[go: up one dir, main page]

JP2021096043A - Exhaust heat recovery system and gas compressor used for the same - Google Patents

Exhaust heat recovery system and gas compressor used for the same Download PDF

Info

Publication number
JP2021096043A
JP2021096043A JP2019228100A JP2019228100A JP2021096043A JP 2021096043 A JP2021096043 A JP 2021096043A JP 2019228100 A JP2019228100 A JP 2019228100A JP 2019228100 A JP2019228100 A JP 2019228100A JP 2021096043 A JP2021096043 A JP 2021096043A
Authority
JP
Japan
Prior art keywords
heat recovery
exhaust heat
compressor
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019228100A
Other languages
Japanese (ja)
Other versions
JP7309593B2 (en
Inventor
諒介 内樹
Ryosuke Uchiki
諒介 内樹
齋藤 隆史
Takashi Saito
隆史 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019228100A priority Critical patent/JP7309593B2/en
Publication of JP2021096043A publication Critical patent/JP2021096043A/en
Application granted granted Critical
Publication of JP7309593B2 publication Critical patent/JP7309593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】気体圧縮機の排熱回収システムにおいて排熱回収率向上及び省エネルギー化を図る。【解決手段】気体を圧縮する圧縮機本体を有し圧縮気体を出力する気体圧縮機と、排熱回収用の熱交換器と熱交換器で圧縮気体と熱交換する排熱回収水が流通する排熱回収液配管を備える排熱回収機、を有する排熱回収システムであって、圧縮機本体と排熱回収用の熱交換器は、圧縮対象の気体が流通する気体配管で接続されており、排熱回収機は、排熱回収液配管において排熱回収用の熱交換器の下流に設置された温度センサと、温調弁と、温度センサで測定した排熱回収水の温度と設定されている回収水温度に従い温調弁の開閉角度を制御する温度調節計を有する構成とする。【選択図】図1PROBLEM TO BE SOLVED: To improve an exhaust heat recovery rate and save energy in an exhaust heat recovery system of a gas compressor. SOLUTION: A gas compressor having a compressor body for compressing a gas and outputting the compressed gas, and exhaust heat recovery water for heat exchange with the compressed gas by a heat exchanger for exhaust heat recovery and a heat exchanger are distributed. It is an exhaust heat recovery system having an exhaust heat recovery machine equipped with an exhaust heat recovery liquid pipe, and the compressor main body and the heat exchanger for exhaust heat recovery are connected by a gas pipe through which the gas to be compressed flows. The exhaust heat recovery machine is set to the temperature sensor installed downstream of the heat exchanger for exhaust heat recovery in the exhaust heat recovery liquid piping, the temperature control valve, and the temperature of the exhaust heat recovery water measured by the temperature sensor. It is configured to have a temperature controller that controls the opening / closing angle of the temperature control valve according to the recovered water temperature. [Selection diagram] Fig. 1

Description

本発明は気体圧縮機において気体を圧縮する際に発生する「熱」を回収し再利用する排熱回収に関する。 The present invention relates to waste heat recovery that recovers and reuses "heat" generated when a gas is compressed in a gas compressor.

空気等の気体を吸込み圧縮機構によって圧縮空気等の高圧気体を吐き出す気体圧縮機が知られている。特に、空気圧縮機は、工作機やプレス機、エアーブロー等のエアー源として工場ラインや作業現場で使用される。ここで、工場全体で消費されるエネルギーのうち、気体圧縮機によって消費される総合エネルギーは、20〜25%に相当すると言われており、気体圧縮機からの排熱を回収する効果は大きい。特に、地球温暖化問題を発端としたCO2排出量の削減目標達成のためにも、気体圧縮機からの排熱利用は、今後更に重要視されてくると予想される。 A gas compressor that sucks a gas such as air and discharges a high-pressure gas such as compressed air by a compression mechanism is known. In particular, air compressors are used in factory lines and work sites as air sources for machine tools, presses, air blowers, and the like. Here, it is said that the total energy consumed by the gas compressor out of the energy consumed in the entire factory is equivalent to 20 to 25%, and the effect of recovering the exhaust heat from the gas compressor is great. In particular, the use of waste heat from gas compressors is expected to become even more important in the future in order to achieve the CO2 emission reduction target triggered by the problem of global warming.

気体圧縮機は、空気などの気体を圧縮する圧縮機本体、圧縮により発生する熱を吸収する冷却系統、圧縮機の駆動力源であるモータなどにより構成される。また、気体圧縮機では、モータ入力電力を100%とすると、冷却系統において吸収される熱量はそのうちの90%以上にも相当し、その熱量は、通常外気に放出されており、非常に多くのエネルギーが大気に排出されている。排熱量を低減するため、圧縮機本体やモータの高効率化が推進されているが、その効果は数%が限界であり、気体圧縮機からの排熱の有効利用が求められる。 A gas compressor is composed of a compressor body that compresses a gas such as air, a cooling system that absorbs heat generated by the compression, a motor that is a driving force source of the compressor, and the like. Further, in a gas compressor, when the motor input power is 100%, the amount of heat absorbed in the cooling system corresponds to 90% or more of the amount of heat, and the amount of heat is normally released to the outside air, which is very large. Energy is being discharged into the atmosphere. In order to reduce the amount of exhaust heat, higher efficiency of the compressor body and motor is being promoted, but the effect is limited to a few percent, and effective use of exhaust heat from the gas compressor is required.

本技術分野における従来技術として特許文献1がある。特許文献1では、油冷式ガス圧縮機において、圧縮ガスと油の少なくともいずれかから熱回収する事で圧縮機負荷率が低い場合でも要求温度の温水を供給することが可能で、しかも循環用ポンプの回転数制御により排熱回収機器からの放熱を抑制して排熱回収率を向上させる点が開示されている。 Patent Document 1 is a prior art in the present technical field. In Patent Document 1, in an oil-cooled gas compressor, by recovering heat from at least one of compressed gas and oil, it is possible to supply hot water at a required temperature even when the compressor load factor is low, and for circulation. It is disclosed that the exhaust heat recovery rate is improved by suppressing heat dissipation from the exhaust heat recovery device by controlling the rotation speed of the pump.

特開2014−145273号公報Japanese Unexamined Patent Publication No. 2014-145273

特許文献1の排熱回収システムでは、熱回収経路内の水の温度と、吐出し空気温度または排熱回収熱交換器通過後の空気温度・油温度とに応じてポンプの回転数を制御しているが、この構成は循環用ポンプの回転数を制御するための制御盤やインバータ盤等の制御装置を必要とし、運転・停止を繰り返した場合に電力を多く消費するという課題がある。 In the exhaust heat recovery system of Patent Document 1, the rotation speed of the pump is controlled according to the temperature of water in the heat recovery path and the discharged air temperature or the air temperature / oil temperature after passing through the exhaust heat recovery heat exchanger. However, this configuration requires a control device such as a control panel and an inverter panel for controlling the rotation speed of the circulation pump, and has a problem that a large amount of electric power is consumed when the operation and stop are repeated.

また、アンロード運転により圧縮空気流通経路の圧縮空気の流通が停止した場合に、排熱回収熱交換器内の圧縮空気の温度と温度センサが検出する圧縮空気の温度との間に誤差が生じてポンプが誤作動する恐れがある。それに伴い、排熱回収熱交換器内の温度が圧縮空気温度に達するまでポンプが運転を続ける為、その分の電力消費を必要とする。 In addition, when the flow of compressed air in the compressed air flow path is stopped due to the unload operation, an error occurs between the temperature of the compressed air in the exhaust heat recovery heat exchanger and the temperature of the compressed air detected by the temperature sensor. The pump may malfunction. Along with this, the pump continues to operate until the temperature inside the exhaust heat recovery heat exchanger reaches the compressed air temperature, which requires power consumption.

