JP2021084286A - Laminate film - Google Patents
Laminate film Download PDFInfo
- Publication number
- JP2021084286A JP2021084286A JP2019213994A JP2019213994A JP2021084286A JP 2021084286 A JP2021084286 A JP 2021084286A JP 2019213994 A JP2019213994 A JP 2019213994A JP 2019213994 A JP2019213994 A JP 2019213994A JP 2021084286 A JP2021084286 A JP 2021084286A
- Authority
- JP
- Japan
- Prior art keywords
- film
- group
- base material
- phase difference
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005001 laminate film Substances 0.000 title abstract 3
- 239000010410 layer Substances 0.000 claims abstract description 97
- 229920000642 polymer Polymers 0.000 claims abstract description 49
- 229920001721 polyimide Polymers 0.000 claims abstract description 12
- 239000004642 Polyimide Substances 0.000 claims abstract description 11
- 239000012790 adhesive layer Substances 0.000 claims abstract description 11
- 239000004760 aramid Substances 0.000 claims abstract description 11
- 229920003235 aromatic polyamide Polymers 0.000 claims abstract description 11
- 239000004962 Polyamide-imide Substances 0.000 claims abstract description 6
- 229920002312 polyamide-imide Polymers 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 58
- 239000000126 substance Substances 0.000 claims description 28
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 10
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 3
- 150000008282 halocarbons Chemical group 0.000 claims description 3
- 125000002723 alicyclic group Chemical group 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 9
- 239000003086 colorant Substances 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 131
- 238000000034 method Methods 0.000 description 51
- 229920005989 resin Polymers 0.000 description 26
- 239000011347 resin Substances 0.000 description 26
- 238000001035 drying Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000011550 stock solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- -1 aliphatic tertiary amine Chemical class 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 239000013039 cover film Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000002798 polar solvent Substances 0.000 description 4
- 229920005575 poly(amic acid) Polymers 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical group FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001055 blue pigment Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000012769 display material Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000011146 organic particle Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000006798 ring closing metathesis reaction Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- QILCUDCYZVIAQH-UHFFFAOYSA-N 1-$l^{1}-oxidanyl-2,2,5,5-tetramethylpyrrole-3-carboxylic acid Chemical compound CC1(C)C=C(C(O)=O)C(C)(C)N1[O] QILCUDCYZVIAQH-UHFFFAOYSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- FIOCEWASVZHBTK-UHFFFAOYSA-N 2-[2-(2-oxo-2-phenylacetyl)oxyethoxy]ethyl 2-oxo-2-phenylacetate Chemical compound C=1C=CC=CC=1C(=O)C(=O)OCCOCCOC(=O)C(=O)C1=CC=CC=C1 FIOCEWASVZHBTK-UHFFFAOYSA-N 0.000 description 1
- MSWAXXJAPIGEGZ-UHFFFAOYSA-N 2-chlorobenzene-1,4-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C(Cl)=C1 MSWAXXJAPIGEGZ-UHFFFAOYSA-N 0.000 description 1
- ITQTTZVARXURQS-UHFFFAOYSA-N 3-methylpyridine Chemical compound CC1=CC=CN=C1 ITQTTZVARXURQS-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- YHASWHZGWUONAO-UHFFFAOYSA-N butanoyl butanoate Chemical compound CCCC(=O)OC(=O)CCC YHASWHZGWUONAO-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- ZONYXWQDUYMKFB-UHFFFAOYSA-N flavanone Chemical compound O1C2=CC=CC=C2C(=O)CC1C1=CC=CC=C1 ZONYXWQDUYMKFB-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001447 polyvinyl benzene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Polyamides (AREA)
Abstract
Description
本発明はディスプレイ用フィルム、特にフレキシブルディスプレイ前面のカバーフィルムとして好適に使用可能なフィルムに関するものである。 The present invention relates to a display film, particularly a film that can be suitably used as a cover film on the front surface of a flexible display.
近年、ディスプレイ市場では、折り畳むことや丸めることが可能なフレキシブルディスプレイの開発が本格的に進んでおり、これらの表示素子として有機発光ダイオード(OLED)を用いたものが検討されている。ディスプレイのフレキシブル化には、ガラス代替となり得るポリマーフィルムが必要とされており、折り曲げ時や使用中の衝撃などによる破損を防ぐ観点から高強度、携帯性や軽量化の観点から薄膜であることが重要となっている。 In recent years, in the display market, the development of foldable and rollable flexible displays has progressed in earnest, and those using an organic light emitting diode (OLED) as these display elements are being studied. A polymer film that can replace glass is required to make the display flexible, and it should be a thin film from the viewpoint of high strength, portability, and weight reduction from the viewpoint of preventing damage due to impact during bending or use. It has become important.
一般に、上記OLEDディスプレイの前面側には、外光反射を抑え、視認性を向上させる目的で、偏光板が配置されることが多い。そのため、偏光サングラスなどを通してディスプレイ画面を見た際、ポリマーフィルムの位相差により、偏光板/ポリマーフィルム/偏光サングラス間で干渉色(いわゆる虹ムラ)が発生することがある。この干渉色は、偏光板と偏光サングラスの偏光軸が直交するときに最も強く出やすい。 Generally, a polarizing plate is often arranged on the front side of the OLED display for the purpose of suppressing reflection of external light and improving visibility. Therefore, when the display screen is viewed through polarized sunglasses or the like, interference colors (so-called rainbow unevenness) may occur between the polarizing plate / polymer film / polarized sunglasses due to the phase difference of the polymer film. This interference color is most likely to appear when the polarizing plate and the polarization axes of the polarized sunglasses are orthogonal to each other.
上記課題に対して、フィルムの位相差を低位相差化、もしくは高位相差化することで、虹ムラを抑制する手法がある。例えば、特許文献1や2には、正面位相差を波長の1/4に制御したλ/4位相差板を使用することが提案されている。偏光板を透過した直線偏光は透過軸に対して45度に配置されたλ/4位相差板を透過することで円偏光に変換されるため、偏光サングラスの透過軸と直交することが抑えられ、視認性改善効果が期待できるとしている。 To solve the above problem, there is a method of suppressing rainbow unevenness by reducing the phase difference of the film or increasing the phase difference. For example, Patent Documents 1 and 2 propose to use a λ / 4 retardation plate in which the front retardation is controlled to 1/4 of the wavelength. Linearly polarized light that has passed through the polarizing plate is converted to circularly polarized light by passing through a λ / 4 retardation plate arranged at 45 degrees with respect to the transmission axis, so it is suppressed that it is orthogonal to the transmission axis of polarized sunglasses. , The effect of improving visibility can be expected.
また、特許文献3には、位相差と屈折率を制御した2つの高位相差フィルムを貼り合わせることが提案されている。面内屈折率と厚み方向屈折率のバランスが異なる異種フィルムを貼り合わせることにより、正面方向と斜め方向の色再現性が良くなるとしている。 Further, Patent Document 3 proposes to bond two high retardation films having controlled retardation and refractive index. By laminating dissimilar films having different balances between the in-plane refractive index and the thickness direction refractive index, the color reproducibility in the front direction and the diagonal direction is improved.
しかしながら、特許文献1や2のλ/4位相差板は、ある特定波長の光に対して調整したに過ぎず、その他の波長の光は楕円偏光となるため、画面の着色につながる。また、正面位相差を調整しても、斜めからの観察では斜め方向の位相差により干渉が生じる。そのため、例えば、携帯端末のディスプレイをセンターパネルに設置し、カーナビゲーションとして利用する場合などに画面の着色が問題となる。 However, the λ / 4 retardation plates of Patent Documents 1 and 2 are only adjusted for light of a specific wavelength, and light of other wavelengths is elliptically polarized, which leads to coloring of the screen. Further, even if the front phase difference is adjusted, interference occurs due to the phase difference in the oblique direction when observed from an angle. Therefore, for example, when the display of a mobile terminal is installed on the center panel and used as a car navigation system, coloring of the screen becomes a problem.
また、特許文献3では、ポリイミドフィルムとポリエステルフィルムを用いているが、位相差制御の鍵を握るポリエステルフィルムは、化学構造上、強度や硬度、屈曲性が十分でないことなどから、フレキシブルディスプレイに適用するには課題がある。そこで本発明は、耐屈曲性に優れ、偏光による干渉色を低減できるフィルムを提供することを目的とする。 Further, in Patent Document 3, a polyimide film and a polyester film are used, but the polyester film, which holds the key to phase difference control, is applied to a flexible display because its strength, hardness, and flexibility are not sufficient due to its chemical structure. There is a problem to do. Therefore, an object of the present invention is to provide a film having excellent bending resistance and capable of reducing interference colors due to polarized light.
上記課題を解決するための本発明は、以下を特徴とする。 The present invention for solving the above problems is characterized by the following.
芳香族ポリアミド、ポリイミドおよびポリアミドイミドからなる群から選ばれる少なくとも1種のポリマーにより構成された基材層を、少なくとも2層以上有しており、その基材層が接着層を介して積層されている積層フィルムであって、548.3nmの正面位相差が2,000nm以上であり、少なくとも1方向のヤング率が5.0GPa以上であり、ヘイズが1.0以下である積層フィルム。 It has at least two or more base material layers composed of at least one polymer selected from the group consisting of aromatic polyamide, polyimide and polyamide-imide, and the base material layers are laminated via an adhesive layer. A laminated film having a front phase difference of 548.3 nm of 2,000 nm or more, a Young ratio of at least one direction of 5.0 GPa or more, and a haze of 1.0 or less.
本発明によれば、剛性に優れ、薄膜ながら高い位相差を有することで偏光による干渉色を低減できるフィルムが提供できる。そのため、本発明のフィルムは、特にフレキシブルディスプレイ用透明フィルムとして好適に用いることができる。 According to the present invention, it is possible to provide a film having excellent rigidity and having a high phase difference even though it is a thin film, so that interference colors due to polarized light can be reduced. Therefore, the film of the present invention can be particularly suitably used as a transparent film for a flexible display.
本発明のフィルムは、芳香族ポリアミド、ポリイミドおよびポリアミドイミドからなる群から選ばれる少なくとも1種のポリマーにより構成された基材層を、少なくとも2層以上有しており、その基材層が接着層を介して積層されている。 The film of the present invention has at least two or more base material layers composed of at least one polymer selected from the group consisting of aromatic polyamide, polyimide and polyamide-imide, and the base material layer is an adhesive layer. It is laminated via.
この基材層が少なくとも2層以上あれば、基材層と基材層の間、あるいは基材層のいずれかの表面に、上記以外のポリマーや無機物を主とする機能層などが設けられていてもよい。また、2層以上の基材層を積層する場合、後述するように基材層とは異なるポリマーや無機物を用いて接着する方法を用いる。 If there are at least two or more layers of the base material, a functional layer mainly composed of a polymer or an inorganic substance other than the above is provided between the base material layer and the surface of any of the base material layers. You may. Further, when laminating two or more base material layers, a method of adhering using a polymer or an inorganic substance different from the base material layer is used as described later.
