[go: up one dir, main page]

JP2021092452A - Thermal flowmeter and flow rate measuring method - Google Patents

Thermal flowmeter and flow rate measuring method Download PDF

Info

Publication number
JP2021092452A
JP2021092452A JP2019223437A JP2019223437A JP2021092452A JP 2021092452 A JP2021092452 A JP 2021092452A JP 2019223437 A JP2019223437 A JP 2019223437A JP 2019223437 A JP2019223437 A JP 2019223437A JP 2021092452 A JP2021092452 A JP 2021092452A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
measuring element
fluid
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019223437A
Other languages
Japanese (ja)
Inventor
まゆみ 湯山
Mayumi Yuyama
まゆみ 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2019223437A priority Critical patent/JP2021092452A/en
Publication of JP2021092452A publication Critical patent/JP2021092452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】極微小流量域での正確な流量計測を実現する。【解決手段】熱式流量計は、測定対象の流体を流通させる配管1と、流体の第1の温度を検出する測温素子2aと、流体の第2の温度を検出する測温素子2bと、発熱と同時にその発熱温度を検出する発熱・測温素子2cと、発熱温度が第1の温度または第2の温度よりも一定値だけ高くなるように発熱・測温素子2cを発熱させる制御部10と、発熱・測温素子2cの消費電力を測定する電力測定部6と、第2の温度と第1の温度との温度差が所定の閾値以下の場合に第1の流量計測モードとし、温度差が閾値より大きい場合に第2の流量計測モードとする切替部7と、第1の流量計測モードの場合に消費電力を流体の流量の値に変換し、第2の流量計測モードの場合に温度差(TRr2−TRr1)を流体の流量の値に変換する流量導出部8を備える。【選択図】 図1PROBLEM TO BE SOLVED: To realize accurate flow rate measurement in a very small flow rate range. SOLUTION: A thermal flow meter includes a pipe 1 for flowing a fluid to be measured, a temperature measuring element 2a for detecting a first temperature of the fluid, and a temperature measuring element 2b for detecting a second temperature of the fluid. A heat generation / temperature measuring element 2c that detects the heat generation temperature at the same time as heat generation, and a control unit that heats the heat generation / temperature measuring element 2c so that the heat generation temperature is higher than the first temperature or the second temperature by a certain value. 10 and the power measuring unit 6 for measuring the power consumption of the heat generation / temperature measuring element 2c, and when the temperature difference between the second temperature and the first temperature is equal to or less than a predetermined threshold value, the first flow measurement mode is set. In the case of the switching unit 7 that sets the second flow rate measurement mode when the temperature difference is larger than the threshold, and in the case of the first flow rate measurement mode, the power consumption is converted into the value of the fluid flow rate, and in the case of the second flow rate measurement mode. Is provided with a flow rate deriving unit 8 that converts the temperature difference (TRr2-TRr1) into the value of the flow rate of the fluid. [Selection diagram] Fig. 1

Description

本発明は、極めて微小な流体の流量を計測することが可能な熱式流量計および流量計測方法に関するものである。 The present invention relates to a thermal flow meter and a flow rate measuring method capable of measuring the flow rate of an extremely minute fluid.

流体が流れる配管にセンサチップを貼り付ける構造の熱式流量計が従来より知られている(特許文献1、特許文献2参照)。
図7は熱式流量計の原理を説明する図である。図7に示す熱式流量計では、測定対象の流体を流通させる配管100に温度センサ101とヒータ102とを配設し、ヒータ102の温度TRhと温度センサ101の温度TRrとの差(TRh−TRr)が一定になるようにヒータ102を発熱させる。このとき、流体の流量はヒータ102の消費電力と再現性のある相関があるため、消費電力から流量を算出することができる。
Conventionally, a thermal flow meter having a structure in which a sensor chip is attached to a pipe through which a fluid flows has been known (see Patent Document 1 and Patent Document 2).
FIG. 7 is a diagram illustrating the principle of the thermal flowmeter. In the thermal flow meter shown in FIG. 7, the temperature sensor 101 and the heater 102 are arranged in the pipe 100 through which the fluid to be measured is circulated, and the difference between the temperature TRh of the heater 102 and the temperature TRr of the temperature sensor 101 (TRh-). The heater 102 is heated so that TRr) becomes constant. At this time, since the flow rate of the fluid has a reproducible correlation with the power consumption of the heater 102, the flow rate can be calculated from the power consumption.

流体の温度TRrよりもヒータ102の温度TRhが一定温度高くなるようにヒータ102を駆動し、ヒータ102の消費電力に基づいて流量を算出する場合、極微小な流量域ではヒータ102の消費電力が流量ゼロ時の消費電力よりも減少してしまい、正確な流量計測ができないという問題があった。この問題の原因は、ヒータ102の熱が配管100を介して温度センサ101へ伝わることに起因する。ヒータ102の消費電力が減少する流量域は、上流側の温度センサ101への伝熱量に依存する。よって、例えば石英製の配管100の場合、図8に示すように0.01mL/min未満の流量域で、ヒータ消費電力が低下するという現象が発生する。 When the heater 102 is driven so that the temperature TRh of the heater 102 is higher than the fluid temperature TRr by a constant temperature and the flow rate is calculated based on the power consumption of the heater 102, the power consumption of the heater 102 is high in a very small flow rate range. There was a problem that the power consumption was lower than that when the flow rate was zero, and accurate flow rate measurement could not be performed. The cause of this problem is that the heat of the heater 102 is transferred to the temperature sensor 101 via the pipe 100. The flow rate range in which the power consumption of the heater 102 is reduced depends on the amount of heat transferred to the temperature sensor 101 on the upstream side. Therefore, for example, in the case of the quartz pipe 100, a phenomenon that the heater power consumption decreases in the flow rate range of less than 0.01 mL / min occurs as shown in FIG.

