therefore, the reaction time in oxidation is usually about 0.5 to 6 hours, for example, about 0.5 to 4 hours. Oxidation may be carried out in two or more steps. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt produced as a by-product in the first-stage reaction. Can be oxidized well.

カルボキシル化(酸化)方法の別の例として、オゾン酸化が挙げられる。この酸化反応により、セルロースを構成するグルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾン処理は通常、オゾンを含む気体とセルロース原料とを接触させることにより行われる。気体中のオゾン濃度は、50g/m以上であることが好ましい。上限は、250g/m以下であることが好ましく、220g/m以下であることがより好ましい。従って、気体中のオゾン濃度は、50〜250g/mであることが好ましく、50〜220g/mであることがより好ましい。オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1重量%以上であることが好ましく、5重量%以上であることがより好ましい。オゾン添加量の上限は、通常30重量%以下である。従って、オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1〜30重量%であることが好ましく、5〜30重量%であることがより好ましい。オゾン処理温度は、通常0℃以上であり、好ましくは20℃以上であり、上限は通常50℃以下である。従って、オゾン処理温度は、0〜50℃であることが好ましく、20〜50℃であることがより好ましい。オゾン処理時間は、通常は1分以上であり、好ましくは30分以上であり、上限は通常360分以下である。従って、オゾン処理時間は、通常は1〜360分程度であり、30〜360分程度が好ましい。オゾン処理の条件が上述の範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。 Another example of the carboxylation (oxidation) method is ozonolysis. By this oxidation reaction, the hydroxyl groups at at least the 2nd and 6th positions of the glucopyranose ring constituting the cellulose are oxidized, and the cellulose chain is decomposed. Ozone treatment is usually carried out by bringing a gas containing ozone into contact with a cellulose raw material. The ozone concentration in the gas is preferably 50 g / m 3 or more. The upper limit is preferably 250 g / m 3 or less, and more preferably 220 g / m 3 or less. Therefore, the ozone concentration in the gas is preferably 50 to 250 g / m 3, more preferably 50~220g / m 3. The amount of ozone added is preferably 0.1% by weight or more, more preferably 5% by weight or more, based on 100% by weight of the solid content of the cellulose raw material. The upper limit of the amount of ozone added is usually 30% by weight or less. Therefore, the amount of ozone added is preferably 0.1 to 30% by weight, more preferably 5 to 30% by weight, based on 100% by weight of the solid content of the cellulose raw material. The ozone treatment temperature is usually 0 ° C. or higher, preferably 20 ° C. or higher, and the upper limit is usually 50 ° C. or lower. Therefore, the ozone treatment temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C. The ozone treatment time is usually 1 minute or more, preferably 30 minutes or more, and the upper limit is usually 360 minutes or less. Therefore, the ozone treatment time is usually about 1 to 360 minutes, preferably about 30 to 360 minutes. When the ozone treatment conditions are within the above ranges, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of the oxidized cellulose becomes good.

オゾン処理されたセルロースに対しさらに、酸化剤を用いて追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが例えば、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。追酸化処理の方法としては例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、酸化剤溶液中にセルロース原料を浸漬させる方法が挙げられる。酸化セルロースナノファイバーに含まれるカルボキシル基、カルボキシレート基、アルデヒド基の量は、酸化剤の添加量、反応時間等の酸化条件をコントロールすることで調整できる。 The ozone-treated cellulose may be further subjected to an additional oxidation treatment using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine-based compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfate, and peracetic acid. Examples of the method of the additional oxidation treatment include a method of dissolving these oxidizing agents in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and immersing the cellulose raw material in the oxidizing agent solution. The amount of carboxyl group, carboxylate group, and aldehyde group contained in the cellulose oxide nanofibers can be adjusted by controlling the oxidation conditions such as the amount of the oxidizing agent added and the reaction time.

カルボキシル基量の測定方法の一例を以下に説明する。酸化セルロースの0.5重量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
カルボキシル基量〔mmol/g酸化セルロース〕=a〔mL〕×0.05/酸化セルロース重量〔g〕
An example of a method for measuring the amount of carboxyl groups will be described below. Prepare 60 mL of a 0.5 wt% slurry (aqueous dispersion) of cellulose oxide, add a 0.1 M hydrochloric acid aqueous solution to adjust the pH to 2.5, and then add a 0.05 N sodium hydroxide aqueous solution to bring the pH to 11. Measure the electrical conductivity until it becomes. It can be calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of a weak acid in which the change in electrical conductivity is gradual, using the following formula.
Amount of carboxyl groups [mmol / g cellulose oxide] = a [mL] x 0.05 / weight of cellulose oxide [g]

このようにして測定した酸化セルロース中のカルボキシル基の量は、絶乾重量に対して、0.1mmol/g以上が好ましく、0.5mmol/g以上がより好ましく、0.8mmol/g以上がさらに好ましい。当該量の上限は、3.0mmol/g以下が好ましく、2.5mmol/g以下がより好ましく、2.0mmol/g以下がさらに好ましい。従って、当該量は0.1〜3.0mmol/gが好ましく、0.5〜2.5mmol/gがより好ましく、0.8〜2.0mmol/gがさらに好ましい。 The amount of carboxyl groups in the cellulose oxide measured in this way is preferably 0.1 mmol / g or more, more preferably 0.5 mmol / g or more, and further preferably 0.8 mmol / g or more with respect to the absolute dry weight. preferable. The upper limit of the amount is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and even more preferably 2.0 mmol / g or less. Therefore, the amount is preferably 0.1 to 3.0 mmol / g, more preferably 0.5 to 2.5 mmol / g, and even more preferably 0.8 to 2.0 mmol / g.

