[go: up one dir, main page]

JP2021076455A - 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム - Google Patents

分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム Download PDF

Info

Publication number
JP2021076455A
JP2021076455A JP2019202720A JP2019202720A JP2021076455A JP 2021076455 A JP2021076455 A JP 2021076455A JP 2019202720 A JP2019202720 A JP 2019202720A JP 2019202720 A JP2019202720 A JP 2019202720A JP 2021076455 A JP2021076455 A JP 2021076455A
Authority
JP
Japan
Prior art keywords
preparative
particles
target
sorting
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019202720A
Other languages
English (en)
Inventor
高橋 和也
Kazuya Takahashi
和也 高橋
直久 坂本
Naohisa Sakamoto
直久 坂本
甲斐 慎一
Shinichi Kai
慎一 甲斐
洋一 勝本
Yoichi Katsumoto
洋一 勝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2019202720A priority Critical patent/JP2021076455A/ja
Priority to PCT/JP2020/034384 priority patent/WO2021090573A1/ja
Priority to EP20885877.9A priority patent/EP4024027A4/en
Priority to CN202080075770.6A priority patent/CN114631013A/zh
Priority to US17/773,552 priority patent/US20220381670A1/en
Publication of JP2021076455A publication Critical patent/JP2021076455A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1425Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
    • G01N15/1427Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement with the synchronisation of components, a time gate for operation of components, or suppression of particle coincidences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】流路内で目的の微小粒子を分取する技術において、粒子の分取性能を高めるために、分取が行われるタイミングを制御する技術を提供すること。【解決手段】流路を通流する粒子を分取する分取方法において、取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部を有する、分取制御装置を提供する。また、流路を通流する粒子を分取する粒子分取装置であって、サンプル液から得られる光学的情報を検出する光検出部と、検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部と、を有する、粒子分取装置を提供する。【選択図】図5