また、熱回収経路内の水の温度と、吐出し空気温度または排熱回収熱交換器通過後の空気温度・油温度とのどちらの温度が高いかについてのみ判断をしているため、熱回収経路内の水の温度がユーザの希望温度よりも高くなった場合でも熱回収をし続けてしまうという課題がある。 In addition, since the temperature of the water in the heat recovery path and the temperature of the discharged air or the temperature of the air or the oil after passing through the exhaust heat recovery heat exchanger are judged only, the heat recovery is performed. There is a problem that heat recovery continues even when the temperature of water in the path becomes higher than the temperature desired by the user.

本発明の目的は、気体圧縮機の排熱回収システムにおいて排熱回収率向上及び省エネルギー化を図ることである。 An object of the present invention is to improve the exhaust heat recovery rate and save energy in the exhaust heat recovery system of a gas compressor.

本発明は、その一例を挙げるならば、気体を圧縮する圧縮機本体を有し圧縮気体を出力する気体圧縮機と、排熱回収用の熱交換器と熱交換器で圧縮気体と熱交換する排熱回収水が流通する排熱回収液配管を備える排熱回収機、を有する排熱回収システムであって、圧縮機本体と排熱回収用の熱交換器は、圧縮対象の気体が流通する気体配管で接続されており、排熱回収機は、排熱回収液配管において排熱回収用の熱交換器の下流に設置された温度センサと、温調弁と、温度センサで測定した排熱回収水の温度と設定されている回収水温度に従い温調弁の開閉角度を制御する温度調節計を有する構成とする。 To give an example, the present invention exchanges heat with a compressed gas by a gas compressor having a compressor body for compressing the gas and outputting the compressed gas, and a heat exchanger and a heat exchanger for exhaust heat recovery. An exhaust heat recovery system having an exhaust heat recovery machine provided with an exhaust heat recovery liquid pipe through which exhaust heat recovery water flows, and a gas to be compressed flows through the compressor body and the heat exchanger for exhaust heat recovery. It is connected by a gas pipe, and the exhaust heat recovery machine is a temperature sensor installed downstream of the heat exchanger for exhaust heat recovery in the exhaust heat recovery liquid pipe, a temperature control valve, and exhaust heat measured by the temperature sensor. It is configured to have a temperature controller that controls the opening / closing angle of the temperature control valve according to the temperature of the recovered water and the set recovered water temperature.

本発明によれば、排熱回収率向上及び省エネルギー化を図ることが可能な排熱回収システム、及び、それに用いる気体圧縮機を提供できる。 According to the present invention, it is possible to provide an exhaust heat recovery system capable of improving the exhaust heat recovery rate and saving energy, and a gas compressor used therefor.

実施例1における排熱回収システムの概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the exhaust heat recovery system in Example 1. 実施例1における排熱回収システムの回収水の温度を一定に保つための制御の処理フローである。This is a control processing flow for keeping the temperature of the recovered water of the waste heat recovery system according to the first embodiment constant. 実施例2における排熱回収システムの概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the exhaust heat recovery system in Example 2. 実施例2における排熱回収システムの回収水の温度を一定に保つための制御の処理フローである。This is a control processing flow for keeping the temperature of the recovered water of the waste heat recovery system according to the second embodiment constant.

以下、本発明の実施例を、図面に基づき説明する。なお、本実施例では、気体圧縮機として、空気を圧縮する水冷式のパッケージ型二段オイルフリースクリュー圧縮機を例に説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings. In this embodiment, a water-cooled package-type two-stage oil-free screw compressor that compresses air will be described as an example of a gas compressor.

図1は、本実施例における排熱回収システムの概略構成を示す模式図である。図1に示すように、排熱回収システム100は、筐体内に配置されている圧縮機本体21、21を備える空気圧縮機1と、筐体外の熱交換器31、32を備える排熱回収機2で構成される。 FIG. 1 is a schematic diagram showing a schematic configuration of an exhaust heat recovery system in this embodiment. As shown in FIG. 1, the exhaust heat recovery system 100 includes an air compressor 1 including compressor bodies 21 and 21 arranged inside the housing, and an exhaust heat recovery machine including heat exchangers 31 and 32 outside the housing. It is composed of 2.

筐体は、図示を省略するが、圧縮機本体21、22等の各機器が設置されているベースと、圧縮機本体21、22等の各機器を覆うようにベース上に設置された金属等の複数のパネルで構成されている箱型のカバーを有しており、防音性能に優れたものである。 Although not shown, the housing is a base on which each device such as the compressor bodies 21 and 22 is installed, and a metal or the like installed on the base so as to cover each device such as the compressor bodies 21 and 22. It has a box-shaped cover composed of multiple panels, and has excellent soundproofing performance.

圧縮機本体21、22は、図示しない雄ロータ及び雌ロータの一対のスクリューロータを備えている。また、圧縮機本体21、22は、筐体内に配置されている主電動機によって、例えば動力伝達機構を介して駆動されるように構成されている。なお、動力は電動機に限るものではなく、内燃機関等であってもよい。 The compressor bodies 21 and 22 include a pair of screw rotors, a male rotor and a female rotor (not shown). Further, the compressor main bodies 21 and 22 are configured to be driven by, for example, a power transmission mechanism by a traction motor arranged in the housing. The power is not limited to the electric motor, and may be an internal combustion engine or the like.

圧縮機本体21は、空気の流れの上流側に配置されている第1段の圧縮機本体であり、圧縮機本体22は、第1段の圧縮機本体21に対して空気の流れの下流側に配置されている第2段の圧縮機本体である。 The compressor main body 21 is a first-stage compressor main body arranged on the upstream side of the air flow, and the compressor main body 22 is on the downstream side of the air flow with respect to the first-stage compressor main body 21. This is the second stage compressor body located in.

本実施例における圧縮機本体21、22はオイルフリースクリュー圧縮機であるため、油や水といった液体を圧縮作動室に注入する給液式の空気圧縮機と異なり、空気圧縮時に発生する熱によって圧縮機本体21、22が特に発熱する傾向にある。そして、圧縮した後の空気は高温であるから、これを圧縮空気の需要元が使用するには適さない場合もある。このため、空気圧縮機1では、冷却水が各部に供給されるようになっている。さらに、本実施例の空気圧縮機1は、後術するように、圧縮機本体21、22が空気を圧縮する際に発生する排熱を回収可能に構成されている。 Since the compressor bodies 21 and 22 in this embodiment are oil-free screw compressors, they are compressed by the heat generated during air compression, unlike the liquid supply type air compressor that injects a liquid such as oil or water into the compression operating chamber. The machine bodies 21 and 22 tend to generate heat in particular. And since the compressed air has a high temperature, it may not be suitable for use by the demand source of compressed air. Therefore, in the air compressor 1, cooling water is supplied to each part. Further, the air compressor 1 of the present embodiment is configured to be able to recover the exhaust heat generated when the compressor bodies 21 and 22 compress the air so as to be performed later.

排熱回収機2は、筐体外に配置されている排熱回収用の熱交換器31、32を備える。熱交換器31、32は、圧縮機本体21、22が発生する排熱の利用側から送られる排熱回収液としての排熱回収水と、圧縮機本体21、22から吐出される圧縮空気との熱交換を行うものである。熱交換器31は、第1段の圧縮機本体21と、第2段の圧縮機本体22との間に配置されている中間段排熱回収用熱交換器であり、熱交換器32は、第2段の圧縮機本体22の吐出側(下流側)に配置されている吐出段排熱回収用熱交換器である。 The exhaust heat recovery machine 2 includes heat exchangers 31 and 32 for exhaust heat recovery arranged outside the housing. The heat exchangers 31 and 32 include exhaust heat recovery water as an exhaust heat recovery liquid sent from the user side of the exhaust heat generated by the compressor bodies 21 and 22, and compressed air discharged from the compressor bodies 21 and 22. It exchanges heat. The heat exchanger 31 is an intermediate stage exhaust heat recovery heat exchanger arranged between the first stage compressor main body 21 and the second stage compressor main body 22, and the heat exchanger 32 is a heat exchanger 32. This is a heat exchanger for recovering exhaust heat from the discharge stage, which is arranged on the discharge side (downstream side) of the compressor body 22 in the second stage.