[エーテル化]
エーテル化としては、カルボキシメチル(エーテル)化、メチル(エーテル)化、エチル(エーテル)化、シアノエチル(エーテル)化、ヒドロキシエチル(エーテル)化、ヒドロキシプロピル(エーテル)化、エチルヒドロキシエチル(エーテル)化、ヒドロキシプロピルメチル(エーテル)化などが挙げられる。この中から一例としてカルボキシメチル化の方法を以下に説明する。
[Aetherization]
As etherification, carboxymethyl (ether), methyl (ether), ethyl (ether), cyanoethyl (ether), hydroxyethyl (ether), hydroxypropyl (ether), ethylhydroxyethyl (ether) And hydroxypropylmethyl (ether) conversion. The method of carboxymethylation will be described below as an example.

カルボキシメチル化により得られるカルボキシメチル化セルロースまたはCNF中の無水グルコース単位当たりのカルボキシメチル置換度は、0.01以上が好ましく、0.05以上がより好ましく、0.10以上がさらに好ましい。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。従って、カルボキシメチル基置換度は、0.01〜0.50が好ましく、0.05〜0.40がより好ましく、0.10〜0.30がさらに好ましい。 The degree of carboxymethyl substitution per anhydrous glucose unit in the carboxymethylated cellulose or CNF obtained by carboxymethylation is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.10 or more. The upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.40 or less, and even more preferably 0.35 or less. Therefore, the degree of carboxymethyl group substitution is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, and even more preferably 0.10 to 0.30.

カルボキシメチル化方法は特に限定されないが、例えば、発底原料としてのセルロース原料をマーセル化し、その後エーテル化する方法が挙げられる。当該反応には、通常、溶媒が使用される。溶媒としては例えば、水、アルコール(例えば低級アルコール)およびこれらの混合溶媒が挙げられる。低級アルコールとしては例えば、メタノール、エタノール、N−プロピルアルコール、イソプロピルアルコール、N−ブタノール、イソブタノール、第3級ブタノールが挙げられる。混合溶媒における低級アルコールの混合割合は通常その下限は60重量%以上、その上限は95重量%以下であり、60〜95重量%であることが好ましい。溶媒の量は、セルロース原料に対し通常は3重量倍である。当該量の上限は特に限定されないが20重量倍である。従って、溶媒の量は3〜20重量倍であることが好ましい。 The carboxymethylation method is not particularly limited, and examples thereof include a method in which a cellulose raw material as a bottoming raw material is marcelled and then etherified. A solvent is usually used for the reaction. Examples of the solvent include water, alcohol (for example, lower alcohol) and a mixed solvent thereof. Examples of the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, and tertiary butanol. The lower limit of the mixing ratio of the lower alcohol in the mixed solvent is usually 60% by weight or more, and the upper limit thereof is 95% by weight or less, preferably 60 to 95% by weight. The amount of solvent is usually 3 times by weight with respect to the cellulose raw material. The upper limit of the amount is not particularly limited, but is 20 times by weight. Therefore, the amount of the solvent is preferably 3 to 20 times by weight.

マーセル化は通常、発底原料とマーセル化剤を混合して行う。マーセル化剤としては例えば、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属が挙げられる。マーセル化剤の使用量は、発底原料の無水グルコース残基当たり0.5倍モル以上が好ましく、1.0モル以上がより好ましく、1.5倍モル以上がさらに好ましい。当該量の上限は、通常20倍モル以下であり、10倍モル以下が好ましく、5倍モル以下がより好ましい、従って、マーセル化剤の使用量0.5〜20倍モルが好ましく、1.0〜10倍モルがより好ましく、1.5〜5倍モルがさらに好ましい。 Mercerization is usually carried out by mixing a bottoming material and a mercerizing agent. Examples of the mercerizing agent include alkali metals hydroxide such as sodium hydroxide and potassium hydroxide. The amount of the mercerizing agent used is preferably 0.5 times mol or more, more preferably 1.0 mol or more, and even more preferably 1.5 times mol or more per anhydrous glucose residue of the bottoming material. The upper limit of the amount is usually 20 times or less, preferably 10 times or less, more preferably 5 times or less, and therefore, the amount of the mercerizing agent used is preferably 0.5 to 20 times by mole, 1.0. 10-fold molars are more preferred, and 1.5-5-fold moles are even more preferred.

マーセル化の反応温度は、通常0℃以上であり、好ましくは10℃以上であり、上限は通常70℃以下、好ましくは60℃以下である。従って、反応温度は通常0〜70℃、好ましくは10〜60℃である。反応時間は、通常15分以上、好ましくは30分以上である。当該時間の上限は、通常8時間以下、好ましくは7時間以下である。従って、反応時間は、通常は15分〜8時間、好ましくは30分〜7時間である。 The reaction temperature for mercerization is usually 0 ° C. or higher, preferably 10 ° C. or higher, and the upper limit is usually 70 ° C. or lower, preferably 60 ° C. or lower. Therefore, the reaction temperature is usually 0 to 70 ° C, preferably 10 to 60 ° C. The reaction time is usually 15 minutes or longer, preferably 30 minutes or longer. The upper limit of the time is usually 8 hours or less, preferably 7 hours or less. Therefore, the reaction time is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.