Description

本技術は、粒子を分取する際の処理条件を制御する装置に関する。より詳しくは、流路内を流通するサンプル液中から粒子を分取する際の処理条件を制御する分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラムに関する。
粒子を分取するために、これまで種々の装置が開発されてきている。例えばフローサイトメータにおいて用いられる微小粒子分取系において、フローセル又はマイクロチップに形成されたオリフィスから、細胞を含むサンプル液とシース液とから構成される層流が吐出される。吐出される際に所定の振動が当該層流に与えられて、液滴が形成される。当該形成された液滴の移動方向が、目的の微小粒子を含むか含まないかによって、電気的に制御されて、目的の微小粒子が分取されうる。
上記のように液滴を形成せずに、マイクロチップ内で目的の粒子を分取する技術も開発されている。
例えば、下記特許文献1には、「微小粒子を含むサンプル液が通流するサンプル液導入流路と、該サンプル液導入流路にその両側から合流し、前記サンプル液の周囲にシース液を導入する少なくとも1対のシース液導入流路と、前記サンプル液導入流路及びシース液導入流路に連通し、これらの流路を通流する液体が合流して通流する合流流路と、該合流流路に連通し、回収対象の微小粒子を吸引して引き込む負圧吸引部と、該負圧吸引部の両側に設けられ、前記合流流路に連通する少なくとも1対の廃棄用流路と、を有するマイクロチップ。」(請求項1)が記載されている。当該マイクロチップにおいて、目的の微小粒子は吸引によって負圧吸引部へと回収される。
また、下記特許文献2には、「主流路を通流する液体中の微小粒子を、前記主流路に連通する分岐流路内に負圧を発生させることにより該分岐流路内に取り込む手順を含み、該手順において、前記主流路と前記分岐流路との連通口に、前記分岐流路側から前記主流路側へ向かう液体の流れを形成させておく微小粒子分取方法。」(請求項1)が記載されている。当該分取方法において、当該主流路側へ向かう液体の流れによって、非分取動作時において非目的粒子又はこれを含むサンプル液及びシース液が分取流路に進入するのを抑制する。また、下記特許文献2には、当該微小粒子分取方法を実施可能な微小粒子分取用マイクロチップも記載されている(請求項9)。
特開2012−127922号公報 特開2014−36604号公報
マイクロチップ内で目的の粒子を分取する技術では、例えば、負圧によって目的の粒子が上記粒子分取流路内に吸引され、一方で、サンプル液中に目的の粒子が含まれない場合は、吸引は行われない。そこで、粒子の分取性能を高める為には、分取が行われるタイミングを制御する必要がある。
本技術は、流路内で目的の微小粒子を分取する技術において、粒子の分取性能を高めるために、分取が行われるタイミングを制御する技術を提供することを目的とする。
本技術では、まず、流路を通流する粒子を分取する分取方法において、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する、分取制御部を有する、分取制御装置を提供する。
前記分取制御部はさらに、サンプル液中の目標粒子のゲーティング情報に基づいて、分取条件を決定するパラメータを調整することもできる。
前記分取制御部はさらに、サンプル液中の目標粒子の濃度、粒子の通流数の少なくとも一つに基づいて、分取条件を決定するパラメータを調整することもできる。
本技術に係る分取制御装置において、前記パラメータとしては、取得粒子の回収率が第1の閾値以上となるディレイタイム範囲、および取得粒子の回収率が第2の閾値以上となる時間から選ばれる一以上のパラメータとすることができる。
本技術に係る分取制御装置において、前記分取条件は、前記流路への送液量、前記圧力室にかける駆動電圧、前記圧力室にかける駆動波形、および分取実行時間から選ばれる一以上の分取条件とすることもできる。
前記分取条件を決定するパラメータの調整は、擾乱発生環境下にて行うことも可能である。
本技術では、次に、流路を通流する粒子を分取する粒子分取装置であって、
サンプル液から得られる光学的情報を検出する光検出部と、
検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部と、
を有する、粒子分取装置を提供する。
本技術では、また、流路を通流する粒子を分取する粒子分取システムであって、
サンプル液から得られる光学的情報を検出する光検出部と、
検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、を備える分取装置と、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部を備える制御装置と、
を有する、粒子分取システムを提供する。
本技術では、さらに、流路を通流する粒子を分取する粒子分取方法において、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する、分取制御方法を提供する。
本技術では、加えて、流路を通流する粒子を分取する際の分取条件の制御に用いるプログラムであって、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする回収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する、分取制御機能を、コンピュータに実現させるための制御プログラムを提供する。
本技術において、「粒子」には、細胞や微生物、リポソーム等の生体関連微小粒子、或いはラテックス粒子やゲル粒子、工業用粒子等の合成粒子などが広く含まれるものとする。
生体関連微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(例えば、血球系細胞等)及び植物細胞が含まれる。微生物には、大腸菌等の細菌類、タバコモザイクウイルス等のウイルス類、イースト菌等の菌類などが含まれる。更に、生体関連微小粒子には、核酸やタンパク質、これらの複合体等の生体関連高分子も包含され得る。また、工業用粒子は、例えば、有機若しくは無機高分子材料、金属等であってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレート等が含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料等が含まれる。金属には、金コロイド、アルミ等が含まれる。これらの粒子の形状は、一般には球形であるのが普通であるが、本技術では、非球形であってもよく、また、その大きさ、質量等も特に限定されない。
本技術に係る分取制御装置1を用いることが可能な粒子分取装置2の第1実施形態を模式的に示す模式概念図である。 本技術に係る分取制御装置1を用いることが可能な粒子分取システム3の第1実施形態を模式的に示す模式概念図である。 本技術に係る分取制御装置1を用いることが可能な粒子分取システム3の第2実施形態を模式的に示す模式概念図である。 本技術に用いることができる流路Pが形成されたマイクロチップTの実施形態の一例を模式的に示す拡大概念図である。 本技術を用いた分取制御方法の大まかな流れを示すフローチャートである。 ディレイタイム(Delay time)と、取得粒子の回収率(Recovery)の関係を示す図面代用グラフである。 目標粒子の割合と、取得粒子中の目標粒子の純度(Purity)、および取得粒子の回収率の閾値(Recovery thresh)との関係を示す図面代用グラフである。 ガードタイム(Guard Time)と、粒子の割合(Population ratio)と、目標粒子の収率(Efficiency)との関係を示す図面代用グラフである。 擾乱を発生させる方法の一例として、ダブルパルス(Double pulse)という波形を示す図面代用グラフである。 ガードタイム(Guard Time)の計測方法の一例を説明するための図面代用グラフである。 本技術を用いた分取制御方法の具体的な一例を示すフローチャートである。 本技術を用いた分取制御方法の図11とは異なる一例を示すフローチャートである。