極微小流量域では、ヒータ102から温度センサ101への伝熱の影響により温度センサ101が実際の液温よりも高い温度を示し、その結果ヒータ102の温度が本来制御すべき温度よりも高くなって、ヒータ102の消費電力が大きくなる。伝熱の影響は流量ゼロの時が最も大きく、流速が大きくなるにつれて伝熱の影響はなくなるが、極微小流量域では、ヒータ102の温度上昇の低下に伴う消費電力の減少が流速増加に伴う消費電力の増大を上回る領域ため、結果としてヒータ102の消費電力が減少する。一方で、極微小流量域よりも大きい流量域では、流速増加に伴う消費電力の増大が伝熱の影響による消費電力の減少を上回るため、その結果として流速の増加に応じてヒータ102の消費電力は増大していく。 In the extremely small flow rate range, the temperature sensor 101 shows a temperature higher than the actual liquid temperature due to the influence of heat transfer from the heater 102 to the temperature sensor 101, and as a result, the temperature of the heater 102 becomes higher than the temperature that should be controlled originally. Therefore, the power consumption of the heater 102 increases. The effect of heat transfer is greatest when the flow rate is zero, and the effect of heat transfer disappears as the flow velocity increases. As a result, the power consumption of the heater 102 decreases because the region exceeds the increase in power consumption. On the other hand, in a flow rate region larger than the extremely small flow rate region, the increase in power consumption due to the increase in flow velocity exceeds the decrease in power consumption due to the influence of heat transfer, and as a result, the power consumption of the heater 102 is increased according to the increase in flow velocity. Will increase.

このように、極微小流量域で正確な流量計測ができないため、従来の熱式流量計では極微小流量域を不感帯とすることで対応していた。 As described above, since it is not possible to accurately measure the flow rate in the extremely small flow rate range, the conventional thermal flow meter has dealt with this by setting the extremely small flow rate range as a dead zone.

特開2011−209038号公報Japanese Unexamined Patent Publication No. 2011-209038 実開平02−057027号公報Jikkenhei 02-057027

本発明は、上記課題を解決するためになされたもので、極微小流量域での正確な流量計測を実現することができる熱式流量計および流量計測方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a thermal flow meter and a flow rate measuring method capable of realizing accurate flow rate measurement in a very small flow rate range.

本発明の熱式流量計は、測定対象の流体を流通させるように構成された配管と、前記配管に配設され、前記流体の第1の温度を検出するように構成された第1の測温素子と、前記第1の測温素子よりも下流側の前記配管の箇所に配設され、前記流体の第2の温度を検出するように構成された第2の測温素子と、前記第2の測温素子よりも下流側の前記配管の箇所に配設され、発熱と同時にその発熱温度を検出するように構成された発熱・測温素子と、前記発熱温度が前記第1の温度または前記第2の温度よりも一定値だけ高くなるように電力を供給して前記発熱・測温素子を発熱させるように構成された制御部と、前記発熱・測温素子の消費電力を測定するように構成された電力測定部と、前記第2の温度と前記第1の温度との差が所定の閾値以下の場合に第1の流量計測モードとし、前記第2の温度と前記第1の温度との差が前記閾値より大きい場合に第2の流量計測モードとするように構成された切替部と、前記第1の流量計測モードの場合に前記消費電力を前記流体の流量の値に変換し、前記第2の流量計測モードの場合に前記第2の温度と前記第1の温度との差を前記流体の流量の値に変換するように構成された流量導出部とを備えることを特徴とするものである。
また、本発明の熱式流量計の1構成例において、前記流量導出部は、前記消費電力または前記第2の温度と前記第1の温度との差を、予め設定された流量変換式または流量変換テーブルを用いて前記流体の流量の値に変換することを特徴とするものである。
The thermal flow meter of the present invention has a pipe configured to circulate the fluid to be measured and a first measurement arranged in the pipe and configured to detect a first temperature of the fluid. A temperature element, a second temperature measuring element arranged at a position of the pipe on the downstream side of the first temperature measuring element, and configured to detect a second temperature of the fluid, and the first temperature measuring element. A heat generation / temperature measuring element arranged at a location of the pipe downstream of the temperature measuring element 2 and configured to detect the heat generation temperature at the same time as heat generation, and the heat generation temperature is the first temperature or A control unit configured to generate heat by supplying power so as to be higher than the second temperature by a certain value, and measuring the power consumption of the heat generation / temperature measuring element. When the difference between the second temperature and the first temperature is equal to or less than a predetermined threshold value, the first flow rate measurement mode is set, and the second temperature and the first temperature are set. A switching unit configured to set the second flow rate measurement mode when the difference between the temperature and the temperature is larger than the threshold value, and the power consumption is converted into the flow rate value of the fluid in the case of the first flow rate measurement mode. It is characterized by including a flow rate deriving unit configured to convert the difference between the second temperature and the first temperature into the value of the flow rate of the fluid in the case of the second flow rate measurement mode. To do.
Further, in one configuration example of the thermal flow meter of the present invention, the flow rate deriving unit sets the difference between the power consumption or the second temperature and the first temperature as a preset flow rate conversion type or flow rate. It is characterized in that it is converted into a value of the flow rate of the fluid using a conversion table.