また、空気圧縮機1は、筐体内に配置されている冷却用の熱交換器51、52を備える。冷却用の熱交換器51、52は、空気圧縮機1の外部から送られる冷却液としての冷却水と圧縮機本体21、22から吐出される圧縮空気との熱交換を行うものである。冷却用の熱交換器51は、第1段の圧縮機本体21と第2段の圧縮機本体22との間に配置されているインタークーラであり(以降、熱交換器51をインタークーラと称す)、冷却用の熱交換器52は、第2段の圧縮機本体22の吐出側に配置されているアフタークーラである(以降、熱交換器52をアフタークーラと称す)。 Further, the air compressor 1 includes cooling heat exchangers 51 and 52 arranged in the housing. The cooling heat exchangers 51 and 52 exchange heat between the cooling water as the cooling liquid sent from the outside of the air compressor 1 and the compressed air discharged from the compressor main bodies 21 and 22. The cooling heat exchanger 51 is an intercooler arranged between the first-stage compressor main body 21 and the second-stage compressor main body 22 (hereinafter, the heat exchanger 51 is referred to as an intercooler). ), The cooling heat exchanger 52 is an aftercooler arranged on the discharge side of the compressor main body 22 in the second stage (hereinafter, the heat exchanger 52 is referred to as an aftercooler).

第1段の圧縮機本体21と、第2段の圧縮機本体22との間において、上流側から順に中間段排熱回収用の熱交換器31と、インタークーラ51とが配置されている。また、第2段の圧縮機本体22の吐出側において、上流側から順に吐出段排熱回収用の熱交換器32と、アフタークーラ52とが配置されている。なお、場合によっては、排熱回収用の熱交換器31、32と、インタークーラ51、アフタークーラ52との配置順序が逆となる構成であってもよい。 Between the compressor main body 21 of the first stage and the compressor main body 22 of the second stage, a heat exchanger 31 for recovering exhaust heat from the intermediate stage and an intercooler 51 are arranged in order from the upstream side. Further, on the discharge side of the compressor main body 22 of the second stage, a heat exchanger 32 for recovering exhaust heat from the discharge stage and an aftercooler 52 are arranged in order from the upstream side. In some cases, the heat exchangers 31 and 32 for recovering exhaust heat may be arranged in the reverse order of the intercooler 51 and the aftercooler 52.

第1段の圧縮機本体21、中間段排熱回収用の熱交換器31、インタークーラ51、第2段の圧縮機本体22、吐出段排熱回収用の熱交換器32及びアフタークーラ52は、圧縮対象の空気が流通する空気配管6で接続されている。 The first stage compressor body 21, the heat exchanger 31 for intermediate stage exhaust heat recovery, the intercooler 51, the second stage compressor body 22, the heat exchanger 32 for discharging discharge stage exhaust heat recovery, and the aftercooler 52 are , It is connected by an air pipe 6 through which the air to be compressed flows.

尚、上記の流通経路はロード運転(負荷運転)時であり、アンロード運転(無負荷運転)時においては、放風空気が、圧縮機本体21、熱交換器31、インタークーラ51、圧縮機本体22、熱交換器32を流通後、アンロード運転により逆止弁10が全閉となる為、放風配管4から大気に放出するように構成されている。これにより、アンロード運転(無負荷運転)時においても放風空気が熱交換器31、32を流れる構造にしている為、運転状態を問わず排熱回収が可能であり、排熱回収率向上を図る事ができる。 The above distribution path is during load operation (load operation), and during unload operation (no load operation), the released air is the compressor body 21, the heat exchanger 31, the intercooler 51, and the compressor. After the main body 22 and the heat exchanger 32 have been circulated, the check valve 10 is fully closed by the unload operation, so that the check valve 10 is discharged from the air discharge pipe 4 to the atmosphere. As a result, the exhaust heat can be recovered regardless of the operating state because the blown air flows through the heat exchangers 31 and 32 even during the unload operation (no-load operation), and the exhaust heat recovery rate is improved. Can be planned.

また、排熱回収用の熱交換器31、32で圧縮空気と熱交換する排熱回収水が流通する排熱回収液配管7と、冷却用のインタークーラ51、アフタークーラ52で圧縮空気と熱交換する冷却水が流通する冷却液配管8とが、別々に独立した経路として筐体に配置されている。 Further, the exhaust heat recovery liquid pipe 7 through which the exhaust heat recovery water that exchanges heat with the compressed air in the heat exchangers 31 and 32 for exhaust heat recovery flows, and the compressed air and heat in the intercooler 51 and the aftercooler 52 for cooling. The coolant pipe 8 through which the replaced cooling water flows is separately arranged in the housing as an independent path.

排熱回収液配管7は、排熱の利用側から循環用ポンプ14の運転により送られる排熱回収水が流入する排熱回収液流入口71から、中間段排熱回収用の熱交換器31及び吐出段排熱回収用の熱交換器32を経て、排熱の利用側に向けて送る排熱回収水が流出する排熱回収液流出口72に接続されている。 The waste heat recovery liquid pipe 7 is a heat exchanger 31 for intermediate stage waste heat recovery from the waste heat recovery liquid inflow port 71 into which the waste heat recovery water sent by the operation of the circulation pump 14 from the waste heat utilization side flows in. And, it is connected to an exhaust heat recovery liquid outlet 72 through which the exhaust heat recovery water sent to the exhaust heat utilization side flows out through the heat exchanger 32 for exhaust heat recovery in the discharge stage.

また、中間段排熱回収用の熱交換器31の下流に温度センサ11と、温度調節計12、温調弁13を備えることで、排熱回収出口温度に応じて流量を調整するように構成されている。 Further, by providing a temperature sensor 11, a temperature controller 12, and a temperature control valve 13 downstream of the heat exchanger 31 for intermediate stage exhaust heat recovery, the flow rate is adjusted according to the exhaust heat recovery outlet temperature. Has been done.

冷却液配管8は、冷却液流入口80から、第1冷却液配管81と、第2冷却液配管82と、第3冷却液配管83とに分岐した後、それぞれが合流して冷却液流出口84に接続するように構成されている。冷却液流入口80は、空気圧縮機1の外部に在る、例えば冷却塔(図示せず)等から送られる冷却水が流入する入口である。また、冷却液流出口84は、冷却塔等に向けて送る冷却水が流出する出口である。 The coolant pipe 8 branches from the coolant inlet 80 into the first coolant pipe 81, the second coolant pipe 82, and the third coolant pipe 83, and then merges with each other to the coolant outlet. It is configured to connect to 84. The coolant inflow port 80 is an inlet outside the air compressor 1 into which cooling water sent from, for example, a cooling tower (not shown) or the like flows. Further, the coolant outlet 84 is an outlet from which the cooling water sent toward the cooling tower or the like flows out.