エーテル化反応は通常、カルボキシメチル化剤をマーセル化後に反応系に追加して行う。カルボキシメチル化剤としては例えば、モノクロロ酢酸ナトリウムが挙げられる。カルボキシメチル化剤の添加量は、セルロース原料のグルコース残基当たり通常は0.05倍モル以上が好ましく、0.5倍モル以上がより好ましく、0.8倍モル以上がさらに好ましい。当該量の上限は、通常10.0倍モル以下であり、5モル以下が好ましく、3倍モル以下がより好ましい、従って、当該量は好ましくは0.05〜10.0倍モルであり、より好ましくは0.5〜5であり、さらに好ましくは0.8〜3倍モルである。反応温度は通常30℃以上、好ましくは40℃以上であり、上限は通常90℃以下、好ましくは80℃以下である。従って反応温度は通常30〜90℃、好ましくは40〜80℃である。反応時間は、通常30分以上であり、好ましくは1時間以上であり、その上限は、通常は10時間以下、好ましくは4時間以下である。従って反応時間は、通常は30分〜10時間であり、好ましくは1時間〜4時間である。カルボキシメチル化反応の間必要に応じて、反応液を撹拌してもよい。 The etherification reaction is usually carried out by adding a carboxymethylating agent to the reaction system after mercerization. Examples of the carboxymethylating agent include sodium monochloroacetate. The amount of the carboxymethylating agent added is usually preferably 0.05 times by mole or more, more preferably 0.5 times by mole or more, and further preferably 0.8 times by mole or more per glucose residue of the cellulose raw material. The upper limit of the amount is usually 10.0 times mol or less, preferably 5 times or less, more preferably 3 times mol or less, and therefore the amount is preferably 0.05 to 10.0 times mol, and more. It is preferably 0.5 to 5, and more preferably 0.8 to 3 times the molar amount. The reaction temperature is usually 30 ° C. or higher, preferably 40 ° C. or higher, and the upper limit is usually 90 ° C. or lower, preferably 80 ° C. or lower. Therefore, the reaction temperature is usually 30 to 90 ° C, preferably 40 to 80 ° C. The reaction time is usually 30 minutes or more, preferably 1 hour or more, and the upper limit thereof is usually 10 hours or less, preferably 4 hours or less. Therefore, the reaction time is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours. If necessary, the reaction solution may be stirred during the carboxymethylation reaction.

カルボキシメチル化セルロースのグルコース単位当たりのカルボキシメチル置換度の測定は例えば、次の方法による。すなわち、1)カルボキシメチル化セルロース(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(カルボキシメチル化セルロース)を水素型カルボキシメチル化セルロースにする。3)水素型カルボキシメチル化セルロース(絶乾)を1.5〜2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで水素型カルボキシメチル化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する:
A=[(100×F’−(0.1NのHSO)(mL)×F)×0.1]/(水素型カルボキシメチル化セルロースの絶乾質量(g))
DS=0.162×A/(1−0.058×A)
A:水素型カルボキシメチル化セルロースの1gの中和に要する1NのNaOH量(mL)
F:0.1NのHSOのファクター
F’:0.1NのNaOHのファクター
The degree of carboxymethyl substitution per glucose unit of carboxymethylated cellulose is measured, for example, by the following method. That is, 1) Approximately 2.0 g of carboxymethylated cellulose (absolutely dried) is precisely weighed and placed in an Erlenmeyer flask with a 300 mL stopper. 2) Add 100 mL of a solution prepared by adding 100 mL of special grade concentrated nitric acid to 1000 mL of methanol nitrate, and shake for 3 hours to convert the carboxymethyl cellulose salt (carboxymethylated cellulose) into hydrogen-type carboxymethylated cellulose. 3) Weigh 1.5 to 2.0 g of hydrogen-type carboxymethylated cellulose (absolutely dry) and put it in an Erlenmeyer flask with a 300 mL stopper. 4) Wet hydrogen-type carboxymethylated cellulose with 15 mL of 80% methanol, add 100 mL of 0.1 N NaOH, and shake at room temperature for 3 hours. 5) Using phenolphthalein as an indicator, back titrate excess NaOH with 0.1 N H 2 SO 4. 6) Calculate the degree of carboxymethyl substitution (DS) by the following formula:
A = [(100 x F'-(0.1 N H 2 SO 4 ) (mL) x F) x 0.1] / (absolute dry mass (g) of hydrogen-type carboxymethylated cellulose)
DS = 0.162 × A / (1-0.058 × A)
A: 1N NaOH amount (mL) required to neutralize 1 g of hydrogen-type carboxymethylated cellulose
F: 0.1N H 2 SO 4 factor F': 0.1N NaOH factor

3)機械解繊
化学変性セルロースを機械的に解繊して機械解繊化学変性CNFを得る。解繊処理は1回行ってもよいし、複数回行ってもよい。化学変性セルロースと分散媒を含む混合物を解繊処理に供することが好ましい。分散媒としては水が好ましい。解繊に用いる装置は特に限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧または超高圧ホモジナイザーが好ましく、湿式の高圧または超高圧ホモジナイザーがより好ましい。装置は、化学変性セルロースに強力なせん断力を印加できることが好ましい。装置が印加できる圧力は、50MPa以上が好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。装置は湿式の高圧または超高圧ホモジナイザーが好ましい。これにより、解繊を効率的に行うことができる。
3) Mechanical defibration Chemically modified cellulose is mechanically defibrated to obtain mechanical defibration chemically modified CNF. The defibration treatment may be performed once or a plurality of times. It is preferable that the mixture containing the chemically modified cellulose and the dispersion medium is subjected to the defibration treatment. Water is preferable as the dispersion medium. The device used for defibration is not particularly limited, and examples thereof include high-speed rotary type, colloid mill type, high-pressure type, roll mill type, ultrasonic type, and the like, preferably a high-pressure or ultra-high pressure homogenizer, and a wet high pressure. Alternatively, an ultrahigh pressure homogenizer is more preferable. The device preferably can apply a strong shear force to the chemically modified cellulose. The pressure that can be applied by the device is preferably 50 MPa or more, more preferably 100 MPa or more, and even more preferably 140 MPa or more. The device is preferably a wet high pressure or ultra high pressure homogenizer. As a result, defibration can be performed efficiently.