また、本発明は、測定対象の流体を流通させる配管と、前記配管に配設され、前記流体の第1の温度を検出する第1の測温素子と、前記第1の測温素子よりも下流側の前記配管の箇所に配設され、前記流体の第2の温度を検出する第2の測温素子と、前記第2の測温素子よりも下流側の前記配管の箇所に配設され、発熱と同時にその発熱温度を検出する発熱・測温素子とを備えた熱式流量計を用いる流量計測方法であって、前記発熱温度が前記第1の温度または前記第2の温度よりも一定値だけ高くなるように電力を供給して前記発熱・測温素子を発熱させる第1のステップと、前記発熱・測温素子の消費電力を測定する第2のステップと、前記第2の温度と前記第1の温度との差が所定の閾値以下の場合に第1の流量計測モードとし、前記第2の温度と前記第1の温度との差が前記閾値より大きい場合に第2の流量計測モードとする第3のステップと、前記第1の流量計測モードの場合に前記消費電力を前記流体の流量の値に変換する第4のステップと、前記第2の流量計測モードの場合に前記第2の温度と前記第1の温度との差を前記流体の流量の値に変換する第5のステップとを含むことを特徴とするものである。 Further, the present invention is more than a pipe for circulating the fluid to be measured, a first temperature measuring element arranged in the pipe and detecting the first temperature of the fluid, and the first temperature measuring element. It is arranged at the location of the pipe on the downstream side, a second temperature measuring element for detecting the second temperature of the fluid, and a location of the pipe on the downstream side of the second temperature measuring element. This is a flow rate measurement method using a thermal flow meter equipped with a heat generation / temperature measuring element that detects the heat generation temperature at the same time as heat generation, and the heat generation temperature is constant than the first temperature or the second temperature. The first step of supplying power so as to increase the value and causing the heat generation / temperature measuring element to generate heat, the second step of measuring the power consumption of the heat generation / temperature measuring element, and the second temperature. When the difference from the first temperature is equal to or less than a predetermined threshold value, the first flow rate measurement mode is set, and when the difference between the second temperature and the first temperature is larger than the threshold value, the second flow rate measurement mode is set. A third step as a mode, a fourth step of converting the power consumption into a value of the flow rate of the fluid in the case of the first flow rate measurement mode, and the first step in the case of the second flow rate measurement mode. It is characterized by including a fifth step of converting the difference between the temperature of 2 and the first temperature into the value of the flow rate of the fluid.

本発明によれば、発熱・測温素子よりも上流側に2つの測温素子を設け、発熱・測温素子の発熱温度が流体の第1の温度または第2の温度よりも一定値だけ高くなるように発熱・測温素子を発熱させ、第2の温度と第1の温度との差が所定の閾値以下の場合に、消費電力を流量の値に変換する第1の流量計測モードとし、第2の温度と第1の温度との差が閾値より大きい場合に、第2の温度と第1の温度との差を流量の値に変換する第2の流量計測モードとすることにより、極微小流量域での正確な流量計測を実現することができる。 According to the present invention, two temperature measuring elements are provided on the upstream side of the heat generating / temperature measuring element, and the heat generating temperature of the heat generating / temperature measuring element is higher than the first temperature or the second temperature of the fluid by a certain value. When the difference between the second temperature and the first temperature is equal to or less than a predetermined threshold value, the power consumption is converted into a flow rate value in the first flow rate measurement mode. When the difference between the second temperature and the first temperature is larger than the threshold value, the difference between the second temperature and the first temperature is converted into the value of the flow rate. Accurate flow rate measurement in a small flow rate range can be realized.

図1は、本発明の実施例に係る熱式流量計の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a thermal flowmeter according to an embodiment of the present invention. 図2は、本発明の実施例に係る熱式流量計の温度取得部と制御演算部と電力調整器の動作を説明するフローチャートである。FIG. 2 is a flowchart illustrating the operation of the temperature acquisition unit, the control calculation unit, and the power regulator of the thermal flow meter according to the embodiment of the present invention. 図3は、本発明の実施例に係る熱式流量計の電力測定部と切替部と流量導出部の動作を説明するフローチャートである。FIG. 3 is a flowchart illustrating the operation of the power measuring unit, the switching unit, and the flow rate derivation unit of the thermal flow meter according to the embodiment of the present invention. 図4は、極微小流量域における測温素子間の温度差と流体の流量との関係の1例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the temperature difference between the temperature measuring elements and the flow rate of the fluid in the extremely minute flow rate region. 図5は、測温素子の位置を変えたときの極微小流量域における測温素子間の温度差と流体の流量との関係の1例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the temperature difference between the temperature measuring elements and the flow rate of the fluid in the extremely minute flow rate region when the position of the temperature measuring element is changed. 図6は、本発明の実施例に係る熱式流量計を実現するコンピュータの構成例を示すブロック図である。FIG. 6 is a block diagram showing a configuration example of a computer that realizes the thermal flowmeter according to the embodiment of the present invention. 図7は、従来の熱式流量計の原理を説明する図である。FIG. 7 is a diagram illustrating the principle of the conventional thermal flowmeter. 図8は、ヒータ消費電力と流体の流量との関係の1例を示す図である。FIG. 8 is a diagram showing an example of the relationship between the heater power consumption and the flow rate of the fluid.

