JP2021086723A - Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof - Google Patents
Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof Download PDFInfo
- Publication number
- JP2021086723A JP2021086723A JP2019214534A JP2019214534A JP2021086723A JP 2021086723 A JP2021086723 A JP 2021086723A JP 2019214534 A JP2019214534 A JP 2019214534A JP 2019214534 A JP2019214534 A JP 2019214534A JP 2021086723 A JP2021086723 A JP 2021086723A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- particles
- positive electrode
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 240
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 200
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 69
- 239000002245 particle Substances 0.000 claims abstract description 379
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 301
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 298
- 239000011163 secondary particle Substances 0.000 claims abstract description 109
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 103
- 239000002002 slurry Substances 0.000 claims description 41
- 229910009178 Li1.3Al0.3Ti1.7(PO4)3 Inorganic materials 0.000 claims description 28
- 229910013716 LiNi Inorganic materials 0.000 claims description 26
- 229910052719 titanium Inorganic materials 0.000 claims description 26
- 229910052726 zirconium Inorganic materials 0.000 claims description 26
- 229910052804 chromium Inorganic materials 0.000 claims description 25
- 229910052742 iron Inorganic materials 0.000 claims description 25
- 229910052749 magnesium Inorganic materials 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 24
- 229910052759 nickel Inorganic materials 0.000 claims description 23
- 229910052710 silicon Inorganic materials 0.000 claims description 23
- 229910052733 gallium Inorganic materials 0.000 claims description 20
- 229910052720 vanadium Inorganic materials 0.000 claims description 20
- 229910052746 lanthanum Inorganic materials 0.000 claims description 16
- 229910052684 Cerium Inorganic materials 0.000 claims description 15
- 229910052748 manganese Inorganic materials 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 15
- 229910052718 tin Inorganic materials 0.000 claims description 15
- 229910052721 tungsten Inorganic materials 0.000 claims description 15
- 229910052725 zinc Inorganic materials 0.000 claims description 15
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052745 lead Inorganic materials 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000010008 shearing Methods 0.000 claims description 8
- 239000011800 void material Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 229910012850 Li3PO4Li4SiO4 Inorganic materials 0.000 claims description 2
- 239000000047 product Substances 0.000 description 57
- 239000011572 manganese Substances 0.000 description 44
- 239000010410 layer Substances 0.000 description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 38
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 33
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 33
- 239000000203 mixture Substances 0.000 description 32
- 239000010936 titanium Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000011164 primary particle Substances 0.000 description 18
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 13
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 238000013329 compounding Methods 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 description 9
- 238000001694 spray drying Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000003002 pH adjusting agent Substances 0.000 description 8
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 6
- 229910052808 lithium carbonate Inorganic materials 0.000 description 6
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 5
- 229910013553 LiNO Inorganic materials 0.000 description 5
- 229910013823 LiNi0.33Co0.33Mn0.34O2 Inorganic materials 0.000 description 5
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000006182 cathode active material Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000013067 intermediate product Substances 0.000 description 5
- 229910009139 Li1.3Al0.3Ti1.7 (PO4) Inorganic materials 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- -1 WO 3 Inorganic materials 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000011258 core-shell material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- 229910001512 metal fluoride Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910001463 metal phosphate Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910015515 LiNi0.8Co0.15 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000007561 laser diffraction method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- 229910013733 LiCo Inorganic materials 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910012750 LiNi0.5Mn0.5O4 Inorganic materials 0.000 description 2
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910012258 LiPO Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 2
- GDQXQVWVCVMMIE-UHFFFAOYSA-N dinitrooxyalumanyl nitrate hexahydrate Chemical compound O.O.O.O.O.O.[Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GDQXQVWVCVMMIE-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910008080 Li-Ni-Co-Mn Inorganic materials 0.000 description 1
- 229910010103 Li2MnO3—LiCoO2 Inorganic materials 0.000 description 1
- 229910010112 Li2MnO3—LiNi1/3Co1/3Mn1/3O2 Inorganic materials 0.000 description 1
- 229910010199 LiAl Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012820 LiCoO Inorganic materials 0.000 description 1
- 229910011687 LiCu Inorganic materials 0.000 description 1
- 229910015243 LiMg Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910015866 LiNi0.8Co0.1Al0.1O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- 229910012506 LiSi Inorganic materials 0.000 description 1
- 229910006423 Li—Ni—Co—Al Inorganic materials 0.000 description 1
- 229910006461 Li—Ni—Co—Mn Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229940118662 aluminum carbonate Drugs 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- MEYVLGVRTYSQHI-UHFFFAOYSA-L cobalt(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Co+2].[O-]S([O-])(=O)=O MEYVLGVRTYSQHI-UHFFFAOYSA-L 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- SCVOEYLBXCPATR-UHFFFAOYSA-L manganese(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Mn+2].[O-]S([O-])(=O)=O SCVOEYLBXCPATR-UHFFFAOYSA-L 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229940078487 nickel acetate tetrahydrate Drugs 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 1
- OINIXPNQKAZCRL-UHFFFAOYSA-L nickel(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Ni+2].CC([O-])=O.CC([O-])=O OINIXPNQKAZCRL-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 150000007984 tetrahydrofuranes Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、放電容量及びレート特性に優れるリチウムイオン二次電池を得るための、リチウムイオン二次電池用正極活物質複合体及びその製造方法に関するに関する。 The present invention relates to a cathode active material composite for a lithium ion secondary battery and a method for producing the same, in order to obtain a lithium ion secondary battery having excellent discharge capacity and rate characteristics.
リチウム複合酸化物は、高出力及び高容量のリチウムイオン二次電池を構成できる正極活物質として使用されているが、かかるリチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池では、通常、充放電サイクルを重ねるにつれて容量低下が生じ、特に長期間使用すると、電池の容量低下が著しくなるおそれがある。この原因は、充電時に遷移金属成分が電解液へ溶出することにより、リチウム複合酸化物の結晶構造の破壊が生じやすくなることにあると考えられている。また、リチウム複合酸化物の結晶構造の破壊が生じると、リチウム複合酸化物の遷移金属成分が周囲の電解液へ溶出し、熱的安定性が低下して安全性が損なわれるおそれもある。 Lithium composite oxide is used as a positive electrode active material capable of forming a high output and high capacity lithium ion secondary battery, but in a lithium ion secondary battery using such a lithium composite oxide as a positive electrode active material, it is usually used. The capacity of the battery decreases as the charge / discharge cycle is repeated, and the capacity of the battery may decrease significantly, especially after long-term use. It is considered that the cause of this is that the transition metal component elutes into the electrolytic solution during charging, so that the crystal structure of the lithium composite oxide is likely to be destroyed. Further, when the crystal structure of the lithium composite oxide is destroyed, the transition metal component of the lithium composite oxide is eluted into the surrounding electrolytic solution, which may reduce the thermal stability and impair the safety.
こうしたなか、より優れた電池特性を有するリチウムイオン二次電池を実現すべく、種々の正極活物質が開発されている。例えば、特許文献1には、Li(1+a)(Ni1-b-cMbCoc)O2(Mは所定の金属)で表されるリチウム遷移金属酸化物粒子の表面に、Li1+xM’xM’’2-x(PO4)3(M’及びM’’は所定の金属)で表されるリチウム金属フォスフェートナノ粒子が配置されてなる二次電池用正極活物質が開示されており、二次電池における高容量、熱安全性及び高温寿命特性の向上を図っている。また、特許文献2には、ニッケルを主成分とするリチウム複合酸化物を含有する活物質粒子の表面に、Li、La、Al及びZr等を含む固体電解質を含有する被覆層を備えた正極活物質が開示されており、非水二次電池の放電容量を維持しつつ、サイクル特性の向上を試みている。
このように、いずれの文献においても、いわゆるリチウム複合酸化物粒子の表面をリチウムイオン固体電解質粒子で被覆した正極活物質により、種々の電池特性の向上を図っている。
Under these circumstances, various positive electrode active materials have been developed in order to realize a lithium ion secondary battery having better battery characteristics. For example, in Patent Document 1 , Li 1+ is described on the surface of lithium transition metal oxide particles represented by Li (1 + a) (Ni 1-bc M b Co c ) O 2 (M is a predetermined metal). x M'x M'' 2-x (PO 4 ) 3 (M'and M'' are predetermined metals) Lithium metal Phosphate nanoparticles are arranged to form a positive electrode active material for a secondary battery. It has been disclosed to improve the high capacity, thermal safety and high temperature life characteristics of secondary batteries. Further, Patent Document 2 describes a positive electrode activity in which a coating layer containing a solid electrolyte containing Li, La, Al, Zr, etc. is provided on the surface of active material particles containing a lithium composite oxide containing nickel as a main component. The substance is disclosed, and attempts are made to improve the cycle characteristics while maintaining the discharge capacity of the non-aqueous secondary battery.
As described above, in all the documents, various battery characteristics are improved by the positive electrode active material in which the surface of the so-called lithium composite oxide particles is coated with lithium ion solid electrolyte particles.
しかしながら、本発明者らの検討により、上記特許文献に記載の正極活物質であっても、リチウムイオン二次電池を形成した際における放電容量やレート特性を充分に高めるには、さらなる改善の余地のあることが判明した。 However, according to the studies by the present inventors, even with the positive electrode active material described in the above patent document, there is room for further improvement in order to sufficiently enhance the discharge capacity and the rate characteristics when the lithium ion secondary battery is formed. It turned out that there was.
したがって、本発明の課題は、リチウム複合酸化物粒子を用いつつ、良好な放電容量及びレート特性を有するリチウムイオン二次電池を実現することのできるリチウムイオン二次電池用正極活物質複合体を提供することにある。 Therefore, an object of the present invention is to provide a positive electrode active material composite for a lithium ion secondary battery capable of realizing a lithium ion secondary battery having good discharge capacity and rate characteristics while using lithium composite oxide particles. To do.
そこで本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定のリチウム複合酸化物二次粒子(A)の表面に特定のリチウム正極活物質粒子(B)が担持してなるとともに、かかるリチウム正極活物質粒子(B)の表面にはリチウム系固体電解質(C)が担持してなるリチウムイオン二次電池用正極活物質複合体であれば、得られるリチウムイオン二次電池の放電容量及びレート特性の向上を有効に図ることが可能になることを見出した。 Therefore, as a result of diligent studies to solve the above problems, the present inventors have found that the specific lithium positive electrode active material particles (B) are supported on the surface of the specific lithium composite oxide secondary particles (A). At the same time, if it is a positive electrode active material composite for a lithium ion secondary battery in which a lithium-based solid electrolyte (C) is supported on the surface of the lithium positive electrode active material particles (B), the lithium ion secondary battery can be obtained. It has been found that it becomes possible to effectively improve the discharge capacity and the rate characteristics.
したがって、本発明は、下記式(1)、又は式(2):
LiNiaCobMncM1 wO2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlfM2 xO2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCohO2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnjO4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-kO4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3−LiM6O2 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)が担持してなるとともに、リチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)が担持してなるリチウムイオン二次電池用正極活物質複合体(D)を提供するものである。
Therefore, the present invention has the following formula (1) or formula (2):
LiNi a Co b Mn c M 1 w O 2 ... (1)
(In the formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Indicates one or more elements selected from Bi and Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number that satisfies 0 ≦ w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3.
LiNi d Co e Al f M 2 x O 2 ··· (2)
(In the formula (2), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
On the surface of the lithium composite oxide secondary particles (A) composed of lithium composite oxide particles represented by, the following formula (3), formula (4), formula (5), or formula (6):
LiM 3 g Co h O 2・ ・ ・ (3)
(In the formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) Among them, g and h indicate numbers satisfying 0 ≦ g ≦ 0.1, 0 <h ≦ 1, and ( valence of M 3 ) × g + 3h = 3).
LiM 4 i Mn j O 4 ... (4)
(In the formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In the formula (4), i and j represent numbers satisfying 0 ≦ i ≦ 0.1, 0 <j ≦ 2, and ( valence of M 4 ) × i + (valence of Mn) × j = 7. .)
LiNi k Mn 1-k O 4 ... (5)
(In equation (5), k indicates a number satisfying 0.3 ≦ k ≦ 0.7.)
Li 2 MnO 3- LiM 6 O 2 ... (6)
In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. Indicates one or more elements selected from.)
The positive electrode activity for a lithium ion secondary battery is supported by the lithium positive electrode active material particles (B) represented by, and the lithium-based solid electrolyte (C) is supported on the surface of the lithium positive electrode active material particles (B). It provides a material complex (D).
また、本発明は、次の工程(I)〜工程(III):
(I)リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含む、固形分濃度が20質量%〜65質量%のスラリー(a−1)を調製した後、熱風の供給量G(L/分)とスラリー(a−1)の供給量S(L/分)との比(G/S)が500〜10000の条件で噴霧乾燥して造粒物(a)を得る工程、
(II)得られた造粒物(a)を、500℃〜800℃で10分間〜3時間焼成して、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる、空隙率が45体積%〜80体積%の予備造粒物(b)を得る工程、並びに
(III)得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程
を備える上記リチウムイオン二次電池用正極活物質複合体(D)の製造方法を提供するものである。
Further, in the present invention, the following steps (I) to (III):
(I) After preparing a slurry (a-1) having a solid content concentration of 20% by mass to 65% by mass, which contains the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C), hot air is used. The granulated product (a) is spray-dried under the condition that the ratio (G / S) of the supply amount G (L / min) of the slurry (a-1) to the supply amount S (L / min) of the slurry (a-1) is 500 to 10000. The process of getting
(II) The obtained granulated product (a) is fired at 500 ° C. to 800 ° C. for 10 minutes to 3 hours, and the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. ) To obtain a preliminary granulated product (b) having a void ratio of 45% to 80% by volume, and (III) the obtained preliminary granulated product (b) and lithium composite oxide secondary particles (A). ) Is mixed while applying compressive force and shearing force to crush the preliminary granulated product (b), and the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. ) And the lithium composite oxide secondary particles (A) are combined with the above-mentioned positive electrode active material composite (D) for a lithium ion secondary battery.
本発明のリチウムイオン二次電池用正極活物質複合体によれば、リチウム複合酸化物二次粒子表面に、リチウム系固体電解質を担持したリチウム正極活物質粒子が有効に担持されてなることにより、良好な放電容量及びレート特性をも有するリチウムイオン二次電池を実現することができる。 According to the positive electrode active material composite for a lithium ion secondary battery of the present invention, the lithium positive electrode active material particles carrying the lithium-based solid electrolyte are effectively supported on the surface of the lithium composite oxide secondary particles. A lithium ion secondary battery having good discharge capacity and rate characteristics can be realized.
以下、本発明について詳細に説明する。
本発明のリチウムイオン二次電池用正極活物質複合体(D)は、下記式(1)、又は式(2):
LiNiaCobMncM1 wO2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlfM2 xO2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCohO2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnjO4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-kO4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3−LiM6O2 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)が担持してなるとともに、リチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)が担持してなる。
Hereinafter, the present invention will be described in detail.
The positive electrode active material composite (D) for a lithium ion secondary battery of the present invention has the following formula (1) or formula (2):
LiNi a Co b Mn c M 1 w O 2 ... (1)
(In the formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Indicates one or more elements selected from Bi and Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number that satisfies 0 ≦ w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3.
LiNi d Co e Al f M 2 x O 2 ··· (2)
(In the formula (2), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
On the surface of the lithium composite oxide secondary particles (A) composed of lithium composite oxide particles represented by, the following formula (3), formula (4), formula (5), or formula (6):
LiM 3 g Co h O 2・ ・ ・ (3)
(In the formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) Among them, g and h indicate numbers satisfying 0 ≦ g ≦ 0.1, 0 <h ≦ 1, and ( valence of M 3 ) × g + 3h = 3).
LiM 4 i Mn j O 4 ... (4)
(In the formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In the formula (4), i and j represent numbers satisfying 0 ≦ i ≦ 0.1, 0 <j ≦ 2, and ( valence of M 4 ) × i + (valence of Mn) × j = 7. .)
LiNi k Mn 1-k O 4 ... (5)
(In equation (5), k indicates a number satisfying 0.3 ≦ k ≦ 0.7.)
Li 2 MnO 3- LiM 6 O 2 ... (6)
In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. Indicates one or more elements selected from.)
The lithium positive electrode active material particles (B) represented by are supported, and the lithium-based solid electrolyte (C) is supported on the surface of the lithium positive electrode active material particles (B).
本発明のリチウムイオン二次電池用正極活物質複合体(D)を構成するリチウム複合酸化物二次粒子(A)は、下記式(1)、又は式(2):
LiNiaCobMncM1 wO2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlfM2 xO2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなる二次粒子であり、層状型岩塩構造を有する粒子である。
The lithium composite oxide secondary particles (A) constituting the positive electrode active material composite (D) for a lithium ion secondary battery of the present invention have the following formula (1) or formula (2):
LiNi a Co b Mn c M 1 w O 2 ... (1)
(In the formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Indicates one or more elements selected from Bi and Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number that satisfies 0 ≦ w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3.
LiNi d Co e Al f M 2 x O 2 ··· (2)
(In the formula (2), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
It is a secondary particle composed of lithium composite oxide particles represented by, and is a particle having a layered rock salt structure.
上記式(1)で表されるリチウム複合酸化物粒子(いわゆるLi−Ni−Co−Mn酸化物であり、以後「NCM系複合酸化物」と称する。)及び上記式(2)で表されるリチウム複合酸化物粒子(いわゆるLi−Ni−Co−Al酸化物であり、以後「NCA系複合酸化物」と称する。)も層状型岩塩構造を有する粒子であり、凝集することによって、リチウム複合酸化物二次粒子(A)を形成する。したがって、二次粒子についても、同様に「NCM系複合酸化物二次粒子(A)」、「NCA系複合酸化物二次粒子(A)」等と称する。 Lithium composite oxide particles represented by the above formula (1) (so-called Li-Ni-Co-Mn oxide, hereinafter referred to as "NCM-based composite oxide") and represented by the above formula (2). Lithium composite oxide particles (so-called Li-Ni-Co-Al oxide, hereinafter referred to as "NCA-based composite oxide") are also particles having a layered rock salt structure, and are aggregated to perform lithium composite oxidation. Form secondary particles (A). Therefore, the secondary particles are also referred to as "NCM-based composite oxide secondary particles (A)", "NCA-based composite oxide secondary particles (A)" and the like.
上記式(1)で表されるNCM系複合酸化物粒子は、リチウム複合酸化物二次粒子(A)を形成する。式(1)中のM1は、Mg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。
また、上記式(1)中のa、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数である。
The NCM-based composite oxide particles represented by the above formula (1) form lithium composite oxide secondary particles (A). M 1 in the formula (1) is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Indicates one or more elements selected from Bi and Ge.
Further, a, b, c, w in the above formula (1) are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, 0 ≦ w ≦ 0.3, And it is a number satisfying 3a + 3b + 3c + ( valence of M 1 ) × w = 3.