解繊を化学変性パルプの分散液に対して実施する場合、分散液中の変性セルロースの固形分濃度は、通常は0.1重量%以上が好ましく、0.2重量%以上がより好ましく、0.3重量%以上がさらに好ましい。これにより、変性セルロースの量に対する液量が適量となり効率的になる。当該濃度の上限は通常は20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。これにより流動性を保持することができる。 When defibration is carried out on a dispersion of chemically modified pulp, the solid content concentration of the modified cellulose in the dispersion is usually preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and 0. .3% by weight or more is more preferable. As a result, the amount of liquid becomes appropriate with respect to the amount of modified cellulose, which makes it efficient. The upper limit of the concentration is usually preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less. This makes it possible to maintain liquidity.

4)形態
機械解繊化学変性CNFは、乾燥固形物(例えば、ペレット状、粒子状、粉末状)の形態、液体媒体と組合せて液状やゲル状の形態、あるいはその中間的な状態である湿潤固形物としてもよいが、粉末状の形態が好ましい。本発明においてセルロースナノファイバーの乾燥固形物とは、セルロースナノファイバーを含む分散液を水分量12%以下に脱水または乾燥したものを意味する。セルロースナノファイバーの乾燥固形物としては、セルロースナノファイバーの分散液を乾燥させたもの、あるいはセルロースナノファイバーと水溶性高分子と混合液を乾燥させたものを例示することができるが、再分散性の観点からは後者が好ましい。水溶性高分子としては、例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、陽性澱粉、燐酸化澱粉、コーンスターチ、アラビアガム、ローカストビーンガム、ジェランガム、ゲランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ソーダ、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩、でんぷんポリアクリル酸共重合体、タマリンドガム、ジェランガム、ペクチン、グァーガム、コロイダルシリカ、およびこれらの組合せが挙げられる。この中でも相溶性の観点から、カルボキシメチルセルロースおよびその塩が好ましい。本発明のCNFをパルプスラリーに添加する際は、前記粉末状、液状、またはゲル状の形態であってよいが、液状であることが好ましい。この場合、機械解繊化学変性CNFを一度乾燥した乾燥固形物を再度水等の液体媒体に分散させた液状の組成物を用いてもよいし、前記解繊工程で調製された液状の組成物を用いてもよい。
4) Morphology Mechanical defibration chemically modified CNF is in the form of a dry solid (for example, pellet, particulate, powder), in liquid or gel form in combination with a liquid medium, or in an intermediate state, wet. It may be a solid, but a powdery form is preferable. In the present invention, the dry solid substance of cellulose nanofibers means a dispersion liquid containing cellulose nanofibers dehydrated or dried to a water content of 12% or less. Examples of the dry solid matter of cellulose nanofibers include those obtained by drying a dispersion of cellulose nanofibers and those obtained by drying a mixture of cellulose nanofibers, a water-soluble polymer, and redispersibility. The latter is preferable from the viewpoint of. Examples of the water-soluble polymer include cellulose derivatives (carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, ethyl cellulose), xanthan gum, xyloglucane, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, purulan, starch, and starch. Waste powder, positive starch, phosphorylated starch, corn starch, arabic gum, locust bean gum, gellan gum, gellan gum, polydextrose, pectin, chitin, water-soluble chitin, chitosan, casein, albumin, soybean protein solution, peptone, polyvinyl alcohol, Polyacrylamide, sodium polyacrylic acid, polyvinylpyrrolidone, vinylacetate, polyamino acid, polylactic acid, polyapple acid, polyglycerin, latex, rosin-based sizing agent, petroleum resin-based sizing agent, urea resin, melamine resin, epoxy resin, polyamide Resins, polyamide / polyamine resins, polyethyleneimines, polyamines, vegetable gums, polyethylene oxide, hydrophilic cross-linked polymers, polyacrylates, starch polyacrylic acid copolymers, tamarind gum, gellan gum, pectin, guar gum, colloidal silica, and these. Combination of. Of these, carboxymethyl cellulose and salts thereof are preferable from the viewpoint of compatibility. When the CNF of the present invention is added to the pulp slurry, it may be in the powdery, liquid or gel form, but it is preferably liquid. In this case, a liquid composition obtained by redispersing a dry solid material obtained by drying the mechanically defibrated chemically modified CNF in a liquid medium such as water may be used, or the liquid composition prepared in the defibration step may be used. May be used.

機械解繊化学変性CNFの平均繊維径は、長さ加重平均繊維径にして通常2nm以上500nm未満程度であるが、好ましくは2〜50nmである。平均繊維長は長さ加重平均繊維長にして50〜2000nmが好ましい。長さ加重平均繊維径および長さ加重平均繊維長(以下、単に「平均繊維径」、「平均繊維長」ともいう)は、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察して求められる。ナノファイバーの平均アスペクト比は、通常10以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出できる。
平均アスペクト比=平均繊維長/平均繊維径
The average fiber diameter of the mechanically defibrated chemically modified CNF is usually about 2 nm or more and less than 500 nm in terms of length-weighted average fiber diameter, but is preferably 2 to 50 nm. The average fiber length is preferably 50 to 2000 nm in terms of length-weighted average fiber length. The length-weighted average fiber diameter and the length-weighted average fiber length (hereinafter, also simply referred to as "average fiber diameter" and "average fiber length") are determined by using an atomic force microscope (AFM) or a transmission electron microscope (TEM). It is obtained by observing each fiber. The average aspect ratio of nanofibers is usually 10 or more. The upper limit is not particularly limited, but is usually 1000 or less. The average aspect ratio can be calculated by the following formula.
Average aspect ratio = average fiber length / average fiber diameter

機械解繊化学変性CNFにおけるカルボキシル基量およびグルコース単位当たりの置換度は、化学変性セルロースのものと同じであることが好ましい。 The amount of carboxyl groups and the degree of substitution per glucose unit in the mechanically defibrated chemically modified CNF are preferably the same as those in the chemically modified cellulose.