なお、本発明のフィルムの断面試験片を樹脂包埋法や凍結法などにより作成し、その断面片を用いて、走査型電子顕微鏡(FE−SEM)による形態観察から各層の界面を確認する方法、エネルギー分散型X線分析(EDX)による組成分析、赤外分光分析(IR)による組成分析、偏光顕微鏡による位相差の観察などを行うことで、基材層と他の機能層を判別することができる。 A method of preparing a cross-sectional test piece of the film of the present invention by a resin embedding method, a freezing method, or the like, and confirming the interface of each layer by morphological observation with a scanning electron microscope (FE-SEM) using the cross-sectional piece. , Composition analysis by energy dispersive X-ray analysis (EDX), composition analysis by infrared spectroscopic analysis (IR), observation of phase difference with a polarizing microscope, etc. to distinguish between the base material layer and other functional layers. Can be done.
基材層を構成するポリマー(樹脂)を上述の樹脂から選定し用いることで、高強度かつ光学特性に優れたフィルムとすることができる。基材層の主たるポリマーが、芳香族ポリアミド、ポリイミド、ポリアミドイミド以外の樹脂から構成される場合、基材のヤング率低下やクリープ増大により、積層フィルムの強度が低下するため、ディスプレイに加工され使用された際にキズや凹み、さらにはフィルムの割れが生じる場合がある。このように基材層が上述の樹脂で構成されていれば、組み合わせは特に限定されず、いずれでも好適に用いることができる。 By selecting and using the polymer (resin) constituting the base material layer from the above-mentioned resins, a film having high strength and excellent optical properties can be obtained. When the main polymer of the base material layer is composed of a resin other than aromatic polyamide, polyimide, and polyamide-imide, the strength of the laminated film is lowered due to the decrease in the young ratio and the increase in creep of the base material, so that the laminated film is processed and used. When this is done, scratches, dents, and even cracks in the film may occur. As long as the base material layer is made of the above-mentioned resin as described above, the combination is not particularly limited, and any combination can be preferably used.
また、上述の基材層を構成するポリマーは、化学式(1)で示される構造単位と、化学式(2)〜(4)で示される群から選ばれる少なくとも1種の構造単位とを含むポリマーであることが、さらに好ましい。 The polymer constituting the above-mentioned base material layer is a polymer containing a structural unit represented by the chemical formula (1) and at least one structural unit selected from the group represented by the chemical formulas (2) to (4). It is even more preferable to have.
R1、R2は、−H、炭素数1〜5の脂肪族基、−CF3、−CCl3、−OH、−F、−Cl、−Br、−OCH3、シリル基、または芳香環を含む基である。
好ましくは、−CF3、−F、−Cl、または芳香環を含む基である。
さらに好ましくは、R1、R2が−CF3基である。R1、R2が−CF3基であることは、フィルムの無色透明化に寄与する。
R 1 and R 2 are -H, an aliphatic group having 1 to 5 carbon atoms, -CF 3 , -CCl 3 , -OH, -F, -Cl, -Br, -OCH 3 , a silyl group, or an aromatic ring. Is a group containing.
Preferably, it is a group containing -CF 3 , -F, -Cl, or an aromatic ring.
More preferably, R 1 and R 2 are -CF 3 groups. The fact that R 1 and R 2 have three -CF groups contributes to making the film colorless and transparent.
R3は、Siを含む基、Pを含む基、Sを含む基、ハロゲン化炭化水素基、芳香環を含む基、またはエーテル結合を含む基(ただし、分子内において、これらの基を有する構造単位が混在していてもよい)である。
好ましくは、Siを含む基、ハロゲン化炭化水素基、芳香環を含む基、またはエーテル結合を含む基である。
より好ましくは、Siを含む基である。
R 3 is a group containing Si, a group containing P, a group containing S, a halogenated hydrocarbon group, a group containing an aromatic ring, or a group containing an ether bond (however, a structure having these groups in the molecule). Units may be mixed).
Preferably, it is a group containing Si, a halogenated hydrocarbon group, a group containing an aromatic ring, or a group containing an ether bond.
More preferably, it is a group containing Si.
R4は任意の基である。
特に限定されないが好ましくは、−H、−Cl、−Fである。
R 4 is an arbitrary group.
Although not particularly limited, it is preferably −H, −Cl, or −F.
R5は任意の芳香族基、任意の脂環族基である。
特に限定されないが、より好ましくはフェニル、ビフェニル、シクロヘキサン、デカリンである。
R 5 is any aromatic group, an optionally alicyclic group.
Although not particularly limited, phenyl, biphenyl, cyclohexane, and decalin are more preferable.
さらに、上述の構造単位において、ポリマー構造中にフッ素を含有する芳香族ポリアミドを用いることが、最も好ましい。ポリマー構造中にフッ素を含有していない場合、可視光での光線透過率が低下し、タッチパネルの前面板(カバーフィルム)への適用が困難となる場合がある。 Further, in the above-mentioned structural unit, it is most preferable to use an aromatic polyamide containing fluorine in the polymer structure. When fluorine is not contained in the polymer structure, the light transmittance in visible light is lowered, and it may be difficult to apply it to the front plate (cover film) of the touch panel.
なお、本発明のフィルムの断面試験片を樹脂包埋法や凍結法などにより作成し、その断面片を用いて赤外分光分析(IR)などで組成分析を行うことで、基材のポリマー構造中にフッ素が含有されているかどうかを確認することができる。 A cross-section test piece of the film of the present invention is prepared by a resin embedding method, a freezing method, or the like, and the cross-section piece is used for composition analysis by infrared spectroscopic analysis (IR) or the like to obtain a polymer structure of a base material. It can be confirmed whether or not fluorine is contained in the film.
また別の方法としては、本発明のフィルムをN−メチル−2−ピロリドン(NMP)やジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒に浸漬すると、基材層のみを溶解させることができるため、その溶液を赤外分光分析(IR)や核磁気共鳴分光分析(NMR)を用いて組成分析を行うことで、基材層のポリマー構造中にフッ素が含有されているかどうかを確認することができる。 As another method, when the film of the present invention is immersed in an aprotonic polar solvent such as N-methyl-2-pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), only the base material layer can be dissolved. By performing composition analysis of the solution using infrared spectroscopic analysis (IR) or nuclear magnetic resonance spectroscopic analysis (NMR), it is possible to confirm whether or not fluorine is contained in the polymer structure of the base material layer. it can.
本発明の接着層は、特に限定されるものではなく、有機、無機、ハイブリッドなどのいずれも好適に用いることが出来る。特に、有機樹脂からなる接着層の場合、熱硬化性樹脂や紫外線硬化性樹脂などの硬化性樹脂であることが好ましく、具体的には、有機シリコーン系、ポリオール系、メラミン系、エポキシ系、多官能アクリレート系、ウレタン系、イソシアネート系、有機材料と無機材料の複合材料である有機無機ハイブリット系および硬化性のある官能基を有するシルセスキオキサン系などの樹脂が挙げられる。より好ましくは、エポキシ系、多官能アクリレート系、有機無機ハイブリット系、シルセスキオキサン系の樹脂である。 The adhesive layer of the present invention is not particularly limited, and any of organic, inorganic, hybrid and the like can be preferably used. In particular, in the case of an adhesive layer made of an organic resin, it is preferably a curable resin such as a thermosetting resin or an ultraviolet curable resin, and specifically, an organic silicone-based, a polyol-based, a melamine-based, an epoxy-based, or many. Examples thereof include functional acrylate-based, urethane-based, isocyanate-based, organic-inorganic hybrid-based resin which is a composite material of an organic material and an inorganic material, and silsesquioxane-based resin having a curable functional group. More preferably, it is an epoxy-based, polyfunctional acrylate-based, organic-inorganic hybrid-based, or silsesquioxane-based resin.
さらに、接着層には本発明の効果を阻害しない範囲内で各種の添加剤を添加することができる。添加剤としては、例えば、重合開始剤、蛍光剤、顔料、有機の滑剤、帯電防止剤、有機粒子などを用いることができる。なかでも、接着層が紫外線硬化性樹脂の場合、基材層が硬化に必要な波長の光を吸収すると、硬化性が低下し、フィルムの強度が低下する場合があるので、特定波長を選択的に蛍光する光増感剤を、紫外線硬化性樹脂および光重合開始剤と併用することが好ましい。 Further, various additives can be added to the adhesive layer as long as the effects of the present invention are not impaired. As the additive, for example, a polymerization initiator, a fluorescent agent, a pigment, an organic lubricant, an antistatic agent, organic particles and the like can be used. In particular, when the adhesive layer is an ultraviolet curable resin, if the base material layer absorbs light of the wavelength required for curing, the curability may decrease and the strength of the film may decrease, so a specific wavelength is selected. It is preferable to use a photosensitizer that fluoresces in combination with an ultraviolet curable resin and a photopolymerization initiator.
また、基材層の厚みをt(a)、t(b)、接着層の厚みをt(y)とした時、それぞれの厚み比率は、t(a)>t(y)<t(b)であることが好ましい。この範囲外となった場合、本発明のフィルムの剛性や表面硬度が低くなったりすることがある。 When the thickness of the base material layer is t (a) and t (b) and the thickness of the adhesive layer is t (y), the respective thickness ratios are t (a)> t (y) <t (b). ) Is preferable. If it is out of this range, the rigidity and surface hardness of the film of the present invention may be lowered.
本発明のフィルムは、波長548.3nmの入射光に対する正面位相差が2,000nm以上である。正面位相差は、より好ましくは2,500nm以上であり、更に好ましくは3,000nm以上である。ここで、正面位相差は、フィルムの面内屈折率を測定し、屈折率が最大になる方向(すなわち遅相軸方向)の屈折率をNx、それと直交する方向(すなわち進相軸方向)の屈折率をNy、フィルムの厚みをd(nm)としたときに、(Nx−Ny)×dで定義される。正面位相差を2,000nm以上とすることで、偏光による干渉色を抑制することができる。正面位相差が2,000nm未満の場合、偏光による干渉色が発生し、ディスプレイに使用した際に視認性が低下することがある。 The film of the present invention has a front phase difference of 2,000 nm or more with respect to incident light having a wavelength of 548.3 nm. The front phase difference is more preferably 2,500 nm or more, still more preferably 3,000 nm or more. Here, for the front phase difference, the in-plane refractive index of the film is measured, the refractive index in the direction in which the refractive index is maximized (that is, the slow-phase axis direction) is Nx, and the refractive index in the direction orthogonal to it (that is, the phase-advance axis direction). When the refractive index is Ny and the thickness of the film is d (nm), it is defined as (Nx−Ny) × d. By setting the front phase difference to 2,000 nm or more, it is possible to suppress the interference color due to polarized light. If the front phase difference is less than 2,000 nm, interference color due to polarized light may occur and visibility may decrease when used in a display.