上記式(1)で表されるNCM系複合酸化物粒子において、Ni、Co及びMnは、電子伝導性に優れ、電池容量及び出力特性に寄与することが知られている。また、サイクル特性の観点からは、かかる遷移元素の一部が他の金属元素M1により置換されていることが好ましい。これら金属元素M1により置換されることにより、式(1)で表されるNCM系複合酸化物粒子の結晶構造が安定化されるため、充放電を繰り返しても結晶構造の破壊が抑制でき、優れたサイクル特性が実現し得ると考えられる。
上記式(1)で表されるNCM系複合酸化物粒子としては、具体的には、例えばLiNi0.33Co0.33 Mn0.34O2、LiNi0.8Co0.1Mn0.1O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.2Co0.4Mn0.4O2、LiNi0.33Co0.31Mn0.33Mg0.03O2、又はLiNi0.33Co0.31Mn0.33Zn0.03O2等が挙げられる。なかでも、LiNi0.8Co0.1Mn0.1O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.33Co0.33 Mn0.34O2、LiNi0.33Co0.31Mn0.33Mg0.03O2からなる粒子が好ましい。
In the NCM-based composite oxide particles represented by the above formula (1), Ni, Co and Mn are known to have excellent electron conductivity and contribute to battery capacity and output characteristics. Further, from the viewpoint of cycle characteristics, it is preferable that a part of the transition element is replaced by another metal element M 1. By substituting with these metal elements M 1, the crystal structure of the NCM-based composite oxide particles represented by the formula (1) is stabilized, so that destruction of the crystal structure can be suppressed even if charging and discharging are repeated. It is considered that excellent cycle characteristics can be realized.
Specific examples of the NCM-based composite oxide particles represented by the above formula (1) include LiNi 0.33 Co 0.33 Mn 0.34 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.2 Co 0.4 Mn 0.4 O 2 , LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 , LiNi 0.33 Co 0.31 Mn 0.33 Zn 0.03 O 2 and the like. Of these, particles composed of LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.33 Co 0.33 Mn 0.34 O 2 , and LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 are preferable.
さらに、互いに組成が異なる2種以上の上記式(1)で表されるNCM系複合酸化物粒子は、コア部(内部)とシェル部(表層部)とを有するコア−シェル構造のリチウム複合酸化物二次粒子(A)(NCM系複合酸化物二次粒子(A))を形成していてもよい。 Further, two or more kinds of NCM-based composite oxide particles represented by the above formula (1) having different compositions from each other have a core-shell structure lithium composite oxidation having a core portion (inside) and a shell portion (surface layer portion). Material secondary particles (A) (NCM-based composite oxide secondary particles (A)) may be formed.
このコア−シェル構造を形成してなるNCM系複合酸化物二次粒子(A)とすることによって、電解液に溶出しやすいNi濃度の高いNCM系複合酸化物粒子をコア部に配置し、電解液に接するシェル部にはNi濃度の低いNCM系複合酸化物粒子を配置することができるので、サイクル特性の低下の抑制と安全性の確保をより向上させることができる。このとき、コア部は1相であってもよいし、組成の異なる2相以上で構成していてもよい。コア部を2相以上で構成する態様として、同心円状に複数の相が層状となって積層された構造でもよいし、コア部の表面から中心部に向けて遷移的に組成が変化する構造でもよい。
さらに、シェル部は、コア部の外側に形成されてなるものであればよく、コア部同様に1相であってもよいし、組成の異なる2相以上で構成していてもよい。
By forming the NCM-based composite oxide secondary particles (A) forming this core-shell structure, NCM-based composite oxide particles having a high Ni concentration that are easily eluted in the electrolytic solution are arranged in the core portion and electrolyzed. Since NCM-based composite oxide particles having a low Ni concentration can be arranged in the shell portion in contact with the liquid, it is possible to further improve the suppression of deterioration of cycle characteristics and the assurance of safety. At this time, the core portion may have one phase or may be composed of two or more phases having different compositions. As an embodiment in which the core portion is composed of two or more phases, a structure in which a plurality of phases are concentrically stacked in layers may be used, or a structure in which the composition changes transitionally from the surface of the core portion to the central portion. Good.
Further, the shell portion may be formed on the outside of the core portion, and may be one phase like the core portion, or may be composed of two or more phases having different compositions.
このような組成が異なる2種以上のNCM系複合酸化物粒子によってコア−シェル構造を形成してなるNCM系複合酸化物二次粒子(A)として、具体的には(コア部)−(シェル部)が、例えば(LiNi0.8Co0.1Mn0.1O2)−(LiNi0.2Co0.4Mn0.4O2)、(LiNi0.8Co0.1Mn0.1O2)−(LiNi0.33Co0.33Mn0.34O2)、又は(LiNi0.8Co0.1Mn0.1O2)−(LiNi0.33Co0.31Mn0.33Mg0.03O2)等からなる粒子が挙げられる。 As the NCM-based composite oxide secondary particles (A) formed by forming a core-shell structure with two or more types of NCM-based composite oxide particles having different compositions, specifically, (core portion)-(shell). Part) is, for example, (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.2 Co 0.4 Mn 0.4 O 2 ), (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.33 Co 0.33 Mn 0.34 O 2 ), or Particles composed of (LiNi 0.8 Co 0.1 Mn 0.1 O 2 )-(LiNi 0.33 Co 0.31 Mn 0.33 Mg 0.03 O 2 ) and the like can be mentioned.
さらに、上記式(1)で表されるNCM系複合酸化物粒子は、金属酸化物、金属フッ化物又は金属リン酸塩で被覆されていてもよい。これら金属酸化物、金属フッ化物又は金属リン酸塩でNCM系複合酸化物粒子を被覆することによって、電解液へのNCM系複合酸化物粒子からの金属成分(Ni、Mn、Co、M1)の溶出を抑制することができる。かかる被覆物としては、CeO2、SiO2、MgO、Al2O3、ZrO2、TiO2、ZnO、RuO2、SnO2、CoO、Nb2O5、CuO、V2O5、MoO3、La2O3、WO3、AlF3、NiF2、MgF2、Li3PO4、Li4P2O7、LiPO3、Li2PO3F、及びLiPO2F2から選択される1種又は2種以上、或いはこれらの複合化物を用いることができる。 Further, the NCM-based composite oxide particles represented by the above formula (1) may be coated with a metal oxide, a metal fluoride or a metal phosphate. By coating the NCM-based composite oxide particles with these metal oxides, metal fluorides or metal phosphates, the metal components (Ni, Mn, Co, M 1 ) from the NCM-based composite oxide particles into the electrolytic solution. Elution can be suppressed. Such coatings include CeO 2 , SiO 2 , MgO, Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, RuO 2 , SnO 2 , CoO, Nb 2 O 5 , CuO, V 2 O 5 , MoO 3 , and so on. One selected from La 2 O 3 , WO 3 , AlF 3 , NiF 2 , MgF 2 , Li 3 PO 4 , Li 4 P 2 O 7 , LiPO 3 , Li 2 PO 3 F, and Li PO 2 F 2 or Two or more kinds or a composite product of these can be used.
上記式(1)で表されるNCM系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下である。このように、NCM系複合酸化物粒子の一次粒子としての平均粒径を少なくとも500nm以下にすることで、リチウムイオンの挿入及び脱離に伴う上記一次粒子の膨張収縮量を抑制することができ、粒子割れを有効に防止することができる。なお、上記一次粒子の平均粒径の下限値は特に限定されないが、ハンドリングの観点から、50nm以上が好ましい。
ここで、平均粒径とは、SEM又はTEMの電子顕微鏡観察において、数十個の粒子の粒径(長軸の長さ)の測定値の平均値を意味し、以後の説明においても同義である。
The average particle size of the NCM-based composite oxide particles represented by the above formula (1) as primary particles is preferably 500 nm or less, more preferably 300 nm or less. By setting the average particle size of the NCM-based composite oxide particles as primary particles to at least 500 nm or less in this way, it is possible to suppress the amount of expansion and contraction of the primary particles due to the insertion and desorption of lithium ions. Particle cracking can be effectively prevented. The lower limit of the average particle size of the primary particles is not particularly limited, but is preferably 50 nm or more from the viewpoint of handling.
Here, the average particle size means the average value of the measured values of the particle size (length of the major axis) of several tens of particles in the electron microscope observation of SEM or TEM, and is synonymous with the following description. is there.
また、上記一次粒子が凝集して形成するNCM系複合酸化物二次粒子(A)の平均粒径は、好ましくは25μm以下であり、より好ましくは20μm以下である。かかる二次粒子の平均粒径が25μm以下であると、サイクル特性に優れた電池を得ることができる。なお、上記二次粒子の平均粒径の下限値は特に限定されないが、ハンドリングの観点から1μm以上が好ましく、5μm以上がより好ましい。
なお、本明細書において、NCM系複合酸化物二次粒子(A)は、二次粒子を形成してなる一次粒子のみを含み、リチウム正極活物質粒子(B)やリチウム系固体電解質(C)を含まない。
The average particle size of the NCM-based composite oxide secondary particles (A) formed by agglomeration of the primary particles is preferably 25 μm or less, more preferably 20 μm or less. When the average particle size of the secondary particles is 25 μm or less, a battery having excellent cycle characteristics can be obtained. The lower limit of the average particle size of the secondary particles is not particularly limited, but is preferably 1 μm or more, and more preferably 5 μm or more from the viewpoint of handling.
In the present specification, the NCM-based composite oxide secondary particles (A) include only the primary particles formed by forming the secondary particles, and the lithium positive electrode active material particles (B) and the lithium-based solid electrolyte (C). Does not include.
上記式(1)で表されるNCM系複合酸化物粒子が、NCM系複合酸化物二次粒子(A)においてコア−シェル構造を形成してなる場合、コア部を形成する一次粒子としての平均粒径は、好ましくは50nm〜500nmであり、より好ましくは50nm〜300nmである。そして、上記一次粒子が凝集して形成するコア部の平均粒径は、好ましくは1μm〜25μmであり、より好ましくは1μm〜20μmである。
また、かかるコア部の表面を被覆するシェル部を構成するNCM系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは50nm〜500nmであり、より好ましくは50nm〜300nmであって、かかる一次粒子が凝集して形成するシェル部の層厚は、好ましくは0.1μm〜5μmであり、より好ましくは0.1μm〜2.5μmである。
When the NCM-based composite oxide particles represented by the above formula (1) form a core-shell structure in the NCM-based composite oxide secondary particles (A), the average as the primary particles forming the core portion. The particle size is preferably 50 nm to 500 nm, more preferably 50 nm to 300 nm. The average particle size of the core portion formed by the aggregation of the primary particles is preferably 1 μm to 25 μm, and more preferably 1 μm to 20 μm.
The average particle size of the NCM-based composite oxide particles constituting the shell portion covering the surface of the core portion as primary particles is preferably 50 nm to 500 nm, more preferably 50 nm to 300 nm. The layer thickness of the shell portion formed by agglomeration of the primary particles is preferably 0.1 μm to 5 μm, and more preferably 0.1 μm to 2.5 μm.
上記式(1)で表されるNCM系複合酸化物粒子からなるNCM系複合酸化物二次粒子(A)の内部空隙率は、リチウムイオンの挿入に伴うNCM系複合酸化物の膨張を二次粒子の内部空隙内で許容させる観点から、NCM系複合酸化物二次粒子(A)の100体積%中、4体積%〜12体積%が好ましく、5体積%〜10体積%がより好ましい。
かかる平均粒径及び内部空隙率を有することで、上記式(1)で表されるNCM系複合酸化物粒子からなるNCM系複合酸化物二次粒子(A)の表面では、NCM系複合酸化物粒子とリチウム正極活物質粒子(B)とが複合化して、リチウム正極活物質粒子(B)が、かかるNCM系複合酸化物二次粒子(A)の表面を被覆するように担持されて存在しているため、NCM系複合酸化物粒子に含まれる金属成分(Ni、Co、Mn、M1)の溶出を効果的に抑制しつつ、得られるリチウムイオン二次電池における放電容量やレート特性を充分に高めることができる。
The internal void ratio of the NCM-based composite oxide secondary particles (A) composed of the NCM-based composite oxide particles represented by the above formula (1) is secondary to the expansion of the NCM-based composite oxide due to the insertion of lithium ions. From the viewpoint of allowing the particles in the internal voids, 4% by volume to 12% by volume is preferable, and 5% by volume to 10% by volume is more preferable in 100% by volume of the NCM-based composite oxide secondary particles (A).
By having such an average particle size and an internal void ratio, the surface of the NCM-based composite oxide secondary particles (A) composed of the NCM-based composite oxide particles represented by the above formula (1) has an NCM-based composite oxide. The particles and the lithium positive electrode active material particles (B) are composited, and the lithium positive electrode active material particles (B) are supported so as to cover the surface of the NCM-based composite oxide secondary particles (A). Therefore, the discharge capacity and rate characteristics of the obtained lithium ion secondary battery can be sufficiently suppressed while effectively suppressing the elution of the metal components (Ni, Co, Mn, M 1) contained in the NCM-based composite oxide particles. Can be enhanced to.
上記式(2)で表されるNCA系複合酸化物粒子は、上記NCM系複合酸化物粒子と同様、リチウム複合酸化物二次粒子(A)を形成する。式(2)中のM2は、Mg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。
また、上記式(2)中のd、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数である。
The NCA-based composite oxide particles represented by the above formula (2) form lithium composite oxide secondary particles (A) like the above-mentioned NCM-based composite oxide particles. M 2 in the formula (2) includes Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge.
Further, d, e, f, x in the above formula (2) are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ x ≦ 0.3, And it is a number satisfying 3d + 3e + 3f + ( valence of M 2 ) × x = 3.
上記式(2)で表されるNCA系複合酸化物粒子は、式(1)で表されるNCM系複合酸化物粒子よりも、さらに電池容量及び出力特性に優れている。加えて、Alの含有により、雰囲気中の湿分による変質も生じ難く、安全性にも優れている。
上記式(2)で表されるNCA系複合酸化物粒子としては、具体的には、例えばLiNi0.33Co0.33Al0.34O2、LiNi0.8Co0.1Al0.1O2、LiNi0.8Co0.15Al0.03Mg0.03O2、LiNi0.8Co0.15Al0.03Zn0.03O2等からなる粒子が挙げられる。なかでもLiNi0.8Co0.15Al0.03Mg0.03O2からなる粒子が好ましい。
The NCA-based composite oxide particles represented by the above formula (2) are further superior in battery capacity and output characteristics to the NCM-based composite oxide particles represented by the formula (1). In addition, due to the inclusion of Al, deterioration due to moisture in the atmosphere is unlikely to occur, and it is also excellent in safety.
Specific examples of the NCA-based composite oxide particles represented by the above formula (2) include LiNi 0.33 Co 0.33 Al 0.34 O 2 , LiNi 0.8 Co 0.1 Al 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.03 Mg 0.03. Particles composed of O 2 , LiNi 0.8 Co 0.15 Al 0.03 Zn 0.03 O 2 and the like can be mentioned. Of these, particles composed of LiNi 0.8 Co 0.15 Al 0.03 Mg 0.03 O 2 are preferable.
さらに、上記式(2)で表されるNCA系複合酸化物粒子は、金属酸化物、金属フッ化物又は金属リン酸塩で被覆されていてもよい。これら金属酸化物、金属フッ化物又は金属リン酸塩でNCA系複合酸化物粒子を被覆することによって、電解液へのNCA系複合酸化物粒子からの金属成分(Ni、Al、Co、M2)の溶出を抑制することができる。かかる被覆物としては、CeO2、SiO2、MgO、Al2O3、ZrO2、TiO2、ZnO、RuO2、SnO2、CoO、Nb2O5、CuO、V2O5、MoO3、La2O3、WO3、AlF3、NiF2、MgF2、Li3PO4、Li4P2O7、LiPO3、Li2PO3F、及びLiPO2F2から選択される1種又は2種以上、或いはこれらの複合化物を用いることができる。 Further, the NCA-based composite oxide particles represented by the above formula (2) may be coated with a metal oxide, a metal fluoride or a metal phosphate. By coating the NCA-based composite oxide particles with these metal oxides, metal fluorides or metal phosphates, the metal components (Ni, Al, Co, M 2 ) from the NCA-based composite oxide particles into the electrolytic solution. Elution can be suppressed. Such coatings include CeO 2 , SiO 2 , MgO, Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, RuO 2 , SnO 2 , CoO, Nb 2 O 5 , CuO, V 2 O 5 , MoO 3 , and so on. One selected from La 2 O 3 , WO 3 , AlF 3 , NiF 2 , MgF 2 , Li 3 PO 4 , Li 4 P 2 O 7 , LiPO 3 , Li 2 PO 3 F, and Li PO 2 F 2 or Two or more kinds or a composite product of these can be used.
上記式(2)で表されるNCA系複合酸化物の一次粒子としての平均粒径、及び上記一次粒子が凝集して形成される複合酸化物二次粒子(A)の平均粒径、並びにかかる二次粒子の内部空隙率は、上記のNCM系複合酸化物粒子(A)と同様である。すなわち、上記式(2)で表されるNCA系複合酸化物粒子の一次粒子としての平均粒径は、好ましくは500nm以下であり、より好ましくは300nm以下であり、上記一次粒子からなるNCA系複合酸化物二次粒子(A)の平均粒径は、好ましくは25μm以下であり、より好ましくは20μm以下である。また、上記式(2)で表されるNCA系複合酸化物粒子からなるNCA系複合酸化物二次粒子(A)の内部空隙率は、かかる二次粒子の体積100%中、4体積%〜12体積%が好ましく、5体積%〜10体積%がより好ましい。
かかる平均粒径及び内部空隙率を有することで、上記式(2)で表されるNCA系複合酸化物粒子からなるNCA系複合酸化物二次粒子(A)の表面では、NCA系複合酸化物粒子とリチウム正極活物質粒子(B)とが複合化して、リチウム正極活物質粒子(B)が、かかる二次粒子の表面を被覆するように担持されて存在しているため、NCA系複合酸化物粒子に含まれる金属成分(Ni、Co、Al、M2)の溶出を効果的に抑制しつつ、得られるリチウムイオン二次電池における放電容量やレート特性を充分に高めることができる。
The average particle size of the NCA-based composite oxide represented by the above formula (2) as the primary particles, the average particle size of the composite oxide secondary particles (A) formed by agglomeration of the primary particles, and the like. The internal void ratio of the secondary particles is the same as that of the NCM-based composite oxide particles (A) described above. That is, the average particle size of the NCA-based composite oxide particles represented by the above formula (2) as primary particles is preferably 500 nm or less, more preferably 300 nm or less, and the NCA-based composite composed of the above primary particles. The average particle size of the secondary oxide particles (A) is preferably 25 μm or less, more preferably 20 μm or less. Further, the internal void ratio of the NCA-based composite oxide secondary particles (A) composed of the NCA-based composite oxide particles represented by the above formula (2) is 4% by volume to 100% of the volume of the secondary particles. 12% by volume is preferable, and 5% by volume to 10% by volume is more preferable.