(2)原紙層
原紙層とは紙のベースとなる層でありパルプを主成分として含む。本発明においては、原紙は単層でも多層でもよい。原紙層は機械解繊化学変性CNFを含む。多層の場合は原紙層のうち少なくともいずれか一層が機械解繊化学変性CNFを含んでいればよく、全層が機械解繊化学変性CNFを含有してもよい。機械解繊化学変性CNFの含有量は、本発明の効果が得られる範囲であれば限定されないが、原紙層全体のパルプ重量に対して0.0001重量%以上が好ましく、0.0003重量%以上がより好ましく、さらに好ましくは0.001重量%以上である。当該含有量が0.0001重量%未満であると、添加量が少なく、本発明の効果が得られない可能性がある。また、当該含有量の上限は4重量%以下が好ましく、1重量%以下がより好ましく、0.01重量%未満がさらに好ましい。
(2) Base paper layer The base paper layer is a layer that is the base of paper and contains pulp as a main component. In the present invention, the base paper may be a single layer or a multi-layer. The base paper layer contains a mechanically defibrated and chemically modified CNF. In the case of multiple layers, at least one of the base paper layers may contain the mechanically defibrated and chemically modified CNF, and all the layers may contain the mechanically defibrated and chemically modified CNF. The content of the mechanically defibrated chemically modified CNF is not limited as long as the effect of the present invention can be obtained, but is preferably 0.0001% by weight or more, preferably 0.0003% by weight or more, based on the total pulp weight of the base paper layer. Is more preferable, and more preferably 0.001% by weight or more. If the content is less than 0.0001% by weight, the amount added is small and the effect of the present invention may not be obtained. The upper limit of the content is preferably 4% by weight or less, more preferably 1% by weight or less, and further preferably less than 0.01% by weight.

本発明で用いる原紙のパルプ原料は特に限定されず、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ、脱墨パルプ(DIP)、針葉樹クラフトパルプ(NKP)、針葉樹クラフトパルプ(LKP)等の化学パルプ等を使用できる。脱墨(古紙)パルプとしては、上質紙、中質紙、下級紙、新聞紙、チラシ、雑誌などの選別古紙やこれらが混合している無選別古紙由来のものを使用できる。 The pulp raw material of the base paper used in the present invention is not particularly limited, and mechanical pulp such as ground pulp (GP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), deinked pulp (DIP), and coniferous kraft pulp ( NKP), chemical pulp such as coniferous kraft pulp (LKP) and the like can be used. As the deinked (waste paper) pulp, selected waste paper such as high-quality paper, medium-quality paper, low-grade paper, newspaper, leaflets, and magazines, and unsorted waste paper obtained by mixing these can be used.

原紙には公知の填料を添加できるが、板紙等の不透明度や白色度を求められない用途や、古紙などの持ち込み灰分の多い原料を使用する場合は填料を添加しなくてもよい。填料を添加する場合、填料としては、重質炭酸カルシム、軽質炭酸カルシウム、クレー、シリカ、軽質炭酸カルシウム−シリカ複合物、カオリン、焼成カオリン、デラミカオリン、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、酸化亜鉛、酸化チタン、ケイ酸ナトリウムの鉱酸による中和で製造される非晶質シリカ等の無機填料や、尿素−ホルマリン樹脂、メラミン系樹脂、ポリスチレン樹脂、フェノール樹脂などの有機填料が挙げられる。これらは、単独で使用してもよいし併用してもよい。この中でも、中性抄紙やアルカリ抄紙における代表的な填料であり、高い不透明度が得られる炭酸カルシウムや軽質炭酸カルシウムが好ましい。原紙中の填料の含有率は、原紙重量に対して、5〜25重量%が好ましく、6〜20重量%がより好ましい。本発明においては紙中灰分が高くても紙力の低下が抑制されるため、原紙中の填料の含有率は10重量%以上であることがより好ましい。 A known filler can be added to the base paper, but it is not necessary to add the filler when using paperboard or other applications where opacity or whiteness is not required, or when using raw materials with a large amount of brought-in ash such as used paper. When a filler is added, the filler includes heavy calcium carbonate, light calcium carbonate, clay, silica, light calcium carbonate-silica complex, kaolin, calcined kaolin, deramikaolin, magnesium carbonate, barium carbonate, barium sulfate, hydroxide. Inorganic fillers such as amorphous silica produced by neutralizing aluminum, calcium hydroxide, magnesium hydroxide, zinc hydroxide, zinc oxide, titanium oxide, and sodium silicate with mineral acid, urea-formalin resin, and melamine. Examples include organic fillers such as resins, polystyrene resins, and phenolic resins. These may be used alone or in combination. Among these, calcium carbonate and light calcium carbonate, which are typical fillers for neutral papermaking and alkaline papermaking and can obtain high opacity, are preferable. The content of the filler in the base paper is preferably 5 to 25% by weight, more preferably 6 to 20% by weight, based on the weight of the base paper. In the present invention, even if the ash content in the paper is high, the decrease in paper strength is suppressed, so that the content of the filler in the base paper is more preferably 10% by weight or more.

内添薬品として、嵩高剤、乾燥紙力向上剤、湿潤紙力向上剤、濾水性向上剤、染料、中性サイズ剤等を必要に応じて使用してもよい。 As the internal chemicals, bulking agents, dry paper strength improvers, wet paper strength improvers, drainage improvers, dyes, neutral sizing agents and the like may be used as necessary.

原紙は、公知の抄紙方法で製造される。例えば、長網抄紙機、ギャップフォーマー型抄紙機、ハイブリッドフォーマー型抄紙機、オントップフォーマー型抄紙機、丸網抄紙機等を用いて行うことができるが、これらに限定されない。 The base paper is produced by a known papermaking method. For example, it can be performed using a long net paper machine, a gap former type paper machine, a hybrid former type paper machine, an on-top former type paper machine, a round net paper machine, and the like, but the present invention is not limited thereto.