以下、本発明の実施例について図面を参照して説明する。図1は、本発明の実施例に係る熱式流量計の構成を示すブロック図である。熱式流量計は、測定対象の流体を流通させる例えば石英からなる配管1と、配管1に配設された例えば白金等の測温素子2a(温度センサ)と、測温素子2aよりも下流側の配管1の箇所に配設された例えば白金等の測温素子2b(温度センサ)と、測温素子2bよりも下流側の配管1の箇所に配設された例えば白金等の発熱・測温素子2c(ヒータ)と、測温素子2aによって検出される流体の温度TRr1(第1の温度)を取得する温度取得部3aと、測温素子2bによって検出される流体の温度TRr2(第2の温度)を取得する温度取得部3bと、発熱・測温素子2cによって検出される温度TRh(発熱温度)を取得する温度取得部3cと、温度差(TRh−TRr1)が一定値になるように操作量を算出する制御演算部4と、操作量に応じた電力を発熱・測温素子2cに供給して発熱させる電力調整器5と、発熱・測温素子2cの消費電力を測定する電力測定部6と、温度差(TRr2−TRr1)が所定の閾値以下の場合に第1の流量計測モードとし、温度差(TRr2−TRr1)が閾値より大きい場合に第2の流量計測モードとする切替部7と、第1の流量計測モードの場合に消費電力を流体の流量の値に変換し、第2の流量計測モードの場合に温度差(TRr2−TRr1)を流体の流量の値に変換する流量導出部8とを備えている。制御演算部4と電力調整器5とは、制御部10を構成している。 Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a thermal flowmeter according to an embodiment of the present invention. The thermal flow meter includes a pipe 1 made of, for example, quartz that allows the fluid to be measured to flow, a temperature measuring element 2a (temperature sensor) such as platinum arranged in the pipe 1, and a temperature measuring element 2a downstream of the temperature measuring element 2a. A temperature measuring element 2b (temperature sensor) such as platinum arranged at the location of the pipe 1 and a heat generation / temperature measuring element such as platinum arranged at the location of the pipe 1 downstream of the temperature measuring element 2b. The element 2c (heater), the temperature acquisition unit 3a for acquiring the temperature TRr1 (first temperature) of the fluid detected by the temperature measuring element 2a, and the temperature TRr2 (second temperature) of the fluid detected by the temperature measuring element 2b. The temperature acquisition unit 3b for acquiring the temperature), the temperature acquisition unit 3c for acquiring the temperature TRh (heat generation temperature) detected by the heat generation / temperature measuring element 2c, and the temperature difference (TRh-TRr1) are set to a constant value. A control calculation unit 4 that calculates the operation amount, a power regulator 5 that supplies power according to the operation amount to the heat generation / temperature measuring element 2c to generate heat, and a power measurement that measures the power consumption of the heat generation / temperature measurement element 2c. A switching unit that sets the first flow rate measurement mode when the temperature difference (TRr2-TRr1) is equal to or less than a predetermined threshold value, and sets the second flow rate measurement mode when the temperature difference (TRr2-TRr1) is larger than the threshold value. 7 and, in the case of the first flow rate measurement mode, the power consumption is converted into the value of the flow rate of the fluid, and in the case of the second flow rate measurement mode, the temperature difference (TRr2-TRr1) is converted into the value of the flow rate of the fluid. It includes a lead-out unit 8. The control calculation unit 4 and the power regulator 5 constitute a control unit 10.

測温素子2a,2bおよび発熱・測温素子2cは、それぞれシリコンチップ上に形成されている。測温素子2a,2bが形成されたシリコンチップの面が配管1の外壁と向かい合うように配管1に接着されることにより、測温素子2a,2bが配管1に固定されるようになっている。発熱・測温素子2cの固定方法も測温素子2a,2bの固定方法と同じである。
発熱・測温素子2cは、白金に限定されず、一般的な金属材料であれば代替可能である。また、測温素子2a,2bも白金抵抗体に限定されず、例えばアルミとポリシリコンからなるサーモパイル等を用いてもよい。
The temperature measuring elements 2a and 2b and the heat generating / temperature measuring elements 2c are each formed on a silicon chip. The surface of the silicon chip on which the temperature measuring elements 2a and 2b are formed is adhered to the pipe 1 so as to face the outer wall of the pipe 1, so that the temperature measuring elements 2a and 2b are fixed to the pipe 1. .. The method of fixing the heat generation / temperature measuring element 2c is the same as the method of fixing the temperature measuring elements 2a and 2b.
The heat generation / temperature measuring element 2c is not limited to platinum, and can be replaced with a general metal material. Further, the temperature measuring elements 2a and 2b are not limited to platinum resistors, and for example, a thermopile made of aluminum and polysilicon may be used.

次に、本実施例の熱式流量計の動作について説明する。図2は、温度取得部3a,3b,3cと制御演算部4と電力調整器5の動作を説明するフローチャートである。
温度取得部3a,3bは、それぞれ配管1を流れる流体の温度TRr1,TRr2を取得する(図2ステップS100)。具体的には、温度取得部3a,3bは、それぞれ測温素子2a,2bの抵抗値を検出し、抵抗値と温度との関係から、流体の温度TRr1,TRr2を取得する。同様に、温度取得部3cは、発熱・測温素子2cの温度TRhを取得する(ステップS100)。
Next, the operation of the thermal flowmeter of this embodiment will be described. FIG. 2 is a flowchart illustrating the operations of the temperature acquisition units 3a, 3b, 3c, the control calculation unit 4, and the power regulator 5.
The temperature acquisition units 3a and 3b acquire the temperatures TRr1 and TRr2 of the fluid flowing through the pipe 1, respectively (step S100 in FIG. 2). Specifically, the temperature acquisition units 3a and 3b detect the resistance values of the temperature measuring elements 2a and 2b, respectively, and acquire the fluid temperatures TRr1 and TRr2 from the relationship between the resistance values and the temperature. Similarly, the temperature acquisition unit 3c acquires the temperature TRh of the heat generation / temperature measuring element 2c (step S100).