さらに、本発明のフィルムは、少なくとも一方向のヤング率が5.0GPa以上である。より好ましくは6.0GPa以上であり、さらに好ましくは8.0GPa以上である。ここで、少なくとも一方向のヤング率とは、フィルムの長手方向と幅方向のうち、どちらか一方向が上述の範囲を満たしていることをいう。いずれの方向のヤング率も5.0GPa未満の場合、フィルムの剛性や表面硬度が低くなり、特にディスプレイの前面フィルムに用いたときに、傷や打痕がつきやすくなる。また、フィルムのハンドリング性が悪化することがある。少なくとも一方向のヤング率を上記範囲内とするには、前述のポリマーを用いることで達成でき、さらに化学式(1)で示される構造単位と、化学式(2)〜(4)で示される群から選ばれる少なくとも1種の構造単位とを含むポリマーを使用し、後述する製造方法でポリマーを配向させることが最も好ましい。 Further, the film of the present invention has a Young's modulus of at least one direction of 5.0 GPa or more. It is more preferably 6.0 GPa or more, and even more preferably 8.0 GPa or more. Here, the Young's modulus in at least one direction means that one of the longitudinal direction and the width direction of the film satisfies the above range. When the Young's modulus in either direction is less than 5.0 GPa, the rigidity and surface hardness of the film become low, and especially when used for the front film of a display, scratches and dents are likely to occur. In addition, the handleability of the film may deteriorate. The Young's modulus in at least one direction can be achieved by using the above-mentioned polymer, and further, from the structural unit represented by the chemical formula (1) and the group represented by the chemical formulas (2) to (4). It is most preferred to use a polymer containing at least one structural unit of choice and orient the polymer by a production method described below.
また、本発明のフィルムは、ヘイズが1.0%以下である。ヘイズが1.0%を超える場合は、表示装置に組み込んだ際に、明るさが低下する場合がある。明るさがより高くなることから、0.8%以下がより好ましく、0.7%以下がさらに好ましい。ヘイズを1.0%以下とする為には、フィルム中の異物を低減して内部ヘイズを低下させると共に、フィルム表面を平滑にしたり、表面での乱反射(外部ヘイズ)を低減したり、フィルムの延伸時にポリマーと異物や粒子との界面剥離によって発生する気泡(ボイド)を抑制することで達成可能である。 Further, the film of the present invention has a haze of 1.0% or less. If the haze exceeds 1.0%, the brightness may decrease when incorporated into a display device. Since the brightness becomes higher, 0.8% or less is more preferable, and 0.7% or less is further preferable. In order to reduce the haze to 1.0% or less, foreign matter in the film is reduced to reduce the internal haze, the surface of the film is smoothed, diffused reflection (external haze) on the surface is reduced, and the film is made. This can be achieved by suppressing air bubbles (voids) generated by the interfacial separation between the polymer and foreign matter or particles during stretching.
本発明のフィルムにおける基材層は、その遅相軸のずれが絶対値として0°以上45°以下の範囲であることが好ましい。特に、本発明のフィルムをフレキシブルディスプレイのカバーフィルムとして用いる場合、高位相差の観点から、より好ましくは0°以上30°以下、さらに好ましくは0°以上20°以下とするのがよい。高位相差について、例えば、2層の基材層(ここで、それぞれを基材層A、基材層Bとする)の遅相軸のずれが0°の場合、基材層Aを通過した遅相軸側の光は、基材層Bでも遅相軸側の光として通過するため、最終的に基材層Aで起きた位相のズレは、基材層Bでさらに大きくなる。その結果、高位相差のフィルムとすることが出来る。基材層の遅相軸のずれが0°以上45°以下の範囲を超える場合、位相差が小さくなってディスプレイの視認性が悪くなる場合がある。各層の遅相軸を所定の値にずらした構成とすることで、虹ムラを抑制できる。 The substrate layer in the film of the present invention preferably has a retardation of its slow phase axis in the range of 0 ° or more and 45 ° or less as an absolute value. In particular, when the film of the present invention is used as a cover film for a flexible display, it is more preferably 0 ° or more and 30 ° or less, and further preferably 0 ° or more and 20 ° or less from the viewpoint of high phase difference. Regarding the high phase difference, for example, when the deviation of the slow phase axis of the two base material layers (here, each is referred to as the base material layer A and the base material layer B) is 0 °, the delay passing through the base material layer A is achieved. Since the light on the phase axis side also passes through the base material layer B as the light on the slow phase axis side, the phase shift that finally occurs in the base material layer A becomes even larger in the base material layer B. As a result, a film having a high phase difference can be obtained. When the deviation of the slow axis of the base material layer exceeds the range of 0 ° or more and 45 ° or less, the phase difference may become small and the visibility of the display may be deteriorated. Rainbow unevenness can be suppressed by shifting the slow axis of each layer to a predetermined value.
本発明のフィルムは、遅相軸および進相軸を傾斜中心軸として30°傾斜させたときの、波長548.3nmの入射光に対する斜め方向位相差が、いずれも2,000nm以下であることが好ましい。斜め方向位相差は、より好ましくは2,500nm以上であり、更に好ましくは3,000nm以上である。 The film of the present invention has an oblique phase difference of 2,000 nm or less with respect to incident light having a wavelength of 548.3 nm when the slow axis and the advance axis are tilted by 30 ° with the tilt center axis as the tilt center axis. preferable. The oblique phase difference is more preferably 2,500 nm or more, still more preferably 3,000 nm or more.
ここで、遅相軸とは、フィルム面内において屈折率が最大になる方向であり、進相軸とは、遅相軸と直交する方向である。また、遅相軸を傾斜中心軸として30°傾斜させたときの斜め方向位相差は、遅相軸を傾斜中心軸としてフィルムを30°傾斜させたとき、遅相軸方向の屈折率をNx(30)、遅相軸と直交する方向の屈折率をNzx(30)、フィルム厚みをd(nm)としたときに、|Nx(30)−Nzx(30)|×dで定義され、進相軸を傾斜中心軸として30°傾斜させたときの斜め方向位相差は、進相軸を傾斜中心軸として30°傾斜させたとき、進相軸方向の屈折率をNy(30)、進相軸と直交する方向の屈折率をNzy(30)、フィルム厚みをd(nm)としたときに、|Ny(30)−Nzy(30)|×dで定義される。 Here, the slow-phase axis is the direction in which the refractive index is maximized in the film plane, and the phase-advancing axis is the direction orthogonal to the slow-phase axis. Further, the oblique phase difference when the slow-phase axis is tilted by 30 ° with the slow-phase axis as the tilt center axis is such that the refractive index in the slow-phase axis direction is Nx (when the film is tilted by 30 ° with the slow-phase axis as the tilt center axis. 30), when the refractive index in the direction orthogonal to the slow axis is Nzx (30) and the film thickness is d (nm), it is defined by | Nx (30) -Nzx (30) | xd and is phase-advancing. The oblique phase difference when the axis is tilted by 30 ° with the tilting center axis is the refractive index in the phase-advancing axis direction is Ny (30) when the phase-advancing axis is tilted by 30 ° with the tilting center axis as the tilting center axis. When the refractive index in the direction orthogonal to is Nzy (30) and the film thickness is d (nm), it is defined by | Ny (30) -Nzy (30) | × d.
波長548.3nmの入射光に対する斜め方向位相差をいずれも2,000nm以上とすることで、斜めからの観察においても偏光による干渉色を抑制することができる。斜め方向位相差のどちらかが2,000nm未満である場合、斜めからの観察時に偏光による干渉色が発生し、ディスプレイに使用した際に視認性が低下することがある。 By setting the oblique phase difference with respect to the incident light having a wavelength of 548.3 nm to 2,000 nm or more, it is possible to suppress the interference color due to polarized light even when observing from an oblique angle. If either of the oblique phase differences is less than 2,000 nm, interference color due to polarized light may occur during oblique observation, and visibility may deteriorate when used in a display.
斜め方向位相差をいずれも2,000nm以上とするには、基材層を後述の条件で製造し積層することが好ましい。 In order to make the diagonal phase difference 2,000 nm or more, it is preferable to manufacture and laminate the base material layer under the conditions described below.
本発明のフィルムは、基材層の548.3nmの正面位相差が1,000nm以上5,000nm以下であることが好ましい。基材層の正面位相差は、より好ましくは1,500nm以上4,500nm以下、さらに好ましくは1,800nm以上4,000nm以下である。基材層の正面位相差が1,000nm未満の場合、正面位相差や斜め方向位相差が低くなり、偏光による干渉色が発生する場合がある。また、5,000nmを超える場合、ポリマーの配向が過多となって裂けやすくなったり、ポリマーと異物や粒子との界面剥離によって発生する気泡(ボイド)が増えて視認性が低下する場合がある。上述の通り、基材層の正面位相差を上記範囲内とするには、基材層を後述の条件で製造することで達成できる。 In the film of the present invention, it is preferable that the front phase difference of 548.3 nm of the base material layer is 1,000 nm or more and 5,000 nm or less. The front phase difference of the base material layer is more preferably 1,500 nm or more and 4,500 nm or less, and further preferably 1800 nm or more and 4,000 nm or less. When the frontal phase difference of the base material layer is less than 1,000 nm, the frontal phase difference and the oblique phase difference become low, and interference color due to polarized light may occur. On the other hand, if it exceeds 5,000 nm, the orientation of the polymer may be excessive and the polymer may be easily torn, or bubbles (voids) generated by the interfacial peeling between the polymer and foreign matter or particles may increase and the visibility may be deteriorated. As described above, in order to keep the front phase difference of the base material layer within the above range, it can be achieved by manufacturing the base material layer under the conditions described later.
また、本発明のフィルムは、透過YIが5以下であることが好ましい。透過YIが5を超える場合、カバーフィルムに使用した際に視認性が低下する場合がある。視認性がより向上することから、4以下であることがより好ましく、3.5以下であることがさらに好ましい。透過YIを5以下にするには、フィルムを形成するポリマーに共役結合が長く続かない構造を導入することで達成できる。特に、芳香族系のポリマーの場合は、フッ素等の電子吸引性の置換基を芳香環に導入することが好ましい。それに加えて、後述するフィルムの製造方法で乾燥温度を低くする方法も有効である。 Further, the film of the present invention preferably has a transmission YI of 5 or less. If the transmission YI exceeds 5, visibility may decrease when used as a cover film. Since the visibility is further improved, it is more preferably 4 or less, and further preferably 3.5 or less. A permeation YI of 5 or less can be achieved by introducing a structure in which the polymer forming the film does not have long-lasting conjugated bonds. In particular, in the case of aromatic polymers, it is preferable to introduce an electron-withdrawing substituent such as fluorine into the aromatic ring. In addition to that, a method of lowering the drying temperature by the film manufacturing method described later is also effective.