第1冷却液配管81は、冷却液流入口80からアフタークーラ52を経て冷却液流出口84に接続する。第2冷却液配管82は、冷却液流入口80から、オイルクーラ9、第2段の圧縮機本体22のケーシングに設けられている冷却ジャケット及び第1段の圧縮機本体21のケーシングに設けられている冷却ジャケットを経て、冷却液流出口84に接続する。第3冷却液配管83は、冷却液流入口80からインタークーラ51を経て冷却液流出口84に接続する。
オイルクーラ9は、図示は省略するが、圧縮機本体21、22の軸受部や、動力伝達機構等を潤滑する潤滑油を冷却するための水冷式の熱交換器である。オイルクーラ9で冷却された潤滑油は、圧縮機本体21、22の軸受部等を潤滑した後、油溜り(図示せず)に貯留される。その後、潤滑油は、オイルポンプ(図示せず)等の搬送機構でオイルクーラ9に導かれて冷却され、この潤滑経路を循環するように構成されている。
The first coolant pipe 81 is connected to the coolant outlet 84 from the coolant inflow port 80 via the aftercooler 52. The second coolant pipe 82 is provided from the coolant inflow port 80 to the oil cooler 9, the cooling jacket provided in the casing of the second stage compressor body 22, and the casing of the first stage compressor body 21. It is connected to the coolant outlet 84 via the cooling jacket. The third coolant pipe 83 is connected to the coolant outlet 84 from the coolant inflow port 80 via the intercooler 51.
Although not shown, the oil cooler 9 is a water-cooled heat exchanger for cooling the bearings of the compressor bodies 21 and 22 and the lubricating oil that lubricates the power transmission mechanism and the like. The lubricating oil cooled by the oil cooler 9 lubricates the bearing portions of the compressor bodies 21 and 22 and is then stored in an oil sump (not shown). After that, the lubricating oil is guided to the oil cooler 9 by a transport mechanism such as an oil pump (not shown) to be cooled, and is configured to circulate in this lubricating path.

次に、このように構成された排熱回収システム100の動作について説明する。図1において、空気圧縮機1は、第1段の圧縮機本体21の上流側に配置されている容量調整弁(図示せず)を介して空気を吸い込み、第1段の圧縮機本体21で空気を圧縮する。その後、圧縮された高温空気(例えば約160℃程度)は、中間段排熱回収用の熱交換器31で必要な熱量を交換し、さらにインタークーラ51で冷却される。ここで、中間段排熱回収用の熱交換器31には、圧縮された高温空気と排熱回収水とが流れて熱交換が行われ、インタークーラ51には、中間段排熱回収用の熱交換器31で熱交換されて温度が低下した圧縮空気と、冷却水とが流れて熱交換が行われる。 Next, the operation of the exhaust heat recovery system 100 configured in this way will be described. In FIG. 1, the air compressor 1 sucks air through a capacity adjusting valve (not shown) arranged on the upstream side of the first stage compressor main body 21, and the first stage compressor main body 21 sucks air. Compress the air. After that, the compressed high-temperature air (for example, about 160 ° C.) exchanges the required amount of heat with the heat exchanger 31 for recovering the exhaust heat in the intermediate stage, and is further cooled by the intercooler 51. Here, compressed high-temperature air and exhaust heat recovery water flow through the heat exchanger 31 for intermediate stage exhaust heat recovery to perform heat exchange, and the intercooler 51 is used for intermediate stage exhaust heat recovery. The compressed air whose temperature has dropped due to heat exchange in the heat exchanger 31 and the cooling water flow to exchange heat.

次に、インタークーラ51で冷却された空気(例えば約40℃程度)は、さらに圧力を上げるために第2段の圧縮機本体22で圧縮される。その後、圧縮された高温空気(例えば約160℃程度或いはこれよりも更に高温)は、吐出段排熱回収用の熱交換器32で再び必要な熱量を交換し、さらにアフタークーラ52で冷却される。そして、アフタークーラ52で冷却された空気(例えば約40℃程度)は、圧縮空気の需要元に送られる。 Next, the air cooled by the intercooler 51 (for example, about 40 ° C.) is compressed by the compressor main body 22 of the second stage in order to further increase the pressure. After that, the compressed high-temperature air (for example, about 160 ° C. or higher temperature) exchanges the required amount of heat again with the heat exchanger 32 for recovering the exhaust heat of the discharge stage, and is further cooled by the aftercooler 52. .. Then, the air cooled by the aftercooler 52 (for example, about 40 ° C.) is sent to the demand source of the compressed air.

一方、排熱回収水は、循環用ポンプ14の運転により排熱の利用側から排熱回収液流入口71を介して流入し、排熱回収液配管7を流れるとともに、排熱回収用の熱交換器31、32で圧縮空気と熱交換した後、中間段排熱回収用の熱交換器31の下流に設置された温度センサ11で回収温度を測定され、温調弁13を介して排熱回収液流出口72から排熱の利用側に向けて流出する。ここで、温度調節計12は、温度センサ11で測定した回収温度と設定されている回収水温度に従い温調弁13の開閉角度を制御し、流量を調整することで回収温度を常に一定に保つ。また、温度調節計12を備えることで必要な回収温度を設定することが可能となり、回収温度変更において温調弁等の交換及び仕様変更が不要となる。 On the other hand, the exhaust heat recovery water flows in from the exhaust heat utilization side through the exhaust heat recovery liquid inflow port 71 by the operation of the circulation pump 14, flows through the exhaust heat recovery liquid pipe 7, and heat for exhaust heat recovery. After exchanging heat with the compressed air in the exchangers 31 and 32, the recovery temperature is measured by the temperature sensor 11 installed downstream of the heat exchanger 31 for recovering the intermediate stage exhaust heat, and the exhaust heat is exhausted via the temperature control valve 13. It flows out from the recovery liquid outlet 72 toward the utilization side of the exhaust heat. Here, the temperature controller 12 controls the opening / closing angle of the temperature control valve 13 according to the recovery temperature measured by the temperature sensor 11 and the set recovery water temperature, and adjusts the flow rate to keep the recovery temperature constant at all times. .. Further, by providing the temperature controller 12, it is possible to set the required recovery temperature, and it is not necessary to replace the temperature control valve or the like or change the specifications when changing the recovery temperature.

このように、回収水は、温度センサ11、温度調節計12、温調弁13により、温度及び流量調整され、排熱の利用側に供給されるので、排熱の利用側は、圧縮機負荷率の低減やアンロード運転等による圧縮空気温度低下時においても、排熱回収水を一定の温度で各種設備の熱源として利用することができる。 In this way, the recovered water is adjusted in temperature and flow rate by the temperature sensor 11, the temperature controller 12, and the temperature control valve 13 and supplied to the exhaust heat utilization side. Therefore, the exhaust heat utilization side is loaded with the compressor. Even when the compressed air temperature drops due to a reduction in the rate or unloading operation, the exhaust heat recovery water can be used as a heat source for various facilities at a constant temperature.

図2は、本実施例における排熱回収システム100において回収水の温度を90℃一定に保つために温調弁13を制御する温度調節計12が行う制御の処理フローである。 FIG. 2 is a control processing flow performed by the temperature controller 12 that controls the temperature control valve 13 in order to keep the temperature of the recovered water constant at 90 ° C. in the waste heat recovery system 100 in this embodiment.