以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
1.分取制御装置1、粒子分取装置2、粒子分取システム3
(1)流路P
(2)光照射部21
(3)光検出部22
(4)情報処理部23
(5)分取制御装置1(分取制御部11)
(5−1)分取制御部11
(5−2)記憶部12
(5−3)表示部13
(5−4)ユーザーインターフェース14
(6)分取部24
2.分取制御方法、粒子分取方法
3.コンピュータプログラム
<1.分取制御装置1、粒子分取装置2、粒子分取システム3>
本技術に係る分取制御装置1は、流路P内を通流するサンプル液中の粒子を分取する際に分取条件を制御する装置であって、少なくとも分取制御部11を備える。また、必要に応じて、記憶部12、表示部13、およびユーザーインターフェース14等を備えることができる。
図1は、本技術に係る分取制御装置1を用いることが可能な粒子分取装置2の第1実施形態を模式的に示す模式概念図である。図2は、本技術に係る分取制御装置1を用いることが可能な粒子分取システム3の第1実施形態を模式的に示す模式概念図である。図3は、本技術に係る分取制御装置1を用いることが可能な粒子分取システム3の第2実施形態を模式的に示す模式概念図である。本技術に係る粒子分取装置2、および粒子測定システム3は、少なくとも、光検出部22と、分取部24と、分取制御部11と、を備える。また、必要に応じて、流路P、光照射部21、情報処理部23、記憶部12、表示部13、およびユーザーインターフェース14等を備えることができる。
なお、分取制御部11、情報処理部23、記憶部12、表示部13、およびユーザーインターフェース14等については、図1に示すように、粒子分取装置2内に設けてもよいし、図2に示すように、分取制御部11、情報処理部23、記憶部12、表示部13、およびユーザーインターフェース14を備える分取制御装置1と、粒子分取装置2と、からなる粒子分取システム3としてもよい。また、図3に示すように、それぞれ独立した分取制御部11、情報処理部23、記憶部12、表示部13、およびユーザーインターフェース14を、粒子分取装置2の光検出部22および分取部24と、ネットワークを介して接続した粒子測定システム3とすることもできる。
さらに、分取制御部11、情報処理部23、記憶部12、表示部13を、クラウド環境に設けて、ネットワークを介して、粒子分取装置2と接続することも可能である。この場合、分取制御部11や情報処理部23における情報処理の記録等を、記憶部12に記憶して、記憶部12に記憶された各種情報を、複数のユーザーで共有することも可能である。
以下、各部の詳細について、測定の時系列に沿って説明する。
(1)流路P
本技術に係る粒子分取装置2および粒子分取システム3では、フローセル(流路P)中で一列に整列させた粒子から得られる光学的情報を検出することにより、粒子の解析や分取を行うことができる。
流路Pは、粒子分取装置2に予め備えていてもよいが、市販の流路Pや流路Pが設けられた使い捨てのチップなどを粒子分取装置2や粒子分取システム3に設置して解析又は分取を行うことも可能である。
流路Pの形態も特に限定されず、前記流路Pの流路幅、流路深さ、流路断面形状も、層流を形成し得る形態であれば特に限定されず、自由に設計することができる。例えば、流路幅1mm以下のマイクロ流路も、粒子分取装置2や粒子分取システム3に用いることが可能である。特に、流路幅10μm以上1mm以下程度のマイクロ流路は、本技術に好適に用いることができる。
図4は、本技術に用いることができる流路Pが形成されたマイクロチップTの実施形態の一例を模式的に示す拡大概念図である。粒子を含むサンプル液は、サンプルインレット41からサンプル流路P1に導入される。また、シースインレット42から導入されたシース液は、2本のシース流路P2a,P2bに分流されて送液される。サンプル流路P1とシース流路P2a,P2bは合流して主流路P3となる。サンプル流路P1を送液されるサンプル液層流と、シース液路P2a,P2bを送液されるシース液層流とが、主流路P3内において合流し、サンプル液層流がシース液層流に挟み込まれたシースフローを形成する。
図2中符号5は、後述する光照射部21により励起光が照射され、後述する光検出部22による蛍光および散乱光の検出が行われる検出領域を示す。粒子は、主流路P3に形成されるシースフロー中に一列に配列した状態で検出領域5に送流され、光照射部21からの励起光により照射される。
主流路P3は、検出領域5の下流の分取部24において、3つの流路に分岐している。主流路P3は、検出領域5の下流の分取部24において、分取流路P4および廃棄流路P5a,P5bの3つの分岐流路と連通している。このうち、分取流路P4は、所定の光学特性を満たすと判定された粒子(「目標粒子」とも称する)が取り込まれる流路である。一方で、所定の光学特性を満たさないと判定された粒子(「非目標粒子」とも称する)は、分取流路P4内に取り込まれることなく、2本の廃棄流路P5a,P5bのいずれか一方に流れる。
また、例えば、図4に示す実施形態では、基板Tに形成された主流路P3の下流に、分取流路P4、及び、廃棄流路P5a、P5bの3つの分岐流路を設け、所定の光学特性を満たすと判定された分取対象の粒子を分取流路P4に取り込み、所定の光学特性を満たさないと判定された非分取対象の粒子は、分取流路P4内に取り込まれることなく、2本の廃棄流路P5a、P5bのいずれか一方に流れるようにすることで分取することができる。
目標粒子の分取流路P4内への取り込みは、図示しないがピエゾ素子等の圧電素子によって分取流路P4内に負圧を発生させ、この負圧を利用して目標粒子を含むサンプルおよびシース液を分取流路P4内に吸い込むことによって行うことができる。圧電素子は、マイクロチップTの表面に接触して配置され、分取流路P4に対応する位置に配置されている。より具体的には、圧電素子は、分取流路P4において内空が拡張された領域として設けられた圧力室P41に対応する位置に配置されている。
圧力室P41の内空は、図4に示されるように平面方向(分取流路P4の幅方向)に拡張されるとともに、断面方向(分取流路P4の高さ方向)にも拡張されている。すなわち、分取流路P4は、圧力室P41において幅方向および高さ方向に拡張されている。換言すると、分取流路P4は、圧力室P41においてサンプルおよびシース液の流れ方向に対する垂直断面が大きくなるように形成されている。
圧電素子は、印加される電圧の変化に伴って伸縮力を発生し、マイクロチップTの表面(接触面)を介して分取流路P4内に圧力変化を生じさせる。分取流路P4内の圧力変化に伴って分取流路P4内に流動が生じると、同時に、分取流路P4内の体積が変化する。分取流路P4内の体積は、印加電圧に対応した圧電素子の変位量によって規定される体積に到達するまで変化する。より具体的には、圧電素子は、電圧を印加されて伸張した状態においては、圧力室P41を構成する変位板を押圧して圧力室P41の体積を小さく維持している。そして、印加される電圧が低下すると、圧電素子は収縮する方向へ力を発生し、変位板への押圧を弱めることによって圧力室P41内に負圧を発生させる。