本発明のフィルムは、波長450nmにおける光線透過率が70%以上であることが好ましい。波長450nmにおける光の光線透過率が70%未満である場合、カバーフィルムに使用した際に視認性が低下することがある。なお、光線透過率の上限は100%である。ディスプレイに加工した際、画像がより鮮明に見えることから、より好ましくは、75%以上であり、さらに好ましくは、80%以上である。波長450nmにおける光の光線透過率を70%以上とするには、可視光低波長側の吸収を抑えたポリマー、例えば、化学式(1)で示される構造単位と、化学式(2)〜(4)で示される群から選ばれる少なくとも1種の構造単位とを含有するポリマーを使用することにより達成可能である。 The film of the present invention preferably has a light transmittance of 70% or more at a wavelength of 450 nm. If the light transmittance of light at a wavelength of 450 nm is less than 70%, visibility may decrease when used as a cover film. The upper limit of the light transmittance is 100%. It is more preferably 75% or more, still more preferably 80% or more, because the image looks clearer when processed into a display. In order to increase the light transmittance of light at a wavelength of 450 nm to 70% or more, a polymer that suppresses absorption on the low wavelength side of visible light, for example, a structural unit represented by the chemical formula (1) and chemical formulas (2) to (4) This can be achieved by using a polymer containing at least one structural unit selected from the group represented by.
本発明のフィルムは、ガラス転移温度(Tg)が250〜500℃であることが好ましい。より好ましくは270〜500℃であり、さらに好ましくは300〜500℃である。ガラス転移温度は、ASTM E1640−13に準拠し、動的粘弾性測定(DMA)により貯蔵弾性率の変曲点から求められる。ガラス転移温度が250℃未満の場合、耐屈曲性が低く、破断や変形などが生じることがある。また、フィルム上にITOなどの導電層、薄膜トランジスタ、バリア層、反射防止層などを作成する際に変形や割れなどが発生することがある。ガラス転移温度を250℃以上とするためには、ポリマーとして芳香族ポリアミド、ポリイミド、あるいはポリアミドイミドを含有することであり、さらに好ましくは、化学式(1)で示される構造単位と、化学式(2)〜(4)で示される群から選ばれる少なくとも1種の構造単位とを含有するポリマーを使用することである。 The film of the present invention preferably has a glass transition temperature (Tg) of 250 to 500 ° C. It is more preferably 270 to 500 ° C, still more preferably 300 to 500 ° C. The glass transition temperature is determined from the inflection point of the storage elastic modulus by dynamic viscoelasticity measurement (DMA) according to ASTM E1640-13. If the glass transition temperature is less than 250 ° C., the bending resistance is low, and breakage or deformation may occur. In addition, deformation or cracking may occur when a conductive layer such as ITO, a thin film transistor, a barrier layer, an antireflection layer, or the like is formed on the film. In order to set the glass transition temperature to 250 ° C. or higher, it is necessary to contain aromatic polyamide, polyimide, or polyamide-imide as the polymer, and more preferably, the structural unit represented by the chemical formula (1) and the chemical formula (2). It is to use a polymer containing at least one structural unit selected from the group represented by (4).
本発明のフィルムの片面あるいは両面に、硬化性樹脂を含有する硬化層を積層した積層フィルムとしてもよい。 A laminated film in which a cured layer containing a curable resin is laminated on one side or both sides of the film of the present invention may be used.
硬化層に含まれる硬化性樹脂としては、熱硬化性樹脂や紫外線硬化性樹脂、あるいは加水分解・縮合樹脂などが挙げられ、より具体的には、有機シリコーン系、ポリオール系、メラミン系、エポキシ系、多官能アクリレート系、ウレタン系、イソシアネート系、有機材料と無機材料の複合材料であるアルコキシシラン化合物などの有機無機ハイブリット系および硬化性のある官能基を有するシルセスキオキサン系などの樹脂が挙げられる。より好ましくは、エポキシ系、多官能アクリレート系、有機無機ハイブリット系、シルセスキオキサン系の樹脂である。 Examples of the curable resin contained in the cured layer include thermosetting resins, ultraviolet curable resins, and hydrolyzable / condensed resins, and more specifically, organic silicone-based, polyol-based, melamine-based, and epoxy-based resins. , Polyfunctional acrylate type, urethane type, isocyanate type, organic-inorganic hybrid type such as alkoxysilane compound which is a composite material of organic material and inorganic material, and resin such as silsesquioxane type having a curable functional group. Be done. More preferably, it is an epoxy-based, polyfunctional acrylate-based, organic-inorganic hybrid-based, or silsesquioxane-based resin.
また、硬化層には粒子が含まれていてもよい。ここで、粒子とは無機、有機のいずれでもよいが、粒子の場合、高い硬度が得られやすいことから無機粒子を含有させることが好ましい。無機粒子は特に限定されないが、金属や半金属の酸化物、珪素化物、窒化物、ホウ素化物、塩化物、炭酸塩などが挙げられる。より具体的には、シリカ(SiO2)、酸化アルミニウム(Al2O3)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化アンチモン(Sb2O3)及びインジウムスズ酸化物(In2O3)炭酸ストロンチウム(SrCO3)などが挙げられる。なお、粒子には表面処理が施されていてもよい。ここでいう表面処理とは、粒子表面に化合物を化学結合(例えば、共有結合、水素結合、イオン結合)や吸着(例えば、物理吸着、化学吸着)によって導入することをいう。 Further, the cured layer may contain particles. Here, the particles may be either inorganic or organic, but in the case of particles, it is preferable to contain inorganic particles because high hardness can be easily obtained. The inorganic particles are not particularly limited, and examples thereof include metal and metalloid oxides, siliconized products, nitrides, boronized products, chlorides, and carbonates. More specifically, silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), antimony oxide (Sb 2 O 3 ) and Examples thereof include indium tin oxide (In 2 O 3 ) and strontium carbonate (SrCO 3 ). The particles may be surface-treated. The surface treatment referred to here means introducing a compound onto the surface of a particle by a chemical bond (for example, covalent bond, hydrogen bond, ionic bond) or adsorption (for example, physical adsorption, chemical adsorption).
さらに、硬化層には本発明の効果を阻害しない範囲内で各種の添加剤を添加することができる。添加剤としては、例えば、重合開始剤、蛍光剤、顔料、有機の滑剤、帯電防止剤、有機粒子などを用いることができる。なかでも、フィルムの透過YIを下げる目的で、380nm〜420nmの特定波長を選択的に吸収する光吸収剤や蛍光する光増感剤、または有機/無機の青色顔料を併用することが好ましい。 Further, various additives can be added to the cured layer as long as the effects of the present invention are not impaired. As the additive, for example, a polymerization initiator, a fluorescent agent, a pigment, an organic lubricant, an antistatic agent, organic particles and the like can be used. Among them, for the purpose of lowering the transmission YI of the film, it is preferable to use a light absorber that selectively absorbs a specific wavelength of 380 nm to 420 nm, a fluorescent photosensitizer, or an organic / inorganic blue pigment in combination.
硬化層の厚みは、片面あたり0.2〜20.0μmであることが好ましい。厚みが0.2μmより薄いと、硬度向上の効果が十分に得られないことがある。また、厚みが20.0μmを超えると、耐屈曲性が低下し、積層フィルムを曲げた際に、硬化層に亀裂(クラック)が発生することがある。 The thickness of the cured layer is preferably 0.2 to 20.0 μm per side. If the thickness is thinner than 0.2 μm, the effect of improving hardness may not be sufficiently obtained. Further, if the thickness exceeds 20.0 μm, the bending resistance is lowered, and when the laminated film is bent, cracks may occur in the cured layer.
なお、硬化層とフィルムの界面が不明確で各層の厚みが決まらない場合は、以下の方法で界面を定義することができる。まず、積層フィルムの断面について、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析(EDX)装置を組み合わせて、厚み方向に連続的に元素分析を実施する。得られた分析結果をもとに、検出元素ごとに縦軸を検出強度、横軸を厚み方向の測定位置としたライン分析図を取得する。各元素のライン分析図を重ね合わせたときの交点をフィルムと硬化層との界面とする。なお、上記交点を得るのに好適な元素種は、フィルムおよび硬化層の組成に応じて決めることが好ましいため、分析結果から適宜決定されるが、例えば硬化層にシリカ粒子が含まれる場合、フィルム側の窒素(N)元素と硬化層側の珪素(Si)元素について分析することが好適である。 When the interface between the cured layer and the film is unclear and the thickness of each layer cannot be determined, the interface can be defined by the following method. First, the cross section of the laminated film is subjected to elemental analysis continuously in the thickness direction by combining a scanning electron microscope (SEM) and an energy dispersive X-ray analysis (EDX) device. Based on the obtained analysis results, a line analysis diagram is acquired for each detected element, with the vertical axis representing the detection intensity and the horizontal axis representing the measurement position in the thickness direction. The intersection when the line analysis diagrams of each element are overlapped is defined as the interface between the film and the cured layer. The elemental species suitable for obtaining the above intersection is preferably determined according to the composition of the film and the cured layer, and is therefore appropriately determined from the analysis results. For example, when the cured layer contains silica particles, the film It is preferable to analyze the nitrogen (N) element on the side and the silicon (Si) element on the hardened layer side.
また、硬化層は、片面について異種構成で2層以上としてもよい。 Further, the cured layer may have two or more layers having different configurations on one side.
以下、本発明のフィルムの製造方法について、芳香族ポリアミドおよび芳香族ポリイミドを例に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the method for producing a film of the present invention will be described by taking aromatic polyamide and aromatic polyimide as examples, but the present invention is not limited thereto.
芳香族ポリアミドを得る方法は公知の種々の方法が利用可能であるが、例えば、酸ジクロライドとジアミンを原料として低温溶液重合法を用いる場合には、N−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性有機極性溶媒中で溶液重合により合成する方法や、水系媒体を使用する界面重合で合成する方法等をとることができる。ポリマーの分子量を制御しやすいことから、非プロトン性有機極性溶媒中での溶液重合が好ましい。酸ジクロライドとジアミンを原料とする場合、重合反応の進行に伴って塩化水素が副生するが、これを中和する場合には炭酸リチウム、炭酸カルシウム、水酸化カルシウムなどの無機の中和剤、あるいは、エチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミン等の有機の中和剤を使用するとよい。 As a method for obtaining an aromatic polyamide, various known methods can be used. For example, when a low-temperature solution polymerization method is used using acid dichloride and diamine as raw materials, N-methylpyrrolidone, N, N-dimethylacetamide, etc. A method of synthesizing by solution polymerization in an aprotic organic polar solvent such as dimethylformamide or dimethyl sulfoxide, a method of synthesizing by interfacial polymerization using an aqueous medium, or the like can be adopted. Solution polymerization in an aprotic organic polar solvent is preferable because the molecular weight of the polymer can be easily controlled. When acid dichloride and diamine are used as raw materials, hydrogen chloride is produced as a by-product as the polymerization reaction progresses, but when neutralizing this, an inorganic neutralizer such as lithium carbonate, calcium carbonate, or calcium hydroxide, Alternatively, an organic neutralizer such as ethylene oxide, propylene oxide, ammonia, triethylamine, triethanolamine, or diethanolamine may be used.