By having such an average particle size and an internal void ratio, the surface of the NCA-based composite oxide secondary particles (A) composed of the NCA-based composite oxide particles represented by the above formula (2) has an NCA-based composite oxide. Since the particles and the lithium positive electrode active material particles (B) are compounded and the lithium positive electrode active material particles (B) are supported and exist so as to cover the surface of the secondary particles, NCA-based composite oxidation While effectively suppressing the elution of metal components (Ni, Co, Al, M 2 ) contained in the physical particles, the discharge capacity and rate characteristics of the obtained lithium ion secondary battery can be sufficiently enhanced.
本発明のリチウム複合酸化物二次粒子(A)は、上記式(1)で表されるNCM系複合酸化物粒子と上記式(2)で表されるNCA系複合酸化物粒子が混在していてもよい。その混在状態は、上記式(1)で表されるNCM系複合酸化物粒子である一次粒子と上記式(2)で表されるNCA系複合酸化物粒子である一次粒子が共存してなる二次粒子を形成してもよく、また上記式(1)で表されるNCM系複合酸化物粒子のみからなる二次粒子と上記式(2)で表されるNCA系複合酸化物粒子のみからなる二次粒子とが混在してもよく、さらには上記式(1)で表されるNCM系複合酸化物粒子である一次粒子と上記式(2)で表されるNCA系複合酸化物粒子である一次粒子が共存してなる二次粒子、上記式(1)で表されるNCM系複合酸化物粒子のみからなる二次粒子と上記式(2)で表されるNCA系複合酸化物粒子のみからなる二次粒子とが混在するものであってもよい。 The lithium composite oxide secondary particles (A) of the present invention are a mixture of NCM-based composite oxide particles represented by the above formula (1) and NCA-based composite oxide particles represented by the above formula (2). You may. The mixed state is that the primary particles which are NCM-based composite oxide particles represented by the above formula (1) and the primary particles which are NCA-based composite oxide particles represented by the above formula (2) coexist. The secondary particles may be formed, and also consist of only the secondary particles represented by the above formula (1) and the NCA-based composite oxide particles represented by the above formula (2) and the NCA-based composite oxide particles represented by the above formula (2). Secondary particles may be mixed, and further, primary particles which are NCM-based composite oxide particles represented by the above formula (1) and NCA-based composite oxide particles represented by the above formula (2). From the secondary particles in which the primary particles coexist, the secondary particles consisting only of the NCM-based composite oxide particles represented by the above formula (1), and the NCA-based composite oxide particles represented by the above formula (2) only. It may be a mixture of secondary particles.
上記式(1)で表されるNCM系複合酸化物粒子と上記式(2)で表されるNCA系複合酸化物粒子が混在する場合の、NCM系複合酸化物粒子とNCA系複合酸化物粒子の割合(質量%)は、求める電池特性によって適宜調整すればよい。例えば、レート特性を重視する場合には、上記式(1)で表されるNCM系複合酸化物粒子が占める割合を高くするのが好ましく、具体的には、NCM系複合酸化物粒子とNCA系複合酸化物粒子の質量比(NCM系複合酸化物:NCA系複合酸化物)は、99.9:0.1〜60:40であるのが好ましい。また、例えば、電池容量を重視する場合には、上記式(2)で表されるNCA系複合酸化物粒子が占める割合を高くするのが好ましく、具体的には、例えばNCM系複合酸化物粒子とNCA系複合酸化物粒子の質量比(NCM系複合酸化物:NCA系複合酸化物)は、40:60〜0.1:99.9であるのが好ましい。 NCM-based composite oxide particles and NCA-based composite oxide particles when the NCM-based composite oxide particles represented by the above formula (1) and the NCA-based composite oxide particles represented by the above formula (2) are mixed. The ratio (mass%) of the above may be appropriately adjusted according to the desired battery characteristics. For example, when the rate characteristics are emphasized, it is preferable to increase the proportion of the NCM-based composite oxide particles represented by the above formula (1). Specifically, the NCM-based composite oxide particles and the NCA-based composite oxide particles are used. The mass ratio of the composite oxide particles (NCM-based composite oxide: NCA-based composite oxide) is preferably 99.9: 0.1 to 60:40. Further, for example, when the battery capacity is emphasized, it is preferable to increase the proportion of the NCA-based composite oxide particles represented by the above formula (2), and specifically, for example, the NCM-based composite oxide particles. The mass ratio of the NCA-based composite oxide particles to the NCA-based composite oxide particles (NCM-based composite oxide: NCA-based composite oxide) is preferably 40:60 to 0.1: 99.9.
本発明のリチウムイオン二次電池用正極活物質複合体(D)を構成するリチウム正極活物質粒子(B)は、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCohO2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnjO4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-kO4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3−LiM6O2 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表され、かかるリチウム正極活物質粒子(B)は、リチウム複合酸化物二次粒子(A)の表面を被覆するように、リチウム複合酸化物粒子と複合化しつつ担持されてなる。
The lithium positive electrode active material particles (B) constituting the positive electrode active material composite (D) for a lithium ion secondary battery of the present invention have the following formulas (3), (4), (5), or (6). ):
LiM 3 g Co h O 2・ ・ ・ (3)
(In the formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) Among them, g and h indicate numbers satisfying 0 ≦ g ≦ 0.1, 0 <h ≦ 1, and ( valence of M 3 ) × g + 3h = 3).
LiM 4 i Mn j O 4 ... (4)
(In the formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In the formula (4), i and j represent numbers satisfying 0 ≦ i ≦ 0.1, 0 <j ≦ 2, and ( valence of M 4 ) × i + (valence of Mn) × j = 7. .)
LiNi k Mn 1-k O 4 ... (5)
(In equation (5), k indicates a number satisfying 0.3 ≦ k ≦ 0.7.)
Li 2 MnO 3- LiM 6 O 2 ... (6)
In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. Indicates one or more elements selected from.)
The lithium positive electrode active material particles (B) represented by are supported while being composited with the lithium composite oxide particles so as to cover the surface of the lithium composite oxide secondary particles (A).
上記式(3):
LiM3 gCohO2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
で表されるリチウム正極活物質粒子(B)は、層状岩塩型構造の結晶構造を有するリチウム正極活物質からなる粒子である。
The above formula (3):
LiM 3 g Co h O 2・ ・ ・ (3)
(In the formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) Among them, g and h indicate numbers satisfying 0 ≦ g ≦ 0.1, 0 <h ≦ 1, and ( valence of M 3 ) × g + 3h = 3).
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material having a crystal structure of a layered rock salt type structure.
上記式(3)で表されるリチウム正極活物質粒子(B)としては、良好なサイクル特性を発現させる観点からは、M3としてNi及びMnから選択されるいずれか1種以上の元素であるものが好ましく、より好ましくはM3の50モル%以上がNiである。
具体的には、LiCoO2、LiMn0.05Co0.95O2、LiAl0.05Co0.95O2、LiMg0.03Co0.98O2、LiSi0.03Co0.96O2を用いることができる。なかでも、LiCoO2が好ましい。
The lithium cathode active material particles (B) represented by the above formula (3) are any one or more elements selected from Ni and Mn as M 3 from the viewpoint of exhibiting good cycle characteristics. It is preferable, and more preferably, 50 mol% or more of M 3 is Ni.
Specifically, LiCoO 2 , LiMn 0.05 Co 0.95 O 2 , LiAl 0.05 Co 0.95 O 2 , LiMg 0.03 Co 0.98 O 2 , and LiSi 0.03 Co 0.96 O 2 can be used. Of these, LiCoO 2 is preferable.
上記式(3)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは100nm〜500nmであり、より好ましくは100nm〜400nmであり、さらに好ましくは100nm〜300nmである。 The average particle size of the lithium positive electrode active material particles (B) represented by the above formula (3) is from the viewpoint of being densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, it is preferably 100 nm to 500 nm, more preferably 100 nm to 400 nm, and further preferably 100 nm to 300 nm.
リチウム複合酸化物二次粒子(A)への複合化によって担持される、上記式(3)で表されるリチウム正極活物質粒子(B)の担持量は、リチウム複合酸化物二次粒子(A)の活物質としての性能を最大限に使用する観点から、複合化して得られるリチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%〜50質量%であり、より好ましくは7質量%〜45質量%であり、さらに好ましくは9質量%〜40質量%である。 The amount of the lithium positive electrode active material particles (B) represented by the above formula (3) supported by the composite with the lithium composite oxide secondary particles (A) is the lithium composite oxide secondary particles (A). ) From the viewpoint of maximizing the performance as an active material, preferably 5% by mass to 50% by mass in 100% by mass of the total amount of the positive electrode active material composite (D) for a lithium ion secondary battery obtained by combining. It is by mass, more preferably 7% by mass to 45% by mass, and even more preferably 9% by mass to 40% by mass.
この際の、式(3)で表されるリチウム正極活物質粒子(B)の担持によりリチウム複合酸化物二次粒子(A)の表面に形成されるリチウム正極活物質粒子(B)の担持層の厚さは、好ましくは100nm〜3μmであり、より好ましくは300nm〜3μmであり、さらに好ましくは500nm〜3μmである。 At this time, the supporting layer of the lithium positive electrode active material particles (B) formed on the surface of the lithium composite oxide secondary particles (A) by supporting the lithium positive electrode active material particles (B) represented by the formula (3). The thickness of is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, and even more preferably 500 nm to 3 μm.
上記式(4):
LiM4 iMnjO4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
で表されるリチウム正極活物質粒子(B)は、層状岩塩型構造の結晶構造を有するリチウム正極活物質からなる粒子である。
The above equation (4):
LiM 4 i Mn j O 4 ... (4)
(In the formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In the formula (4), i and j represent numbers satisfying 0 ≦ i ≦ 0.1, 0 <j ≦ 2, and ( valence of M 4 ) × i + (valence of Mn) × j = 7. .)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material having a crystal structure of a layered rock salt type structure.
上記式(4)で表されるリチウム正極活物質粒子(B)としては、具体的には、LiMn2O4、LiNi0.5Mn1.5O4、LiCoMnO4、LiCrMnO4、LiFeMnO4、LiAlMnO4、LiCu0.5Mn1.5O4を用いることができる。なかでも、LiMn2O4が好ましい。 Specific examples of the lithium cathode active material particles (B) represented by the above formula (4) include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCo MnO 4 , LiCrMnO 4 , LiFeMnO 4 , LiAlmnO 4 , and LiCu. 0.5 Mn 1.5 O 4 can be used. Of these, LiMn 2 O 4 is preferable.
上記式(4)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは100nm〜500nmであり、より好ましくは100nm〜400nmであり、さらに好ましくは100nm〜300nmである。 The average particle size of the lithium positive electrode active material particles (B) represented by the above formula (4) is from the viewpoint of being densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, it is preferably 100 nm to 500 nm, more preferably 100 nm to 400 nm, and further preferably 100 nm to 300 nm.
リチウムイオン二次電池用正極活物質複合体(D)における式(4)で表されるリチウム正極活物質粒子(B)の担持量及び担持により形成されるリチウム正極活物質粒子(B)の担持層の厚さは、上記式(3)で表されるリチウム正極活物質粒子(B)と同じであって、担持量は、リチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%〜50質量%であり、より好ましくは7質量%〜45質量%であり、さらに好ましくは9質量%〜40質量%であり、担持層の厚さは、好ましくは100nm〜3μmであり、より好ましくは300nm〜3μmであり、さらに好ましくは500nm〜3μmである。 The amount of the lithium positive electrode active material particles (B) represented by the formula (4) in the positive electrode active material composite (D) for the lithium ion secondary battery and the support of the lithium positive electrode active material particles (B) formed by the support. The thickness of the layer is the same as that of the lithium positive electrode active material particles (B) represented by the above formula (3), and the carrying amount is 100, which is the total amount of the positive electrode active material composite (D) for the lithium ion secondary battery. In mass%, it is preferably 5% by mass to 50% by mass, more preferably 7% by mass to 45% by mass, still more preferably 9% by mass to 40% by mass, and the thickness of the supporting layer is It is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, and even more preferably 500 nm to 3 μm.
上記式(5):
LiNikMn1-kO4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
で表されるリチウム正極活物質粒子(B)は、スピネル構造を有するリチウム正極活物質からなる粒子である。
The above formula (5):
LiNi k Mn 1-k O 4 ... (5)
(In equation (5), k indicates a number satisfying 0.3 ≦ k ≦ 0.7.)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material having a spinel structure.
上記式(5)で表されるリチウム正極活物質粒子(B)としては、具体的には、LiNi0.4Mn0.6O4、LiNi0.5Mn0.5O4、LiNi0.6Mn0.4O4を用いることができる。なかでも、LiNi0.5Mn0.5O4が好ましい。 Specifically, LiNi 0.4 Mn 0.6 O 4 , LiNi 0.5 Mn 0.5 O 4 , and LiNi 0.6 Mn 0.4 O 4 can be used as the lithium cathode active material particles (B) represented by the above formula (5). .. Of these, LiNi 0.5 Mn 0.5 O 4 is preferable.
上記式(5)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは100nm〜500nmであり、より好ましくは100nm〜400nmであり、さらに好ましくは100nm〜300nmである。 The average particle size of the lithium positive electrode active material particles (B) represented by the above formula (5) is from the viewpoint of being densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, it is preferably 100 nm to 500 nm, more preferably 100 nm to 400 nm, and further preferably 100 nm to 300 nm.
リチウムイオン二次電池用正極活物質複合体(D)における式(5)で表されるリチウム正極活物質粒子(B)の担持量及び担持より形成されるリチウム正極活物質粒子(B)の担持層の厚さは、上記式(3)及び式(4)で表されるリチウム正極活物質粒子(B)と同じであって、担持量は、リチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%〜50質量%であり、より好ましくは7質量%〜45質量%であり、さらに好ましくは9質量%〜40質量%であり、担持層の厚さは、好ましくは100nm〜3μmであり、より好ましくは300nm〜3μmであり、さらに好ましくは500nm〜3μmである。 Supporting amount of lithium positive electrode active material particles (B) represented by the formula (5) in the positive electrode active material composite (D) for a lithium ion secondary battery and supporting of lithium positive electrode active material particles (B) formed from the supporting amount. The layer thickness is the same as that of the lithium positive electrode active material particles (B) represented by the above formulas (3) and (4), and the carrying amount is the positive electrode active material composite for a lithium ion secondary battery (a positive electrode active material composite for a lithium ion secondary battery. In 100% by mass of the total amount of D), it is preferably 5% by mass to 50% by mass, more preferably 7% by mass to 45% by mass, still more preferably 9% by mass to 40% by mass, and the supporting layer. The thickness of is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, and even more preferably 500 nm to 3 μm.
上記式(6):
Li2MnO3−LiM6O2 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)は、層状岩塩型構造の結晶構造を有する固溶体を形成するリチウム正極活物質からなる粒子である。
The above formula (6):
Li 2 MnO 3- LiM 6 O 2 ... (6)
In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. Indicates one or more elements selected from.)
The lithium positive electrode active material particles (B) represented by are particles made of a lithium positive electrode active material that forms a solid solution having a crystal structure of a layered rock salt type structure.
上記式(6)で表されるリチウム正極活物質粒子(B)としては、良好なサイクル特性を発現させる観点からは、M6としてCo、Ni及びMnから選択される1種または2種以上の元素であるものが好ましい。
具体的には、Li2MnO3−LiNiO2、Li2MnO3−LiCoO2、Li2MnO3−LiMn2O4、Li2MnO3−LiNixMn1−xO2(0<x<1)、Li2MnO3−LiNixCo1−xO2(0<x<1)、Li2MnO3−LiCoxMn1−xO2(0<x<1)、Li2MnO3−LiNi1−x−yCoxMnyO2(0<x<1、0<y<1、0<x+y<1)を用いることができる。なかでも、Li2MnO3−LiNi1/3Co1/3Mn1/3O2が好ましい。
As the lithium cathode active material particles (B) represented by the above formula (6), one or more selected from Co, Ni and Mn as M 6 from the viewpoint of exhibiting good cycle characteristics. Those that are elements are preferable.
Specifically, Li 2 MnO 3- LiNiO 2 , Li 2 MnO 3- LiCoO 2 , Li 2 MnO 3- LiMn 2 O 4 , Li 2 MnO 3- LiNi x Mn 1-x O 2 (0 <x <1) ), Li 2 MnO 3- LiNi x Co 1-x O 2 (0 <x <1), Li 2 MnO 3- LiCo x Mn 1-x O 2 (0 <x <1), Li 2 MnO 3- LiNi 1−x−y Co x Mn y O 2 (0 <x <1, 0 <y <1, 0 <x + y <1) can be used. Of these, Li 2 MnO 3- LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferable.
上記式(6)で表されるリチウム正極活物質粒子(B)の平均粒径は、リチウム複合酸化物二次粒子(A)の表面のみにおいて、リチウム複合酸化物粒子と密に複合化する観点から、好ましくは50nm〜200nmであり、より好ましくは50nm〜150nmであり、さらに好ましくは50nm〜100nmである。 The average particle size of the lithium positive electrode active material particles (B) represented by the above formula (6) is from the viewpoint of being densely composited with the lithium composite oxide particles only on the surface of the lithium composite oxide secondary particles (A). Therefore, it is preferably 50 nm to 200 nm, more preferably 50 nm to 150 nm, and further preferably 50 nm to 100 nm.
リチウムイオン二次電池用正極活物質複合体(D)における式(6)で表されるリチウム正極活物質粒子(B)の担持量は、リチウムイオン二次電池用正極活物質複合体(D)の全量100質量%中に、好ましくは5質量%〜50質量%であり、より好ましくは7質量%〜45質量%であり、さらに好ましくは9質量%〜40質量%であり、担持層の厚さは、好ましくは100nm〜3μmであり、より好ましくは300nm〜3μmであり、さらに好ましくは500nm〜3μmである。 The amount of the lithium positive electrode active material particles (B) represented by the formula (6) in the positive electrode active material composite (D) for the lithium ion secondary battery is determined by the positive electrode active material composite (D) for the lithium ion secondary battery. It is preferably 5% by mass to 50% by mass, more preferably 7% by mass to 45% by mass, still more preferably 9% by mass to 40% by mass, and the thickness of the supporting layer. The size is preferably 100 nm to 3 μm, more preferably 300 nm to 3 μm, and even more preferably 500 nm to 3 μm.
上記式(3)、式(4)、式(5)、又は式(6)で表されるリチウム正極活物質粒子(B)は、その表面にリチウム系固体電解質(C)が担持されてなる。
リチウムイオン二次電池用正極活物質複合体(D)におけるリチウム複合酸化物二次粒子(A)の含有量と、リチウム正極活物質粒子(B)及びリチウム系固体電解質(C)の合計含有量との質量比((A):(B)+(C))は、好ましくは95:5〜50:50であり、より好ましくは93:7〜55:45であり、さらに好ましくは91:9〜57:43である。
The lithium positive electrode active material particles (B) represented by the above formulas (3), (4), (5), or (6) have a lithium-based solid electrolyte (C) supported on the surface thereof. ..