制御演算部4は、発熱・測温素子2cの温度TRhから上流側の流体の温度TRr1を減算した温度差(TRh−TRr1)が一定値(制御の目標値であり、例えば10℃)になるように操作量を算出する(図2ステップS101)。操作量を算出する制御演算アルゴリズムとしては、例えばPIDがある。
電力調整器5は、制御演算部4によって算出された操作量に応じた電力を発熱・測温素子2cに供給して発熱させる(図2ステップS102)。
In the control calculation unit 4, the temperature difference (TRh-TRr1) obtained by subtracting the temperature TRr1 of the fluid on the upstream side from the temperature TRh of the heat generation / temperature measuring element 2c becomes a constant value (a control target value, for example, 10 ° C.). The operation amount is calculated as follows (FIG. 2, step S101). As a control calculation algorithm for calculating the manipulated variable, for example, there is a PID.
The power regulator 5 supplies power according to the amount of operation calculated by the control calculation unit 4 to the heat generation / temperature measuring element 2c to generate heat (step S102 in FIG. 2).

こうして、熱式流量計の動作が終了するまで(図2ステップS103においてYES)、ステップS100〜S102の処理が制御周期毎に実行され、発熱・測温素子2cの温度TRhが上流側の流体の温度TRr1よりも一定の値だけ高くなるように制御される。
なお、本実施例では、温度差(TRh−TRr1)が一定値になるように操作量を算出しているが、温度差(TRh−TRr2)が一定値になるように操作量を算出してもよい。ただし、温度TRr2を用いた方が、温度TRr1を用いた場合よりも出力反転が起こる流量域が広くなるため、実用化されている熱式流量計では発熱・測温素子と測温素子を一定距離離している。つまり、本来は温度差(TRh−TRr1)を用いた方が好ましい。
In this way, until the operation of the thermal flow meter is completed (YES in step S103 of FIG. 2), the processes of steps S100 to S102 are executed for each control cycle, and the temperature TRh of the heat generation / temperature measuring element 2c is the fluid on the upstream side. The temperature is controlled to be higher than the temperature TRr1 by a certain value.
In this embodiment, the operation amount is calculated so that the temperature difference (TRh-TRr1) becomes a constant value, but the operation amount is calculated so that the temperature difference (TRh-TRr2) becomes a constant value. May be good. However, since the flow rate range in which output inversion occurs is wider when the temperature TRr2 is used than when the temperature TRr1 is used, the heat generation / temperature measuring element and the temperature measuring element are constant in the practical thermal flowmeter. It is far away. That is, it is originally preferable to use the temperature difference (TRh-TRr1).

図3は、電力測定部6と切替部7と流量導出部8の動作を説明するフローチャートである。切替部7は、測温素子2bと2a間の温度差(TRr2−TRr1)が所定の閾値Tref以下の場合(図3ステップS200においてYES)、すなわち極微小流量域よりも大きい流量域の場合、従来と同様に発熱・測温素子2cの消費電力Pに基づいて流量を計測する第1の流量計測モードとする(図3ステップS201)。また、切替部7は、温度差(TRr2−TRr1)が閾値Trefより大きい場合(ステップS200においてNO)、すなわち極微小流量域の場合、温度差(TRr2−TRr1)に基づいて流量を計測する第2の流量計測モードとする(図3ステップS202)。 FIG. 3 is a flowchart illustrating the operations of the power measuring unit 6, the switching unit 7, and the flow rate derivation unit 8. When the temperature difference (TRr2-TRr1) between the temperature measuring elements 2b and 2a (TRr2-TRr1) is equal to or less than a predetermined threshold value Tref (YES in step S200 of FIG. 3), that is, when the flow rate range is larger than the minute flow rate range, the switching unit 7 is used. The first flow rate measurement mode for measuring the flow rate based on the power consumption P of the heat generation / temperature measuring element 2c is set as in the conventional case (step S201 in FIG. 3). Further, the switching unit 7 measures the flow rate based on the temperature difference (TRr2-TRr1) when the temperature difference (TRr2-TRr1) is larger than the threshold value Tref (NO in step S200), that is, in the case of a very small flow rate region. The flow rate measurement mode of No. 2 is set (step S202 in FIG. 3).

電力測定部6は、発熱・測温素子2cの消費電力Pを測定する(図3ステップS203)。電力測定部6は、例えば電力調整器5から発熱・測温素子2cに印加される電圧Vと発熱・測温素子2cの抵抗値Rhとに基づいて次式により発熱・測温素子2cの消費電力Pを算出する。
Q=V2/Rh ・・・(1)
The power measuring unit 6 measures the power consumption P of the heat generation / temperature measuring element 2c (step S203 in FIG. 3). The power measuring unit 6 consumes the heat generating / temperature measuring element 2c according to the following equation based on, for example, the voltage V applied to the heat generating / temperature measuring element 2c from the power regulator 5 and the resistance value Rh of the heat generating / temperature measuring element 2c. Calculate the power P.
Q = V 2 / Rh ・ ・ ・ (1)

こうして、発熱・測温素子2cの温度TRhを上流側の温度TRr1またはTRr2より一定の値だけ高くするために必要な消費電力Pを求めることができる。 In this way, the power consumption P required to raise the temperature TRh of the heat generation / temperature measuring element 2c by a certain value higher than the temperature TRr1 or TRr2 on the upstream side can be obtained.

流量導出部8は、第1の流量計測モードの場合、電力測定部6によって測定された消費電力Pを、予め設定された流量変換式を用いて流量の値に変換することにより、測定対象の流体の流量Qを導出する(図3ステップS204)。なお、消費電力Pを流量Qに変換するための流量変換式の代わりに、消費電力Pに対応する流量Qの値が登録された流量変換テーブルが設定されている場合、流量導出部8は、消費電力Pに対応する流量Qの値を流量変換テーブルから取得すればよい。 In the case of the first flow rate measurement mode, the flow rate derivation unit 8 converts the power consumption P measured by the power measurement unit 6 into a flow rate value using a preset flow rate conversion formula, thereby converting the measurement target. The flow rate Q of the fluid is derived (step S204 in FIG. 3). When a flow rate conversion table in which the value of the flow rate Q corresponding to the power consumption P is registered is set instead of the flow rate conversion formula for converting the power consumption P into the flow rate Q, the flow rate derivation unit 8 sets the flow rate derivation unit 8. The value of the flow rate Q corresponding to the power consumption P may be obtained from the flow rate conversion table.