本技術では、圧電素子の伸縮力を効率良く圧力室P41内へ伝達するため、マイクロチップTの表面を圧力室P41に対応する位置において陥凹させ、該陥凹内に圧電素子を配置することが好ましい。これにより、圧電素子の接触面となる変位板を薄くでき、変位板が圧電素子の伸縮に伴う押圧力の変化によって容易に変位して、圧力室P41の容積変化をもたらすようにできる。
その他の分取方法としては、図示しないが、バルブ電磁力、または流体ストリーム(気体または液体)等を用いて、層流方向の制御または変化を行うことで、分取対象の粒子の分取流路P4内への取り込みを行うことも可能である。
マイクロチップTは、サンプル流路P1や分取流路P4等が形成された基板層を貼り合わされてなる。基板層へのサンプル流路P1や分取流路P4等の形成は、金型を用いた熱可塑性樹脂の射出成形により行うことができる。熱可塑性樹脂には、ポリカーボネート、ポリメタクリル酸メチル樹脂(PMMA)、環状ポリオレフィン、ポリエチレン、ポリスチレン、ポリプロピレン、ポリジメチルシロキサン(PDMS)等のマイクロチップの材料として従来公知のプラスチックを採用できる。なお、マイクロチップTを構成する基板層の数は特に限定されず、例えば、2以上の複数の層からなるものとすることができる。
本技術に用いるマイクロチップTは、ゲート液が導入されるゲート液インレット43と、ゲート液インレット43から導入されたゲート液が流れるゲート流路P6と、を更に備えていてもよい。ゲート流路P6は、例えば、分取流路P4および廃棄流路P5a,P5bの3つの分岐流路から圧力室P41手前までの分取流路P4と、1本以上接続し、または、例えば、垂直に交差するように設けられている。「ゲート液」とは、ゲート流路P6に流す液体であり、分取後回収された粒子の主溶媒となるため、用途に応じて様々な液体を選択することができる。例えば、粒子含有液体に用いる液媒体や、シース液、粒子がタンパク質の場合は、界面活性剤入りのpH等が調節されたバッファー液等、粒子に応じた液体を一定流量で流すことができる。
特に、粒子が細胞の場合は、ゲート液として、細胞培養液、細胞保存液等を使用することができる。細胞培養液を使用する場合、分取後回収された細胞へ施す次工程、例えば、細胞培養、細胞活性化、遺伝子導入等の工程を行う場合に適している。細胞保存液を使用する場合、回収した細胞を保管、輸送する場合に適している。また分取回収される細胞がiPS細胞等未分化の細胞の場合、分化誘導液を使用することでき、次の作業を効率的に進めることができる。
なお、シース液も同様に様々な液体を選択することができる。本明細書において、ゲート液により形成される流れを「ゲート流」という。
ゲート流路P6の上流側は、ゲート液インレット43から独立して導入し、適切な流量で流すことができる。本技術においては、ゲート流路P6に導入する液体の流量はシース流路P2a,P2bに導入する液体の流量に対し少ないため、ゲート流路P6のみに細胞培養液、細胞保存液、分化誘導液等の高価な液体を使用する場合において、経済的である。
また、ゲート流は、シース液流から分岐して発生させることもできる。例えば、シースインレット42後のシース流路P2a,P2bと、ゲート流路P6の上流端とを接続し、シース液流が分岐してゲート流路P6へも流入するようにし、ゲート流とすることもできる。その際には、ゲート流量が適切な流量となるよう、ゲート流路P6の流路抵抗を適切に設計する必要がある。
ゲート流路P6と分取流路P4とが交差したところで、ゲート流路P6をまっすぐ進もうとするゲート流とともに、検出領域5側と圧力室P41側とに向かうゲート流も生じる。後者のゲート流により、取得すべきでない粒子(非目標粒子)が分取流路P4の圧力室P41側へ侵入することを阻止できる。ゲート流路P6を流れてきたゲート流は分取流路P4へ流出し、分取流路P4の検出領域5側と圧力室P41側へ向かうゲート流に分岐する。前者のゲート流により、非目標粒子が分取流路P4の圧力室P41側へ侵入することを阻止できる。
本技術に係る粒子分取装置2および粒子分取システム3では、図示しないが、サンプル流路P1にサンプル液貯留部を、シース流路P2a,P2bにシース液貯留部を、分取流路P4に分取液貯留部を、廃棄流路P5a,P5bに廃液貯留部を、それぞれ連通させて接続することで、完全閉鎖型の分取装置とすることができる。例えば、分取対象の粒子が、細胞製剤等に使用するための細胞等である場合は、滅菌環境を維持し、コンタミネーションを防止するため、外部環境と隔離し、完全閉鎖型になるように設計することが好ましい。
(2)光照射部21
本技術に係る粒子分取装置2および粒子分取システム3には、光照射部21を備えることができる。光照射部21では、主流路P3の検出領域5を通流する粒子への光の照射が行われる。本技術に係る粒子分取装置2において、光照射部21は必須ではなく、外部の光照射装置等を用いて主流路P3の検出領域5を通流する粒子への光照射を行うことも可能である。
光照射部21には、異なる波長の励起光を照射できるように、複数の光源を備えることもできる。
光照射部21から照射される光の種類は特に限定されないが、粒子から蛍光や散乱光を確実に発生させるためには、光方向、波長、光強度が一定の光が望ましい。一例としては、レーザー、LED等を挙げることができる。レーザーを用いる場合、その種類も特に限定されないが、アルゴンイオン(Ar)レーザー、ヘリウム−ネオン(He-Ne)レーザー、ダイ(dye)レーザー、クリプトン(Cr)レーザー、半導体レーザー、または、半導体レーザーと波長変換光学素子を組み合わせた固体レーザー等を、1種又は2種以上、自由に組み合わせて用いることができる。
(3)光検出部22
光検出部22は、励起光が照射された分取対象試料から発せられた蛍光および散乱光を検出する。光検出部22は、具体的には、サンプルから発せられた蛍光および散乱光を検出して、電気信号へと変換する。そして、該電気信号を後述する情報処理部23へと出力する。
光検出部22の構成は特に限定されず、公知の構成を採用することができ、更に電気信号への変換方法も特に限定されない。
(4)情報処理部23
本技術に係る粒子分取装置2および粒子分取システム3には、情報処理部23を備えることができる。情報処理部23は、光検出部22で変換された電気信号が入力される。情報処理部23は、具体的には、入力される電気信号に基づいてサンプル液、および該サンプル液内に含まれる粒子の光学特性を解析する。
本技術に係る粒子分取装置2および粒子分取システム3では、この情報処理部23は、後述する分取制御装置1と独立して設けてもよいが、分取制御装置1内に情報処理部23を設けて、サンプル液内に含まれる粒子の光学特性を解析することも可能である。
なお、本技術において、情報処理部23は必須ではなく、外部の情報処理装置等を用いて、サンプル液内に含まれる粒子の光学特性を解析することも可能である。
更に、情報処理部23では、後述する分取制御部11(分取制御装置1)において分取制御を行うために、目標粒子をゲーティングするためのゲーティング回路を備える。
なお、情報処理部23の構成は特に限定されず、公知の構成を採用することができる。更に、情報処理部23のゲーティング回路により行われる情報処理方法も公知の方法を採用することができる。
(5)分取制御装置1(分取制御部11)
本技術では、前記情報処理部23によって解析された粒子の光学特性から、粒子の分取が行われるタイミングの制御が行なわれる。以下、詳しい分取制御方法について、説明する。
(5−1)分取制御部11
分取制御部11では、取得粒子中の目標粒子の、目標とする純度(Purity)に関する情報、目標とする収率(Efficiency)に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータの調整が行われる。図5は、本技術を用いた分取制御方法の大まかな流れを示すフローチャートである。なお、本明細書において、「取得粒子」とは、前記分取流路P4へ分取された粒子全てを指し、「目標粒子」とは、前記分取流路P4へ分取された粒子中に含まれる分取ターゲットとなる粒子を指す。