The content of the lithium composite oxide secondary particles (A) in the positive electrode active material composite (D) for a lithium ion secondary battery, and the total content of the lithium positive electrode active material particles (B) and the lithium-based solid electrolyte (C). The mass ratio ((A) :( B) + (C)) with and is preferably 95: 5 to 50:50, more preferably 93: 7 to 55:45, and even more preferably 91: 9. ~ 57:43.
上記リチウム正極活物質粒子(B)の表面の全体を被覆することとなるリチウム系固体電解質(C)の担持層の厚さは、好ましくは1nm〜20nmであり、より好ましくは5nm〜20nmであり、さらに好ましくは10nm〜20nmである。
ここで、リチウム系固体電解質の担持層の厚さとは、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)の断面(クロスセクション)に関するTEM観察において、十個のリチウム正極活物質粒子(B)表面におけるリチウム系固体電解質(C)の担持層の厚さの測定値の平均値を意味し、以後の説明においても同義である。
The thickness of the supporting layer of the lithium-based solid electrolyte (C) that covers the entire surface of the lithium positive electrode active material particles (B) is preferably 1 nm to 20 nm, more preferably 5 nm to 20 nm. , More preferably 10 nm to 20 nm.
Here, the thickness of the supporting layer of the lithium-based solid electrolyte is 10 in the TEM observation regarding the cross section (cross section) of the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. It means the average value of the measured values of the thickness of the supporting layer of the lithium-based solid electrolyte (C) on the surface of the lithium positive electrode active material particles (B), and is synonymous with the following description.
リチウム正極活物質粒子(B)の表面に担持される、リチウム系固体電解質(C)とは、少なくとも良好なリチウムイオン伝導性を有するものであり、後述する製造方法において、焼成工程において形成することができるリチウム系固体電解質である。具体的には、例えば、Li3PO4−Li4SiO4及びLi1.3Al0.3Ti1.7(PO4)3のいずれか1種以上が挙げられ、なかでもLi1.3Al0.3Ti1.7(PO4)3が好ましい。 The lithium-based solid electrolyte (C) supported on the surface of the lithium positive electrode active material particles (B) has at least good lithium ion conductivity, and is formed in the firing step in the production method described later. It is a lithium-based solid electrolyte that can be used. Specifically, for example, any one or more of Li 3 PO 4- Li 4 SiO 4 and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 can be mentioned, and among them, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ). 3 is preferred.
上記リチウム系固体電解質(C)の平均粒径は、好ましくは1nm〜10nmであり、より好ましくは1nm〜8nmであり、さらに好ましくは1nm〜5nmである。
ここで、リチウム系固体電解質(C)の平均粒径は、リチウム正極活物質粒子(B)の断面(クロスセクション)に関するTEM観察において、リチウム正極活物質粒子(B)表面部における回折コントラストで識別される、数十個のリチウム系固体電解質粒子の粒径(長軸の長さ)の測定値の平均値を意味し、以後の説明においても同義である。
The average particle size of the lithium-based solid electrolyte (C) is preferably 1 nm to 10 nm, more preferably 1 nm to 8 nm, and further preferably 1 nm to 5 nm.
Here, the average particle size of the lithium-based solid electrolyte (C) is identified by the diffraction contrast on the surface portion of the lithium positive electrode active material particles (B) in the TEM observation regarding the cross section of the lithium positive electrode active material particles (B). It means the average value of the measured values of the particle sizes (length of the major axis) of several tens of lithium-based solid electrolyte particles, and is synonymous with the following description.
本発明のリチウムイオン二次電池用正極活物質複合体(D)の平均粒径は、好ましくは2μm〜30μmであり、より好ましくは3μm〜20μmであり、特に好ましくは5μm〜15μmである。かかるリチウムイオン二次電池用正極活物質複合体(D)の平均粒径が2μmよりも小さい場合、タップ密度が低下して作成した電極に十分な剥離強度が付与できず、電池のサイクル特性が低下するおそれがある。また、平均粒径が30μmよりも大きい場合、電極を均一に塗工することが困難になって均一な電極が得られず、電池の放電容量が低下するおそれがある。
また、本発明のリチウムイオン二次電池用正極活物質複合体(D)のタップ密度は、好ましくは0.5g/cm3〜3.5g/cm3であり、より好ましくは1.5g/cm3〜3.5g/cm3である。かかるリチウムイオン二次電池用正極活物質複合体(D)のタップ密度が0.5g/cm3よりも小さい場合、上述のとおり電池のサイクル特性が低下するおそれがある。
The average particle size of the positive electrode active material composite (D) for a lithium ion secondary battery of the present invention is preferably 2 μm to 30 μm, more preferably 3 μm to 20 μm, and particularly preferably 5 μm to 15 μm. When the average particle size of the positive electrode active material composite (D) for a lithium ion secondary battery is smaller than 2 μm, the tap density is lowered and sufficient peel strength cannot be imparted to the prepared electrode, resulting in poor battery cycle characteristics. It may decrease. Further, when the average particle size is larger than 30 μm, it becomes difficult to uniformly coat the electrodes, a uniform electrode cannot be obtained, and the discharge capacity of the battery may decrease.
The tap density of the positive electrode active material composite (D) for a lithium ion secondary battery of the present invention is preferably 0.5 g / cm 3 to 3.5 g / cm 3 , and more preferably 1.5 g / cm. It is 3 to 3.5 g / cm 3 . If the tap density of the positive electrode active material composite (D) for a lithium ion secondary battery is smaller than 0.5 g / cm 3 , the cycle characteristics of the battery may deteriorate as described above.
本発明のリチウムイオン二次電池用正極活物質複合体(D)は、次の工程(I)〜工程(III):
(I)リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含む、固形分濃度が20質量%〜65質量%のスラリー(a−1)を調製した後、熱風の供給量G(L/分)とスラリー(a−1)の供給量S(L/分)との比(G/S)が500〜10000の条件で噴霧乾燥して造粒物(a)を得る工程、
(II)得られた造粒物(a)を、500℃〜800℃で10分間〜3時間焼成して、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる、空隙率が45体積%〜80体積%の予備造粒物(b)を得る工程、並びに
(III)得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程
により得ることができる。このように、リチウム正極活物質粒子(B)からなる空隙率の高い予備造粒物(b)を得る工程(II)を経ることにより、続く工程(III)において過度な負荷を与えることなく容易に予備造粒物(b)を解砕させ、細粒化することができる。このように、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる予備造粒物(b)は、細粒化されながら、かかるリチウム正極活物質粒子(B)を分離、供給することとなり、リチウム複合酸化物二次粒子(A)の表面において、リチウム複合酸化物粒子にかかるリチウム正極活物質粒子(B)を効率的かつ良好に複合化させつつ担持させることが可能となる。
The positive electrode active material composite (D) for a lithium ion secondary battery of the present invention has the following steps (I) to (III):
(I) After preparing a slurry (a-1) having a solid content concentration of 20% by mass to 65% by mass, which contains the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C), hot air is used. The granulated product (a) is spray-dried under the condition that the ratio (G / S) of the supply amount G (L / min) of the slurry (a-1) to the supply amount S (L / min) of the slurry (a-1) is 500 to 10000. The process of getting
(II) The obtained granulated product (a) is fired at 500 ° C. to 800 ° C. for 10 minutes to 3 hours, and the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. ) To obtain a preliminary granulated product (b) having a void ratio of 45% to 80% by volume, and (III) the obtained preliminary granulated product (b) and lithium composite oxide secondary particles (A). ) Is mixed while applying compressive force and shearing force to crush the preliminary granulated product (b), and the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. ) And the lithium composite oxide secondary particles (A) can be obtained by a step of combining the particles (A). As described above, by passing through the step (II) of obtaining the preliminary granulated product (b) composed of the lithium positive electrode active material particles (B) having a high porosity, it is easy in the subsequent step (III) without giving an excessive load. The preliminary granulated product (b) can be crushed into fine particles. As described above, the preliminary granulated product (b) composed of the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface is finely divided, and the lithium positive electrode active material particles ( B) will be separated and supplied, and the lithium positive electrode active material particles (B) on the lithium composite oxide particles will be efficiently and satisfactorily composited and supported on the surface of the lithium composite oxide secondary particles (A). It becomes possible to make it.
本発明の製造方法が備える工程(I)は、リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含むスラリー(a−1)を調製した後、熱風の供給量G(L/分)とスラリー(a−1)の供給量S(L/分)との比(G/S)が500〜10000の条件で噴霧乾燥して造粒物(a)を得る工程である。 In the step (I) provided in the production method of the present invention, the amount of hot air supplied after preparing the slurry (a-1) containing the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C). Step of spray-drying to obtain granulated product (a) under the condition that the ratio (G / S) of G (L / min) to the supply amount S (L / min) of the slurry (a-1) is 500 to 10000. Is.
工程(I)で用いるリチウム正極活物質粒子(B)は、次工程(II)において表面にリチウム系固体電解質(C)が担持された後、続く工程(III)においてリチウム複合酸化物二次粒子(A)の表面に複合化される上記式(3)〜式(6)で表されるリチウム正極活物質の粒子であり、その平均粒径は上記式(3)〜式(5)で表されるリチウム正極活物質粒子(B)を用いる場合は100nm〜500nmであり、式(6)で表されるリチウム正極活物質粒子(B)を用いる場合は50nm〜200nmである。 The lithium positive electrode active material particles (B) used in the step (I) are the lithium composite oxide secondary particles in the subsequent step (III) after the lithium-based solid electrolyte (C) is supported on the surface in the next step (II). The particles of the lithium positive electrode active material represented by the above formulas (3) to (6) are composited on the surface of (A), and the average particle size thereof is represented by the above formulas (3) to (5). When the lithium positive electrode active material particles (B) are used, the temperature is 100 nm to 500 nm, and when the lithium positive electrode active material particles (B) represented by the formula (6) are used, the temperature is 50 nm to 200 nm.
スラリー(a−1)における、リチウム正極活物質粒子(B)の含有量は、水100質量部に対し、好ましくは30質量部〜185質量部であり、より好ましくは50質量部〜150質量部である。 The content of the lithium positive electrode active material particles (B) in the slurry (a-1) is preferably 30 parts by mass to 185 parts by mass, and more preferably 50 parts by mass to 150 parts by mass with respect to 100 parts by mass of water. Is.
造粒物(a)を構成するリチウム系固体電解質(C)の原料化合物は、次工程(III)において焼成されることにより、リチウム系固体電解質(C)を生成するものである。用いる原料化合物としては、スラリー(a−1)に溶解するものが好ましく、リチウム系固体電解質(C)を構成する各元素、具体的には、チタン、リチウム、アルミニウム、ケイ素、ホウ素、リンの水酸化物、炭酸塩、硫酸塩、酢酸塩等が挙げられるが、これらに限定されるものではない。 The raw material compound of the lithium-based solid electrolyte (C) constituting the granulated product (a) is fired in the next step (III) to produce the lithium-based solid electrolyte (C). The raw material compound to be used is preferably one that dissolves in the slurry (a-1), and water of each element constituting the lithium-based solid electrolyte (C), specifically, titanium, lithium, aluminum, silicon, boron, or phosphorus. Examples thereof include, but are not limited to, oxides, carbonates, sulfates, acetates and the like.
リチウム正極活物質粒子(B)の表面に、次工程(III)において焼成することにより上記原料化合物から生成するリチウム系固体電解質(C)を担持させるにあたり、スラリー(a−1)における、上記リチウム系固体電解質(C)の原料化合物の合計含有量は、次工程(III)にて得られるリチウム正極活物質粒子(B)及びかかる粒子表面に担持されるリチウム系固体電解質(C)の合計量100質量%中に、0.1質量%〜15質量%となるような量であるのが望ましい。具体的には、例えばスラリー(a−1)における水100質量部に対し、好ましくは0.03質量部〜35質量部であり、より好ましくは0.05質量部〜20質量部である。
そして、スラリー(a−1)100質量%中における固形分濃度は、20質量%〜65質量%であって、好ましくは30質量%〜60質量%であり、より好ましくは40質量%〜55質量%である。
In carrying the lithium-based solid electrolyte (C) produced from the raw material compound by firing in the next step (III) on the surface of the lithium positive electrode active material particles (B), the lithium in the slurry (a-1). The total content of the raw material compound of the system-based solid electrolyte (C) is the total amount of the lithium positive electrode active material particles (B) obtained in the next step (III) and the lithium-based solid electrolyte (C) supported on the surface of the particles. It is desirable that the amount is 0.1% by mass to 15% by mass in 100% by mass. Specifically, for example, it is preferably 0.03 parts by mass to 35 parts by mass, and more preferably 0.05 parts by mass to 20 parts by mass with respect to 100 parts by mass of water in the slurry (a-1).
The solid content concentration in 100% by mass of the slurry (a-1) is 20% by mass to 65% by mass, preferably 30% by mass to 60% by mass, and more preferably 40% by mass to 55% by mass. %.
スラリー(a−1)を調製するにあたり、リチウム正極活物質粒子(B)と溶解したリチウム系固体電解質(C)の原料を均一に分散させる観点から、分散機(ホモジナイザー)を用いた処理を行うことが好ましい。かかる分散機としては、例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等が挙げられる。なかでも、分散効率の観点から、超音波攪拌機が好ましい。スラリー(a−1)の分散均一性の程度は、例えば、UV・可視光分光装置を使用した光線透過率や、E型粘度計を使用した粘度で定量的に評価することもでき、また目視によって白濁度が均一であることを確認することで、簡便に評価することもできる。分散機で処理する時間は、好ましくは1分間〜30分間であり、より好ましくは2分間〜15分間である。 In preparing the slurry (a-1), a treatment using a disperser (homogenizer) is performed from the viewpoint of uniformly dispersing the raw materials of the lithium positive electrode active material particles (B) and the dissolved lithium-based solid electrolyte (C). Is preferable. Examples of such a disperser include a breaker, a beater, a low-pressure homogenizer, a high-pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short-screw extruder, a twin-screw extruder, an ultrasonic stirrer, a household juicer mixer, and the like. Can be mentioned. Of these, an ultrasonic stirrer is preferable from the viewpoint of dispersion efficiency. The degree of dispersion uniformity of the slurry (a-1) can be quantitatively evaluated by, for example, the light transmittance using a UV / visible light spectroscope or the viscosity using an E-type viscometer, or visually. It is also possible to easily evaluate by confirming that the white turbidity is uniform. The time for processing with the disperser is preferably 1 minute to 30 minutes, more preferably 2 minutes to 15 minutes.
次いで、得られたスラリー(a−1)を、熱風の供給量G(L/分)とスラリー(a−1)の供給量S(L/分)との比(G/S)が500〜10000の条件で噴霧乾燥して、造粒物(a)を得る。かかる造粒物(a)は、次工程(II)を経ることによって、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)により形成されてなる予備造粒物(b)となる。本発明の製造方法では、リチウム正極活物質粒子(B)を堅固に凝集させてなる堅牢な二次粒子を用いることを回避して、過度な負荷を与えることなく容易に解砕させることのできる予備造粒物(b)を用いるため、かかる予備造粒物(b)を構成してなるリチウム正極活物質粒子(B)を、過大なせん断力等を必要とすることなく、リチウム複合酸化物二次粒子(A)の表面に担持させることを可能とする。 Next, the ratio (G / S) of the obtained slurry (a-1) to the supply amount G (L / min) of hot air and the supply amount S (L / min) of the slurry (a-1) is 500 to The granulated product (a) is obtained by spray drying under the condition of 10000. The granulated product (a) is a preliminary granulated product (B) formed of lithium positive electrode active material particles (B) on which a lithium-based solid electrolyte (C) is supported on the surface by passing through the next step (II). b). In the production method of the present invention, it is possible to avoid using robust secondary particles formed by firmly aggregating the lithium positive electrode active material particles (B), and to easily crush the lithium positive electrode active material particles (B) without applying an excessive load. Since the pre-granulation product (b) is used, the lithium positive electrode active material particles (B) constituting the pre-granulation product (b) can be subjected to a lithium composite oxide without requiring an excessive shearing force or the like. It is possible to support the secondary particles (A) on the surface.
かかる熱風の供給量G(L/分)と、スラリー(a−1)の供給量S(L/分)との比(G/S)は、500〜10000であって、1000〜9000が好ましい。噴霧乾燥の際の熱風温度は、110℃〜160℃が好ましく、120℃〜140℃がより好ましい。 The ratio (G / S) of the supply amount G (L / min) of the hot air to the supply amount S (L / min) of the slurry (a-1) is 500 to 10000, preferably 1000 to 9000. .. The hot air temperature during spray drying is preferably 110 ° C. to 160 ° C., more preferably 120 ° C. to 140 ° C.
工程(I)で得られる造粒物(a)の粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5μm〜25μmであり、より好ましくは5μm〜15μmである。
ここで、粒度分布測定におけるD50値とは、レーザー回折・散乱法に基づく体積基準の粒度分布により得られる値であり、D50値は累積50%での粒径(メジアン径)を意味する。
The particle size of the granulated product (a) obtained in the step (I) is a D 50 value in the particle size distribution based on the laser diffraction / scattering method, preferably 5 μm to 25 μm, and more preferably 5 μm to 15 μm.
Here, the D 50 value in the particle size distribution measurement is a value obtained by a volume-based particle size distribution based on the laser diffraction / scattering method, and the D 50 value means the particle size (median diameter) at a cumulative 50%. ..
本発明の製造方法が備える工程(II)は、工程(I)で得られた造粒物(a)を、500℃〜800℃で10分間〜3時間焼成して、空隙率が45体積%〜80体積%の予備造粒物(b)を得る工程である。かかる工程(II)を経ることにより、予備造粒物(b)を構成するリチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)を堅固に担持させつつ、空隙率を45体積%〜80体積%に調整された、適度な解砕性を有する予備造粒物(b)を形成させることができる。 In the step (II) provided in the production method of the present invention, the granulated product (a) obtained in the step (I) is calcined at 500 ° C. to 800 ° C. for 10 minutes to 3 hours to have a porosity of 45% by volume. This is a step of obtaining a preliminary granulated product (b) of ~ 80% by volume. By going through the step (II), the porosity of 45 volumes is increased while the lithium-based solid electrolyte (C) is firmly supported on the surface of the lithium positive electrode active material particles (B) constituting the preliminary granulated product (b). A pre-granulated product (b) having an appropriate crushability adjusted to% to 80% by volume can be formed.