また、流量導出部8は、第2の流量計測モードの場合、測温素子2bと2a間の温度差(TRr2−TRr1)を、予め設定された流量変換式を用いて流量の値に変換することにより、測定対象の流体の流量Qを導出する(図3ステップS205)。
図4に示すように、極微小流量域では、温度差(TRr2−TRr1)と流量Qとの関係のリニアリティが高いので、温度差(TRr2−TRr1)から流量Qを求めることが可能である。
Further, in the case of the second flow rate measurement mode, the flow rate deriving unit 8 converts the temperature difference (TRr2-TRr1) between the temperature measuring elements 2b and 2a into a flow rate value using a preset flow rate conversion formula. As a result, the flow rate Q of the fluid to be measured is derived (step S205 in FIG. 3).
As shown in FIG. 4, since the linearity of the relationship between the temperature difference (TRr2-TRr1) and the flow rate Q is high in the extremely minute flow rate region, the flow rate Q can be obtained from the temperature difference (TRr2-TRr1).

温度差(TRr2−TRr1)を流量Qに変換するための流量変換式の代わりに、温度差(TRr2−TRr1)に対応する流量Qの値が登録された流量変換テーブルが設定されている場合、流量導出部8は、温度差(TRr2−TRr1)に対応する流量Qの値を流量変換テーブルから取得すればよい。 When a flow rate conversion table in which the value of the flow rate Q corresponding to the temperature difference (TRr2-TRr1) is registered is set instead of the flow rate conversion formula for converting the temperature difference (TRr2-TRr1) into the flow rate Q. The flow rate deriving unit 8 may acquire the value of the flow rate Q corresponding to the temperature difference (TRr2-TRr1) from the flow rate conversion table.

電力測定部6と切替部7と流量導出部8とは、熱式流量計の動作が終了するまで(図3ステップS206においてYES)、ステップS200〜S205の処理を一定時間毎に実行する。
こうして、本実施例では、極微小流量域での正確な流量計測を実現することができる。
The power measuring unit 6, the switching unit 7, and the flow rate deriving unit 8 execute the processes of steps S200 to S205 at regular time intervals until the operation of the thermal flowmeter is completed (YES in step S206 of FIG. 3).
In this way, in this embodiment, accurate flow rate measurement in a very small flow rate range can be realized.

なお、極微小流量域か極微小流量域よりも大きい流量域かを判定するための閾値Trefは、測温素子2a,2bの位置や、発熱・測温素子2cの上昇温度(制御の目標値である(TRh−TRr1)または(TRh−TRr2))、測温素子2a,2bと発熱・測温素子2cとを配管1に接着する接着剤の厚さ、配管1の材料や形状によって異なる。例えば測温素子2bと2a間の温度差(TRr2−TRr1)は測温素子2bと2a間の距離によって異なるので、測温素子2a,2bの位置によって適切な閾値Trefも異なることになる。 The threshold Tref for determining whether the flow rate range is a micro flow range or a flow range larger than the micro flow range is the position of the temperature measuring elements 2a and 2b and the rising temperature of the heat generation / temperature measuring element 2c (control target value). (TRh-TRr1) or (TRh-TRr2)), it depends on the thickness of the adhesive that adheres the temperature measuring elements 2a and 2b and the heat generating / temperature measuring element 2c to the pipe 1, and the material and shape of the pipe 1. For example, since the temperature difference (TRr2-TRr1) between the temperature measuring elements 2b and 2a differs depending on the distance between the temperature measuring elements 2b and 2a, the appropriate threshold Tref also differs depending on the positions of the temperature measuring elements 2a and 2b.

図5の50は測温素子2aの中心点と測温素子2bの中心点間の距離Dが8.2mmのときの温度差(TRr2−TRr1)と流量Qとの関係を示し、51は距離Dが7.1mmのときの温度差(TRr2−TRr1)と流量Qとの関係を示し、52は距離Dが5.8mmのときの温度差(TRr2−TRr1)と流量Qとの関係を示し、53は距離Dが3.9mmのときの温度差(TRr2−TRr1)と流量Qとの関係を示している。 50 in FIG. 5 shows the relationship between the temperature difference (TRr2-TRr1) and the flow rate Q when the distance D between the center point of the temperature measuring element 2a and the center point of the temperature measuring element 2b is 8.2 mm, and 51 is the distance. The relationship between the temperature difference (TRr2-TRr1) when D is 7.1 mm and the flow rate Q is shown, and 52 shows the relationship between the temperature difference (TRr2-TRr1) when the distance D is 5.8 mm and the flow rate Q. , 53 show the relationship between the temperature difference (TRr2-TRr1) and the flow rate Q when the distance D is 3.9 mm.