本発明の機械解繊化学変性CNFを原紙に添加する場合、パルプスラリーを調成する工程における任意の工程で添加してよいが、機械解繊化学変性CNFの混合効率を向上させるために、パルプリファイナー工程またはミキシング工程で添加することが好ましい。ミキシング工程で機械解繊化学変性CNFを添加する場合、CNFの歩留まりを向上させるために、填料や歩留剤等その他助剤とCNFを予め混合したものをパルプスラリーに添加してもよい。 When the mechanically defibrated and chemically modified CNF of the present invention is added to the base paper, it may be added at any step in the step of preparing the pulp slurry, but in order to improve the mixing efficiency of the mechanically defibrated and chemically modified CNF, the pulp is added. It is preferably added in the refiner step or the mixing step. When mechanically defibrated and chemically modified CNF is added in the mixing step, in order to improve the yield of CNF, a mixture of CNF and other auxiliary agents such as a filler and a retention agent in advance may be added to the pulp slurry.

(3)顔料塗工層
顔料塗工層とは白色顔料を主成分として含む層である。白色顔料としては、炭酸カルシウム、カオリン、クレー、焼成カオリン、無定形シリカ、酸化亜鉛、酸化アルミニウム、サチンホワイト、珪酸アルミニウム、珪酸マグネシウム、炭酸マグネシウム、酸化チタン、プラスチックピグメント等の通常使用されている顔料が挙げられる。
(3) Pigment coating layer The pigment coating layer is a layer containing a white pigment as a main component. White pigments include commonly used pigments such as calcium carbonate, kaolin, clay, calcined kaolin, amorphous silica, zinc oxide, aluminum oxide, satin white, aluminum silicate, magnesium silicate, magnesium carbonate, titanium oxide, and plastic pigments. Can be mentioned.

顔料塗工層は接着剤を含む。当該接着剤としては、酸化澱粉、陽性澱粉、尿素リン酸エステル化澱粉、ヒドロキシエチルエーテル化澱粉等のエーテル化澱粉、デキストリン等の各種澱粉類、カゼイン、大豆蛋白、合成蛋白等の蛋白質類、ポリビニルアルコール、カルボキシメチルセルロースやメチルセルロース等のセルロース誘導体、スチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体の共役ジエン系重合体ラテックス、アクリル系重合体ラテックス、エチレン−酢酸ビニル共重合体等のビニル系重合体ラテックス等が挙げられる。これらは単独、あるいは2種以上併用して用いることができ、澱粉系接着剤とスチレン−ブタジエン共重合体を併用することが好ましい。 The pigment coating layer contains an adhesive. Examples of the adhesive include etherified starch such as oxidized starch, positive starch, urea phosphate esterified starch and hydroxyethyl etherified starch, various starches such as dextrin, proteins such as casein, soybean protein and synthetic protein, and polyvinyl. Alcohol, cellulose derivatives such as carboxymethyl cellulose and methyl cellulose, styrene-butadiene copolymer, conjugated diene polymer latex of methyl methacrylate-butadiene copolymer, acrylic polymer latex, vinyl such as ethylene-vinyl acetate copolymer Examples include polymer latex. These can be used alone or in combination of two or more, and it is preferable to use a starch-based adhesive and a styrene-butadiene copolymer in combination.

顔料塗工層は、一般の紙製造分野で使用される分散剤、増粘剤、消泡剤、着色剤、帯電防止剤、防腐剤等の各種助剤を含んでいてもよく、機械解繊化学変性CNFを顔料塗工層中に含有してもよい。機械解繊化学変性CNFを顔料塗工層中に含有する場合、顔料100重量部に対して1×10−3〜1重量部が好ましい。前記範囲の場合、塗工液の粘度を大幅に増大することなく、適度な保水性を持った顔料塗工液を得ることができる。 The pigment coating layer may contain various auxiliaries such as dispersants, thickeners, defoamers, colorants, antistatic agents, and preservatives used in the general paper manufacturing field, and may contain various auxiliary agents such as mechanical defibration. Chemically modified CNF may be contained in the pigment coating layer. When the mechanically defibrated chemically modified CNF is contained in the pigment coating layer, 1 × 10 -3 to 1 part by weight is preferable with respect to 100 parts by weight of the pigment. In the above range, a pigment coating liquid having an appropriate water retention property can be obtained without significantly increasing the viscosity of the coating liquid.

顔料塗工層は、塗工液を公知の方法で原紙の片面あるいは両面に塗工して設けることができる。塗工液中の固形分濃度は、塗工適性の観点から、30〜70重量%程度が好ましい。顔料塗工層は1層でもよく、2層でもよく、3層以上でもよい。複数の顔料塗工層が存在する場合、機械解繊化学変性CNFはいずれの顔料塗工層に存在してもよい。顔料塗工層の塗工量は、用途によって適宜調整してよいが、印刷用塗工紙とする場合は片面あたりトータルで5g/m以上であり、10g/m以上であることが好ましい。上限は、30g/m以下であることが好ましく、25g/m以下であることが好ましい。 The pigment coating layer can be provided by applying a coating liquid to one side or both sides of the base paper by a known method. The solid content concentration in the coating liquid is preferably about 30 to 70% by weight from the viewpoint of coating suitability. The pigment coating layer may be one layer, two layers, or three or more layers. When a plurality of pigment coating layers are present, the mechanical defibration chemically modified CNF may be present in any pigment coating layer. The amount of the pigment coating layer applied may be appropriately adjusted depending on the intended use, but in the case of coated paper for printing, the total amount per side is 5 g / m 2 or more, preferably 10 g / m 2 or more. .. The upper limit is preferably 30 g / m 2 or less, and preferably 25 g / m 2 or less.