焼成温度は、リチウム系固体電解質(C)を有効に生成させる観点、及び予備造粒物(b)の空隙率を45体積%〜80体積%に調整して適度な解砕性を付与する観点から、500℃〜800℃であって、好ましくは600℃〜770℃であり、より好ましくは650℃〜750℃である。また、焼成時間は、10分間〜3時間であって、好ましくは30分間〜1.5時間とするのがよい。 The firing temperature is from the viewpoint of effectively producing the lithium-based solid electrolyte (C) and from the viewpoint of adjusting the porosity of the preliminary granulated product (b) to 45% by volume to 80% by volume to impart appropriate crushability. Therefore, it is 500 ° C. to 800 ° C., preferably 600 ° C. to 770 ° C., and more preferably 650 ° C. to 750 ° C. The firing time is 10 minutes to 3 hours, preferably 30 minutes to 1.5 hours.
表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の空隙率は、水銀圧入法に基づく空隙率で、45体積%〜80体積%であって、好ましくは50体積%〜80体積%である。 The porosity of the pre-granulated product (b) composed of the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is the porosity based on the mercury intrusion method, which is 45% by volume to 80% by volume. %, Preferably 50% by volume to 80% by volume.
また、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)のタップ密度は、好ましくは3.5g/cm3以下であり、より好ましくは1.5g/cm3〜3.5g/cm3である。 Further, the tap density of the preliminary granulated product (b) composed of the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is preferably 3.5 g / cm 3 or less, and more. preferably from 1.5g / cm 3 ~3.5g / cm 3 .
さらに、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の平均粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5μm〜25μmであり、より好ましくは5μm〜15μmである。 Further, the average particle size of the preliminary granulated product (b) composed of the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is D 50 in the particle size distribution based on the laser diffraction / scattering method. The value is preferably 5 μm to 25 μm, and more preferably 5 μm to 15 μm.
表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の解砕強度は、好ましくは1.8KN/mm以下であり、より好ましくは1.75KN/mm以下である。かかる解砕強度とは、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)の圧縮による解砕のし易さを示し、下記式(7)により求められる値を意味する。
予備造粒物(b)の解砕強度(KN/mm)=10/(t0−t10) ・・・(7) 式(7)中のt0は、直径20mmの円筒容器内に表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)からなる予備造粒物(b)を3g投入し、高さ1cmからの落下によるタッピングを10回繰返した後の密充填状態における予備造粒物(b)の層厚(mm)を示し、t10は、かかる密充填状態の予備造粒物(b)に、上部から10KNの荷重を掛けた際の予備造粒物(b)の層厚(mm)を示す。
The crushing strength of the pre-granulated product (b) composed of the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported is preferably 1.8 KN / mm or less, more preferably 1.8 KN / mm or less. It is 1.75 KN / mm or less. The crushing strength indicates the ease of crushing by compression of the preliminary granulated product (b) composed of the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported on the surface. It means the value obtained by the formula (7).
Crushing strength (KN / mm) of pre-granulated product (b) = 10 / (t 0 −t 10 ) ・ ・ ・ (7) t 0 in equation (7) is the surface inside a cylindrical container with a diameter of 20 mm. 3 g of a pre-granulated product (b) composed of lithium positive electrode active material particles (B) carrying a lithium-based solid electrolyte (C) was put into the mixture, and tapping by dropping from a height of 1 cm was repeated 10 times. The layer thickness (mm) of the pre-granulated product (b) in the filled state is shown, and t 10 is the pre-granulation when a load of 10 KN is applied to the pre-granulated product (b) in the densely packed state from above. The layer thickness (mm) of the thing (b) is shown.
本発明の製造方法が備える工程(III)は、工程(II)で得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程である。かかる工程を経ることにより、リチウム複合酸化物二次粒子(A)の表面に、予備造粒物(b)が解砕してなり、かつその表面にリチウム系固体電解質(C)が担持された微細なリチウム正極活物質粒子(B)を、緻密かつ広範囲に被覆するように担持させてなるリチウムイオン二次電池用正極活物質複合体(D)を得ることができる。 In the step (III) provided in the production method of the present invention, the preliminary granulated product (b) obtained in the step (II) and the lithium composite oxide secondary particles (A) are subjected to compressive force and shearing force. Lithium positive electrode active material particles (B) and lithium composite oxide secondary particles (A) in which a lithium-based solid electrolyte (C) is supported on the surface while mixing and crushing the preliminary granulated product (b). It is a process of combining and. Through this step, the preliminary granulated product (b) was crushed on the surface of the lithium composite oxide secondary particles (A), and the lithium-based solid electrolyte (C) was supported on the surface. It is possible to obtain a positive electrode active material composite (D) for a lithium ion secondary battery in which fine lithium positive electrode active material particles (B) are supported so as to cover a dense and wide area.
工程(III)では、圧縮力及びせん断力を付加しながら混合する前に、リチウム複合酸化物二次粒子(A)と上記予備造粒物(b)の混合物を、充分に乾式混合するのが好ましい。乾式混合の方法としては、ボールミルやVブレンダー等の、通常の乾式混合機による混合であるのが好ましく、自公転可能な遊星ボールミルによる混合がより好ましい。 In the step (III), the mixture of the lithium composite oxide secondary particles (A) and the preliminary granulated product (b) is sufficiently dry-mixed before being mixed while applying a compressive force and a shearing force. preferable. As a method of dry mixing, mixing by a normal dry mixer such as a ball mill or a V blender is preferable, and mixing by a self-revolving planetary ball mill is more preferable.
圧縮力及びせん断力を付加しながら混合する(以下、「複合化する」ともいう)処理は、インペラやローター工具等を備える密閉容器で行うのがよい。かかる密閉容器を備える装置として、高速せん断ミル、ブレード型混練機、高速混合機等が挙げられ、具体的には、例えば、粒子設計装置 COMPOSI、メカノハイブリット、高性能流動式混合機FMミキサー(日本コークス工業社製)微粒子複合化装置 メカノフュージョン、ノビルタ(ホソカワミクロン社製)、表面改質装置ミラーロ、ハイブリダイゼーションシステム(奈良機械製作所社製)、アイリッヒインテンシブミキサー(日本アイリッヒ社製)を好適に用いることができる。上記複合化する処理条件としては、温度が、好ましくは5℃〜80℃、より好ましくは10℃〜50℃である。また、雰囲気としては、特に限定されないが、不活性ガス雰囲気又は大気雰囲気であるのが好ましい。 The process of mixing while applying a compressive force and a shearing force (hereinafter, also referred to as “composite”) is preferably performed in a closed container equipped with an impeller, a rotor tool, or the like. Examples of the device provided with such a closed container include a high-speed shear mill, a blade-type kneader, a high-speed mixer, and the like. Specific examples thereof include a particle design device COMPOSI, a mechanohybrid, and a high-performance flow mixer FM mixer (Japan). Coke Industries Co., Ltd.) Fine particle compounding device Mechanofusion, Nobilta (manufactured by Hosokawa Micron), surface modifier Miralo, hybridization system (manufactured by Nara Kikai Seisakusho), Erich Intensive Mixer (manufactured by Nippon Eirich) are preferably used. be able to. As the above-mentioned compounding treatment conditions, the temperature is preferably 5 ° C. to 80 ° C., more preferably 10 ° C. to 50 ° C. The atmosphere is not particularly limited, but is preferably an inert gas atmosphere or an atmospheric atmosphere.
より具体的には、例えば、複合化を行う装置として、インペラを備えた乾式粒子複合化装置であるノビルタ(ホソカワミクロン社製)を用いる場合、かかるインペラの回転数は、上記予備造粒物(b)を効率的に解砕させつつ、リチウム複合酸化物二次粒子(A)の表面に、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)が良好に被覆するよう担持した複合酸化物を得る観点から、好ましくは2000rpm〜6000rpmであり、より好ましくは2000rpm〜4000rpmである。また、複合化する時間は、好ましくは1分間〜10分間であり、より好ましくは1分間〜7分間である。
また、かかる複合化を行う装置として、ローター工具を備えた高速攪拌混合機であるアイリッヒインテンシブミキサー(日本アイリッヒ社製)を用いた場合、かかるローター工具の回転数は、好ましくは2000rpm〜8000rpmであり、より好ましくは2000rpm〜6000rpmである。また、複合化する時間は、好ましくは1分間〜10分間であり、より好ましくは1分間〜7分間である。
More specifically, for example, when Nobilta (manufactured by Hosokawa Micron Co., Ltd.), which is a dry particle compounding device equipped with an impeller, is used as the compounding device, the rotation speed of the impeller is the pre-granulation product (b). ) Is efficiently crushed, and the surface of the lithium composite oxide secondary particles (A) is satisfactorily coated with the lithium positive electrode active material particles (B) having the lithium-based solid electrolyte (C) supported on the surface. From the viewpoint of obtaining the composite oxide carried in such a manner, it is preferably 2000 rpm to 6000 rpm, and more preferably 2000 rpm to 4000 rpm. The compounding time is preferably 1 minute to 10 minutes, and more preferably 1 minute to 7 minutes.
Further, when an Erich Intensive Mixer (manufactured by Nippon Eirich Co., Ltd.), which is a high-speed stirring mixer equipped with a rotor tool, is used as the device for performing such compounding, the rotation speed of the rotor tool is preferably 2000 rpm to 8000 rpm. Yes, more preferably 2000 rpm to 6000 rpm. The compounding time is preferably 1 minute to 10 minutes, and more preferably 1 minute to 7 minutes.
工程(III)における、上記複合化する時間及び/又はインペラ等の回転数は、密閉容器に投入するリチウム複合酸化物二次粒子(A)と予備造粒物(b)の混合物の量に応じて適宜調整する必要がある。そして、密閉容器を稼動させることにより、インペラ等と密閉容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、予備造粒物(b)を良好に解砕させながら、リチウム複合酸化物二次粒子(A)と、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)とを複合化する処理を行うことが可能となり、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)が、上記リチウム複合酸化物二次粒子(A)の表面において良好に複合化されて被覆するよう担持してなる、リチウムイオン二次電池用正極活物質複合体(D)を得ることができる。
例えば、上記複合化を、回転数2000rpm〜5000rpmで回転するインペラを備える密閉容器内で1分間〜8分間行う場合、密閉容器に投入する上記混合物の量は、有効容器(インペラを備える密閉容器のうち、上記混合物を収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1g〜0.7gであり、より好ましくは0.15g〜0.4gである。
The compounding time and / or the rotation speed of the impeller or the like in the step (III) depends on the amount of the mixture of the lithium composite oxide secondary particles (A) and the preliminary granulated product (b) to be charged into the closed container. It is necessary to make appropriate adjustments. Then, by operating the closed container, a compressive force and a shearing force are applied to the mixture between the impeller and the like and the inner wall of the closed container, and the preliminary granulated product (b) is crushed satisfactorily while the lithium composite is used. It is possible to perform a treatment in which the secondary oxide particles (A) and the lithium positive electrode active material particles (B) on which the lithium-based solid electrolyte (C) is supported on the surface are composited, and the lithium-based solid electrolyte is on the surface. The lithium ion secondary particles (B) supported by (C) are supported so as to be well composited and coated on the surface of the lithium composite oxide secondary particles (A). A positive electrode active material composite (D) for a battery can be obtained.
For example, when the compounding is performed in a closed container equipped with an impeller rotating at a rotation speed of 2000 rpm to 5000 rpm for 1 minute to 8 minutes, the amount of the mixture to be charged into the closed container is determined by the effective container (the closed container provided with the impeller). Of these, 0.1 g to 0.7 g, more preferably 0.15 g to 0.4 g, per 1 cm 3 of the container corresponding to the portion capable of accommodating the mixture.
工程(III)において複合化させるリチウム複合酸化物二次粒子(A)の配合量と、表面にリチウム系固体電解質(C)が担持されたリチウム正極活物質粒子(B)の配合量との質量比(粒子(A):粒子(B)+粒子(C))は、リチウムイオン二次電池用正極活物質複合体(D)におけるリチウム複合酸化物二次粒子(A)の含有量と、リチウム正極活物質粒子(B)及びリチウム系固体電解質(C)の合計含有量との質量比((A):(B)+(C))と同じであり、かかる量となるよう、上記混合物中における予備造粒物(b)の量を調整すればよい。 The mass of the amount of the lithium composite oxide secondary particles (A) compounded in the step (III) and the amount of the lithium positive electrode active material particles (B) having the lithium-based solid electrolyte (C) supported on the surface. The ratio (particle (A): particle (B) + particle (C)) is the content of the lithium composite oxide secondary particle (A) in the positive electrode active material composite (D) for the lithium ion secondary battery and lithium. It is the same as the mass ratio ((A): (B) + (C)) to the total content of the positive electrode active material particles (B) and the lithium-based solid electrolyte (C), and is contained in the above mixture so as to have such an amount. The amount of the preliminary granulated product (b) in the above may be adjusted.
本発明のリチウムイオン二次電池用正極活物質複合体を正極材料として適用し、これを含むリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。 The positive electrode active material composite for a lithium ion secondary battery of the present invention is applied as a positive electrode material, and the lithium ion secondary battery containing the positive electrode active material composite is particularly capable of having a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential configurations. Not limited.
ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト、シリコン系(Si、SiOx)、チタン酸リチウム又は非晶質炭素等の炭素材料等を用いることができる。そしてリチウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。さらに、2種以上の上記の負極材料を併用してもよく、たとえばグラファイトとシリコン系の組み合わせを用いることができる。 Here, as for the negative electrode, as long as lithium ions can be occluded at the time of charging and discharged at the time of discharging, the material composition is not particularly limited, and a known material composition can be used. For example, a carbon material such as lithium metal, graphite, silicon-based (Si, SiO x ), lithium titanate, or amorphous carbon can be used. Then, it is preferable to use an electrode formed of an intercalate material capable of electrochemically occluding and releasing lithium ions, particularly a carbon material. Further, two or more kinds of the above-mentioned negative electrode materials may be used in combination, and for example, a combination of graphite and silicon can be used.
電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、一般的にリチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。 The electrolytic solution is a solution in which a supporting salt is dissolved in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is generally used as an electrolytic solution for a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, etc. Lactones, oxolane compounds and the like can be used.
支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF3)2及びLiN(SO3CF3)2、LiN(SO2C2F5)2及びLiN(SO2CF3)(SO2C4F9)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of supporting salt is not particularly limited, but is an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , derivatives of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3). ) 2 and an organic salt selected from LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and derivatives of the organic salt. It is preferable that it is at least one of.
セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。 The separator electrically insulates the positive electrode and the negative electrode and serves to hold the electrolytic solution. For example, a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene, polypropylene) may be used.
上記の構成を有するリチウムイオン二次電池の形状としては、特に制限を受けるものではなく、コイン型、円筒型,角型等種々の形状や、ラミネート外装体に封入した不定形状であってもよい。 The shape of the lithium ion secondary battery having the above configuration is not particularly limited, and may be various shapes such as a coin type, a cylindrical type, and a square type, or an indefinite shape enclosed in a laminated outer body. ..
以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
[製造例1:リチウム複合酸化物二次粒子(A−1)の製造]
Ni:Co:Mnのモル比が1:1:1となるように、硫酸ニッケル六水和物263g、硫酸コバルト七水和物281g、硫酸マンガン五水和物241g、及び水3Lを混合した後、かかる混合溶液に25%アンモニア水を、滴下速度300ml/分で滴下して、pHが11の金属複合水酸化物を含むスラリーA1を得た。
次いで、スラリーA1をろ過、乾燥して、金属複合水酸化物の混合物A2を得た後、かかる混合物A2に炭酸リチウム37gをボールミルで混合して粉末混合物A3を得た。
得られた粉末混合物A3を、大気雰囲気下で800℃×5時間仮焼成して解砕した後に造粒し、次いで本焼成として大気雰囲気下で800℃×10時間焼成し、リチウム複合酸化物二次粒子(A−1)(LiNi0.33Co0.33Mn0.34O2、平均粒径10μm)を得た。
[Production Example 1: Production of Lithium Composite Oxide Secondary Particles (A-1)]
After mixing 263 g of nickel sulfate hexahydrate, 281 g of cobalt sulfate heptahydrate, 241 g of manganese sulfate pentahydrate, and 3 L of water so that the molar ratio of Ni: Co: Mn is 1: 1: 1. 25% aqueous ammonia was added dropwise to the mixed solution at a dropping rate of 300 ml / min to obtain slurry A1 containing a metal composite hydroxide having a pH of 11.
Next, the slurry A1 was filtered and dried to obtain a mixture A2 of a metal composite hydroxide, and then 37 g of lithium carbonate was mixed with the mixture A2 with a ball mill to obtain a powder mixture A3.
The obtained powder mixture A3 was calcined at 800 ° C. for 5 hours in an air atmosphere to be crushed and then granulated, and then calcined at 800 ° C. for 10 hours in an air atmosphere as the main firing to obtain a lithium composite oxide di. Secondary particles (A-1) (LiNi 0.33 Co 0.33 Mn 0.34 O 2 , average particle size 10 μm) were obtained.
[製造例2:リチウム複合酸化物二次粒子(A−2)の製造]
Li:Ni:Co:Alのモル比が1:0.8:0.15:0.05となるように、炭酸リチウム370g、炭酸ニッケル950g、炭酸コバルト150g、炭酸アルミニウム58g、及び水3Lを混合した後、ボールミルで混合して粉末混合物A4を得た。得られた粉末混合物A4を、大気雰囲気下で800℃×5時間仮焼成して解砕した後、本焼成として大気雰囲気下で800℃×24時間焼成し、リチウム複合酸化物二次粒子(A−2)(LiNi0.8Co0.15Al0.05O2、平均粒径10μm)を得た。
[Production Example 2: Production of Lithium Composite Oxide Secondary Particles (A-2)]
Lithium carbonate 370 g, nickel carbonate 950 g, cobalt carbonate 150 g, aluminum carbonate 58 g, and 3 L of water are mixed so that the molar ratio of Li: Ni: Co: Al is 1: 0.8: 0.15: 0.05. After that, it was mixed with a ball mill to obtain a powder mixture A4. The obtained powder mixture A4 was calcined by calcination at 800 ° C. for 5 hours in an air atmosphere, and then calcined at 800 ° C. for 24 hours in an air atmosphere as the main firing to obtain lithium composite oxide secondary particles (A). -2) (LiNi 0.8 Co 0.15 Al 0.05 O 2 , average particle size 10 μm) was obtained.