このように、閾値Trefは、測温素子2a,2bの位置や、発熱・測温素子2cの上昇温度、接着剤の厚さ、配管1の材料や形状によって適切な値が異なるので、これらを考慮の上設定しておく必要がある。例えば測温素子2aの中心点と測温素子2bの中心点間の距離Dを7.1mm、発熱・測温素子2cの上昇温度を10℃、接着剤の厚さを30μm以下、配管1を石英ガラス製かつ内壁を100μ以下とした場合、閾値Trefを例えば0.9℃と設定する。 As described above, the threshold value Tref has different appropriate values depending on the positions of the temperature measuring elements 2a and 2b, the temperature rise of the heat generating / temperature measuring elements 2c, the thickness of the adhesive, and the material and shape of the pipe 1. It is necessary to set it in consideration. For example, the distance D between the center point of the temperature measuring element 2a and the center point of the temperature measuring element 2b is 7.1 mm, the temperature rise of the heat generating / temperature measuring element 2c is 10 ° C., the thickness of the adhesive is 30 μm or less, and the pipe 1 is installed. When it is made of quartz glass and the inner wall is 100 μm or less, the threshold Tref is set to, for example, 0.9 ° C.

本実施例の熱式流量計のうち少なくとも制御演算部4と切替部7と流量導出部8とは、CPU(Central Processing Unit)と記憶装置とインタフェースとを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図6に示す。コンピュータは、CPU200と、記憶装置201と、インタフェース装置(I/F)202とを備えている。I/F202には、温度取得部3a,3b,3cと電力調整器5とが接続される。このようなコンピュータにおいて、本発明の流量計測方法を実現させるためのプログラムは記憶装置201に格納される。CPU200は、記憶装置201に格納されたプログラムに従って本実施例で説明した処理を実行する。 Of the thermal flowmeters of this embodiment, at least the control calculation unit 4, the switching unit 7, and the flow rate derivation unit 8 are a computer having a CPU (Central Processing Unit), a storage device, and an interface, and their hardware resources. It can be realized by a program that controls. A configuration example of this computer is shown in FIG. The computer includes a CPU 200, a storage device 201, and an interface device (I / F) 202. The temperature acquisition units 3a, 3b, 3c and the power regulator 5 are connected to the I / F 202. In such a computer, a program for realizing the flow rate measuring method of the present invention is stored in the storage device 201. The CPU 200 executes the process described in this embodiment according to the program stored in the storage device 201.

本発明は、熱式流量計に適用することができる。 The present invention can be applied to a thermal flow meter.

1…配管、2a,2b…測温素子、2c…発熱・測温素子、3a,3b,3c…温度取得部、4…制御演算部、5…電力調整器、6…電力測定部、7…切替部、8…流量導出部、10…制御部。 1 ... Piping, 2a, 2b ... Temperature measuring element, 2c ... Heat generation / temperature measuring element, 3a, 3b, 3c ... Temperature acquisition unit, 4 ... Control calculation unit, 5 ... Power regulator, 6 ... Power measuring unit, 7 ... Switching unit, 8 ... Flow rate derivation unit, 10 ... Control unit.

Claims (4)

測定対象の流体を流通させるように構成された配管と、
前記配管に配設され、前記流体の第1の温度を検出するように構成された第1の測温素子と、
前記第1の測温素子よりも下流側の前記配管の箇所に配設され、前記流体の第2の温度を検出するように構成された第2の測温素子と、
前記第2の測温素子よりも下流側の前記配管の箇所に配設され、発熱と同時にその発熱温度を検出するように構成された発熱・測温素子と、
前記発熱温度が前記第1の温度または前記第2の温度よりも一定値だけ高くなるように電力を供給して前記発熱・測温素子を発熱させるように構成された制御部と、
前記発熱・測温素子の消費電力を測定するように構成された電力測定部と、
前記第2の温度と前記第1の温度との差が所定の閾値以下の場合に第1の流量計測モードとし、前記第2の温度と前記第1の温度との差が前記閾値より大きい場合に第2の流量計測モードとするように構成された切替部と、
前記第1の流量計測モードの場合に前記消費電力を前記流体の流量の値に変換し、前記第2の流量計測モードの場合に前記第2の温度と前記第1の温度との差を前記流体の流量の値に変換するように構成された流量導出部とを備えることを特徴とする熱式流量計。
Piping configured to circulate the fluid to be measured and
A first temperature measuring element arranged in the pipe and configured to detect a first temperature of the fluid, and a first temperature measuring element.
A second temperature measuring element arranged at a position of the pipe on the downstream side of the first temperature measuring element and configured to detect the second temperature of the fluid, and a second temperature measuring element.
A heat-generating / temperature-measuring element arranged at a location of the pipe on the downstream side of the second temperature-measuring element and configured to detect the heat-generating temperature at the same time as heat generation.
A control unit configured to generate heat by supplying electric power so that the heat generation temperature is higher than the first temperature or the second temperature by a certain value to generate heat of the heat generation / temperature measuring element.
A power measuring unit configured to measure the power consumption of the heat generation / temperature measuring element, and
When the difference between the second temperature and the first temperature is equal to or less than a predetermined threshold value, the first flow rate measurement mode is set, and when the difference between the second temperature and the first temperature is larger than the threshold value. A switching unit configured to be in the second flow rate measurement mode,
In the case of the first flow rate measurement mode, the power consumption is converted into the value of the flow rate of the fluid, and in the case of the second flow rate measurement mode, the difference between the second temperature and the first temperature is described. A thermal flow meter comprising a flow rate deriving unit configured to convert to a fluid flow rate value.
請求項1記載の熱式流量計において、
前記流量導出部は、前記消費電力または前記第2の温度と前記第1の温度との差を、予め設定された流量変換式または流量変換テーブルを用いて前記流体の流量の値に変換することを特徴とする熱式流量計。
In the thermal flow meter according to claim 1,
The flow rate deriving unit converts the power consumption or the difference between the second temperature and the first temperature into a flow rate value of the fluid using a preset flow rate conversion formula or flow rate conversion table. A thermal flowmeter featuring.
測定対象の流体を流通させる配管と、前記配管に配設され、前記流体の第1の温度を検出する第1の測温素子と、前記第1の測温素子よりも下流側の前記配管の箇所に配設され、前記流体の第2の温度を検出する第2の測温素子と、前記第2の測温素子よりも下流側の前記配管の箇所に配設され、発熱と同時にその発熱温度を検出する発熱・測温素子とを備えた熱式流量計を用いる流量計測方法であって、
前記発熱温度が前記第1の温度または前記第2の温度よりも一定値だけ高くなるように電力を供給して前記発熱・測温素子を発熱させる第1のステップと、
前記発熱・測温素子の消費電力を測定する第2のステップと、
前記第2の温度と前記第1の温度との差が所定の閾値以下の場合に第1の流量計測モードとし、前記第2の温度と前記第1の温度との差が前記閾値より大きい場合に第2の流量計測モードとする第3のステップと、
前記第1の流量計測モードの場合に前記消費電力を前記流体の流量の値に変換する第4のステップと、
前記第2の流量計測モードの場合に前記第2の温度と前記第1の温度との差を前記流体の流量の値に変換する第5のステップとを含むことを特徴とする流量計測方法。
A pipe that circulates the fluid to be measured, a first temperature measuring element that is arranged in the pipe and detects the first temperature of the fluid, and the pipe that is downstream of the first temperature measuring element. A second temperature measuring element that is disposed at a location and detects the second temperature of the fluid, and a second temperature measuring element that is disposed at a location of the pipe that is downstream of the second temperature measuring element, and generates heat at the same time as heat generation. It is a flow measurement method using a thermal flow meter equipped with a heat generation / temperature measuring element that detects temperature.
The first step of supplying electric power so that the heat generation temperature becomes higher than the first temperature or the second temperature by a certain value to generate heat of the heat generation / temperature measuring element.
The second step of measuring the power consumption of the heat generation / temperature measuring element and
When the difference between the second temperature and the first temperature is equal to or less than a predetermined threshold value, the first flow rate measurement mode is set, and when the difference between the second temperature and the first temperature is larger than the threshold value. In addition to the third step of setting the second flow rate measurement mode,
In the case of the first flow rate measurement mode, the fourth step of converting the power consumption into the flow rate value of the fluid, and
A flow rate measuring method comprising a fifth step of converting a difference between the second temperature and the first temperature into a value of the flow rate of the fluid in the case of the second flow rate measuring mode.
請求項3記載の流量計測方法において、
前記第4、第5のステップは、前記消費電力または前記第2の温度と前記第1の温度との差を、予め設定された流量変換式または流量変換テーブルを用いて前記流体の流量の値に変換するステップを含むことを特徴とする流量計測方法。
In the flow rate measuring method according to claim 3,
In the fourth and fifth steps, the power consumption or the difference between the second temperature and the first temperature is set to the value of the flow rate of the fluid using a preset flow rate conversion formula or flow rate conversion table. A flow rate measuring method comprising a step of converting to.
JP2019223437A 2019-12-11 2019-12-11 Thermal flowmeter and flow rate measuring method Pending JP2021092452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019223437A JP2021092452A (en) 2019-12-11 2019-12-11 Thermal flowmeter and flow rate measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223437A JP2021092452A (en) 2019-12-11 2019-12-11 Thermal flowmeter and flow rate measuring method

Publications (1)

Publication Number Publication Date
JP2021092452A true JP2021092452A (en) 2021-06-17

Family

ID=76312143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223437A Pending JP2021092452A (en) 2019-12-11 2019-12-11 Thermal flowmeter and flow rate measuring method

Country Status (1)

Country Link
JP (1) JP2021092452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935378A (en) * 2022-04-29 2022-08-23 中国北方车辆研究所 Method for testing transient cooling flow of energy dissipation element through working fluid overflowing temperature difference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935378A (en) * 2022-04-29 2022-08-23 中国北方车辆研究所 Method for testing transient cooling flow of energy dissipation element through working fluid overflowing temperature difference

Similar Documents

Publication Publication Date Title
US8225652B2 (en) Thermal flow meter measuring flow rate based on temperature difference measurement and driving energy of the heater
CN111649794B (en) Thermal flowmeter and flow correction method
US20190049278A1 (en) Thermal type flowmeter
CN109387254B (en) Thermal flow meter
JP6843024B2 (en) Thermal flow meter
JP6042449B2 (en) Apparatus and method for measuring fluid mass flow
CN109323732B (en) Thermal flowmeter and flow rate correction method
JP2021092452A (en) Thermal flowmeter and flow rate measuring method
US20190025104A1 (en) Thermal flowmeter and flow rate correction method
JP2021092451A (en) Thermal flowmeter and flow rate measuring method
JP2020008338A (en) Thermal flow meter
RU2389991C2 (en) Method of eliminating temperature fluctuations in ambient medium of thermal-conductivity vacuum gauge and device for realising said method
JP2019178899A (en) Thermal flowmeter and flow rate correction method
RU177514U1 (en) THERMOANEMOMETRIC FLOW AND GAS FLOW SENSOR
JP2019082346A (en) Thermal flowmeter
JP2020008508A (en) Thermal flowmeter
JP2021148692A (en) Thermal flowmeter and method for correcting flow rate
JPS5923369B2 (en) Zero-level heat flow meter
JP2018179807A (en) Heat thermo type flow meter, correction system of heat thermo type flow meter, correction program of heat thermo type flow meter, and heat thermo type flow measurement method
JP2019219178A (en) Thermal flowmeter
JP2020008339A (en) Thermal flowmeter
JP2019070611A (en) Thermal type flowmeter
JP2008256416A (en) Flow detector
JP2002214015A (en) Flowmeter
KR20060021757A (en) Flow rate and direction measurement system independent of fluid temperature changes