(4)クリア塗工層
本発明の紙は、原紙の片面または両面にクリア(透明)塗工層を有していてもよい。原紙上にクリア塗工を施すことにより、原紙の表面強度や平滑性を向上させることができ、また、顔料塗工をする際の塗工性を向上させることができる。クリア塗工の量は、片面あたり固形分で0.1〜1.0g/mが好ましく、0.2〜0.8g/mがより好ましい。本発明においてクリア塗工とは、例えば、サイズプレス、ゲートロールコータ、プレメタリングサイズプレス、カーテンコータ、スプレーコータなどのコータ(塗工機)を使用して、澱粉、酸化澱粉などの各種澱粉、ポリアクリルアミド、ポリビニルアルコールなどの水溶性高分子を主成分とする塗布液(表面処理液)を原紙上に塗布(サイズプレス)することをいう。
(4) Clear coating layer The paper of the present invention may have a clear (transparent) coating layer on one side or both sides of the base paper. By applying clear coating on the base paper, the surface strength and smoothness of the base paper can be improved, and the coatability at the time of pigment coating can be improved. The amount of clear coating is preferably 0.1 to 1.0 g / m 2 and more preferably 0.2 to 0.8 g / m 2 in terms of solid content per side. In the present invention, clear coating refers to various types of starch such as starch and oxidized starch using, for example, a coater (coating machine) such as a size press, a gate roll coater, a pre-metering size press, a curtain coater, and a spray coater. , Polyacrylamide, polyvinyl alcohol and other water-soluble polymers as the main component coating liquid (surface treatment liquid) is applied on the base paper (size press).

(5)特性
本発明の紙は、JIS P8111に従って23℃50±2%条件下で調湿した後の紙の含水率が10重量%以下である。機械解繊化学変性CNFは保水率が比較的高いので製紙工程において脱水や乾燥が困難になることがある。しかし機械解繊化学変性CNFの量および変性基の量を調整して紙の含水率を前記範囲とすることで、製紙工程において脱水性や乾燥性を良好にすることができるので好ましい。また、前記含水率が10重量%より高いと、紙繊維を構成するセルロース間に水分子が多く入り込み、水素結合が弱められるため、こわさが低下する恐れがある。当該含水率の下限値は限定されないが4重量%以上であることが好ましい。紙を製造する工程における脱水が不十分である場合や、CNFを極端に多く配合した場合は、当該含水率が10重量%より高くなるおそれがある。
(5) Characteristics The paper of the present invention has a water content of 10% by weight or less after the humidity is adjusted under the conditions of 23 ° C. and 50 ± 2% according to JIS P8111. Since the mechanically defibrated chemically modified CNF has a relatively high water retention rate, it may be difficult to dehydrate or dry it in the papermaking process. However, by adjusting the amount of mechanically defibrated and chemically modified CNF and the amount of modifying groups to keep the water content of the paper within the above range, dehydration and drying properties can be improved in the papermaking process, which is preferable. On the other hand, if the water content is higher than 10% by weight, a large amount of water molecules enter between the celluloses constituting the paper fibers and the hydrogen bonds are weakened, which may reduce the stiffness. The lower limit of the water content is not limited, but is preferably 4% by weight or more. If dehydration in the process of producing paper is insufficient, or if an extremely large amount of CNF is blended, the water content may be higher than 10% by weight.

本発明の紙はアスペクト比が高い機械解繊化学変性CNFを含むので優れた強度を有する。 The paper of the present invention has excellent strength because it contains a mechanically defibrated chemically modified CNF having a high aspect ratio.

2.紙の製造方法
本発明の紙は、機械解繊化学変性CNFを含む紙料を調製する工程を経て製造されることが好ましい。機械解繊化学変性CNFは前述のとおり、化学変性したセルロース原料を機械的に解繊して調製できる。紙料は公知の方法に準じて調製できる。例えばパルプを離解して得たスラリーに、機械解繊化学変性CNF、填料、必要に応じて添加剤を添加して調製できる。
2. Method for Producing Paper The paper of the present invention is preferably produced through a step of preparing a paper material containing a mechanically defibrated and chemically modified CNF. Mechanical defibration Chemically modified CNF can be prepared by mechanically defibrating a chemically modified cellulose raw material as described above. The paper material can be prepared according to a known method. For example, it can be prepared by adding a mechanically defibrated and chemically modified CNF, a filler, and if necessary, an additive to a slurry obtained by disintegrating pulp.

このようにして得た紙料用いて公知の方法で抄紙することで紙を製造することができる。前述のとおり、紙の表面にクリア塗工または顔料塗工層を設ける塗工工程を実施してもよい。 Paper can be produced by making paper by a known method using the paper material thus obtained. As described above, a coating step of providing a clear coating or a pigment coating layer on the surface of the paper may be carried out.

以下、実施例を挙げて本発明を説明する。
[実施例1]
パルプとして50重量%のLBKPおよび50重量%のDIPを準備し、当該パルプ100重量%に対し、助剤としてTEMPO酸化CNF(日本製紙社製)100ppmm、硫酸バンド0.9重量%、歩留まり剤0.01重量%、軽質炭酸カルシウムを混合してパルプスラリーを得た。得られたパルプスラリーから、JIS P 8222に従って、坪量36.2g/m、紙中灰分15重量%、含水量7.4%の手すきシートを製造し、評価した。
Hereinafter, the present invention will be described with reference to examples.
[Example 1]
50% by weight of LBKP and 50% by weight of DIP were prepared as pulp, and with respect to 100% by weight of the pulp, TEMPO oxide CNF (manufactured by Nippon Paper Industries Co., Ltd.) 100 ppmm, sulfate band 0.9% by weight, yield agent 0 A pulp slurry was obtained by mixing 0.01% by weight and light calcium carbonate. From the obtained pulp slurry, a handmade sheet having a basis weight of 36.2 g / m 2 , a paper ash content of 15% by weight, and a water content of 7.4% was produced and evaluated according to JIS P 8222.

[実施例2]
紙中灰分量を16.5重量%とした以外は実施例と同様にして手すきシートを製造し、評価した。
[比較例1]
TEMPO酸化CNFを添加しない以外は、実施例1と同様にして手すきシートを製造し、評価した。
[Example 2]
A handmade sheet was produced and evaluated in the same manner as in Examples except that the amount of ash in the paper was 16.5% by weight.
[Comparative Example 1]
A handmade sheet was produced and evaluated in the same manner as in Example 1 except that TEMPO oxide CNF was not added.

Figure 2021105224
Figure 2021105224

評価は以下のとおり行った。
坪量:JIS P 8124:2011(ISO 536:1995)に従った。
密度:JIS P 8118:2014に従った。
灰分:JIS P 8251:2003に従った。
ISO曲げこわさ:ISO 2493に従った。
不透明度:JIS P 8149:2000(ISO2471)に従った。
含水率:JIS P 8111に従って23℃50±2%条件下で調湿した
The evaluation was performed as follows.
Basis weight: JIS P 8124: 2011 (ISO 536: 1995) was followed.
Density: According to JIS P 8118: 2014.
Ash content: JIS P 8251: 2003 was followed.
ISO bending stiffness: According to ISO 2493.
Opacity: According to JIS P 8149: 2000 (ISO2471).
Moisture content: Humidity was adjusted under the condition of 23 ° C. 50 ± 2% according to JIS P 8111.

Claims (4)

原料パルプとセルロースナノファイバーを含む原紙層を備える紙であって、
前記セルロースナノファイバーが機械解繊化学変性セルロースナノファイバーであり、
JIS P 8111に従って23℃50±2%条件下で調湿した紙の含水率が10重量%以下である、紙。
Paper with a base paper layer containing raw material pulp and cellulose nanofibers.
The cellulose nanofibers are mechanically defibrated and chemically modified cellulose nanofibers.
Paper having a moisture content of 10% by weight or less, which has been conditioned according to JIS P 8111 under the conditions of 23 ° C. and 50 ± 2%.
顔料塗工層を備える請求項1に記載の紙。 The paper according to claim 1, further comprising a pigment coating layer. クリア塗工層を備える請求項1または2に記載の紙。 The paper according to claim 1 or 2, which comprises a clear coating layer. セルロース原料を化学変性した後に機械解繊してセルロースナノファイバーを調製する工程、および
前記セルロースナノファイバーを含む紙料を調製する工程、
を備える、請求項1〜3のいずれかに記載の紙の製造方法。
A step of preparing cellulose nanofibers by chemically defibrating a cellulose raw material and then mechanically defibrating it, and a step of preparing a paper material containing the cellulose nanofibers.
The method for producing paper according to any one of claims 1 to 3.
JP2018070243A 2018-03-30 2018-03-30 Paper containing cellulose nanofiber Pending JP2021105224A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018070243A JP2021105224A (en) 2018-03-30 2018-03-30 Paper containing cellulose nanofiber
PCT/JP2019/014024 WO2019189770A1 (en) 2018-03-30 2019-03-29 Paper containing cellulose nanofibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070243A JP2021105224A (en) 2018-03-30 2018-03-30 Paper containing cellulose nanofiber

Publications (1)

Publication Number Publication Date
JP2021105224A true JP2021105224A (en) 2021-07-26

Family

ID=68061899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070243A Pending JP2021105224A (en) 2018-03-30 2018-03-30 Paper containing cellulose nanofiber

Country Status (2)

Country Link
JP (1) JP2021105224A (en)
WO (1) WO2019189770A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
FI124981B (en) * 2009-09-09 2015-04-15 Upm Kymmene Corp Paper product and process for making it
JP6434782B2 (en) * 2014-11-13 2018-12-05 日本製紙株式会社 Paper made by adding cellulose nanofibers derived from cation-modified cellulose and method for producing the same
JP2018003215A (en) * 2016-07-06 2018-01-11 北越紀州製紙株式会社 Coated paper

Also Published As

Publication number Publication date
WO2019189770A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5384984B2 (en) Printing paper
JP7425743B2 (en) Paper with a coating layer containing cellulose nanofibers
JP5416531B2 (en) Filler pretreatment method and paper containing pretreated filler
JP5771033B2 (en) Multilayer paper manufacturing method
US9828727B2 (en) Method for preparing furnish and paper product
JP6827147B2 (en) Oxidized microfibril cellulose fiber and its composition
US11479915B2 (en) Method for manufacturing intermediate product for conversion into microfibrillated cellulose
JP7233413B2 (en) Carboxymethylated microfibril cellulose fibers and compositions thereof
JPWO2019132001A1 (en) Paper containing cellulose nanofibers
JP7239561B2 (en) Paper containing microfibril cellulose fibers
JP6948941B2 (en) Paper or paperboard containing cellulose nanofibers
JP2019173255A (en) Paper or sheet paper containing cellulose nanofiber
JP2021105224A (en) Paper containing cellulose nanofiber
JP2021161597A (en) Paper comprising cellulose nanofiber-containing clear coating layer
JP2019173254A (en) Paper or paper board containing cellulose nanofiber
JP2020165036A (en) Paper or paperboard containing cellulose nanofiber
JP2020165037A (en) Paper or paperboard containing micro-fibrillated cellulose
JP2020165068A (en) Microfibrillated cellulose fiber and paper containing the same
JP7080404B2 (en) Paper containing cellulose nanofibers
JP7312094B2 (en) Paper containing carboxymethylated cellulose

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200306