[製造例3:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC−1)の製造]
Li:Coのモル比が1:1となるように、炭酸リチウム222g及び酸化コバルト482gの粉末をボールミルで混合し、粉末混合物B1を作製した。粉末混合物B1を成型圧500kg/cm3で圧密成型し、大気雰囲気下700℃×5時間で仮焼成を行った。その後、この成型体を再度粉砕、混合し、成型圧1000kg/cm3で圧密成型して、大気雰囲気下900℃×10時間の焼成を行うことにより、コバルト酸リチウム(LiCoO2)を得た。得られたコバルト酸リチウムを複合化に適した粒径にするために粉砕して、コバルト酸リチウム粒子B2(LiCoO2、平均粒径200nm)を得た。
得られたコバルト酸リチウム粒子B2を500g分取し、LiNO3 1.8g、Al(NO3)3・9H2O 2.25g、TiCl4 6.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB3(固形分濃度51%)を得た。得られたスラリーB3を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL−050M、藤崎電機株式会社製)を用いて噴霧乾燥に付して予備造粒物B4を得た。
得られた予備造粒物B4を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO4)3が担持された粒子(BC−1)(LiCoO2、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 3: Production of particles (BC-1) in which a lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
A powder mixture of 222 g of lithium carbonate and 482 g of cobalt oxide was mixed with a ball mill so that the molar ratio of Li: Co was 1: 1 to prepare a powder mixture B1. The powder mixture B1 was compacted at a molding pressure of 500 kg / cm 3 and calcined at 700 ° C. for 5 hours in an air atmosphere. Then, this molded body was pulverized and mixed again , compacted at a molding pressure of 1000 kg / cm 3 , and calcined at 900 ° C. for 10 hours in an air atmosphere to obtain lithium cobalt oxide (LiCoO 2). The obtained lithium cobalt oxide was pulverized to have a particle size suitable for compounding to obtain lithium cobalt oxide particles B2 (LiCoO 2 , average particle size 200 nm).
The resulting lithium cobalt oxide particles B2 was collected 500g min, LiNO 3 1.8g, Al (NO 3) 3 · 9H 2 O 2.25g, and TiCl 4 6.46g, 85% H 3 PO 4 5.88g , 500 mL of water was added, and 21.86 g of 28% ammonia water was further added as a pH adjuster to obtain slurry B3 (solid content concentration 51%). The obtained slurry B3 was dispersed for 1 minute with an ultrasonic stirrer (T25, manufactured by IKA) to uniformly color the whole, and then a spray drying device (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.) was used. The mixture was spray-dried to obtain a preliminary granulated product B4.
The obtained preliminary granulated product B4 was calcined in an air atmosphere at 700 ° C. for 1 hour, and the particles (BC-) in which Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 was supported on the surface of the lithium positive electrode active material particles. 1) (LiCoO 2 , average particle size: 200 nm, thickness of supporting layer of lithium-based solid electrolyte: 5 nm) was obtained.
[製造例4:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC−2)の製造]
製造例3において、得られたコバルト酸リチウム粒子B2を500g分取し、LiNO3 18g、Al(NO3)3・9H2O 22.5g、TiCl4 64.6g、85%H3PO458.8gと、水1Lを添加し、さらにpH調整剤として28%アンモニア水218.6gを添加してスラリーB5(固形分濃度42%)を得た以外は、製造例3と同様にして、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO4)3が担持された粒子(BC−2)(LiCoO2、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:20nm)を得た。
[Production Example 4: Production of particles (BC-2) in which a lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
Production Example 3, the lithium cobalt oxide particles B2 obtained was collected 500g min, LiNO 3 18g, Al (NO 3) 3 · 9H 2 O 22.5g, TiCl 4 64.6g, 85% H 3 PO 4 58 Lithium was obtained in the same manner as in Production Example 3 except that 0.8 g and 1 L of water were added, and 218.6 g of 28% ammonia water was added as a pH adjuster to obtain slurry B5 (solid content concentration 42%). Particles (BC-2) (LiCoO 2 ) in which Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of positive electrode active material particles, average particle size: 200 nm, thickness of lithium-based solid electrolyte supporting layer: 20 nm ) Was obtained.
[製造例5:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC−3)の製造]
Mn:Liのモル比が2:1となるように、酸化マンガン348gと炭酸リチウム739gを混合、粉砕した後に、大気雰囲気下において800℃×12時間で焼成を行うことによりマンガン酸リチウム(LiMn2O4)を得た後、得られたマンガン酸リチウムを粉砕して、マンガン酸リチウム粒子B6(LiMn2O4、平均粒径200nm)を得た。
得られたマンガン酸リチウム粒子B6を500g分取し、LiNO3 1.8g、Al(NO3)3・9H2O 2.25g、TiCl4 6.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB7(固形分濃度51%)を得た。得られたスラリーB7を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B8を得た。
得られた予備造粒物B8を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO4)3が担持された粒子(BC−3)(LiMn2O4、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 5: Production of particles (BC-3) in which a lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
348 g of manganese oxide and 739 g of lithium carbonate are mixed and pulverized so that the molar ratio of Mn: Li is 2: 1. Then, lithium manganate (LiMn 2) is fired in an air atmosphere at 800 ° C. for 12 hours. After obtaining O 4 ), the obtained lithium manganate was pulverized to obtain lithium manganate particles B6 (LiMn 2 O 4 , average particle size 200 nm).
The resulting lithium manganate particles B6 was collected 500g min, LiNO 3 1.8g, Al (NO 3) 3 · 9H 2 O 2.25g, and TiCl 4 6.46g, 85% H 3 PO 4 5.88g , 500 mL of water was added, and 21.86 g of 28% ammonia water was further added as a pH adjuster to obtain slurry B7 (solid content concentration 51%). The obtained slurry B7 was dispersed for 1 minute with an ultrasonic stirrer (same as above) to uniformly color the whole, and then spray-dried using a spray-drying device (same as above) to prepare the pre-granulated product B8. Got
The obtained preliminary granulated product B8 was calcined in an air atmosphere at 700 ° C. for 1 hour, and the particles (BC-) in which Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 was supported on the surface of the lithium positive electrode active material particles. 3) (LiMn 2 O 4 , average particle size: 200 nm, thickness of supporting layer of lithium-based solid electrolyte: 5 nm) was obtained.
[製造例6:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC−4)の製造]
Li:Ni:Mnのモル比が2:1:3となるように、炭酸リチウム147.8g、酸化ニッケル149.4g、及び炭酸マンガン690gをボールミルで混合した後に、大気雰囲気下において900℃×24時間焼成してLiNi0.5Mn1.5O4を得た後、粉砕して、LiNi0.5Mn1.5O4粒子B9(平均粒径200nm)を得た。
得られたLiNi0.5Mn1.5O4粒子B9を500g分取し、LiNO3 1.8g、Al(NO3)3・9H2O 2.25g、TiCl46.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB10(固形分濃度51%)を得た。得られたスラリーB10を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B11を得た。
得られた予備造粒物B11を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO4)3が担持された粒子(BC−4)(LiNi0.5Mn1.5O4、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 6: Production of particles (BC-4) in which a lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
After mixing 147.8 g of lithium carbonate, 149.4 g of nickel oxide, and 690 g of manganese carbonate with a ball mill so that the molar ratio of Li: Ni: Mn is 2: 1: 3, 900 ° C. × 24 in an air atmosphere. After firing for hours to obtain LiNi 0.5 Mn 1.5 O 4 , it was pulverized to obtain LiNi 0.5 Mn 1.5 O 4 particles B9 (average particle size 200 nm).
The resulting LiNi 0.5 Mn 1.5 O 4 particles B9 was collected 500g min, LiNO 3 1.8g, Al (NO 3) 3 · 9H 2 O 2.25g, TiCl 4 6.46g, 85% H 3 PO 4 5 .88 g and 500 mL of water were added, and 21.86 g of 28% ammonia water was further added as a pH adjuster to obtain slurry B10 (solid content concentration 51%). The obtained slurry B10 is dispersed for 1 minute with an ultrasonic stirrer (same as above) to uniformly color the whole, and then spray-dried using a spray-drying device (same as above) to prepare the pre-granulated product B11. Got
The obtained preliminary granulated product B11 was calcined in an air atmosphere at 700 ° C. for 1 hour, and the particles (BC-) in which Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 was supported on the surface of the lithium positive electrode active material particles. 4) (LiNi 0.5 Mn 1.5 O 4 , average particle size: 200 nm, thickness of supporting layer of lithium-based solid electrolyte: 5 nm) was obtained.
[製造例7:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC−5)の製造]
酢酸マンガン4水和物1324g、酢酸ニッケル4水和物323.5g、酢酸コバルト4水和物323.8gと、炭酸ナトリウム848gと、水3Lを添加し、溶液を60℃に保ちつつ撹拌しながら混合し、さらにpH調整剤として28%アンモニア水を、滴下速度300ml/分でpHが7.5になるまで添加し、スラリーB12を得た。得られたスラリーB12を水洗し乾燥させ、これに炭酸リチウム487.7gを混合し、500℃で5時間の仮焼成を行った後、粉砕、混合し、900℃×20時間焼成を行い、0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.33O2粒子B13(平均粒径:100nm)を得た。
得られた0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.33O2粒子B13を500g分取し、LiNO3 1.8g、Al(NO3)3・9H2O 2.25g、TiCl4 6.46g、85%H3PO4 5.88gと、水500mLを添加し、さらにpH調整剤として28%アンモニア水21.86gを添加して、スラリーB14(固形分濃度51%)を得た。得られたスラリーB14を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B15を得た。
得られた予備造粒物B15を、大気雰囲気下、700℃×1時間焼成して、リチウム正極活物質粒子の表面にLi1.3Al0.3Ti1.7(PO4)3が担持された粒子(BC−5)(0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.33O2、平均粒径:100nm、リチウム系固体電解質の担持層の厚さ:3nm)を得た。
[Production Example 7: Production of particles (BC-5) in which a lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
Add 1324 g of manganese acetate tetrahydrate, 323.5 g of nickel acetate tetrahydrate, 323.8 g of cobalt acetate tetrahydrate, 848 g of sodium carbonate, and 3 L of water, and stir while keeping the solution at 60 ° C. After mixing, 28% aqueous ammonia as a pH adjuster was added at a dropping rate of 300 ml / min until the pH reached 7.5 to obtain slurry B12. The obtained slurry B12 was washed with water, dried, mixed with 487.7 g of lithium carbonate, tentatively calcined at 500 ° C. for 5 hours, pulverized and mixed, and calcined at 900 ° C. for 20 hours. .5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles B13 (average particle size: 100 nm) was obtained.
The 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles B13 obtained was collected 500g min, LiNO 3 1.8g, Al (NO 3) 3 · 9H 2 O 2.25g, TiCl 4 6.46 g, 85% H 3 PO 4 5.88 g and 500 mL of water were added, and 21.86 g of 28% ammonia water was further added as a pH adjuster to obtain slurry B14 (solid content concentration 51%). .. The obtained slurry B14 was dispersed for 1 minute with an ultrasonic stirrer (same as above) to uniformly color the whole, and then spray-dried using a spray-drying device (same as above) to prepare the pre-granulated product B15. Got
The obtained preliminary granulated product B15 was calcined in an air atmosphere at 700 ° C. for 1 hour, and the particles (BC-) in which Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 was supported on the surface of the lithium positive electrode active material particles. 5) (0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2, average particle diameter: 100 nm, the carrier layer of lithium-based solid electrolyte thickness: 3 nm) was obtained.
[製造例8:リチウム正極活物質粒子(B)にリチウム系固体電解質(C)が担持してなる粒子(BC−6)の製造]
製造例3の工程途中で得られたコバルト酸リチウム粒子B2(LiCoO2、平均粒径200nm)500gと、水500mL、水酸化リチウム一水和物6.22g、及びテトラエトキシシラン4.42gを混合して、スラリーB16を得た。次いで、得られたスラリーB16を25℃の温度に保持しながら、撹拌速度200rpmで10分間撹拌した後、そのまま撹拌を継続しているスラリーに、85%リン酸2.44gを滴下して混合した後、さらに撹拌速度200rpmで30分間撹拌してスラリーB17(固形分濃度50%)を得た。得られたスラリーB17を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて噴霧乾燥に付して予備造粒物B18を得た。
得られた予備造粒物B18を、大気雰囲気下において700℃×4時間焼成してリチウム正極活物質粒子の表面にLi3.5Si0.5P0.5O4が担持された粒子(BC−6)(LiCoO2、平均粒径:200nm、リチウム系固体電解質の担持層の厚さ:5nm)を得た。
[Production Example 8: Production of particles (BC-6) in which a lithium-based solid electrolyte (C) is supported on lithium positive electrode active material particles (B)]
500 g of lithium cobalt oxide particles B2 (LiCoO 2 , average particle size 200 nm) obtained in the process of Production Example 3 is mixed with 500 mL of water, 6.22 g of lithium hydroxide monohydrate, and 4.42 g of tetraethoxysilane. Then, slurry B16 was obtained. Next, while maintaining the obtained slurry B16 at a temperature of 25 ° C., the mixture was stirred at a stirring speed of 200 rpm for 10 minutes, and then 2.44 g of 85% phosphoric acid was added dropwise and mixed with the slurry which was continuously stirred. After that, the mixture was further stirred at a stirring speed of 200 rpm for 30 minutes to obtain slurry B17 (solid content concentration 50%). The obtained slurry B17 was dispersed for 1 minute with an ultrasonic stirrer (same as above) to uniformly color the whole, and then spray-dried using a spray-drying device (same as above) to prepare the pre-granulated product B18. Got
The obtained preliminary granulated product B18 was calcined in an air atmosphere at 700 ° C. for 4 hours, and the particles (BC-6) (LiCoO) in which Li 3.5 Si 0.5 P 0.5 O 4 was supported on the surface of the lithium positive electrode active material particles. 2. Average particle size: 200 nm, thickness of supporting layer of lithium-based solid electrolyte: 5 nm) was obtained.
[製造例9:固体電解質粒子(S−1)の製造]
硝酸リチウム71.8g、硝酸アルミニウム9水和物90g、塩化チタン516.8g、リン酸235.2g、及びpH調整剤として28%アンモニア水874.2gを添加して、遊星ボールミルを用いて200rpmで2時間粉砕混合した後、乾燥させ、混合物B19を得た。得られた混合物B19をペレットに成形した後、空気雰囲気下において900℃×12時間焼成した後、乳鉢で解砕して、固体電解質粒子(S−1)(Li1.3Al0.3Ti1.7(PO4)3、平均粒径:500nm)を得た。
[Production Example 9: Production of solid electrolyte particles (S-1)]
Add 71.8 g of lithium nitrate, 90 g of aluminum nitrate hexahydrate, 516.8 g of titanium chloride, 235.2 g of phosphoric acid, and 874.2 g of 28% aqueous ammonia as a pH adjuster at 200 rpm using a planetary ball mill. After pulverizing and mixing for 2 hours, the mixture was dried to obtain a mixture B19. The obtained mixture B19 was formed into pellets, calcined in an air atmosphere at 900 ° C. for 12 hours, and then crushed in a mortar to obtain solid electrolyte particles (S-1) (Li 1.3 Al 0.3 Ti 1.7 (PO 4). ) 3 , average particle size: 500 nm) was obtained.
[実施例1:リチウムイオン二次電池用正極活物質複合体(D−1)の製造]
製造例1で得られたリチウム複合酸化物二次粒子(A−1)300gと、製造例3で得られた粒子(BC−1)200gを、メカノフュージョン(ホソカワミクロン社製、AMS−Lab)を用いて、2600rpm(20m/秒)で10分間の複合化処理を行い、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−1)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Example 1: Production of positive electrode active material complex (D-1) for lithium ion secondary battery]
300 g of the lithium composite oxide secondary particles (A-1) obtained in Production Example 1 and 200 g of the particles (BC-1) obtained in Production Example 3 were mixed with Mechanofusion (AMS-Lab, manufactured by Hosokawa Micron). The lithium cobalt oxide particles (B) were supported on the surface of the NCM-based composite oxide secondary particles (A) by performing a compounding treatment at 2600 rpm (20 m / sec) for 10 minutes. Lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface of the particles (B) is a positive electrode active material composite (D-1) for lithium ion secondary batteries (average particle size 14 μm, surface). The thickness of the supporting layer of lithium cobalt oxide particles (B) supporting the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 : 2 μm and tap density 2.8 g / cm 3 ) was obtained.
[実施例2:リチウムイオン二次電池用正極活物質複合体(D−2)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例4で得られた粒子(BC−2)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−2)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.6g/cm3)を得た。
[Example 2: Production of positive electrode active material complex (D-2) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A) were obtained in the same manner as in Example 1 except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of particles (BC-2) obtained in Production Example 4. ), And lithium cobalt oxide particles (B) are supported on the surface of the lithium cobalt oxide particles (B), and the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium ions. Lithium cobalt oxide particles (B) consisting of a positive electrode active material composite (D-2) for a secondary battery (average particle size 14 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface). The thickness of the supporting layer: 2 μm and the tap density of 2.6 g / cm 3 ) were obtained.
[実施例3:リチウムイオン二次電池用正極活物質複合体(D−3)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例5で得られた粒子(BC−3)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にマンガン酸リチウム粒子(B)が担持してなり、かつマンガン酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−3)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるマンガン酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.2g/cm3)を得た。
[Example 3: Production of positive electrode active material complex (D-3) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A) in the same manner as in Example 1 except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of particles (BC-3) obtained in Production Example 5. ) On the surface of the lithium manganate particles (B), and on the surface of the lithium manganate particles (B), the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported. Lithium manganate particles (B) consisting of a positive electrode active material composite (D-3) for a secondary battery (average particle size 14 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface). The thickness of the supporting layer: 2 μm and the tap density of 2.2 g / cm 3 ) were obtained.
[実施例4:リチウムイオン二次電池用正極活物質複合体(D−4)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例6で得られた粒子(BC−4)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にLiNi0.5Mn1.5O4粒子(B)が担持してなり、かつLiNi0.5Mn1.5O4粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−4)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるLiNi0.5Mn1.5O4粒子(B)の担持層の厚さ:2μm、タップ密度2.1g/cm3)を得た。
[Example 4: Production of positive electrode active material complex (D-4) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A) in the same manner as in Example 1 except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of particles (BC-4) obtained in Production Example 6. ), And LiNi 0.5 Mn 1.5 O 4 particles (B) are supported on the surface of LiNi 0.5 Mn 1.5 O 4 particles (B), and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is a lithium-based solid electrolyte on the surface of the LiNi 0.5 Mn 1.5 O 4 particles (B). Supporting positive electrode active material composite for lithium ion secondary battery (D-4) (average particle size 14 μm, LiNi 0.5 supporting lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface The thickness of the supporting layer of the Mn 1.5 O 4 particles (B): 2 μm and the tap density of 2.1 g / cm 3 ) were obtained.
[実施例5:リチウムイオン二次電池用正極活物質複合体(D−5)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例7で得られた粒子(BC−5)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面に0.5Li2MnO3−0.5LiMn0.33Co0.33Ni0.33O2粒子(B)が担持してなり、かつかかる粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−5)(平均粒径13μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなる0.5Li2MnO3−0.5LiMn0.33Co0.33Ni0.33O2粒子(B)の担持層の厚さ:1.5μm、タップ密度1.9g/cm3)を得た。
[Example 5: Production of positive electrode active material complex (D-5) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A) were obtained in the same manner as in Example 1 except that 200 g of the lithium positive electrode active material particles (B-1) were changed to 200 g of the particles (BC-5) obtained in Production Example 7. 0.5Li 2 MnO on the surface of) 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B) is carrying, and lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 on the surface of such particles (B) (PO 4 ) 3 is supported by a positive electrode active material composite (D-5) for a lithium ion secondary battery (average particle size 13 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface. the thickness of the carrying layer of the carrying 0.5Li 2 MnO 3 comprising -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B): to obtain 1.5 [mu] m, a tap density of 1.9g / cm 3).