以下、図2における各処理ステップについて説明する。
S201:気体圧縮機が運転すると温度調節計12に電力が供給され温調弁13の制御を開始する。
S202:温度調節計12は温度センサ11が計測した排熱回収水の温度を取得する。
S203:計測した回収水温度が90℃を超過している場合、S204に進み、回収水温度を低下させる処理へ移行する。また、90℃を超過していない場合、S209に進む。S204:温調弁13が全開の場合、S207で循環用ポンプ14を停止させ、S208で軽故障信号を流す。全開でない場合、S205に進む。
S205:温調弁13の弁が調整され(開方向)流量を増加させる事により回収水温度を低下させる。
S206:一定時間待機し、S202に戻る。
S209:計測した回収水温度が90℃未満の場合、S210に進み、回収水温度を上昇させる処理へ移行する。また、回収水温度が90℃未満でない場合は、90℃一定と判断し、S206に進み、そのまま一定時間待機し、排熱回収を行う。
S210:温調弁13が全閉の場合、S207循環用ポンプ14を停止させ、S208軽故障信号を流す。全閉でない場合、S211に進む。
S211:温調弁13の弁が調整され(閉方向)流量を低減させる事により回収温度を上昇させる。
Hereinafter, each processing step in FIG. 2 will be described.
S201: When the gas compressor operates, electric power is supplied to the temperature controller 12 and the control of the temperature control valve 13 is started.
S202: The temperature controller 12 acquires the temperature of the exhaust heat recovery water measured by the temperature sensor 11.
S203: When the measured recovered water temperature exceeds 90 ° C., the process proceeds to S204, and the process proceeds to the process of lowering the recovered water temperature. If the temperature does not exceed 90 ° C., the process proceeds to S209. S204: When the temperature control valve 13 is fully opened, the circulation pump 14 is stopped in S207, and a minor failure signal is sent in S208. If it is not fully open, the process proceeds to S205.
S205: The valve of the temperature control valve 13 is adjusted (opening direction) to increase the flow rate, thereby lowering the recovered water temperature.
S206: Waits for a certain period of time and returns to S202.
S209: When the measured recovered water temperature is less than 90 ° C., the process proceeds to S210 to shift to the process of raising the recovered water temperature. If the recovered water temperature is not less than 90 ° C., it is determined that the temperature is constant at 90 ° C., the process proceeds to S206, and the patient waits for a certain period of time to recover the exhaust heat.
S210: When the temperature control valve 13 is fully closed, the S207 circulation pump 14 is stopped and an S208 minor failure signal is sent. If it is not fully closed, the process proceeds to S211.
S211: The valve of the temperature control valve 13 is adjusted (closed direction) to reduce the flow rate, thereby raising the recovery temperature.

本実施例では、排熱の利用側から送られる排熱回収水は、例えば温度が70〜90℃の高温水である。そして、高温水である排熱回収水は、排熱回収用の熱交換器31、32での圧縮空気との熱交換によって、例えば5〜10℃程度温度上昇させられて、排熱の利用側に戻される。 In this embodiment, the waste heat recovery water sent from the waste heat utilization side is, for example, high temperature water having a temperature of 70 to 90 ° C. Then, the exhaust heat recovery water, which is high temperature water, is raised in temperature by, for example, about 5 to 10 ° C. by heat exchange with the compressed air in the heat exchangers 31 and 32 for exhaust heat recovery, and the exhaust heat utilization side. Returned to.

また、冷却水は、例えば冷却塔(図示せず)から冷却液流入口80を介して流入して冷却液配管8を流れるとともに、インタークーラ51、アフタークーラ52における圧縮空気のほか各部を冷却した後、冷却液流出口84から冷却塔に向けて流出する。温度が上昇した冷却水は、冷却塔で大気と熱交換することによって冷やされる。 Further, the cooling water flows from, for example, a cooling tower (not shown) through the coolant inflow port 80 and flows through the coolant pipe 8, and cools each part in addition to the compressed air in the intercooler 51 and the aftercooler 52. After that, it flows out from the coolant outlet 84 toward the cooling tower. The cooled water whose temperature has risen is cooled by exchanging heat with the atmosphere in the cooling tower.

このように、本実施例によれば、圧縮機負荷率の低減やアンロード運転による圧縮空気温度低下の対策として、排熱回収出口ラインに温度センサ11と、温度調節計12、温調弁13を設けることで、回収水量を調整し、排熱回収温度を一定に保つことができる。また、逆止弁10と放風配管4を吐出段排熱回収用の熱交換器32の下流に配置し、アンロード運転(無負荷運転)時においても放風空気が排熱回収用の熱交換器31、32を流れる構造にしている為、運転状態を問わず排熱回収が可能であり、排熱回収率向上を図る事ができ、省エネルギー化を図ることができる。 As described above, according to the present embodiment, as measures for reducing the compressor load factor and lowering the compressed air temperature due to the unload operation, the exhaust heat recovery outlet line has a temperature sensor 11, a temperature controller 12, and a temperature control valve 13. By providing the above, the amount of recovered water can be adjusted and the exhaust heat recovery temperature can be kept constant. Further, the check valve 10 and the exhaust pipe 4 are arranged downstream of the heat exchanger 32 for exhaust heat recovery at the discharge stage, and the exhaust air is the heat for exhaust heat recovery even during the unload operation (no load operation). Since the exchangers 31 and 32 have a structure in which they flow, exhaust heat can be recovered regardless of the operating state, the exhaust heat recovery rate can be improved, and energy can be saved.

実施例1では、温度センサ11、温度調節計12、温調弁13により、排熱回収水の温度を常に一定に保つように制御している。そして、温調弁13が全開または全閉状態で流量の増減による温度調整が出来ない場合、循環用ポンプ14を停止させて軽故障信号を出す制御としている。 In the first embodiment, the temperature sensor 11, the temperature controller 12, and the temperature control valve 13 are used to control the temperature of the exhaust heat recovery water so as to be kept constant at all times. When the temperature control valve 13 is fully open or fully closed and the temperature cannot be adjusted by increasing or decreasing the flow rate, the circulation pump 14 is stopped to output a minor failure signal.

これに対して、本実施例では温調弁13での流量の増減による温度調整が出来ない場合でも、廃回収水温度の調整を可能とする例について説明する。 On the other hand, in this embodiment, an example in which the temperature of the waste recovered water can be adjusted even when the temperature cannot be adjusted by increasing or decreasing the flow rate in the temperature control valve 13 will be described.

図3は、本実施例における排熱回収システムの概略構成を示す模式図である。図3において、図1と同じ機能の構成は同符号を付し、その説明は省略する。図3において、図1と異なる点は、吐出段排熱回収用の熱交換器32の上流、下流に3方向電磁弁16を設け、バイパス配管15を設けた点である。 FIG. 3 is a schematic diagram showing a schematic configuration of the exhaust heat recovery system in this embodiment. In FIG. 3, the same functional configurations as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 3, the difference from FIG. 1 is that a three-way solenoid valve 16 is provided upstream and downstream of the heat exchanger 32 for recovering exhaust heat from the discharge stage, and a bypass pipe 15 is provided.

図3において、吐出段排熱回収用の熱交換器32の上流・下流に3方向電磁弁16を設け、温調弁13での流量の増減による温度調整が出来ない場合、排熱回収水ラインを排熱回収液配管7からバイパス配管15に変更する。これにより、熱交換を中間段排熱回収用の熱交換器31のみで行うことにより回収温度を調整する事が可能である。これに伴い温調弁13の弁調整範囲を広げることが可能となる。 In FIG. 3, a three-way electromagnetic valve 16 is provided upstream and downstream of the heat exchanger 32 for recovering exhaust heat from the discharge stage, and when the temperature cannot be adjusted by increasing or decreasing the flow rate in the temperature control valve 13, the exhaust heat recovery water line Is changed from the exhaust heat recovery liquid pipe 7 to the bypass pipe 15. As a result, the recovery temperature can be adjusted by performing heat exchange only with the heat exchanger 31 for recovering the waste heat of the intermediate stage. Along with this, the valve adjustment range of the temperature control valve 13 can be expanded.

図4は、本実施例における排熱回収システム100において回収水の温度を90℃一定に保つために温調弁13を制御する温度調節計12が行う制御の処理フローである。図4において、図2と同一符号を付したステップは同一の処理であり、その説明は省略する。図4において、図2と異なる点は、温調弁13が全開または全閉時のバイパス制御の部分である。 FIG. 4 is a control processing flow performed by the temperature controller 12 that controls the temperature control valve 13 in order to keep the temperature of the recovered water constant at 90 ° C. in the waste heat recovery system 100 in this embodiment. In FIG. 4, the steps with the same reference numerals as those in FIG. 2 are the same processes, and the description thereof will be omitted. In FIG. 4, the difference from FIG. 2 is the bypass control part when the temperature control valve 13 is fully open or fully closed.

以下、図4における温調弁13が全開または全閉時のバイパス制御の各処理ステップについて説明する。
S301:回収水温度が90℃を超過し温調弁13が全開時、排熱回収用の熱交換器2台で熱回収していた場合(熱交換器2台ライン)は、S302に進み、3方向電磁弁16の弁方向を変更する。熱交換器2台ラインでなければS207に進む。
S302:バイパス配管15に排熱回収水を流すことで熱交換を中間段排熱回収用の熱交換器31の1台(熱交換器1台ライン)に絞り、回収水温度を低下させる。
S303:回収水温度が90℃未満で温調弁13が全閉時、排熱回収用の熱交換器1台で熱回収していた場合(熱交換器1台ライン)は、S304に進み、3方向電磁弁16の弁方向を変更する。熱交換器1台ラインでなければS207に進む。
S304:排熱回収液配管7に排熱回収水を流すことで、熱交換を中間段排熱回収用の熱交換器31と、吐出段排熱回収用の熱交換器32の2台(熱交換器2台ライン)で行い、回収水温度を上昇させる。
Hereinafter, each processing step of bypass control when the temperature control valve 13 in FIG. 4 is fully open or fully closed will be described.
S301: When the recovered water temperature exceeds 90 ° C. and the temperature control valve 13 is fully opened, if heat is recovered by two heat exchangers for exhaust heat recovery (two heat exchanger lines), the process proceeds to S302. The valve direction of the three-way electromagnetic valve 16 is changed. If it is not a line of two heat exchangers, proceed to S207.
S302: By flowing the exhaust heat recovery water through the bypass pipe 15, heat exchange is narrowed down to one of the heat exchangers 31 for intermediate stage exhaust heat recovery (one heat exchanger line), and the recovery water temperature is lowered.
S303: When the recovered water temperature is less than 90 ° C. and the temperature control valve 13 is fully closed, if heat is recovered by one heat exchanger for exhaust heat recovery (one heat exchanger line), the process proceeds to S304. The valve direction of the three-way electromagnetic valve 16 is changed. If it is not one heat exchanger line, proceed to S207.
S304: By flowing exhaust heat recovery water through the exhaust heat recovery liquid pipe 7, two heat exchangers (heat exchanger 31) for intermediate stage exhaust heat recovery and heat exchanger 32 for discharge stage exhaust heat recovery (heat) are exchanged. Use a line of two exchangers) to raise the temperature of the recovered water.

以上のように、本実施例によれば、温調弁の弁開閉角度で流量を制御し切れない場合においても、温水回収ラインを変更することで、回収水温度の調整が可能となる。 As described above, according to the present embodiment, even when the flow rate cannot be completely controlled by the valve opening / closing angle of the temperature control valve, the recovery water temperature can be adjusted by changing the hot water recovery line.

以上、実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、実施例では、排熱回収液配管7は、排熱回収液流入口71から、中間段排熱回収用の熱交換器31と吐出段排熱回収用の熱交換器32とを経て、排熱回収液流出口72に接続するように構成されているが、これに限定されるものではない。すなわち、排熱回収液配管7は、複数の排熱回収用の熱交換器に対応して複数設けられており、複数の排熱回収液配管の各々は、別々に独立した経路として筐体内に設けられていてもよい。ここで、複数の排熱回収用の熱交換器は、中間段排熱回収用の熱交換器31と吐出段排熱回収用の熱交換器32とであってもよい。あるいは、複数の排熱回収用の熱交換器が、中間段排熱回収用の熱交換器31(または吐出段排熱回収用の熱交換器32)が直列に繋がれた複数の熱交換器として構成されていてもよい。このような構成によれば、複数の前記排熱回収液配管の各々から、異なる複数の温度の排熱回収水を得て利用することができる。これにより、必要とされる排熱回収水の温度が異なる複数の設備等に対応することが可能となる。 Although the examples have been described above, the present invention is not limited to the above-mentioned examples, and various modifications are included. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. For example, in the embodiment, the exhaust heat recovery liquid pipe 7 passes through the heat exchanger 31 for intermediate stage exhaust heat recovery and the heat exchanger 32 for discharge stage exhaust heat recovery from the exhaust heat recovery liquid inflow port 71. It is configured to be connected to the exhaust heat recovery liquid outlet 72, but is not limited thereto. That is, a plurality of exhaust heat recovery liquid pipes 7 are provided corresponding to a plurality of heat exchangers for exhaust heat recovery, and each of the plurality of exhaust heat recovery liquid pipes is separately provided as an independent path in the housing. It may be provided. Here, the plurality of heat exchangers for exhaust heat recovery may be an intermediate stage exhaust heat recovery heat exchanger 31 and a discharge stage exhaust heat recovery heat exchanger 32. Alternatively, a plurality of heat exchangers for recovering exhaust heat are connected in series with a heat exchanger 31 for recovering waste heat in the intermediate stage (or a heat exchanger 32 for recovering exhaust heat in the discharge stage). It may be configured as. According to such a configuration, exhaust heat recovery water having a plurality of different temperatures can be obtained and used from each of the plurality of exhaust heat recovery liquid pipes. This makes it possible to support a plurality of facilities and the like having different temperatures of the required exhaust heat recovery water.

また、実施例では、冷却液配管8は、冷却液流入口80から、第1冷却液配管81と第2冷却液配管82と第3冷却液配管83とに分岐した後、それぞれが合流して冷却液流出口84に接続するように構成されているが、これに限定されるものではない。例えば、冷却液配管8は、複数の冷却用熱交換器に対応して複数設けられており、複数の冷却液配管の各々は、別々に独立した経路として筐体内に設けられていてもよい。ここで、複数の冷却用熱交換器は、インタークーラ51と、アフタークーラ52とであってもよい。あるいは、複数の冷却用熱交換器が、インタークーラ51(又はアフタークーラ52)が直列に繋がれた複数の熱交換器として構成されていてもよい。 Further, in the embodiment, the coolant pipe 8 branches from the coolant inflow port 80 into the first coolant pipe 81, the second coolant pipe 82, and the third coolant pipe 83, and then merges with each other. It is configured to connect to the coolant outlet 84, but is not limited thereto. For example, a plurality of coolant pipes 8 may be provided corresponding to a plurality of cooling heat exchangers, and each of the plurality of coolant pipes may be separately provided in the housing as an independent path. Here, the plurality of cooling heat exchangers may be an intercooler 51 and an aftercooler 52. Alternatively, the plurality of cooling heat exchangers may be configured as a plurality of heat exchangers in which the intercooler 51 (or the aftercooler 52) is connected in series.

また、実施例では、温度センサ11、温度調節計12、温調弁13により、排熱回収水の温度を常に一定に保つように制御しているが、これに限定されるものではなく、排熱回収水の温度によって流量を制御できればよく、例えば、温度センサ11や温度調節計12を用いずに、空気圧、水圧、油圧、電気等の補助の動力を必要としない自力式の自動温度調整弁としてもよい。 Further, in the embodiment, the temperature sensor 11, the temperature controller 12, and the temperature control valve 13 are used to control the temperature of the exhaust heat recovery water so as to keep it constant, but the temperature is not limited to this and is exhausted. It suffices if the flow rate can be controlled by the temperature of the heat recovery water. For example, a self-powered automatic temperature control valve that does not require auxiliary power such as air pressure, water pressure, hydraulic pressure, and electricity without using a temperature sensor 11 or a temperature controller 12. May be.

また、実施例では、空気圧縮機1はスクリュー圧縮機に具体的に適用可能であるが、本発明はこれに限定されるものではない。即ち実施例は、圧縮機本体21、22にスクリューロータを使用しているが、これに限定されるものではなく、遠心式、軸流式等といったターボ型や、スクロール式、レシプロ式、クロー式等といった容積型の種々の形式の圧縮手段を使用し得る。また、実施例では、ツインスクリュー式のロータが使用されているが、シングル又はトリプルスクリュー式のロータが使用されてもよい。 Further, in the embodiment, the air compressor 1 is specifically applicable to the screw compressor, but the present invention is not limited thereto. That is, in the embodiment, the screw rotor is used for the compressor main bodies 21 and 22, but the present invention is not limited to this, and the turbo type such as the centrifugal type and the axial flow type, the scroll type, the reciprocating type, and the claw type are used. Various types of positive displacement compression means such as, etc. can be used. Further, in the embodiment, a twin screw type rotor is used, but a single or triple screw type rotor may be used.

また、実施例では、圧縮機本体21、22の段数は2段であるが、これに限定されるものではなく、単段、あるいは3段以上であってもよい。 Further, in the embodiment, the number of stages of the compressor main bodies 21 and 22 is two, but the number of stages is not limited to this, and the number of stages may be single or three or more.

また、実施例では、空気圧縮機1は、オイルフリースクリュー圧縮機であるが、これに限定されるものではなく、油や水を圧縮作動室に注入する給液式の空気圧縮機であってもよい。また、圧縮する気体を空気として説明したが、これに限定されるものでなく、窒素等でもよい。 Further, in the embodiment, the air compressor 1 is an oil-free screw compressor, but is not limited to this, and is a liquid supply type air compressor that injects oil or water into the compression operating chamber. May be good. Further, although the gas to be compressed has been described as air, the present invention is not limited to this, and nitrogen or the like may be used.

また、実施例では、排熱の利用側から送られる排熱回収水の温度は、70〜90℃であるが、これに限定されるものではなく、例えば35℃程度以上の所定温度範囲であってもよい。 Further, in the embodiment, the temperature of the exhaust heat recovery water sent from the exhaust heat utilization side is 70 to 90 ° C., but is not limited to this, and is, for example, a predetermined temperature range of about 35 ° C. or higher. You may.

また、実施例では、温度が上昇した冷却水は、冷却塔で大気と熱交換することによって冷やされるように構成されているが、これに限定されるものではなく、温度が上昇した冷却水の熱を回収して利用することも可能である。 Further, in the embodiment, the cooling water whose temperature has risen is configured to be cooled by exchanging heat with the atmosphere in the cooling tower, but the present invention is not limited to this, and the cooling water whose temperature has risen is not limited to this. It is also possible to recover and use the heat.

また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1:空気圧縮機、2:排熱回収機、4:放風配管、6:空気配管、7:排熱回収液配管、8:冷却液配管、9:オイルクーラ、10:逆止弁、11:温度センサ、12:温度調節計、13:温調弁、14:循環用ポンプ、15:バイパス配管、16:3方向電磁弁、21:第1段の圧縮機本体、22:第2段の圧縮機本体、31:中間段排熱回収用の熱交換器、32:吐出段排熱回収用の熱交換器、51:冷却用の熱交換器(インタークーラ)、52:冷却用の熱交換器(アフタークーラ)、81:第1冷却液配管、82:第2冷却液配管、83:第3冷却液配管、100:排熱回収システム 1: Air compressor 2: Exhaust heat recovery machine 4: Blow-out piping, 6: Air piping, 7: Exhaust heat recovery liquid piping, 8: Coolant piping, 9: Oil cooler, 10: Check valve, 11 : Temperature sensor, 12: Temperature controller, 13: Temperature control valve, 14: Circulation pump, 15: Bypass piping, 16: 3-way electromagnetic valve, 21: 1st stage compressor body, 22: 2nd stage Compressor body, 31: heat exchanger for intermediate stage exhaust heat recovery, 32: heat exchanger for discharge stage exhaust heat recovery, 51: heat exchanger for cooling (intercooler), 52: heat exchange for cooling Vessel (after cooler), 81: 1st coolant piping, 82: 2nd coolant piping, 83: 3rd coolant piping, 100: exhaust heat recovery system

Claims (10)

気体を圧縮する圧縮機本体を有し圧縮気体を出力する気体圧縮機と、排熱回収用の熱交換器と該熱交換器で前記圧縮気体と熱交換する排熱回収水が流通する排熱回収液配管を備える排熱回収機、を有する排熱回収システムであって、
前記圧縮機本体と前記排熱回収用の熱交換器は、圧縮対象の前記気体が流通する気体配管で接続されており、
前記排熱回収機は、前記排熱回収液配管において前記排熱回収用の熱交換器の下流に設置された温度センサと、温調弁と、該温度センサで測定した前記排熱回収水の温度と設定されている回収水温度に従い前記温調弁の開閉角度を制御する温度調節計を有することを特徴とする排熱回収システム。
Exhaust heat that flows through a gas compressor that has a compressor body that compresses gas and outputs compressed gas, a heat exchanger for exhaust heat recovery, and exhaust heat recovery water that exchanges heat with the compressed gas in the heat exchanger. An exhaust heat recovery system having an exhaust heat recovery machine provided with a recovery liquid pipe.
The compressor body and the heat exchanger for recovering exhaust heat are connected by a gas pipe through which the gas to be compressed flows.
The exhaust heat recovery machine includes a temperature sensor installed downstream of the heat exchanger for exhaust heat recovery in the exhaust heat recovery liquid pipe, a temperature control valve, and the exhaust heat recovery water measured by the temperature sensor. An exhaust heat recovery system comprising a temperature controller that controls an opening / closing angle of the temperature control valve according to a temperature and a set recovery water temperature.
請求項1に記載の排熱回収システムであって、
前記気体圧縮機は、前記気体配管において前記排熱回収用の熱交換器の下流にアンロード運転により全閉となる逆止弁と放風配管を有することを特徴とする排熱回収システム。
The waste heat recovery system according to claim 1.
The gas compressor is an exhaust heat recovery system characterized by having a check valve and a blow-off pipe that are fully closed by unloading operation downstream of the heat exchanger for exhaust heat recovery in the gas pipe.
請求項1に記載の排熱回収システムであって、
前記圧縮機本体は、気体の流れの上流側に配置されている第1段の圧縮機本体と、該第1段の圧縮機本体に対して気体の流れの下流側に配置されている第2段の圧縮機本体からなり、
前記排熱回収用の熱交換器は、前記第1段の圧縮機本体と前記第2段の圧縮機本体との間に配置されている中間段排熱回収用の熱交換器と、前記第2段の圧縮機本体の下流側に配置されている吐出段排熱回収用の熱交換器からなり、
前記温度センサは前記中間段排熱回収用の熱交換器の下流に設置されることを特徴とする排熱回収システム。
The waste heat recovery system according to claim 1.
The compressor body is a first-stage compressor body arranged on the upstream side of the gas flow and a second stage compressor body arranged on the downstream side of the gas flow with respect to the first-stage compressor body. Consists of a stage compressor body
The heat exchanger for exhaust heat recovery includes an intermediate stage heat exchanger for exhaust heat recovery arranged between the compressor main body of the first stage and the compressor main body of the second stage, and the first stage. It consists of a heat exchanger for exhaust heat recovery in the discharge stage, which is located on the downstream side of the two-stage compressor body.
The exhaust heat recovery system is characterized in that the temperature sensor is installed downstream of the heat exchanger for recovering the intermediate stage exhaust heat.
請求項3に記載の排熱回収システムであって、
前記気体圧縮機は、前記気体配管において前記吐出段排熱回収用の熱交換器の下流にアンロード運転により全閉となる逆止弁と放風配管を有することを特徴とする排熱回収システム。
The waste heat recovery system according to claim 3.
The gas compressor is a waste heat recovery system characterized by having a check valve and a blow-off pipe that are fully closed by unloading operation downstream of the heat exchanger for recovering exhaust heat from the discharge stage in the gas pipe. ..
請求項1に記載の排熱回収システムであって、
前記圧縮機本体は、オイルフリースクリュー圧縮機であることを特徴とする排熱回収システム。
The waste heat recovery system according to claim 1.
The exhaust heat recovery system is characterized in that the compressor body is an oil-free screw compressor.
請求項3に記載の排熱回収システムであって、
前記排熱回収機は、前記吐出段排熱回収用の熱交換器の上流と下流に3方向電磁弁を設け、バイパス配管を設けたことを特徴とする排熱回収システム。
The waste heat recovery system according to claim 3.
The exhaust heat recovery machine is an exhaust heat recovery system characterized in that a three-way solenoid valve is provided upstream and downstream of the heat exchanger for exhaust heat recovery in the discharge stage, and a bypass pipe is provided.
請求項6に記載の排熱回収システムであって、
前記気体圧縮機は、前記気体配管において前記吐出段排熱回収用の熱交換器の下流にアンロード運転により全閉となる逆止弁と放風配管を有することを特徴とする排熱回収システム。
The waste heat recovery system according to claim 6.
The gas compressor is a waste heat recovery system characterized by having a check valve and a blow-off pipe that are fully closed by unloading operation downstream of the heat exchanger for recovering exhaust heat from the discharge stage in the gas pipe. ..
気体を圧縮する際に発生する排熱を回収する熱交換器を有する排熱回収システムに用いる気体圧縮機であって、
気体を圧縮する圧縮機本体を有し、該圧縮機本体と前記熱交換器は、圧縮対象の前記気体が流通する気体配管で接続されており、
該気体配管において前記熱交換器の下流にアンロード運転により全閉となる逆止弁と放風配管を有することを特徴とする気体圧縮機。
A gas compressor used in an exhaust heat recovery system having a heat exchanger that recovers the exhaust heat generated when the gas is compressed.
It has a compressor body that compresses gas, and the compressor body and the heat exchanger are connected by a gas pipe through which the gas to be compressed flows.
A gas compressor characterized by having a check valve and a blow-off pipe that are fully closed by unloading operation downstream of the heat exchanger in the gas pipe.
請求項8に記載の気体圧縮機であって、
前記圧縮機本体は、気体の流れの上流側に配置されている第1段の圧縮機本体と、該第1段の圧縮機本体に対して気体の流れの下流側に配置されている第2段の圧縮機本体からなり、
前記熱交換器は、前記第1段の圧縮機本体と前記第2段の圧縮機本体との間に配置されている中間段排熱回収用の熱交換器と、前記第2段の圧縮機本体の下流側に配置されている吐出段排熱回収用の熱交換器からなり、
前記気体配管において前記吐出段排熱回収用の熱交換器の下流にアンロード運転により全閉となる逆止弁と放風配管を有することを特徴とする気体圧縮機。
The gas compressor according to claim 8.
The compressor body is a first-stage compressor body arranged on the upstream side of the gas flow and a second stage compressor body arranged on the downstream side of the gas flow with respect to the first-stage compressor body. Consists of a stage compressor body
The heat exchanger includes an intermediate stage exhaust heat recovery heat exchanger arranged between the first stage compressor main body and the second stage compressor main body, and the second stage compressor. It consists of a heat exchanger for exhaust heat recovery at the discharge stage located on the downstream side of the main body.
A gas compressor characterized by having a check valve and a blow-off pipe that are fully closed by unloading operation downstream of the heat exchanger for recovering exhaust heat from the discharge stage in the gas pipe.
請求項8に記載の気体圧縮機であって、
前記圧縮機本体は、オイルフリースクリュー圧縮機であることを特徴とする気体圧縮機。
The gas compressor according to claim 8.
The compressor body is a gas compressor characterized by being an oil-free screw compressor.
JP2019228100A 2019-12-18 2019-12-18 Exhaust heat recovery system and gas compressor used therefor Active JP7309593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019228100A JP7309593B2 (en) 2019-12-18 2019-12-18 Exhaust heat recovery system and gas compressor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019228100A JP7309593B2 (en) 2019-12-18 2019-12-18 Exhaust heat recovery system and gas compressor used therefor

Publications (2)

Publication Number Publication Date
JP2021096043A true JP2021096043A (en) 2021-06-24
JP7309593B2 JP7309593B2 (en) 2023-07-18

Family

ID=76431000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019228100A Active JP7309593B2 (en) 2019-12-18 2019-12-18 Exhaust heat recovery system and gas compressor used therefor

Country Status (1)

Country Link
JP (1) JP7309593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171575A1 (en) 2022-03-11 2023-09-14 株式会社日立産機システム Gas compressor and gas compression system
JP7592046B2 (en) 2022-05-10 2024-11-29 株式会社日立産機システム Compressor System

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286591A (en) * 1995-04-07 1995-10-31 Hitachi Ltd Oil free screw compressor
JP2002115930A (en) * 2000-07-31 2002-04-19 Yazaki Corp Air conditioning apparatus
WO2011104834A1 (en) * 2010-02-24 2011-09-01 株式会社 日立製作所 Air conditioner
US20120011871A1 (en) * 2010-07-13 2012-01-19 Cameron International Corporation Compressor waste heat driven cooling system
JP2012087664A (en) * 2010-10-19 2012-05-10 Miura Co Ltd Heat recovery system
JP2013253572A (en) * 2012-06-08 2013-12-19 Hitachi Industrial Equipment Systems Co Ltd Oil free screw compressor
JP2017150496A (en) * 2017-05-22 2017-08-31 三浦工業株式会社 Heat recovery system
WO2018008053A1 (en) * 2016-07-04 2018-01-11 三菱電機株式会社 Refrigeration cycle system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286591A (en) * 1995-04-07 1995-10-31 Hitachi Ltd Oil free screw compressor
JP2002115930A (en) * 2000-07-31 2002-04-19 Yazaki Corp Air conditioning apparatus
WO2011104834A1 (en) * 2010-02-24 2011-09-01 株式会社 日立製作所 Air conditioner
US20120011871A1 (en) * 2010-07-13 2012-01-19 Cameron International Corporation Compressor waste heat driven cooling system
JP2012087664A (en) * 2010-10-19 2012-05-10 Miura Co Ltd Heat recovery system
JP2013253572A (en) * 2012-06-08 2013-12-19 Hitachi Industrial Equipment Systems Co Ltd Oil free screw compressor
WO2018008053A1 (en) * 2016-07-04 2018-01-11 三菱電機株式会社 Refrigeration cycle system
JP2017150496A (en) * 2017-05-22 2017-08-31 三浦工業株式会社 Heat recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171575A1 (en) 2022-03-11 2023-09-14 株式会社日立産機システム Gas compressor and gas compression system
JP7592046B2 (en) 2022-05-10 2024-11-29 株式会社日立産機システム Compressor System

Also Published As

Publication number Publication date
JP7309593B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
EP3296546B1 (en) Compressed air energy storage and power generation device
JP6571491B2 (en) heat pump
WO2016203980A1 (en) Compressed air energy storage power generation device, and compressed air energy storage power generation method
JP5110882B2 (en) Oil-free screw compressor
CN108779711B (en) Compressed air storage power generation device
WO2022163079A1 (en) Gas compressor
WO2016203979A1 (en) Compressed air energy storage power generation device
JP2016211436A (en) Compressed air energy storage power generation device
JP6607960B2 (en) Gas compressor
JP2021096043A (en) Exhaust heat recovery system and gas compressor used for the same
EP4033098B1 (en) Heat recovery device
WO2025094431A1 (en) Waste heat recovery system, waste heat recovery unit, and waste heat recovery method
JP7592046B2 (en) Compressor System
US20250154954A1 (en) Gas Compressor and Gas Compression System
JP7461255B2 (en) Compressed gas cooling method and compressed gas cooling device in compressor
US20250180019A1 (en) Gas compressor
JP6906013B2 (en) heat pump
CN118317569A (en) Combined multistage cooling device and method for high heat source
CN119983584A (en) Main and standby machine online switching system and method based on coaxial refrigerating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7309593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150