芳香族ポリイミドあるいはその前駆体であるポリアミド酸を得る方法についても公知の種々の方法が利用可能であるが、例えば、テトラカルボン酸無水物と芳香族ジアミンを原料として重合する場合には、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性有機極性溶媒中で溶液重合により合成する方法などをとることができる。合成した芳香族ポリアミド酸を閉環して芳香族ポリイミドを得る方法としては、熱閉環法や化学閉環法、およびそれらの併用などが用いられる。熱閉環法は、一般的にポリアミド酸を100〜500℃程度で加熱処理することで閉環する方法である。一方、化学閉環法は、トリメチルアミンやトリエチルアミンなどの脂肪族第3級アミンやイソキノリン、ピリジン、ベータピコリンなどの複素環式第3級アミンを触媒として、無水酢酸、無水プロピオン酸、無水酪酸といった脂肪族カルボン酸無水物や、無水安息香酸といった芳香族酸無水物などの脱水剤を用いて閉環する方法である。 Various known methods can be used for obtaining aromatic polyimide or polyamic acid as a precursor thereof. For example, in the case of polymerizing tetracarboxylic acid anhydride and aromatic diamine as raw materials, N- A method of synthesizing by solution polymerization in an aprotic organic polar solvent such as methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethylformamide, or dimethyl sulfoxide can be adopted. As a method for obtaining an aromatic polyimide by ring-closing the synthesized aromatic polyamic acid, a thermal ring-closing method, a chemical ring-closing method, or a combination thereof and the like are used. The thermal ring closure method is generally a method of ring-closing by heat-treating a polyamic acid at about 100 to 500 ° C. On the other hand, in the chemical ring closure method, an aliphatic tertiary amine such as trimethylamine or triethylamine or a heterocyclic tertiary amine such as isoquinoline, pyridine or betapicolin is used as a catalyst, and an aliphatic such as acetic anhydride, propionic anhydride or butyric anhydride is used as a catalyst. This is a method of closing the ring using a dehydrating agent such as a carboxylic acid anhydride or an aromatic acid anhydride such as benzoic anhydride.
芳香族ポリアミドおよび芳香族ポリイミドあるいはその前駆体であるポリアミド酸の対数粘度(ηinh)は、2.5〜7.0dl/gであることが好ましく、3.5〜7.0dl/gであることがより好ましい。対数粘度が2.5dl/g未満であると、ポリマー分子鎖の絡み合いが減少するため、後述の方法で製膜を実施した際にフィルムが破断しやすくなることがある。また、対数粘度が7.0dl/gを超えると、溶媒への溶解性や製膜性が低下することがある。 The logarithmic viscosity (η inh ) of the aromatic polyamide and the aromatic polyimide or its precursor polyamic acid is preferably 2.5 to 7.0 dl / g, preferably 3.5 to 7.0 dl / g. Is more preferable. If the logarithmic viscosity is less than 2.5 dl / g, the entanglement of the polymer molecular chains is reduced, so that the film may be easily broken when the film is formed by the method described later. On the other hand, if the logarithmic viscosity exceeds 7.0 dl / g, the solubility in a solvent and the film-forming property may decrease.
製膜原液中には、上記ポリマーに加えて、剥離剤を添加することが好ましい。剥離剤を添加することで、後述する製膜工程中において支持体から膜状物を剥離する際に、剥離張力が小さくなり、長手方向の延伸倍率を低く抑えることができる。これにより、後工程にて幅方向に延伸を施した際、ポリマー分子鎖がより幅方向に配向し、位相差を本発明の範囲内とすることができる。剥離剤は公知のフッ素系添加剤やアミン系添加剤などを使用でき、特に限定しないが、ポリテトラフルオロエチレン(PTFE)系添加剤、エタノールアミン系添加剤などが例示できる。剥離剤の添加量は、ポリマー質量に対して0.1〜20質量%であることが好ましい。 In addition to the above polymer, it is preferable to add a release agent to the film-forming stock solution. By adding the release agent, when the film-like material is peeled from the support during the film forming process described later, the peel tension becomes small and the stretching ratio in the longitudinal direction can be suppressed low. As a result, when the polymer molecular chains are stretched in the width direction in the subsequent step, the polymer molecular chains are oriented in the width direction, and the phase difference can be within the range of the present invention. As the release agent, known fluorine-based additives, amine-based additives and the like can be used, and without particular limitation, polytetrafluoroethylene (PTFE) -based additives, ethanolamine-based additives and the like can be exemplified. The amount of the release agent added is preferably 0.1 to 20% by mass with respect to the mass of the polymer.
また、製膜原液中には、表面形成、硬度向上、屈折率制御などを目的として、その他の無機物、有機物、あるいは有機無機ハイブリット材料からなる添加物を含有させてもよい。含有量はポリマー質量に対して20質量%以下であることが好ましい。このような添加物として、例えば、無機物としてSiO2、TiO2、Al2O3、CaSO4、BaSO4、CaCO3、カーボンブラック、カーボンナノチューブ、フラーレン、ゼオライト、その他の金属微粉末等が挙げられる。また、有機物としては、例えば、架橋ポリビニルベンゼン、架橋アクリル、架橋ポリスチレン、ポリエステル粒子、ポリイミド粒子、ポリアミド粒子、フッ素樹脂粒子等の有機高分子からなる粒子、あるいは、表面に上記有機高分子で被覆等の処理を施した無機粒子が挙げられる。また、有機無機ハイブリット材料としてはアルコキシシラン化合物などが挙げられる。 In addition, the film-forming stock solution may contain additives made of other inorganic substances, organic substances, or organic-inorganic hybrid materials for the purpose of surface formation, hardness improvement, refractive index control, and the like. The content is preferably 20% by mass or less with respect to the mass of the polymer. Examples of such additives include SiO 2 , TiO 2 , Al 2 O 3 , CaSO 4 , BaSO 4 , CaCO 3 , carbon black, carbon nanotubes, fullerenes, zeolite, and other fine metal powders as inorganic substances. .. Examples of the organic substance include particles made of an organic polymer such as crosslinked polyvinylbenzene, crosslinked acrylic, crosslinked polystyrene, polyester particles, polyimide particles, polyamide particles, and fluororesin particles, or the surface is coated with the above organic polymer. Examples thereof include inorganic particles that have been subjected to the above treatment. Further, examples of the organic-inorganic hybrid material include an alkoxysilane compound and the like.
上記のように調製した製膜原液は、いわゆる溶液製膜法によりフィルム化を行う。溶液製膜法には、例えば、乾燥工程、湿式浴での水洗工程を順に経て熱処理を施す乾湿式法、乾燥工程後、熱処理を施す乾式法、あるいは乾燥工程を経ずに湿式浴に導入後、熱処理を施す湿式法などがありいずれの方法で製膜しても差し支えない。ここでは乾湿式法を例にとって説明する。 The film-forming stock solution prepared as described above is formed into a film by a so-called solution film-forming method. The solution film forming method includes, for example, a dry-wet method in which heat treatment is performed through a drying step and a water washing step in a wet bath in order, a dry method in which heat treatment is performed after the drying step, or after introduction into a wet bath without a drying step. , There is a wet method of heat treatment, etc., and film formation may be performed by any method. Here, the dry-wet method will be described as an example.
乾湿式法で製膜される場合、製膜原液は口金からドラム、エンドレスベルト、支持フィルムなどの支持体上に膜状に押し出された後、かかる膜状物が自己保持性をもつまで乾燥される。乾燥温度は、通常、60〜200℃の範囲内である。 When the film is formed by the dry-wet method, the undiluted film-forming solution is extruded into a film from the base onto a support such as a drum, an endless belt, or a support film, and then dried until the film has self-retaining property. To. The drying temperature is usually in the range of 60 to 200 ° C.
乾燥工程を終えた膜状物は、支持体から剥離されるが、支持体から膜状物を剥離する際のポリマー濃度は、30〜70質量%とすることが好ましく、より好ましくは40〜60質量%である。剥離時のポリマー濃度が30質量%未満であると、自己保持性が十分でなく、支持体からの剥離時に張力がかかったり、2層剥離となり支持体上に膜状物が取り残されることがある。また、剥離時のポリマー濃度が70質量%を超えると、支持体からの剥離が困難であったり、膜状物が失透し最終フィルムのヘイズが1.0%を超えることがある。 The film-like material after the drying step is peeled off from the support, and the polymer concentration at the time of peeling off the film-like material from the support is preferably 30 to 70% by mass, more preferably 40 to 60%. It is mass%. If the polymer concentration at the time of peeling is less than 30% by mass, the self-retaining property is not sufficient, tension may be applied at the time of peeling from the support, or two layers may be peeled and a film-like substance may be left behind on the support. .. Further, if the polymer concentration at the time of peeling exceeds 70% by mass, peeling from the support may be difficult, or the film-like material may be devitrified and the haze of the final film may exceed 1.0%.
支持体から剥離された膜状物は、湿式工程に導入され、脱塩、脱添加剤、脱溶媒などが行なわれる。湿式工程の溶媒は一般的に水系であるが、水の他に少量の無機や有機溶媒あるいは無機塩などを含んでいてもよい。なお溶媒温度は通常5〜90℃で使用される。 The film-like material peeled off from the support is introduced into a wet process, and desalting, additive removal, solvent removal and the like are performed. The solvent in the wet step is generally water-based, but may contain a small amount of an inorganic solvent, an organic solvent, an inorganic salt, or the like in addition to water. The solvent temperature is usually 5 to 90 ° C.
支持体から膜状物を剥離する際および湿式工程通過中における、長手方向の延伸倍率は0.90〜1.30倍とすることが好ましい。長手方向の延伸倍率が1.30倍を超えると、後工程にて幅方向に延伸を施す際に破れたりすることがある。なお長手方向の延伸倍率とは、延伸後のフィルム長を支持体から剥離する前のフィルム長で除した値で定義する。 It is preferable that the stretching ratio in the longitudinal direction is 0.99 to 1.30 times when the film-like material is peeled from the support and during the wet process. If the stretching ratio in the longitudinal direction exceeds 1.30 times, it may be torn when stretching in the width direction in a subsequent step. The stretching ratio in the longitudinal direction is defined as a value obtained by dividing the film length after stretching by the film length before peeling from the support.
湿式工程を経たフィルムは、次にテンターなどに導入され、熱処理とともにフィルムの幅方向への延伸が施される。熱処理工程の雰囲気は大気雰囲気下でもよいが、透過YIをより小さく抑えられることから、窒素やアルゴンなど不活性雰囲気下が最も好ましい。幅方向への延伸時の温度Ts(℃)は、ポリマーのガラス転移温度をTg(℃)とすると、Tg−50≦Ts≦Tg−20の温度範囲内で行うことが、ポリマーの配向性を高める上で有効である。 The film that has undergone the wet process is then introduced into a tenter or the like, and is stretched in the width direction of the film along with the heat treatment. The atmosphere of the heat treatment step may be an atmospheric atmosphere, but the permeation YI can be suppressed to be smaller, so that an inert atmosphere such as nitrogen or argon is most preferable. Assuming that the glass transition temperature of the polymer is Tg (° C.), the temperature Ts (° C.) at the time of stretching in the width direction should be within the temperature range of Tg-50≤Ts≤Tg-20 to determine the orientation of the polymer. It is effective in enhancing.
幅方向の延伸倍率は1.0〜1.50倍とすることが好ましい。幅方向の延伸倍率が1.50倍を超えると、厚みムラが生じたり破れたりすることがある。なお、幅方向の延伸倍率とは、延伸後のフィルム幅を延伸前のフィルム幅で除した値で定義する。 The draw ratio in the width direction is preferably 1.0 to 1.50 times. If the draw ratio in the width direction exceeds 1.50 times, uneven thickness may occur or tear may occur. The stretch ratio in the width direction is defined as a value obtained by dividing the film width after stretching by the film width before stretching.
本発明のフィルムにおいて、正面位相差および斜め方向位相差を本発明の範囲内とするには、上述の方法で基材層となるフィルムを作製し、これらを貼り合わせて積層する方法が好ましい。この場合、基材層Aおよび基材層Bを同じ延伸倍率で作製し、それぞれの配向角のズレが所定の範囲内となるように枚葉方式で貼り合わせて積層しても良いし、長手方向の延伸倍率をSMD、幅方向の延伸倍率をSTDとした時、基材層Aおよび基材層BのいずれもSTD/SMD<1.20、またはSTD/SMD≧1.20となるように作製したものを、ロールtoロール方式で貼り合わせて積層しても良い。特に、後者の方法は生産性の観点で好ましい手法である。例えば、基材層がSTD/SMD<1.20を満たすとき、長手方向(MD)を0°とした場合の遅相軸の向き(配向角)は、絶対値として0°〜45°の範囲となる。一方、基材層がSTD/SMD≧1.20を満たすとき、配向角は絶対値として45°〜90°の範囲となる。このように、基材の延伸倍率を変化させて配向角を制御した基材層Aのロールと基材層Bのロールを貼り合わせることで、遅層軸のずれが0°以上45°以下の積層フィルムにすることができる。また、配向角制御の観点から、基材層Aおよび基材層BのいずれもSTD/SMD≦1.15、またはSTD/SMD≧1.25であることが、より好ましい延伸条件である。 In the film of the present invention, in order to keep the frontal phase difference and the oblique phase difference within the range of the present invention, a method of producing a film to be a base material layer by the above-mentioned method and laminating these are preferable. In this case, the base material layer A and the base material layer B may be produced at the same draw ratio and laminated by a single-wafer method so that the deviation of the respective orientation angles is within a predetermined range, or the length may be long. when the stretching ratio in the direction S MD, the stretching ratio in the width direction is S TD, none of the base layer a and the substrate layer B S TD / S MD <1.20 or S TD / S MD ≧ 1, Those produced so as to be .20 may be laminated by laminating them by a roll-to-roll method. In particular, the latter method is a preferable method from the viewpoint of productivity. For example, when the substrate layer satisfies the S TD / S MD <1.20, the orientation of the slow axis in the case of longitudinal direction (MD) was 0 ° (orientation angle), 0 ° to 45 ° as an absolute value Is in the range of. Meanwhile, when the substrate layer satisfies the S TD / S MD ≧ 1.20, the orientation angle in the range of 45 ° to 90 ° as an absolute value. By laminating the roll of the base material layer A and the roll of the base material layer B whose orientation angle is controlled by changing the draw ratio of the base material in this way, the deviation of the slow layer axis is 0 ° or more and 45 ° or less. It can be a laminated film. Further, from the viewpoint of orientation angle control, it is more preferable that both the base material layer A and the base material layer B have STD / S MD ≦ 1.15 or STD / S MD ≧ 1.25. Is.
また、以上の方法で製膜した本発明のフィルムの片面あるいは両面に、硬化性樹脂を含有する硬化層を積層した積層フィルムとしてもよい。 Further, a laminated film in which a cured layer containing a curable resin is laminated on one side or both sides of the film of the present invention formed by the above method may be used.
硬化層を積層する方法としては、フィルム上に硬化性樹脂からなる塗剤を塗布、乾燥、硬化の順で製造する方法が挙げられる。また、異種構成で2層以上の硬化層を積層する際には、1層ずつ塗布、乾燥、硬化の順に形成しても良いし、多層スリットダイなどを用いて複数の塗剤を同時に塗布し、乾燥、硬化させてもよい。 Examples of the method of laminating the cured layer include a method of applying a coating agent made of a curable resin on the film, drying, and curing in this order. Further, when laminating two or more cured layers with different configurations, they may be formed in the order of coating, drying, and curing one layer at a time, or a plurality of coating agents may be simultaneously applied using a multi-layer slit die or the like. , May be dried and cured.
塗布方法としては、ディップコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法などが挙げられる。また、乾燥の方法としては、伝熱乾燥、熱風乾燥、赤外線照射による乾燥、マイクロ波照射による乾燥などが挙げられ、特に限定されるものではないが、熱風照射による乾燥が好ましい。 Examples of the coating method include a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method and a die coating method. Further, examples of the drying method include heat transfer drying, hot air drying, drying by infrared irradiation, drying by microwave irradiation, and the like, and although not particularly limited, drying by hot air irradiation is preferable.
硬化の方法としては、熱硬化、あるいは電子線や紫外線などの活性エネルギー線を照射することによる硬化が挙げられる。熱硬化の場合は、40〜200℃の温度で硬化させることが好ましく、より好ましくは80〜200℃である。紫外線や電子線を照射し硬化させる場合には、雰囲気の酸素濃度を低くすることが好ましく、窒素やアルゴンなどの不活性ガス雰囲気下で硬化させることがより好ましい。酸素濃度が高い場合は硬化が不十分となる場合がある。また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式などが挙げられる。放電ランプ方式である高圧水銀灯を用いて紫外線硬化させる場合、紫外線の照度が100〜3,000mW/cm2であることが好ましく、より好ましくは200〜2,000mW/cm2である。 Examples of the curing method include thermosetting or curing by irradiating an active energy ray such as an electron beam or ultraviolet rays. In the case of thermosetting, it is preferably cured at a temperature of 40 to 200 ° C, more preferably 80 to 200 ° C. When curing by irradiating with ultraviolet rays or electron beams, it is preferable to lower the oxygen concentration in the atmosphere, and it is more preferable to cure in an atmosphere of an inert gas such as nitrogen or argon. If the oxygen concentration is high, curing may be insufficient. Further, examples of the type of ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp type, a flash type, a laser type, and an electrodeless lamp type. When ultraviolet curing is performed using a high-pressure mercury lamp which is a discharge lamp type, the illuminance of ultraviolet rays is preferably 100 to 3,000 mW / cm 2 , and more preferably 200 to 2,000 mW / cm 2 .
フィルムの構造は、その原料によって決定される。原料が不明であるフィルムの構造分析を行う場合は、質量分析、核磁気共鳴法による分析、分光分析などを用いることができる。 The structure of the film is determined by its raw material. When structural analysis of a film whose raw material is unknown can be performed, mass spectrometry, nuclear magnetic resonance analysis, spectroscopic analysis, or the like can be used.
本発明のフィルムは、表示材料、表示材料基板、回路基板、光導波路基板、半導体実装用基板、透明導電フィルム、位相差フィルム、タッチパネル、コンデンサー、プリンターリボン、音響振動板、太陽電池、光記録媒体、磁気記録媒体のベースフィルム、包装材料、粘着テープ、接着テープ、加飾材料など種々な用途に好ましく用いられる。 The film of the present invention includes a display material, a display material substrate, a circuit board, an optical waveguide substrate, a semiconductor mounting substrate, a transparent conductive film, a retardation film, a touch panel, a capacitor, a printer ribbon, an acoustic vibration plate, a solar cell, and an optical recording medium. , Base film of magnetic recording medium, packaging material, adhesive tape, adhesive tape, decorative material, etc. are preferably used for various purposes.
中でも、優れた耐屈曲性と光学特性を有することから、フレキシブルディスプレイ用透明フィルムとして好適に用いることができる。 Above all, since it has excellent bending resistance and optical characteristics, it can be suitably used as a transparent film for a flexible display.
以下に実施例を挙げて、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
本発明における物性の測定方法、効果の評価方法は次の方法に従って行った。 The method for measuring the physical properties and the method for evaluating the effect in the present invention were carried out according to the following methods.
(1)各層厚み
下記の装置を用いて観察し、その観察画像のスケールから各層の厚みを算出した。
(1) Thickness of each layer Observation was performed using the following device, and the thickness of each layer was calculated from the scale of the observed image.
観察装置:走査電子顕微鏡(FE−SEM)JSM−6700F型(日本電子(株)製)
観察倍率:3,000倍
観察モード:LEIモード
加速電圧:3kV
また、観察用の積層体断面サンプルは、下記の装置を用いて作成した。
Observation device: Scanning electron microscope (FE-SEM) JSM-6700F type (manufactured by JEOL Ltd.)
Observation magnification: 3,000 times Observation mode: LEI mode Acceleration voltage: 3 kV
In addition, a cross-sectional sample of the laminated body for observation was prepared using the following apparatus.
装置:ロータリーミクロトームMODEL:RM、電子式試料凍結装置MODEL:RM((株)日本ミクロトーム研究所製)
(2)波長548.3nmの入射光に対する正面位相差、遅相軸の配向角
自動複屈折計KOBRA−21ADH(王子計測社製)を用い、波長548.3nm、入射角0°の入射光に対する試料の正面位相差および遅相軸の配向角を測定した。この時、フィルムの長手方向(MD)を配向角の基準0°とした。
Equipment: Rotary Microtome MODEL: RM, Electronic sample freezer MODEL: RM (manufactured by Japan Microtome Research Institute Co., Ltd.)
(2) Front phase difference with respect to incident light with a wavelength of 548.3 nm and orientation angle of the slow axis For incident light with a wavelength of 548.3 nm and an incident angle of 0 ° using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Measurement Co., Ltd.) The front phase difference of the sample and the orientation angle of the slow axis were measured. At this time, the longitudinal direction (MD) of the film was set to 0 ° as the reference angle of the orientation angle.
(3)波長548.3nmの入射光に対する斜め方向位相差
自動複屈折計KOBRA−21ADH(王子計測社製)を用い、波長548.3nm、入射角30°の入射光に対する試料の斜め方向位相差を測定した。なお、入射角の傾斜中心軸は、試料の遅相軸および進相軸のそれぞれとした。
(3) Diagonal phase difference with respect to incident light with a wavelength of 548.3 nm Diagonal phase difference of the sample with respect to incident light with a wavelength of 548.3 nm and an incident angle of 30 ° using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Measurement Co., Ltd.) Was measured. The central axis of inclination of the incident angle was the slow axis and the advance axis of the sample, respectively.
(4)ヘイズ
下記測定器を用いて測定した。
(4) Haze Measured using the following measuring device.
装置:濁度計NDH5000(日本電色工業社製)
光源:白色LED5V3W(定格)
受光素子:V(λ)フィルタ付Siフォトダイオード
測定光束:φ14mm(入射開口φ25mm)
光学条件:JIS−K7136(2000)に準拠
(5)透過YI
分光式色彩計SE−2000(日本電色工業社製)を用いて、温度23℃、湿度65%RHにおいて測定した。試験片は4cm×5cmの試料を用いて、透過モードにより測定した。
Equipment: Turbidity meter NDH5000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.)
Light source: White LED 5V3W (rated)
Light receiving element: Si photodiode with V (λ) filter Measured luminous flux: φ14 mm (incident aperture φ25 mm)
Optical conditions: Compliant with JIS-K7136 (2000) (5) Transmission YI
The measurement was performed using a spectroscopic colorimeter SE-2000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) at a temperature of 23 ° C. and a humidity of 65% RH. The test piece was measured in a permeation mode using a 4 cm × 5 cm sample.
(6)波長450nmにおける光線透過率
下記装置を用いて透過率を測定し、波長450nmのときの光線透過率求めた。
(6) Light transmittance at a wavelength of 450 nm The transmittance was measured using the following device to determine the light transmittance at a wavelength of 450 nm.
透過率(%)=(Tr1/Tr0)×100
ただしTr1は試料を通過した光の強度、Tr0は試料を通過しない以外は同一の距離の空気中を通過した光の強度である。
Transmittance (%) = (Tr1 / Tr0) x 100
However, Tr1 is the intensity of light that has passed through the sample, and Tr0 is the intensity of light that has passed through the air at the same distance except that it does not pass through the sample.
装置:UV測定器U−3410(日立計測社製)
波長範囲:300〜800nm
測定速度:120nm/分
測定モード:透過
(7)ヤング率
幅10mm、測定方向に長さ150mmに切断した試料を、ロボットテンシロンRTG−(エーアンドデイ社製)を用いてチャック間距離50mm、引張速度300mm/分、
温度23℃、相対湿度65%の条件下で引張試験を行い、得られた荷重−伸び曲線から求めた。なお、試料の長手方向(MD)と幅方向(TD)の2方向についてそれぞれn=5で測定して平均値を求め、長手方向と幅方向の平均値のうち、いずれか値の大きい方を測定値とした。
Equipment: UV measuring instrument U-3410 (manufactured by Hitachi, Ltd.)
Wavelength range: 300-800 nm
Measurement speed: 120 nm / min Measurement mode: Transmission (7) Young's modulus A sample cut to a width of 10 mm and a length of 150 mm in the measurement direction is cut using a robot Tencilon RTG- (manufactured by A & D) with a chuck-to-chuck distance of 50 mm and a tensile speed of 300 mm. / Minute,
A tensile test was performed under the conditions of a temperature of 23 ° C. and a relative humidity of 65%, and the load-elongation curve was obtained. The average value was obtained by measuring at n = 5 in each of the two directions of the longitudinal direction (MD) and the width direction (TD) of the sample, and the larger of the average values in the longitudinal direction and the width direction was selected. It was used as a measured value.
(8)偏光による干渉色観察
白色LED光源上に偏光板/試料/偏光板の順に重ねて貼り付けた。ここで、2枚の偏光板の透過軸は直交(クロスニコル)とし、試料の遅相軸を光源側の偏光板の透過軸と一致するように配置した。
(8) Observation of interference color by polarized light A polarizing plate / a sample / a polarizing plate were laminated and attached on a white LED light source in this order. Here, the transmission axes of the two polarizing plates were orthogonal (cross Nicol), and the slow axis of the sample was arranged so as to coincide with the transmission axis of the polarizing plate on the light source side.
上記について、正面からと、試料の遅相軸および進相軸を傾斜中心軸として50度斜めからのそれぞれについて干渉色の有無を観察し、下記基準で判定した。 Regarding the above, the presence or absence of interference color was observed from the front and from an angle of 50 degrees with the slow axis and the advance axis of the sample as the center of inclination, and the determination was made according to the following criteria.
○:干渉色が観察されず、良好
△:若干の干渉色が視認されたが、実用範囲内
×:干渉色が強く観察され、実用範囲外
(9)製膜原液の調合
ポリマーA:脱水したN−メチル−2−ピロリドン(NMP、三菱化学社製)に、ジアミンとして2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル(TFMB、東レ・ファインケミカル社製)を窒素気流下で溶解させ、氷水浴で液温を8℃に冷却した。そこへ、系内を窒素気流下、氷水浴中に保った状態で、ジアミン全量に対して99モル%に相当する2−クロロテレフタロイルクロライド(CTPC、日本軽金属社製)を30分かけて添加し、全量添加後、約2時間の撹拌を行うことで、芳香族ポリアミド(ポリマーA、ηinh=4.5dl/g)を重合した。得られた重合溶液を、酸クロライド全量に対して97モル%の炭酸リチウム(本荘ケミカル社製)および6モル%のジエタノールアミン(東京化成社製)により中和することでポリマー濃度10質量%のポリマーAの製膜原液を得た。
◯: No interference color was observed and good Δ: Some interference color was visually recognized, but within the practical range ×: Interference color was strongly observed and outside the practical range (9) Preparation of film-forming stock solution Polymer A: Dehydrated 2,2'-Ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB, manufactured by Toray Fine Chemicals) is dissolved in N-methyl-2-pyrrolidone (NMP, manufactured by Mitsubishi Chemical Corporation) as a diamine under a nitrogen stream. Then, the liquid temperature was cooled to 8 ° C. in an ice water bath. 2-Chloroterephthaloyl chloride (CTPC, manufactured by Nippon Light Metal Co., Ltd.), which is 99 mol% of the total amount of diamine, was applied over 30 minutes while keeping the inside of the system in an ice water bath under a nitrogen stream. Aromatic polyamide (polymer A, η inh = 4.5 dl / g) was polymerized by adding the mixture and stirring the mixture for about 2 hours after the total amount was added. A polymer having a polymer concentration of 10% by mass was obtained by neutralizing the obtained polymerization solution with 97 mol% lithium carbonate (manufactured by Honjo Chemical Co., Ltd.) and 6 mol% diethanolamine (manufactured by Tokyo Kasei Co., Ltd.) with respect to the total amount of acid chloride. A film-forming stock solution of A was obtained.
ポリマーB:原料モノマーとして、ジアミンをジアミン全量に対して90モル%に相当するTFMBと10モル%に相当する4,4’−ジアミノジフェニルエーテル(DPE、東京化成工業社製)とし、酸クロライドをジアミン全量に対して60モル%に相当するテレフタロイルクロライド(TPC、東京化成工業社製)と39モル%に相当するイソフタロイルクロライド(IPC、東京化成工業社製)とすること以外はポリマーAと同様にして、ポリマーB(ηinh=4.5dl/g)の製膜原液を得た。 Polymer B: As the raw material monomer, diamine is TFMB corresponding to 90 mol% and 4,4'-diaminodiphenyl ether (DPE, manufactured by Tokyo Chemical Industry Co., Ltd.) corresponding to 10 mol%, and the acid chloride is diamine. Polymer A except for terephthaloyl chloride (TPC, manufactured by Tokyo Chemical Industry Co., Ltd.) equivalent to 60 mol% and isophthaloyl chloride (IPC, manufactured by Tokyo Chemical Industry Co., Ltd.) equivalent to 39 mol% of the total amount. In the same manner as above, a film-forming stock solution of polymer B (η inh = 4.5 dl / g) was obtained.
(10)接着層に使用する塗剤Yの調合
接着剤としてエポキシ/アクリレート(東亞合成社製 アロニックスUCX−1000)を、MEK溶媒を用いて塗剤の固形分濃度が50質量%の接着層塗剤を作成した。
(10) Formulation of Coating Y to be Used for Adhesive Layer Epoxy / acrylate (Aronix UCX-1000 manufactured by Toagosei Co., Ltd.) is applied as an adhesive to an adhesive layer having a solid content concentration of 50% by mass using a MEK solvent. Created the agent.
(11)硬化層に使用する塗剤Hの調合
粒子としてシリカ粒子(日産化学工業株式会社製 オルガノシリカゾル、平均粒径100nm)の固形分が39.997質量%、樹脂として多官能アクリレート(日本化薬株式会社製 KAYARAD PET30)の固形分が58.2質量%、青色顔料(BASF社製 ヘリオゲンブルーD6700T)の固形分が0.03質量%、光重合開始剤としてビス(2−フェニル−2−オキソ酢酸)オキシビスエチレン化合物(BASF社製 Irgacure754)の固形分が1.8質量%の比率で調合したものを、トルエン/MEKの混合溶媒(質量比は70:30)を用いて、塗剤の固形分濃度が50質量%の硬化層塗剤を作成した。
(11) Preparation of Coating Material H to be Used for Hardened Layer The solid content of silica particles (organosilica sol manufactured by Nissan Chemical Industries, Ltd., average particle size 100 nm) is 39.997% by mass as particles, and polyfunctional acrylate (Japan) as a resin. The solid content of KAYARAD PET30 manufactured by Yakuhin Co., Ltd. is 58.2% by mass, the solid content of the blue pigment (Heliogen Blue D6700T manufactured by BASF) is 0.03% by mass, and bis (2-phenyl-2) as a photopolymerization initiator. A mixture of −oxoacetic acid) oxybisethylene compound (Irgacure 754 manufactured by BASF) having a solid content of 1.8% by mass was coated with a mixed solvent of toluene / MEK (mass ratio: 70:30). A cured layer coating agent having a solid content concentration of the agent of 50% by mass was prepared.
(実施例1)
ポリマーAの製膜原液を口金から表面温度(Tb)100℃に制御したステンレス製のエンドレスベルト上に膜状に流延した。次いで、流延した膜状物を熱風温度(Ta)130℃のオーブン室に導入して、ポリマー濃度が50質量%となるまで溶媒を蒸発させた。次に、膜状物をエンドレスベルトから剥離し、40℃の純水が流水する水槽に導入し、脱塩、脱溶媒を行った。ここで、流延してから水槽を出るまでの工程で、長手方向(MD)に1.08倍の延伸を施した。最後に、水槽から出たフィルムを250℃のテンターに導入して熱処理を施すとともに、幅方向(TD)に1.10倍の延伸を施して、厚み35μmの基材フィルムAを得た。この基材フィルムAの配向角(遅相軸の向き)は、3°であった。
(Example 1)
The film-forming stock solution of Polymer A was cast in a film form on a stainless steel endless belt whose surface temperature (Tb) was controlled to 100 ° C. from the mouthpiece. Then, the cast film was introduced into an oven chamber having a hot air temperature (Ta) of 130 ° C., and the solvent was evaporated until the polymer concentration reached 50% by mass. Next, the film-like substance was peeled off from the endless belt and introduced into a water tank in which pure water at 40 ° C. was flowing, and desalting and solvent removal were performed. Here, in the process from casting to leaving the water tank, 1.08 times stretching was performed in the longitudinal direction (MD). Finally, the film taken out of the water tank was introduced into a tenter at 250 ° C. and heat-treated, and stretched 1.10 times in the width direction (TD) to obtain a base film A having a thickness of 35 μm. The orientation angle (direction of the slow axis) of the base film A was 3 °.
次に、基材フィルムAを用いて、A層となるフィルムとB層となるフィルムの2枚を切り出した。この時、A層の配向角を基準にして、B層の配向角がA層とは40°ずれた向きで重ねられるように切り出した。 Next, using the base film A, two films, a film to be the A layer and a film to be the B layer, were cut out. At this time, based on the orientation angle of the A layer, the B layer was cut out so as to be overlapped in a direction deviated from the A layer by 40 °.
次に、A層の片面に、グラビアコーターを用いて接着性樹脂からなる塗剤Yを乾燥厚みが10μmとなるように塗布し、B層を重ねてラミネーターで圧着した。そのまま連続して、高圧水銀ランプを用いて積算光量1,000mJ/cm2となるように紫外線を照射し、塗膜を硬化させて接着した。この時、A層とB層の遅相軸のずれは絶対値として40°、総厚みが80μmの積層フィルムを得た。得られたフィルムの物性を表1に示す。 Next, a coating agent Y made of an adhesive resin was applied to one side of the A layer using a gravure coater so that the dry thickness was 10 μm, and the B layer was overlapped and pressure-bonded with a laminator. As it was, the coating film was continuously cured and adhered by irradiating it with ultraviolet rays using a high-pressure mercury lamp so that the integrated light intensity was 1,000 mJ / cm 2. At this time, a laminated film having an absolute value of 40 ° for the deviation of the slow axis of the A layer and the B layer and a total thickness of 80 μm was obtained. Table 1 shows the physical characteristics of the obtained film.
(実施例2〜3、比較例3)
実施例1において、A層とB層の遅相軸のずれを表1の通りに変更した他は同様にして、積層フィルムを得た。得られたフィルムの物性を表1に示す。
(Examples 2 to 3, Comparative Example 3)
In Example 1, a laminated film was obtained in the same manner except that the deviation of the slow phase axes of the A layer and the B layer was changed as shown in Table 1. Table 1 shows the physical characteristics of the obtained film.
(実施例4、比較例2)
実施例3において、基材フィルムAの延伸倍率を表1の通りに変更した他は同様にして、積層フィルムを得た。得られたフィルムの物性を表1に示す。
(Example 4, Comparative Example 2)
In Example 3, a laminated film was obtained in the same manner except that the draw ratio of the base film A was changed as shown in Table 1. Table 1 shows the physical characteristics of the obtained film.
(実施例5)
実施例3において、ポリマーBに変更した他は同様にして積層フィルムを作成した。得られた積層フィルムの物性を表1に示す。
(Example 5)
In Example 3, a laminated film was prepared in the same manner except that the polymer B was changed. Table 1 shows the physical characteristics of the obtained laminated film.
(実施例6)
実施例3で得られた積層フィルムの片面に、グラビアコーターを用いて硬化性樹脂からなる塗剤Hを乾燥後の厚みが10μmとなるように塗布して、乾燥温度90℃のオーブンで30秒間乾燥した。そのまま連続して、高圧水銀ランプを用いて出力120W/cm、積算光量400mJ/cm2となるように紫外線を照射して塗膜を硬化させた。このとき、紫外線照射工程の雰囲気が、酸素濃度1体積%未満となるように窒素パージして硬化させた。その後、硬化層に保護フィルムを貼り付けた。さらに、同様にして、基材フィルムのもう一方の面にも厚み10μmの硬化層を積層し、保護フィルムを貼り付け、温度60℃にて24時間のエージング処理を行い、総厚み100μm(保護フィルムの厚みを除く)の硬化層付き積層フィルムを得た。得られたフィルムの物性を表1に示す。
(Example 6)
A coating material H made of a curable resin was applied to one side of the laminated film obtained in Example 3 using a gravure coater so that the thickness after drying was 10 μm, and the film was placed in an oven at a drying temperature of 90 ° C. for 30 seconds. It was dry. The coating film was continuously irradiated with ultraviolet rays using a high-pressure mercury lamp so as to have an output of 120 W / cm and an integrated light intensity of 400 mJ / cm 2. At this time, nitrogen was purged and cured so that the atmosphere of the ultraviolet irradiation step was less than 1% by volume of oxygen concentration. Then, a protective film was attached to the cured layer. Further, in the same manner, a cured layer having a thickness of 10 μm is laminated on the other surface of the base film, a protective film is attached, and aging treatment is performed at a temperature of 60 ° C. for 24 hours to obtain a total thickness of 100 μm (protective film). A laminated film with a cured layer (excluding the thickness of) was obtained. Table 1 shows the physical characteristics of the obtained film.
(比較例1)
実施例1で得られた基材フィルムAをそのまま用いた。得られたフィルムの物性を表1に示す。
(Comparative Example 1)
The base film A obtained in Example 1 was used as it was. Table 1 shows the physical characteristics of the obtained film.
(比較例4)
酸成分としてテレフタル酸を、グリコール成分としてエチレングリコールを、二酸化ゲルマニウムを重合触媒として用いて、得られるポリエステルペレットに対してゲルマニウム原子換算で300ppmとなるように添加し、重縮合反応を行い、極限粘度0.68dl/g、カルボキシル末端基量20当量/トン、融点Tmが250℃のポリエチレンテレフタレートペレット(PET)を得た。
(Comparative Example 4)
Using terephthalic acid as an acid component, ethylene glycol as a glycol component, and germanium dioxide as a polymerization catalyst, they are added to the obtained polyester pellets so as to have a germanium atom equivalent of 300 ppm, and a polycondensation reaction is carried out to obtain an extreme viscosity. Polyethylene terephthalate pellets (PET) having 0.68 dl / g, a carboxyl terminal group amount of 20 equivalents / ton, and a melting point Tm of 250 ° C. were obtained.
得られたPET原料を180℃で3時間真空乾燥した後に押出機へ供給し、280℃で溶融押出後、30μmカットフィルターにより濾過を行ってTダイ口金に導入し、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸フィルムを得た。続いて、該未延伸フィルムを80℃に加熱したロール群で予熱した後、さらに85℃に加熱したロールを用いて長手方向に3.0倍延伸した後に25℃の温度のロール群で冷却して一軸延伸フィルムを得た。その後、一軸延伸フィルムの両端をクリップで把持しながらテンター内で100℃にて長手方向に垂直な方向(横方向)に4.5倍に延伸した。さらに引き続いて、テンター内の熱処理ゾーンで190℃の熱処理を施し、さらに180℃で5%横方向に弛緩処理を行い、次いで均一に徐冷後に巻き取って、厚み25μmのPETフィルムを得た。 The obtained PET raw material was vacuum-dried at 180 ° C. for 3 hours, then supplied to an extruder, melt-extruded at 280 ° C., filtered through a 30 μm cut filter, introduced into a T-die base, and maintained at a surface temperature of 25 ° C. An unstretched film was obtained by close-contact cooling and solidification on the drum by an electrostatic application method. Subsequently, the unstretched film was preheated in a roll group heated to 80 ° C., further stretched 3.0 times in the longitudinal direction using a roll heated to 85 ° C., and then cooled in a roll group having a temperature of 25 ° C. A uniaxially stretched film was obtained. Then, while gripping both ends of the uniaxially stretched film with clips, the film was stretched 4.5 times in the tenter at 100 ° C. in the direction perpendicular to the longitudinal direction (horizontal direction). Further, subsequently, a heat treatment at 190 ° C. was performed in a heat treatment zone in the tenter, a 5% lateral relaxation treatment was further performed at 180 ° C., and then the film was uniformly slowly cooled and then wound to obtain a PET film having a thickness of 25 μm.
積層フィルムを構成する基材フィルムとして、一層目は基材フィルムA、二層目は上述のPETフィルムを用いたこと以外は、実施例3と同様にして、積層フィルムを得た。得られた積層フィルムの物性を表1に示す。 As the base film constituting the laminated film, a laminated film was obtained in the same manner as in Example 3 except that the base film A was used for the first layer and the PET film described above was used for the second layer. Table 1 shows the physical characteristics of the obtained laminated film.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019213994A JP2021084286A (en) | 2019-11-27 | 2019-11-27 | Laminate film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019213994A JP2021084286A (en) | 2019-11-27 | 2019-11-27 | Laminate film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021084286A true JP2021084286A (en) | 2021-06-03 |
Family
ID=76086405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019213994A Pending JP2021084286A (en) | 2019-11-27 | 2019-11-27 | Laminate film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021084286A (en) |
-
2019
- 2019-11-27 JP JP2019213994A patent/JP2021084286A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI738801B (en) | Laminated film | |
JP6638654B2 (en) | Polyimide film and manufacturing method thereof, flexible printed circuit board, base material for flexible display, front panel for flexible display, LED lighting device, and organic electroluminescent display device | |
KR20170110704A (en) | Polyimide-based optical film, method of manufacturing the same, and organic electroluminescent display | |
JP5374868B2 (en) | Display material substrate manufacturing method, display material | |
JPWO2004039863A1 (en) | Cycloaliphatic or aromatic polyamide, polyamide film, optical member using them, and polyamide copolymer | |
JP6409540B2 (en) | Film, film manufacturing method and laminate | |
JP2015120886A (en) | Aromatic polyamide film and laminate | |
JPWO2017010178A1 (en) | Polarizing plate, manufacturing method thereof, liquid crystal display device, and organic electroluminescence display device | |
JP5403178B2 (en) | Totally aromatic polyamide film | |
CN112339378B (en) | Laminate body | |
CN110673233B (en) | Optical film, flexible display device, and method for manufacturing optical film | |
JP2006255918A (en) | Optical film laminate | |
JP7459768B2 (en) | Glass Laminate | |
JP2021181219A (en) | Laminate film | |
JP2020203481A (en) | Film and image display device | |
JP2018193546A (en) | Nitrogen-containing polymer film and laminate film | |
JP2021088181A (en) | Laminate film | |
JP2021084286A (en) | Laminate film | |
JP2020097732A (en) | Solution including aromatic polyamide or aromatic polyamideimide | |
JP4747531B2 (en) | Aromatic polyamide film and optical member and display using the same | |
JP2021194816A (en) | Laminate film and flexible display | |
JP2019020722A (en) | Aromatic nitrogen-containing polymer film and display member | |
JP2005134510A (en) | Retardation plate and circularly polarizing plate | |
JP4258256B2 (en) | Retardation film | |
JP7099271B2 (en) | Laminated film |