[実施例6:リチウムイオン二次電池用正極活物質複合体(D−6)の製造]
リチウム複合酸化物二次粒子(A−1)300gを450gに、粒子(BC−1)200gを50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−6)(平均粒径12μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:1μm、タップ密度2.6g/cm3)を得た。
[Example 6: Production of positive electrode active material complex (D-6) for lithium ion secondary battery]
NCM-based composite oxide secondary particles (A) in the same manner as in Example 1 except that 300 g of lithium composite oxide secondary particles (A-1) was changed to 450 g and 200 g of particles (BC-1) was changed to 50 g. Lithium ion II in which lithium cobalt oxide particles (B) are supported on the surface of the lithium cobalt oxide particles (B) and lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium cobalt oxide particles (B). Support of lithium cobalt oxide particles (B) consisting of positive electrode active material composite (D-6) for next battery (average particle size 12 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface) A layer thickness: 1 μm and a tap density of 2.6 g / cm 3 ) were obtained.
[実施例7:リチウムイオン二次電池用正極活物質複合体(D−7)の製造]
リチウム複合酸化物二次粒子(A−1)300gを450gに、粒子(BC−1)200gを、製造例5で得られた粒子(BC−3)50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にマンガン酸リチウム粒子(B)が担持してなり、かつマンガン酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−7)(平均粒径12μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるマンガン酸リチウム粒子(B)の担持層の厚さ:1μm、タップ密度2.5g/cm3)を得た。
[Example 7: Production of positive electrode active material complex (D-7) for lithium ion secondary battery]
Same as Example 1 except that 300 g of the lithium composite oxide secondary particles (A-1) was changed to 450 g and 200 g of the particles (BC-1) were changed to 50 g of the particles (BC-3) obtained in Production Example 5. Then, the lithium manganate particles (B) are supported on the surface of the NCM-based composite oxide secondary particles (A), and the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti is supported on the surface of the lithium manganate particles (B). 1.7 (PO 4 ) 3- supported positive electrode active material composite for lithium ion secondary battery (D-7) (average particle size 12 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 on the surface The thickness of the supporting layer of the lithium manganate particles (B) supporting the above was: 1 μm, and the tap density was 2.5 g / cm 3 ).
[実施例8:リチウムイオン二次電池用正極活物質複合体(D−8)の製造]
リチウム複合酸化物二次粒子(A−1)300gを450gに、粒子(BC−1)200gを、製造例6で得られた粒子(BC−4)50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にLiNi0.5Mn1.5O4粒子(B)が担持してなり、かつかかる粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−8)(平均粒径12μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるLiNi0.5Mn1.5O4粒子(B)の担持層の厚さ:1μm、タップ密度2.6g/cm3)を得た。
[Example 8: Production of positive electrode active material complex (D-8) for lithium ion secondary battery]
Same as Example 1 except that 300 g of the lithium composite oxide secondary particles (A-1) was changed to 450 g and 200 g of the particles (BC-1) were changed to 50 g of the particles (BC-4) obtained in Production Example 6. Then, LiNi 0.5 Mn 1.5 O 4 particles (B) are supported on the surface of the NCM-based composite oxide secondary particles (A), and the lithium-based solid electrolyte Li 1.3 Al 0.3 is on the surface of the particles (B). Positive active material composite (D-8) for lithium ion secondary battery supported by Ti 1.7 (PO 4 ) 3 (average particle size 12 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) on the surface) 3 comprising carrying LiNi 0.5 Mn 1.5 O 4 of the carrier layer of the particles (B) thickness: to give 1 [mu] m, a tap density of 2.6 g / cm 3).
[実施例9:リチウムイオン二次電池用正極活物質複合体(D−9)の製造]
リチウム複合酸化物二次粒子(A−1)300gを450gに、粒子(BC−1)200gを、製造例7で得られた粒子(BC−5)50gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面に0.5Li2MnO3−0.5LiMn0.33Co0.33Ni0.33O2粒子(B)が担持してなり、かつかかる粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−9)(平均粒径11.5μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなる0.5Li2MnO3−0.5LiMn0.33Co0.33Ni0.33O2粒子(B)の担持層の厚さ:750nm、タップ密度2.4g/cm3)を得た。
[Example 9: Production of positive electrode active material complex (D-9) for lithium ion secondary battery]
Same as Example 1 except that 300 g of the lithium composite oxide secondary particles (A-1) was changed to 450 g and 200 g of the particles (BC-1) were changed to 50 g of the particles (BC-5) obtained in Production Example 7. a manner, NCM-based 0.5Li on the surface of the complex oxide secondary particle (a) 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles (B) is carrying, and such particles (B) Lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the positive electrode active material composite for lithium ion secondary batteries (D-9) (average particle size 11.5 μm, lithium on the surface). system solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 carries formed by 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles bearing layer (B) thickness: 750 nm, tap A density of 2.4 g / cm 3 ) was obtained.
[実施例10:リチウムイオン二次電池用正極活物質複合体(D−10)の製造]
リチウム複合酸化物二次粒子(A−1)300gを、製造例2で得られたリチウム複合酸化物二次粒子(A−2)300gに変更した以外、実施例1と同様にして、NCA系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(D−10)(平均粒径14μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Example 10: Production of positive electrode active material complex (D-10) for lithium ion secondary battery]
NCA-based in the same manner as in Example 1 except that 300 g of the lithium composite oxide secondary particles (A-1) was changed to 300 g of the lithium composite oxide secondary particles (A-2) obtained in Production Example 2. Lithium cobalt oxide particles (B) are supported on the surface of the composite oxide secondary particles (A), and the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) is on the surface of the lithium cobalt oxide particles (B). 3 is carries a lithium ion secondary battery positive electrode active material complex (D-10) (average particle size 14 [mu] m, lithium on the surface based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 formed by carrying The thickness of the supporting layer of the lithium cobalt oxide particles (B): 2 μm and the tap density of 2.8 g / cm 3 ) were obtained.
[実施例11:リチウムイオン二次電池用正極活物質複合体(D−11)の製造]
粒子(BC−1)200gを、製造例8で得られた粒子(BC−6)200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li3.5Si0.5P0.5O4が担持してなるリチウムイオン二次電池用正極活物質複合体(D−11)(平均粒径14μm、表面にリチウム系固体電解質Li3.5Si0.5P0.5O4を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Example 11: Production of positive electrode active material complex (D-11) for lithium ion secondary battery]
On the surface of the NCM-based composite oxide secondary particles (A) in the same manner as in Example 1 except that 200 g of the particles (BC-1) were changed to 200 g of the particles (BC-6) obtained in Production Example 8. A positive electrode active material for a lithium ion secondary battery in which lithium cobalt oxide particles (B) are supported and a lithium-based solid electrolyte Li 3.5 Si 0.5 P 0.5 O 4 is supported on the surface of the lithium cobalt oxide particles (B). Composite (D-11) (average particle size 14 μm, thickness of support layer of lithium cobalt oxide particles (B) carrying lithium-based solid electrolyte Li 3.5 Si 0.5 P 0.5 O 4 on the surface: 2 μm, tap density 2.8 g / cm 3 ) was obtained.
[比較例1:リチウム複合粒子(E−1)の製造]
製造例1で得られたリチウム複合酸化物二次粒子(A−1)500gに、硝酸リチウム0.9g、硝酸アルミニウム9水和物1.13g、塩化チタン3.23g、リン酸2.94gと水500mLを添加し、さらにpH調整剤として28%アンモニア水10.93gを添加してスラリーC1を得た。得られたスラリーC1を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL−050M、藤崎電機株式会社製)を用いて噴霧乾燥に付して予備造粒物C2を得た。
得られた予備造粒物C2を、大気雰囲気下、700℃×1時間焼成して、リチウム複合酸化物二次粒子(LiNi0.33Co0.33Mn0.34O2)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウム複合粒子(E−1)(平均粒径:10μm、固体電解質Li1.3Al0.3Ti1.7(PO4)3の担持層の厚さ:5nm、タップ密度2.6g/cm3)を得た。
[Comparative Example 1: Production of Lithium Composite Particles (E-1)]
To 500 g of the lithium composite oxide secondary particles (A-1) obtained in Production Example 1, 0.9 g of lithium nitrate, 1.13 g of aluminum nitrate hexahydrate, 3.23 g of titanium chloride, and 2.94 g of phosphoric acid were added. 500 mL of water was added, and 10.93 g of 28% ammonia water was further added as a pH adjuster to obtain slurry C1. The obtained slurry C1 was dispersed for 1 minute with an ultrasonic stirrer (T25, manufactured by IKA) to uniformly color the whole, and then a spray drying device (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.) was used. The mixture was spray-dried to obtain a preliminary granulated product C2.
The obtained preliminary granulated product C2 was calcined in an air atmosphere at 700 ° C. for 1 hour, and the surface of the lithium composite oxide secondary particles (LiNi 0.33 Co 0.33 Mn 0.34 O 2 ) was surfaced with the lithium-based solid electrolyte Li 1.3 Al. Lithium composite particles (E-1) supported by 0.3 Ti 1.7 (PO 4 ) 3 (average particle size: 10 μm, solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported layer thickness: 5 nm, A tap density of 2.6 g / cm 3 ) was obtained.
[比較例2:リチウムイオン二次電池用正極活物質複合体(E−2)の製造]
製造例1で得られたリチウム複合酸化物二次粒子(A−1)300gと、製造例9で得られた固体電解質粒子(S−1)200gを、メカノフュージョン(同上)を用いて、2600rpm(20m/秒)で10分間の複合化処理を行い、NCM系複合酸化物二次粒子(A)の表面にリチウム系固体電解質粒子Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(E−2)(平均粒径12μm、リチウム系固体電解質粒子の担持層の厚さ:1μm、タップ密度2.0g/cm3)を得た。
[Comparative Example 2: Production of Positive Electrode Active Material Complex (E-2) for Lithium Ion Secondary Battery]
300 g of the lithium composite oxide secondary particles (A-1) obtained in Production Example 1 and 200 g of the solid electrolyte particles (S-1) obtained in Production Example 9 were used at 2600 rpm using mechanofusion (same as above). After 10 minutes of compounding treatment at (20 m / sec), lithium-based solid electrolyte particles Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 are supported on the surface of the NCM-based composite oxide secondary particles (A). A positive electrode active material composite (E-2) for a lithium ion secondary battery (average particle size 12 μm, thickness of supporting layer of lithium-based solid electrolyte particles: 1 μm, tap density 2.0 g / cm 3 ) was obtained.
[比較例3:リチウムイオン二次電池用正極活物質複合体(E−3)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例3の中間生成物であるコバルト酸リチウム粒子B2を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E−3)(平均粒径14μm、コバルト酸リチウム粒子の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Comparative Example 3: Production of Positive Electrode Active Material Complex (E-3) for Lithium Ion Secondary Battery]
NCM-based composite oxide secondary particles in the same manner as in Example 1 except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of lithium cobalt oxide particles B2, which is an intermediate product of Production Example 3. Positive electrode active material composite (E-3) for lithium ion secondary battery in which lithium cobalt oxide particles are supported on the surface of (A) (average particle size 14 μm, thickness of support layer of lithium cobalt oxide particles: 2 μm, A tap density of 2.8 g / cm 3 ) was obtained.
[比較例4:リチウムイオン二次電池用正極活物質複合体(E−4)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例5の中間生成物であるマンガン酸リチウム粒子B5を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にマンガン酸リチウム粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E−4)(平均粒径14μm、マンガン酸リチウム粒子の担持層の厚さ:2μm、タップ密度2.2g/cm3)を得た。
[Comparative Example 4: Production of Positive Electrode Active Material Complex (E-4) for Lithium Ion Secondary Battery]
NCM-based composite oxide secondary particles in the same manner as in Example 1 except that 200 g of lithium positive electrode active material particles (B-1) were changed to 200 g of lithium manganate particles B5, which is an intermediate product of Production Example 5. Positive electrode active material composite (E-4) for lithium ion secondary battery in which lithium manganate particles are supported on the surface of (A) (average particle size 14 μm, thickness of support layer of lithium manganate particles: 2 μm, A tap density of 2.2 g / cm 3 ) was obtained.
[比較例5:リチウムイオン二次電池用正極活物質複合体(E−5)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例6の中間生成物であるLiNi0.5Mn1.5O4粒子B8を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にLiNi0.5Mn1.5O4粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E−5)(平均粒径14μm、LiNi0.5Mn1.5O4粒子の担持層の厚さ:2μm、タップ密度2.1g/cm3)を得た。
[Comparative Example 5: Production of Positive Electrode Active Material Complex (E-5) for Lithium Ion Secondary Battery]
NCM-based composite oxide in the same manner as in Example 1 except that 200 g of lithium positive electrode active material particles (B-1) was changed to 200 g of LiNi 0.5 Mn 1.5 O 4 particles B8, which is an intermediate product of Production Example 6. Positive electrode active material composite (E-5) for lithium ion secondary battery in which LiNi 0.5 Mn 1.5 O 4 particles are supported on the surface of the secondary particles (A) (average particle size 14 μm, LiNi 0.5 Mn 1.5 O 4 particles) Thickness of the supporting layer: 2 μm, tap density 2.1 g / cm 3 ) was obtained.
[比較例6:リチウムイオン二次電池用正極活物質複合体(E−6)の製造]
リチウム正極活物質粒子(B−1)200gを、製造例7の中間生成物である0.5Li2MnO3−0.5LiMn0.33Co0.33Ni0.33O2粒子B12を200gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面に0.5Li2MnO3-0.5LiMn0.33Co0.33Ni0.33O2粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E−6)(平均粒径13μm、0.5Li2MnO3−0.5LiMn0.33Co0.33Ni0.33O2粒子の担持層の厚さ:1.5μm、タップ密度1.9g/cm3)を得た。
[Comparative Example 6: Production of Positive Electrode Active Material Complex (E-6) for Lithium Ion Secondary Battery]
Lithium positive electrode active material particles (B-1) 200g, except that the 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles B12 which is an intermediate product of Preparation 7 was changed to 200 g, Example 1 in the same manner as, NCM-based composite oxide secondary particle (a) 0.5Li 2 MnO 3 on the surface of the -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 lithium ion secondary particles are formed by carrying battery positive electrode active material complex (E-6) (average particle size 13μm, 0.5Li 2 MnO 3 -0.5LiMn 0.33 Co 0.33 Ni 0.33 O 2 particles bearing layer thickness: 1.5 [mu] m, a tap density of 1.9 g / cm 3 ) was obtained.
[比較例7:リチウムイオン二次電池用正極活物質複合体(E−7)の製造]
リチウム複合酸化物二次粒子(A−1)300gを、製造例2で得られたリチウム複合酸化物二次粒子(A−2)300gに、リチウム正極活物質粒子(B−1)200gを、製造例3の中間生成物であるコバルト酸リチウム粒子B2を200gに変更した以外、実施例1と同様にして、NCA系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子が担持してなるリチウムイオン二次電池用正極活物質複合体(E−7)(平均粒径14μm、コバルト酸リチウム粒子の担持層の厚さ:2μm、タップ密度2.8g/cm3)を得た。
[Comparative Example 7: Production of Positive Electrode Active Material Complex (E-7) for Lithium Ion Secondary Battery]
300 g of lithium composite oxide secondary particles (A-1), 300 g of lithium composite oxide secondary particles (A-2) obtained in Production Example 2, and 200 g of lithium positive electrode active material particles (B-1) were added. Lithium cobalt oxide particles were supported on the surface of the NCA-based composite oxide secondary particles (A) in the same manner as in Example 1 except that the lithium cobalt oxide particles B2, which was an intermediate product of Production Example 3, was changed to 200 g. A positive electrode active material composite (E-7) for a lithium ion secondary battery (average particle size 14 μm, thickness of supporting layer of lithium cobalt oxide particles: 2 μm, tap density 2.8 g / cm 3 ) was obtained.
[比較例8:リチウムイオン二次電池用正極活物質複合体(E−8)の製造]
リチウム複合酸化物二次粒子(A−1)300gを490gに、リチウム正極活物質粒子(B−1)200gを10gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(E−8)(平均粒径10.5μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:200nm、タップ密度2.6g/cm3)を得た。
[Comparative Example 8: Production of Positive Electrode Active Material Complex (E-8) for Lithium Ion Secondary Battery]
NCM-based composite oxide secondary particles (A-1) were changed to 490 g and 200 g of lithium positive electrode active material particles (B-1) were changed to 10 g in the same manner as in Example 1. Lithium cobalt oxide particles (B) are supported on the surface of the particles (A), and the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium cobalt oxide particles (B). Lithium-ion secondary battery positive electrode active material composite (E-8) (average particle size 10.5 μm, lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 supported on the surface) Lithium cobalt oxide The thickness of the supporting layer of the particles (B): 200 nm and the tap density of 2.6 g / cm 3 ) were obtained.
[比較例9:リチウムイオン二次電池用正極活物質複合体(E−9)の製造]
リチウム複合酸化物二次粒子(A−1)300gを200gに、リチウム正極活物質粒子(B−1)200gを300gに変更した以外、実施例1と同様にして、NCM系複合酸化物二次粒子(A)の表面にコバルト酸リチウム粒子(B)が担持してなり、かつコバルト酸リチウム粒子(B)の表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3が担持してなるリチウムイオン二次電池用正極活物質複合体(E−9)(平均粒径18μm、表面にリチウム系固体電解質Li1.3Al0.3Ti1.7(PO4)3を担持してなるコバルト酸リチウム粒子(B)の担持層の厚さ:4μm、タップ密度2.8g/cm3)を得た。
[Comparative Example 9: Production of Positive Electrode Active Material Complex (E-9) for Lithium Ion Secondary Battery]
NCM-based composite oxide secondary particles were changed to 200 g of lithium composite oxide secondary particles (A-1) and 200 g of lithium positive electrode active material particles (B-1) in the same manner as in Example 1. Lithium cobalt oxide particles (B) are supported on the surface of the particles (A), and the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is supported on the surface of the lithium cobalt oxide particles (B). Lithium ion secondary battery positive electrode active material composite (E-9) (average particle size 18 μm, lithium cobalt oxide particles ( PO 4 ) 3 supporting the lithium-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 on the surface. The thickness of the supporting layer of B): 4 μm and the tap density of 2.8 g / cm 3 ) were obtained.