本技術では、まず、前記情報処理部23によって、目標粒子のゲーティングが行われる(S1)。次に、目標粒子のゲーティング情報に基づいて、目標粒子の濃度(割合)や粒子の通流数(Event rate)等の計測が行われる(S2)。
次に、取得粒子中の目標粒子の純度(Purity)と、目標粒子の収率(Efficiency)について、目標値を決定する(S3)。この際、取得粒子中の目標粒子の純度(Purity)と、目標粒子の収率(Efficiency)は、一方を調整すると、他方は一定範囲内となる関係である。そのため、ユーザーが、どちらか一方を決定することで、両方の目標値を設定することができる。具体的な調整方法としては、例えば、取得粒子中の目標粒子の純度(Purity)と、目標粒子の収率(Efficiency)のどちらか一方について、ユーザーが、目標値の数値を直接入力する方法、表示画面上の調整バー等をスクロール等することで調整する方法、予め設定されたモードを選択することで調整する方法等が挙げられる。取得粒子中の目標粒子の純度(Purity)と、目標粒子の収率(Efficiency)に対する要求は、ユーザーによって異なるが、本技術では、ユーザーの要求通りに、取得粒子中の目標粒子の純度(Purity)と、目標粒子の収率(Efficiency)を制御することができる。
次に、入力された取得粒子中の目標粒子の純度(Purity)と、目標粒子の収率(Efficiency)の目標値に基づいて、取得粒子の回収率の閾値(Recovery thresh)を調整し、さらにディレイタイム範囲(Delay time margin)およびガードタイム(Guard Time)を調整する(S4)。
ここで、ディレイタイム範囲(Delay time margin)、ガードタイム(Guard Time)、およびこれらと取得粒子中の目標粒子の純度(Purity)や目標粒子の収率(Efficiency)との関係について、図6〜8を用いて説明する。
図6は、ディレイタイム(Delay time)と、取得粒子の回収率(Recovery)の関係を示す図面代用グラフである。図6に示すように、ディレイタイム範囲(Delay time margin)は、取得粒子の回収率が、図6中符号Bで示す第1の閾値(Recovery thresh)以上となる時間である。また、ガードタイム(Guard Time)は、取得粒子の回収率が、図6中符号Cで示す第2の閾値(Recovery thresh)以上となる時間である。
図7は、目標粒子の割合(Target Population)と、取得粒子中の目標粒子の純度(Purity)、および取得粒子の回収率の閾値(Recovery thresh)との関係を示す図面代用グラフである。また、図8は、ガードタイム(Guard Time)と、粒子の割合(Population ratio)と、目標粒子の収率(Efficiency)(1-Abort)との関係を示す図面代用グラフである。図7および図8に示すように、これらの関係から、目標粒子の濃度(割合)や粒子の通流数(Event rate)、取得粒子中の目標粒子の純度(Purity)、目標粒子の収率(Efficiency)に基づいて、取得粒子の回収率の閾値(Recovery thresh)を調整し、さらに、ディレイタイム範囲(Delay time margin)およびガードタイム(Guard Time)を調整することができる。
取得粒子の回収率(Recovery)の計測は、擾乱発生環境下において行うことも可能である。より厳しい条件である擾乱発生環境下において、取得粒子の回収率(Recovery)の計測し、分取条件を決定するパラメータ(ディレイタイム範囲(Delay time margin)およびガードタイム(Guard Time))の調整の調整を行うことで、分取条件の制御をより正確行うことができる。
擾乱発生環境は、例えば、図9に示すようなダブルパルス(Double pulse)という波形を、前記圧力室P41にかけることで、流路P内に擾乱を発生させることができる。
また、取得粒子の回収率(Recovery)の計測は、圧力室P41の下流を粒子が通過する際に、前方散乱信号を検出しカウントするが、このとき、高頻度で粒子が通過すると信号が重なり正しくカウントできなくなることがある。そこで、粒子同士がある一定間隔以内に近接して到来する場合は分取処理を行わないというロジックを使用することにより、本問題を解決することが可能である。
ガードタイム(Guard Time)の調整は、Guard time = α * (Delay time margin)k等の回帰式を用いて計算し、ディレイタイム範囲(Delay time margin)の閾値をある範囲に定めるように調整することにより、ガードタイム(Guard Time)を調整することも可能である。
また、ガードタイム(Guard Time)の測定は、前記回帰式を用いた予測値を用いて、測定開始点を決定することにより、図10に示すように、Recovery slopeを全て取得せずに最小限の計測でガードタイム(Guard Time)を取得することが可能である。
以上のように、分取条件を決定するパラメータ(ディレイタイム範囲(Delay time margin)およびガードタイム(Guard Time))が調整された後、調整されたディレイタイム範囲(Delay time margin)やガードタイム(Guard Time)に基づいて、前記流路Pへのシース流の送液量、分取のために前記圧力室P41にかける駆動電圧、分取のために前記圧力室P41にかける駆動波形、および分取実行時間等の分取条件が制御される(S5)。
図11は、本技術を用いた分取制御方法の具体的な一例を示すフローチャートであり、図12は、本技術を用いた分取制御方法の図11とは異なる一例を示すフローチャートである。以下、図11を用いて、本技術を用いた分取制御方法の具体的な一例を説明する。
(a)ディレイタイム(Delay time)の粗調整
まず、シングルパルス(SinglePulse)の駆動波形にて、前記圧力室P41にかける駆動電圧をA1に設定する。この状態で、ディレイタイム(Delay time)を時間t1(例えば、2マイクロ秒)ずつずらして、回収率(Recovery)をn1回(例えば、15回)計測し、回収率(Recovery)が最大となるディレイタイム(Delay time)(T0)を見つける。
(b)駆動電圧の制御1
次に、シングルパルス(SinglePulse)の駆動波形にて、前記圧力室P41にかける駆動電圧をA2=A1+nに設定する。この状態で、ディレイタイム(Delay time)を時間t2(例えば、1マイクロ秒)ずつずらして、回収率(Recovery)をn2回(例えば、10回)計測し、ディレイタイム範囲(Delay time margin)がT1(例えば、4マイクロ秒)以上となるように、A2を制御する。
(c)駆動電圧の制御2
次に、ダブルパルス(Double pulse)の駆動波形にて、前記圧力室P41にかける駆動電圧をA3=A2+nに設定する。この状態で、ディレイタイム(Delay time)を時間t3(例えば、1マイクロ秒)ずつずらして、回収率(Recovery)をn3回(例えば、6回)計測し、最大の回収率(Recovery)がD%(例えば、95%)以上となるように、A3を制御する。
(d)ガードタイム(Guard Time)の調整
次に、シングルパルス(SinglePulse)の駆動波形にて、前記圧力室P41にかける駆動電圧をA3に設定する。この状態で、ディレイタイム(Delay time)を時間t4(例えば、2マイクロ秒)ずつずらして、回収率(Recovery)をn4回(例えば、20回)計測し、ガードタイム(Guard Time)がT2(例えば、25マイクロ秒)以下となるように、バッファー流量を調整する。この際、バッファー流量を変更した場合は、再度、前記(b)に戻って、駆動電圧の制御をやり直す。
なお、これらの順番は、適宜変更することが可能であり、バッファー流量の調整を最初に行うことも可能である。
以上説明したように、ディレイタイム範囲(Delay time margin)やガードタイム(Guard Time)等の分取条件を決定するパラメータを調整することにより、マイクロチップ間で特性にバラつきがある場合においても、分取精度を同等に保つことが可能となる。
(5−2)記憶部12
本技術に係る分取制御装置1、粒子分取装置2、及び粒子分取システム3には、各種データを記憶させる記憶部12を備えることができる。記憶部12では、例えば、光検出部22によって検出された粒子の光学的情報、情報処理部23における解析結果の記録、分取制御部11における制御情報の記録等、粒子の分取に関わるあらゆる事項を記憶することができる。
また、前述したとおり、本技術では、記憶部12をクラウド環境に設けることができるため、ネットワークを介して、各ユーザーがクラウド上の記憶部12に記録された各種情報を、共用することも可能である。
なお、本技術において、記憶部12は必須ではなく、外部の記憶装置等を用いて、各種データの記憶を行うことも可能である。
(5−3)表示部13
本技術に係る分取制御装置1、粒子分取装置2、及び粒子分取システム3には、各種情報を表示する表示部13を備えることができる。表示部13では、例えば、光検出部22によって検出された粒子の光学的情報、情報処理部23における解析結果、分取制御部11における制御情報等、粒子の分取に関わるあらゆる事項を表示することができる。
本技術において、表示部13は必須ではなく、外部の表示装置を接続してもよい。表示部13としては、例えば、ディスプレイやプリンタなどを用いることができる。
(5−4)ユーザーインターフェース14
本技術に係る分取制御装置1、粒子分取装置2、及び粒子分取システム3には、ユーザーが操作するための部位であるユーザーインターフェース14を更に備えることができる。ユーザーは、ユーザーインターフェース14を通じて、各部にアクセスし、各部を制御することができる。
本技術において、ユーザーインターフェース14は必須ではなく、外部の操作装置を接続してもよい。ユーザーインターフェース14としては、例えば、マウスやキーボード等を用いることができる。
(6)分取部24
本技術に係る粒子分取装置2、及び粒子分取システム3には、分取部24を備える。分取部24では、前記情報処理部23によって解析された粒子の光学特性に基づいて、粒子の分取が行われる。例えば、分取部24では、光学的情報から解析された粒子の大きさ、形態、内部構造等の解析結果に基づいて、検出領域5の下流の分取流路P4および廃棄流路P5a,P5bの3つの分岐流路流路Pにおいて、粒子の分取を行うことができる。なお、分取部24における分取方法の詳細は、前記流路Pの説明部分で説明したため、ここでは説明を割愛する。
<2.分取制御方法、粒子分取方法>
本技術に係る分取制御方法は、流路P内を通流するサンプル液中の粒子を分取する際に、分取条件を制御する方法であって、少なくとも分取制御工程を行う。また、必要に応じて、記憶工程、表示工程等を行うことができる。本技術に係る粒子分取方法は、少なくとも、光検出工程と、分取制御工程と、分取工程とを行う。また、必要に応じて、光照射工程、記憶工程、表示工程等を行うことができる。なお、各工程の詳細は、前述した本技術に係る分取制御装置1、粒子分取装置2、及び粒子分取システム3の各部が行う工程と同一であるため、ここでは説明を割愛する。
<3.コンピュータプログラム>
本技術に係るコンピュータプログラムは、流路P内を通流するサンプル液中の粒子を分取する際の分取条件の制御に用いるプログラムであって、目標とする取得粒子中の目標粒子の純度に関する情報、取得粒子の回収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する、分取制御機能を、コンピュータに実現させるためのプログラムである。
本技術に係るコンピュータプログラムは、適切な記録媒体に記録される。また、本技術に係るコンピュータプログラムは、クラウド環境等に格納して、ユーザーがネットワークを通じて、パーソナルコンピュータ等にダウンロードして用いることも可能である。なお、本技術に係るコンピュータプログラムにおける分取制御機能については、前述した本技術に係る分取制御装置1における分取制御部11の機能と同一であるため、ここでは説明を割愛する。
なお、本技術では、以下の構成を取ることもできる。
(1)
流路を通流する粒子を分取する分取方法において、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する、分取制御部を有する、分取制御装置。
(2)
前記分取制御部はさらに、サンプル液中の目標粒子のゲーティング情報に基づいて、分取条件を決定するパラメータを調整する、(1)に記載の分取制御装置。
(3)
前記分取制御部はさらに、サンプル液中の目標粒子の濃度、粒子の通流数の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、(1)または(2)に記載の分取制御装置。
(4)
前記パラメータは、取得粒子の回収率が第1の閾値以上となるディレイタイム範囲、および取得粒子の回収率が第2の閾値以上となる時間から選ばれる一以上のパラメータである、(1)〜(3)のいずれかに記載の分取制御方法。
(5)
前記分取条件は、前記流路への送液量、前記圧力室にかける駆動電圧、前記圧力室にかける駆動波形、および分取実行時間から選ばれる一以上の分取条件である、(1)〜(4)のいずれかに記載の分取制御方法。
(6)
前記分取条件を決定するパラメータの調整は、擾乱発生環境下にて行われる、(1)〜(5)のいずれかに記載の分取制御方法。
(7)
流路を通流する粒子を分取する粒子分取装置であって、
サンプル液から得られる光学的情報を検出する光検出部と、
検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部と、
を有する、粒子分取装置。
(8)
流路を通流する粒子を分取する粒子分取システムであって、
サンプル液から得られる光学的情報を検出する光検出部と、
検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、を備える分取装置と、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部を備える制御装置と、
を有する、粒子分取システム。
(9)
流路を通流する粒子を分取する粒子分取方法において、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する分取制御工程を行う、分取制御方法。
(10)
流路を通流する粒子を分取する際の分取条件の制御に用いるプログラムであって、
取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
分取条件を決定するパラメータを調整する、分取制御機能を、コンピュータに実現させるための制御プログラム。
1 分取制御装置
2 粒子分取装置
3 粒子分取システム
P 流路
21 光照射部
22 光検出部
23 情報処理部
1 分取制御装置
11 分取制御部
12 記憶部
13 表示部
14 ユーザーインターフェース
24 分取部
T マイクロチップ

Claims (10)

  1. 流路を通流する粒子を分取する分取方法において、
    取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
    分取条件を決定するパラメータを調整する、分取制御部を有する、分取制御装置。
  2. 前記分取制御部はさらに、サンプル液中の目標粒子のゲーティング情報に基づいて、分取条件を決定するパラメータを調整する、請求項1に記載の分取制御装置。
  3. 前記分取制御部はさらに、サンプル液中の目標粒子の濃度、目標粒子の通流数の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、請求項1に記載の分取制御装置。
  4. 前記パラメータは、取得粒子の回収率が第1の閾値以上となるディレイタイム範囲、および取得粒子の回収率が第2の閾値以上となるガードタイムから選ばれる一以上のパラメータである、請求項1に記載の分取制御方法。
  5. 前記分取条件は、前記流路への送液量、分取のための駆動電圧、分取のための駆動波形、および分取実行時間から選ばれる一以上の分取条件である、請求項1に記載の分取制御方法。
  6. 前記分取条件を決定するパラメータの調整は、擾乱発生環境下にて行われる、請求項1に記載の分取制御方法。
  7. 流路を通流する粒子を分取する粒子分取装置であって、
    サンプル液から得られる光学的情報を検出する光検出部と、
    検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、
    取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部と、
    を有する、粒子分取装置。
  8. 流路を通流する粒子を分取する粒子分取システムであって、
    サンプル液から得られる光学的情報を検出する光検出部と、
    検出された光学的情報に基づいて、前記サンプル液中から粒子を分取する分取部と、を備える分取装置と、
    取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、分取条件を決定するパラメータを調整する、分取制御部を備える制御装置と、
    を有する、粒子分取システム。
  9. 流路を通流する粒子を分取する粒子分取方法において、
    取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
    分取条件を決定するパラメータを調整する分取制御工程を行う、分取制御方法。
  10. 流路を通流する粒子を分取する際の分取条件の制御に用いるプログラムであって、
    取得粒子中の目標粒子の、目標とする純度に関する情報、目標とする収率に関する情報の少なくとも一つに基づいて、
    分取条件を決定するパラメータを調整する、分取制御機能を、コンピュータに実現させるための制御プログラム。
JP2019202720A 2019-11-07 2019-11-07 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム Pending JP2021076455A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019202720A JP2021076455A (ja) 2019-11-07 2019-11-07 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム
PCT/JP2020/034384 WO2021090573A1 (ja) 2019-11-07 2020-09-11 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム
EP20885877.9A EP4024027A4 (en) 2019-11-07 2020-09-11 DEVICE FOR SAMPLING CONTROL, DEVICE FOR PARTICLE SAMPLING AND SYSTEM FOR PARTICLE SAMPLING WITH SAMPLING CONTROL DEVICE, METHOD FOR SAMPLING CONTROL AND CONTROL PROGRAM
CN202080075770.6A CN114631013A (zh) 2019-11-07 2020-09-11 分选控制装置、使用该分选控制装置的颗粒分选装置及颗粒分选系统、用于控制分选的方法以及控制程序
US17/773,552 US20220381670A1 (en) 2019-11-07 2020-09-11 Sorting control device, particle sorting device and particle sorting system using sorting control device, sorting control method, and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202720A JP2021076455A (ja) 2019-11-07 2019-11-07 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム

Publications (1)

Publication Number Publication Date
JP2021076455A true JP2021076455A (ja) 2021-05-20

Family

ID=75849855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202720A Pending JP2021076455A (ja) 2019-11-07 2019-11-07 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム

Country Status (5)

Country Link
US (1) US20220381670A1 (ja)
EP (1) EP4024027A4 (ja)
JP (1) JP2021076455A (ja)
CN (1) CN114631013A (ja)
WO (1) WO2021090573A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074428A1 (ja) * 2021-10-29 2023-05-04 ソニーグループ株式会社 生体粒子分取装置及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20250180461A1 (en) * 2022-01-31 2025-06-05 Sony Group Corporation Biological sample analysis system, method for setting light data acquisition section in biological sample analysis system, and information processing device
EP4495576A4 (en) * 2022-03-14 2025-06-11 Sony Group Corporation Microparticle fractionating device and microparticle fractionating method
CN116359532B (zh) * 2023-03-07 2025-06-27 广州市艾贝泰生物科技有限公司 液滴分配的方法及应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199576A (en) * 1991-04-05 1993-04-06 University Of Rochester System for flexibly sorting particles
US6281018B1 (en) * 1998-02-26 2001-08-28 Coulter International Corp. Selective purification and enrichment sorting of flow cytometer droplets based upon analysis of droplet precursor regions
US9645010B2 (en) * 2009-03-10 2017-05-09 The Regents Of The University Of California Fluidic flow cytometry devices and methods
JP5720233B2 (ja) 2010-12-17 2015-05-20 ソニー株式会社 マイクロチップ及び微小粒子分取装置
US9168568B2 (en) * 2012-08-01 2015-10-27 Owl biomedical, Inc. Particle manipulation system with cytometric confirmation
JP5910412B2 (ja) * 2012-08-16 2016-04-27 ソニー株式会社 微小粒子分取方法及び微小粒子分取用マイクロチップ
WO2014062719A2 (en) * 2012-10-15 2014-04-24 Nanocellect Biomedical, Inc. Systems, apparatus, and methods for sorting particles
US10190963B2 (en) * 2013-02-01 2019-01-29 Becton, Dickinson And Company Methods and systems for assessing sample behavior in a flow cytometer
EP4332546A3 (en) * 2013-03-14 2024-06-05 Cytonome/ST, LLC Operatorless particle processing systems and methods
JP5892967B2 (ja) * 2013-03-29 2016-03-23 シスメックス株式会社 細胞分析装置、細胞測定装置の管理方法およびコンピュータプログラム
JP6186812B2 (ja) * 2013-04-04 2017-08-30 ソニー株式会社 粒子分取装置及び粒子分取方法
US11725179B2 (en) * 2015-05-12 2023-08-15 On-Chip Biotechnologies Co., Ltd. Single-particle analysis method, and system for performing said analysis
EP3460450B1 (en) * 2016-05-17 2022-03-30 Sony Group Corporation Particle extraction apparatus and particle extraction method
US11982611B2 (en) * 2017-03-20 2024-05-14 Nanocellect Biomedical, Inc. Systems, apparatuses, and methods for cell sorting and flow cytometry
WO2018216279A1 (ja) * 2017-05-26 2018-11-29 ソニー株式会社 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
JP7059747B2 (ja) * 2018-03-27 2022-04-26 ソニーグループ株式会社 微小粒子分取方法、微小粒子分取用プログラム及び微小粒子分取用システム
JP2020041881A (ja) * 2018-09-10 2020-03-19 ソニー株式会社 制御装置、該制御装置を用いた微小粒子分取装置及び微小粒子分取システム、並びに制御方法、及び制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074428A1 (ja) * 2021-10-29 2023-05-04 ソニーグループ株式会社 生体粒子分取装置及びプログラム
EP4425148A4 (en) * 2021-10-29 2025-02-19 Sony Group Corporation Biological particle isolating device and program

Also Published As

Publication number Publication date
WO2021090573A1 (ja) 2021-05-14
US20220381670A1 (en) 2022-12-01
EP4024027A4 (en) 2023-09-20
EP4024027A1 (en) 2022-07-06
CN114631013A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2021090573A1 (ja) 分取制御装置、該分取制御装置を用いた粒子分取装置及び粒子分取システム、並びに分取制御方法、及び制御プログラム
US11666946B2 (en) Microparticle sorting method and microchip for sorting microparticles
JP6642637B2 (ja) マイクロチップ
JP6597762B2 (ja) マイクロチップ型光学測定装置及び該装置における光学位置調整方法
JP5446563B2 (ja) 微小粒子分取装置、および該微小粒子分取装置を用いたフローサイトメーター
JP5905317B2 (ja) 微小粒子分取装置におけるキャリブレーション方法及び該装置
US11156544B2 (en) Microparticle analyzer and microparticle analysis method
KR20130045236A (ko) 마이크로칩 및 미립자 분석 장치
US20130056656A1 (en) Optical measuring apparatus, flow cytometer, and optical measuring method
US11530975B2 (en) Control device, microparticle sorting device and microparticle sorting system using control device, and control method
EP3633347B1 (en) Method for optimizing suction conditions for microparticles, and microparticle separation device
JP2019184337A (ja) マイクロチップ、微小粒子測定装置、及び微小粒子測定方法
Yuan et al. A 3D hydrodynamic flow-focusing device for cell sorting
JP6900952B2 (ja) 流体制御装置、微小粒子測定装置及び流体制御方法
JP2016145834A (ja) 微小粒子分取装置及びキャリブレーション用粒子
JP6801453B2 (ja) 制御装置、制御システム、解析装置、粒子分取装置、制御方法及び層流制御プログラム
JP6805560B2 (ja) 接続部材及び微小粒子測定装置
WO2019207851A1 (ja) 微小粒子測定装置及び微小粒子測定方法
JP5098650B2 (ja) 微小粒子の送流方法及び分析方法、並びに微小粒子分析用基板
JP2020051936A (ja) 微小粒子測定装置及び微小粒子測定方法
JP2022001888A (ja) フローサイトメトリーシステム、及び粒子分析方法
JP6965953B2 (ja) マイクロチップ及び微小粒子分析装置
JP6791295B2 (ja) 粒子分取装置及び粒子分取方法
JP6863377B2 (ja) 微小粒子測定装置及び微小粒子測定装置の洗浄方法
WO2023243422A1 (ja) 粒子分取システム、粒子分取方法、及び粒子分取プログラム