《放電容量及びレート特性の評価》
実施例1〜11及び比較例1〜9で得られた全てのリチウムイオン二次電池用正極活物質複合体を正極材料として用い、リチウムイオン二次電池の正極を作製した。具体的には、得られた各リチウムイオン二次電池用正極活物質複合体、ケッチェンブラック、ポリフッ化ビニリデンを質量比90:5:5の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、高分子多孔フィルムを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR−2032)を得た。
得られた二次電池を用い、充放電試験を行った。具体的には、電流34mA/g、電圧4.25Vの定電流充電後に、電流34mA/g、終止電圧3.0Vの定電流放電とし、電流密度34mA/g(0.2C)における放電容量を求めた。さらに、同条件で定電流充電を行い、電流密度510mA/g、終止電圧3.0Vの定電流放電とし、電流密度510mA/g(3C)における放電容量を求めた。なお、充放電試験は全て30℃で行った。結果を表1に示す。
また、得られた放電容量から、下記式(8)により放電容量比(%)を求めた。結果を表1に示す。
放電容量比(%)=(3Cにおける放電容量)/
(0.2Cにおける放電容量)×100 ・・・(8)
<< Evaluation of discharge capacity and rate characteristics >>
All the positive electrode active material composites for lithium ion secondary batteries obtained in Examples 1 to 11 and Comparative Examples 1 to 9 were used as positive electrode materials to prepare positive electrodes for lithium ion secondary batteries. Specifically, each of the obtained positive electrode active material composites for lithium ion secondary batteries, Ketjen black, and polyvinylidene fluoride were mixed at a mass ratio of 90: 5: 5, and N-methyl-2 was mixed thereto. -Pyrrolidone was added and kneaded thoroughly to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Then, it was punched into a disk shape having a diameter of 14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type secondary battery was constructed using the positive electrode. For the negative electrode, a lithium foil punched to φ15 mm was used. As the electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was used. A polymer porous film was used as the separator. These battery parts were incorporated and housed by a conventional method in an atmosphere having a dew point of −50 ° C. or lower to obtain a coin-type secondary battery (CR-2032).
A charge / discharge test was performed using the obtained secondary battery. Specifically, after constant current charging with a current of 34 mA / g and a voltage of 4.25 V, a constant current discharge with a current of 34 mA / g and a final voltage of 3.0 V is applied, and the discharge capacity at a current density of 34 mA / g (0.2 C) is set. I asked. Further, constant current charging was performed under the same conditions to obtain constant current discharge with a current density of 510 mA / g and a final voltage of 3.0 V, and the discharge capacity at a current density of 510 mA / g (3C) was determined. All charge / discharge tests were performed at 30 ° C. The results are shown in Table 1.
Further, from the obtained discharge capacity, the discharge capacity ratio (%) was calculated by the following formula (8). The results are shown in Table 1.
Discharge capacity ratio (%) = (Discharge capacity at 3C) /
(Discharge capacity at 0.2C) x 100 ... (8)
《吸着水分量の測定》
実施例1〜11及び比較例1〜9で得られた全てのリチウムイオン二次電池用正極活物質複合体について、温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、250℃に昇温し終わった時を始点とし、250℃での恒温状態を終えたときを終点とした間に揮発した水分量をカールフィッシャー水分計(MKC−610、京都電子工業(株)製)で測定した。測定結果を表1に示す。
<< Measurement of adsorbed water content >>
All the positive electrode active material composites for lithium ion secondary batteries obtained in Examples 1 to 11 and Comparative Examples 1 to 9 are allowed to stand in an environment at a temperature of 20 ° C. and a relative humidity of 50% for 1 day to reach equilibrium. After adsorbing water to a temperature of 150 ° C. and holding it for 20 minutes, the temperature was further raised to 250 ° C. and held for 20 minutes, starting from the time when the temperature was raised to 250 ° C. and held for 20 minutes. The amount of water volatilized during the end point when the constant temperature state at ° C. was completed was measured with a Karl Fischer titer (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.). The measurement results are shown in Table 1.
表1の結果より、全ての実施例で、良好な放電容量及びレート特性(放電容量比)を有し、かつ正極活物質複合体の水分吸着量が有効に低減されていることがわかる。
一方、比較例では、放電容量及びレート特性の少なくともいずれかが実施例よりも劣ることがわかる。また、正極活物質複合体の水分吸着量は、実施例よりも劣るものがほとんどである。
以上より、本発明のリチウムイオン二次電池用正極活物質複合体は、放電容量及びレート特性に優れていることがわかる。さらに、水分吸着量も低減されていることから、サイクル特性等の耐久性に係る特性についても、本発明のリチウムイオン二次電池用正極活物質複合体は、良好な性能を有していることがわかる。
From the results in Table 1, it can be seen that all the examples have good discharge capacity and rate characteristics (discharge capacity ratio), and the amount of water adsorbed by the positive electrode active material complex is effectively reduced.
On the other hand, in the comparative example, it can be seen that at least one of the discharge capacity and the rate characteristic is inferior to that of the embodiment. In addition, the amount of water adsorbed on the positive electrode active material complex is inferior to that of the examples in most cases.
From the above, it can be seen that the positive electrode active material composite for a lithium ion secondary battery of the present invention is excellent in discharge capacity and rate characteristics. Further, since the amount of water adsorbed is also reduced, the positive electrode active material composite for a lithium ion secondary battery of the present invention has good performance in terms of durability-related characteristics such as cycle characteristics. I understand.
Claims (7)
LiNiaCobMncM1 wO2・・・(1)
(式(1)中、M1はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。a、b、c、wは、0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦w≦0.3、かつ3a+3b+3c+(M1の価数)×w=3を満たす数を示す。)
LiNidCoeAlfM2 xO2 ・・・(2)
(式(2)中、M2はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。d、e、f、xは、0.4≦d<1、0<e≦0.6、0<f≦0.3、0≦x≦0.3、かつ3d+3e+3f+(M2の価数)×x=3を満たす数を示す。)
で表されるリチウム複合酸化物粒子からなるリチウム複合酸化物二次粒子(A)の表面において、下記式(3)、式(4)、式(5)、又は式(6):
LiM3 gCohO2 ・・・(3)
(式(3)中、M3はNi、Mn、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、及びSiから選ばれる1種または2種以上の元素を示す。また、式(3)中、g及びhは、0≦g≦0.1、0<h≦1、及び(M3の価数)×g+3h=3を満たす数を示す。)
LiM4 iMnjO4 ・・・(4)
(式(4)中、M4はNi、Co、Al、Mg、Ti、V、Cr、Fe、Zr、Ga、Cu、及びSiから選ばれる1種または2種以上の元素を示す。また、式(4)中、i及びjは、0≦i≦0.1、0<j≦2、及び(M4の価数)×i+(Mnの価数)×j=7を満たす数を示す。)
LiNikMn1-kO4 ・・・(5)
(式(5)中、kは0.3≦k≦0.7を満たす数を示す。)
Li2MnO3−LiM6O2 ・・・(6)
(式(6)中、M6はNi、Mn、Co、Al、Fe、Cr、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、及びCeから選ばれる1種または2種以上の元素を示す。)
で表されるリチウム正極活物質粒子(B)が担持してなるとともに、リチウム正極活物質粒子(B)の表面にリチウム系固体電解質(C)が担持してなるリチウムイオン二次電池用正極活物質複合体。 The following formula (1) or formula (2):
LiNi a Co b Mn c M 1 w O 2 ... (1)
(In the formula (1), M 1 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Indicates one or more elements selected from Bi and Ge. A, b, c, w are 0.3 ≦ a <1, 0 <b ≦ 0.7, 0 <c ≦ 0.7, Indicates a number that satisfies 0 ≦ w ≦ 0.3 and 3a + 3b + 3c + ( valence of M 1 ) × w = 3.
LiNi d Co e Al f M 2 x O 2 ··· (2)
(In the formula (2), M 2 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Indicates one or more elements selected from Ge. D, e, f, x are 0.4 ≦ d <1, 0 <e ≦ 0.6, 0 <f ≦ 0.3, 0 ≦ A number satisfying x ≦ 0.3 and 3d + 3e + 3f + ( valence of M 2 ) × x = 3 is shown.)
On the surface of the lithium composite oxide secondary particles (A) composed of lithium composite oxide particles represented by, the following formula (3), formula (4), formula (5), or formula (6):
LiM 3 g Co h O 2・ ・ ・ (3)
(In the formula (3), M 3 represents one or more elements selected from Ni, Mn, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, and Si. 3) Among them, g and h indicate numbers satisfying 0 ≦ g ≦ 0.1, 0 <h ≦ 1, and ( valence of M 3 ) × g + 3h = 3).
LiM 4 i Mn j O 4 ... (4)
(In the formula (4), M 4 represents one or more elements selected from Ni, Co, Al, Mg, Ti, V, Cr, Fe, Zr, Ga, Cu, and Si. In the formula (4), i and j represent numbers satisfying 0 ≦ i ≦ 0.1, 0 <j ≦ 2, and ( valence of M 4 ) × i + (valence of Mn) × j = 7. .)
LiNi k Mn 1-k O 4 ... (5)
(In equation (5), k indicates a number satisfying 0.3 ≦ k ≦ 0.7.)
Li 2 MnO 3- LiM 6 O 2 ... (6)
In formula (6), M 6 is Ni, Mn, Co, Al, Fe, Cr, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. Indicates one or more elements selected from.)
The positive electrode activity for a lithium ion secondary battery is supported by the lithium positive electrode active material particles (B) represented by, and the lithium-based solid electrolyte (C) is supported on the surface of the lithium positive electrode active material particles (B). Material complex.
(I)リチウム正極活物質粒子(B)、及びリチウム系固体電解質(C)の原料化合物を含む、固形分濃度が20質量%〜65質量%のスラリー(a−1)を調製した後、熱風の供給量G(L/分)とスラリー(a−1)の供給量S(L/分)との比(G/S)が500〜10000の条件で噴霧乾燥して造粒物(a)を得る工程、
(II)得られた造粒物(a)を、500℃〜800℃で10分間〜3時間焼成して、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)からなる、空隙率が45体積%〜80体積%の予備造粒物(b)を得る工程、並びに
(III)得られた予備造粒物(b)とリチウム複合酸化物二次粒子(A)とを圧縮力及びせん断力を付加しながら混合して、予備造粒物(b)を解砕させながら、表面にリチウム系固体電解質(C)が担持してなるリチウム正極活物質粒子(B)とリチウム複合酸化物二次粒子(A)とを複合化する工程
を備える請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用正極活物質複合体の製造方法。 Next step (I) to step (III):
(I) After preparing a slurry (a-1) having a solid content concentration of 20% by mass to 65% by mass, which contains the lithium positive electrode active material particles (B) and the raw material compound of the lithium-based solid electrolyte (C), hot air is used. The granulated product (a) is spray-dried under the condition that the ratio (G / S) of the supply amount G (L / min) of the slurry (a-1) to the supply amount S (L / min) of the slurry (a-1) is 500 to 10000. The process of getting
(II) The obtained granulated product (a) is fired at 500 ° C. to 800 ° C. for 10 minutes to 3 hours, and the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. ) To obtain a preliminary granulated product (b) having a void ratio of 45% to 80% by volume, and (III) the obtained preliminary granulated product (b) and lithium composite oxide secondary particles (A). ) Is mixed while applying compressive force and shearing force to crush the preliminary granulated product (b), and the lithium positive electrode active material particles (B) in which the lithium-based solid electrolyte (C) is supported on the surface. The method for producing a positive electrode active material composite for a lithium ion secondary battery according to any one of claims 1 to 5, further comprising a step of combining the secondary particles (A) with the lithium composite oxide secondary particles (A).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019214534A JP7403289B2 (en) | 2019-11-27 | 2019-11-27 | Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019214534A JP7403289B2 (en) | 2019-11-27 | 2019-11-27 | Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021086723A true JP2021086723A (en) | 2021-06-03 |
JP7403289B2 JP7403289B2 (en) | 2023-12-22 |
Family
ID=76087944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019214534A Active JP7403289B2 (en) | 2019-11-27 | 2019-11-27 | Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7403289B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114933333A (en) * | 2022-06-09 | 2022-08-23 | 广西百色市德柳锰业有限公司 | Composite doped modified capacity type lithium manganate and preparation method thereof |
WO2023078047A1 (en) * | 2021-11-02 | 2023-05-11 | 宁德时代新能源科技股份有限公司 | Positive electrode active material and preparation method therefor, lithium-ion battery comprising same, battery module, battery pack, and electric apparatus |
JP2024507509A (en) * | 2021-11-09 | 2024-02-20 | 遠景動力技術(江蘇)有限公司 | Composite lithium nickel manganese oxide positive electrode material, manufacturing method thereof, and positive electrode sheet for lithium ion batteries |
JP2024516028A (en) * | 2022-01-12 | 2024-04-11 | エルジー エナジー ソリューション リミテッド | Method for manufacturing electrode for all-solid-state battery and electrode manufactured by the same |
JP2024160916A (en) * | 2023-05-05 | 2024-11-15 | 台湾立凱電能科技股▲ふん▼有限公司 | Method for producing composite positive electrode material |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017056A (en) * | 2001-07-02 | 2003-01-17 | Toyota Central Res & Dev Lab Inc | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same |
JP2015060767A (en) * | 2013-09-20 | 2015-03-30 | 日立マクセル株式会社 | Positive electrode material for lithium secondary battery, and lithium secondary battery |
CN107039634A (en) * | 2017-05-04 | 2017-08-11 | 北京科技大学 | Composite lithium ion battery anode and flexible lithium battery, solid state lithium battery preparation method |
CN108054378A (en) * | 2017-12-29 | 2018-05-18 | 中国科学院物理研究所 | Lithium battery composite positive pole with nucleocapsid and preparation method thereof |
JP2018156941A (en) * | 2017-03-16 | 2018-10-04 | 太平洋セメント株式会社 | Electrode active material for all-solid-state secondary battery, method for producing the same, and all-solid-state secondary battery |
CN109004201A (en) * | 2018-07-30 | 2018-12-14 | 清陶(昆山)新能源材料研究院有限公司 | A kind of preparation method and applications of the high-voltage anode material of the nucleocapsid structure suitable for polymer-based solid state electrolyte |
CN109390553A (en) * | 2017-08-02 | 2019-02-26 | 宁德新能源科技有限公司 | Composite positive pole, positive plate and solid lithium battery |
JP2019050104A (en) * | 2017-09-08 | 2019-03-28 | 太平洋セメント株式会社 | Method of manufacturing positive electrode active material complex for lithium ion secondary battery |
-
2019
- 2019-11-27 JP JP2019214534A patent/JP7403289B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017056A (en) * | 2001-07-02 | 2003-01-17 | Toyota Central Res & Dev Lab Inc | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same |
JP2015060767A (en) * | 2013-09-20 | 2015-03-30 | 日立マクセル株式会社 | Positive electrode material for lithium secondary battery, and lithium secondary battery |
JP2018156941A (en) * | 2017-03-16 | 2018-10-04 | 太平洋セメント株式会社 | Electrode active material for all-solid-state secondary battery, method for producing the same, and all-solid-state secondary battery |
CN107039634A (en) * | 2017-05-04 | 2017-08-11 | 北京科技大学 | Composite lithium ion battery anode and flexible lithium battery, solid state lithium battery preparation method |
CN109390553A (en) * | 2017-08-02 | 2019-02-26 | 宁德新能源科技有限公司 | Composite positive pole, positive plate and solid lithium battery |
JP2019050104A (en) * | 2017-09-08 | 2019-03-28 | 太平洋セメント株式会社 | Method of manufacturing positive electrode active material complex for lithium ion secondary battery |
CN108054378A (en) * | 2017-12-29 | 2018-05-18 | 中国科学院物理研究所 | Lithium battery composite positive pole with nucleocapsid and preparation method thereof |
CN109004201A (en) * | 2018-07-30 | 2018-12-14 | 清陶(昆山)新能源材料研究院有限公司 | A kind of preparation method and applications of the high-voltage anode material of the nucleocapsid structure suitable for polymer-based solid state electrolyte |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023078047A1 (en) * | 2021-11-02 | 2023-05-11 | 宁德时代新能源科技股份有限公司 | Positive electrode active material and preparation method therefor, lithium-ion battery comprising same, battery module, battery pack, and electric apparatus |
JP2024507509A (en) * | 2021-11-09 | 2024-02-20 | 遠景動力技術(江蘇)有限公司 | Composite lithium nickel manganese oxide positive electrode material, manufacturing method thereof, and positive electrode sheet for lithium ion batteries |
JP2024516028A (en) * | 2022-01-12 | 2024-04-11 | エルジー エナジー ソリューション リミテッド | Method for manufacturing electrode for all-solid-state battery and electrode manufactured by the same |
CN114933333A (en) * | 2022-06-09 | 2022-08-23 | 广西百色市德柳锰业有限公司 | Composite doped modified capacity type lithium manganate and preparation method thereof |
JP2024160916A (en) * | 2023-05-05 | 2024-11-15 | 台湾立凱電能科技股▲ふん▼有限公司 | Method for producing composite positive electrode material |
Also Published As
Publication number | Publication date |
---|---|
JP7403289B2 (en) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7052072B2 (en) | Positive electrode material for rechargeable lithium-ion batteries | |
JP6431236B1 (en) | Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof | |
JP7403289B2 (en) | Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same | |
JP5035712B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP6098612B2 (en) | COMPOSITE PARTICLE, SOLID BATTERY ELECTRODE AND METHOD FOR PRODUCING COMPOSITE PARTICLE | |
JP5409724B2 (en) | Positive electrode material that combines high safety and high output in Li storage batteries | |
JP7366662B2 (en) | Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same | |
JP7660064B2 (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
JP3355126B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery | |
JP2012079464A5 (en) | ||
JP2020177860A (en) | Composite hydroxide containing nickel, manganese and cobalt and production method thereof, composite oxide containing lithium, nickel, manganese and cobalt and production method thereof, positive electrode active material for lithium ion secondary battery and production method thereof, and lithium ion secondary battery | |
JP6511965B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
WO2021251416A1 (en) | Positive electrode active material for lithium ion secondary batteries, method for producing said positive electrode active material, and lithium ion secondary battery | |
JP7392464B2 (en) | Positive electrode active material for all-solid-state lithium ion secondary battery, its manufacturing method, and all-solid-state lithium ion secondary battery | |
JP7272134B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery | |
JP2021051831A (en) | Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery | |
JP2021051830A (en) | Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery | |
JP2004311427A (en) | Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery | |
JP3503688B2 (en) | Lithium secondary battery | |
JP6725022B1 (en) | Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP7484283B2 (en) | Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery | |
JP7165608B2 (en) | Positive electrode active material composite for lithium ion secondary battery and method for producing the same | |
JP6511761B2 (en) | Method of producing coated composite oxide particles for positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using coated composite oxide particles produced by the method | |
JP6008578B2 (en) | Method for producing positive electrode active material for secondary battery and secondary battery | |
JP7366663B2 (en) | Positive electrode active material composite for all-solid-state secondary battery and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7403289 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |