[go: up one dir, main page]

JP2021069322A - Method for producing cd4-positive regulatory t-cell - Google Patents

Method for producing cd4-positive regulatory t-cell Download PDF

Info

Publication number
JP2021069322A
JP2021069322A JP2019197848A JP2019197848A JP2021069322A JP 2021069322 A JP2021069322 A JP 2021069322A JP 2019197848 A JP2019197848 A JP 2019197848A JP 2019197848 A JP2019197848 A JP 2019197848A JP 2021069322 A JP2021069322 A JP 2021069322A
Authority
JP
Japan
Prior art keywords
cells
positive
ips
cell
htlv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019197848A
Other languages
Japanese (ja)
Other versions
JP7407415B2 (en
Inventor
美樹 安藤
Miki Ando
美樹 安藤
安藤 純
Jun Ando
純 安藤
翠 石井
Midori Ishii
翠 石井
則夫 小松
Norio Komatsu
則夫 小松
啓光 中内
Hiromitsu Nakauchi
啓光 中内
素生 渡部
Motoo Watanabe
素生 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
University of Tokyo NUC
Original Assignee
Juntendo University
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University, University of Tokyo NUC filed Critical Juntendo University
Priority to JP2019197848A priority Critical patent/JP7407415B2/en
Publication of JP2021069322A publication Critical patent/JP2021069322A/en
Application granted granted Critical
Publication of JP7407415B2 publication Critical patent/JP7407415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

【課題】多能性幹細胞を介してCD4陽性制御性T細胞を確率よく製造する方法を提供する。【解決手段】HTLV−1感染CD4陽性T細胞からiPS細胞を誘導する工程、及び該iPS細胞をCD4陽性制御性T細胞に分化させる工程を含む、CD4陽性制御性T細胞の製造方法。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for probabilistically producing CD4 positive regulatory T cells via pluripotent stem cells. A method for producing CD4 positive regulatory T cells, which comprises a step of inducing iPS cells from HTLV-1-infected CD4 positive T cells and a step of differentiating the iPS cells into CD4 positive regulatory T cells. [Selection diagram] None

Description

本発明は、多能性幹細胞を介してCD4陽性制御性T細胞(Treg)を製造する方法に関する。 The present invention relates to a method for producing CD4 positive regulatory T cells (Tregs) via pluripotent stem cells.

制御性T細胞(Treg)は、免疫応答抑制機能を持つため、自己免疫疾患の治療、炎症性疾患、アレルギー疾患、移植片対宿主病(GVHD)の治療や予防などに用いることが期待できる。体外で増幅させてTregを輸注し治療に用いる方法が考えられるが、Tregはin vitroでの増殖効率が悪く、凍結保存も困難である。必要時に十分なTregを安定して得ることは難しい。 Since regulatory T cells (Treg) have an immune response-suppressing function, they can be expected to be used for the treatment of autoimmune diseases, inflammatory diseases, allergic diseases, and graft-versus-host disease (GVHD). A method of amplifying it in vitro and injecting Treg to use it for treatment is conceivable, but Treg has poor growth efficiency in vitro and is difficult to cryopreserve. It is difficult to stably obtain sufficient Tregs when needed.

ヒトT細胞白血病ウイルス1型(HTLV−1)は、Tリンパ球(CD4CD25T細胞)に感染し、悪性腫瘍である成人T細胞白血病(ATL)や難治性神経疾患であるHTLV−1関連脊髄症(HTLV-1 associated myelopathy:HAM)の原因となるレトロウイルスであり、日本に現在約80万人の感染者が存在すると推定されている。HTLV−1のウイルス遺伝子の中にはTax及びHTLV−1 bZIP factor(HBZ)という2つのがん遺伝子が含まれており、これらの作用により感染細胞ががん化すると考えられている。
また、ATL細胞は、CD4CD25CCR4Foxp3であり、腫瘍細胞のオリジンは制御性T細胞に由来すると考えられている。
Human T-cell leukemia virus type 1 (HTLV-1) infects T lymphocytes (CD4 + CD25 + T cells) and is a malignant tumor, adult T-cell leukemia (ATL), and a refractory neurological disease, HTLV-1. It is a retrovirus that causes related myelopathy (HTLV-1 associated myelopathy: HAM), and it is estimated that there are currently about 800,000 infected people in Japan. The HTLV-1 viral genes include two oncogenes, Tax and HTLV-1 bZIP factor (HBZ), and it is thought that these actions cause the infected cells to become cancerous.
In addition, ATL cells are CD4 + CD25 + CCR4 + Foxp3 + , and the origin of tumor cells is considered to be derived from regulatory T cells.

一方、近年、人工多能性幹(iPS)細胞などの多能性幹細胞から各種T細胞を誘導する技術が報告されており、当該技術を利用することにより、抗腫瘍免疫応答を惹起したり、自己に対する異常あるいは過剰な免疫応答を制御する等の様々な細胞免疫療法が可能になる。 On the other hand, in recent years, a technique for inducing various T cells from pluripotent stem cells such as induced pluripotent stem (iPS) cells has been reported. Various cell-mediated immunotherapy such as controlling abnormal or excessive immune response to self becomes possible.

これまでに抗原特異的なT細胞からiPS細胞を作り、再び由来となった細胞と同じ抗原特異性を示すT細胞に分化誘導する方法が報告されている(特許文献1、特許文献2)。しかしながら、この方法ではCD8陽性T細胞の誘導はできるもののCD4陽性T細胞を誘導することは困難であり、人工的にCD4遺伝子を遺伝子導入しないと誘導できないのが実状であった。 So far, a method of producing iPS cells from antigen-specific T cells and inducing differentiation into T cells showing the same antigen specificity as the cells from which they were derived has been reported (Patent Documents 1 and 2). However, although CD8-positive T cells can be induced by this method, it is difficult to induce CD4-positive T cells, and the actual situation is that CD4 gene cannot be induced without artificial gene transfer.

国際公開第2011/096482号International Publication No. 2011/096482 特許6164746号公報Japanese Patent No. 6164746

本発明は、多能性幹細胞を介してCD4陽性制御性T細胞を確率よく製造する方法を提供することに関する。 The present invention relates to providing a method for probabilistically producing CD4 positive regulatory T cells via pluripotent stem cells.

本発明者らは、上記課題を達成すべく検討したところ、成人T細胞白血病(ATL)患者由来のHTLV−1感染CD4陽性T細胞からiPS細胞を作り、再びT細胞に分化誘導させた場合に、Tregと同じ発現型を持つCD4陽性T細胞が得られることを見出し、本発明を完成するに至った。 When the present inventors examined to achieve the above-mentioned problems, iPS cells were produced from HTLV-1-infected CD4-positive T cells derived from adult T-cell leukemia (ATL) patients and induced to differentiate into T cells again. , Have found that CD4-positive T cells having the same expression type as Treg can be obtained, and have completed the present invention.

すなわち、本発明は、以下の1)〜2)に係るものである。
1)HTLV−1感染CD4陽性T細胞からiPS細胞を誘導する工程、及び該iPS細胞をCD4陽性制御性T細胞に分化させる工程を含む、CD4陽性制御性T細胞の製造方法。
2)1)の方法により製造されたCD4陽性制御性T細胞を含有する医薬組成物。
That is, the present invention relates to the following 1) to 2).
1) A method for producing CD4 positive regulatory T cells, which comprises a step of inducing iPS cells from HTLV-1-infected CD4 positive T cells and a step of differentiating the iPS cells into CD4 positive regulatory T cells.
2) A pharmaceutical composition containing CD4 positive regulatory T cells produced by the method of 1).

本発明によれば、iPS細胞を介して、CD4遺伝子を導入すること無く、CD4陽性制御性T細胞を生産することが可能である。これにより、例えば自己に対する異常あるいは過剰な免疫応答を制御するような細胞免疫療法が可能になる。 According to the present invention, it is possible to produce CD4 positive regulatory T cells without introducing the CD4 gene via iPS cells. This allows, for example, cell immunotherapy to control an abnormal or excessive immune response against oneself.

CD4T−iPS細胞におけるTax及びHBZ遺伝子発現の確認。Confirmation of Tax and HBZ gene expression in CD4T-iPS cells. HTLV−1感染CD4T−iPSとCD4T細胞クローン由来iPSから分化誘導されたT細胞の表現型。A phenotype of T cells induced to differentiate from HTLV-1-infected CD4T-iPS and iPS derived from CD4T cell clones. HTLV−1感染CD4T−iPSより誘導したCD4陽性T細胞の表現型。Phenotype of CD4-positive T cells induced by HTLV-1-infected CD4T-iPS. TCRCβ1のサザンブロッティングによる遺伝子再構成の確認。Confirmation of gene rearrangement by Southern blotting of TCRCβ1. 分化誘導されたCD4T細胞におけるTax及びHBZ遺伝子発現の確認。Confirmation of Tax and HBZ gene expression in differentiation-induced CD4 T cells.

本発明のCD4陽性制御性T細胞の製造方法は、HTLV−1感染CD4陽性T細胞からiPS細胞を誘導する工程、及び該iPS細胞をCD4陽性T細胞に分化誘導する工程を含む。
(1)HTLV−1感染CD4陽性T細胞の単離
HTLV−1感染CD4陽性T細胞は、例えばATL患者の組織から公知の手法により単離することができる。ALT患者の組織としては、CD4陽性T細胞を含む組織、例えば、末梢血、リンパ節、骨髄、胸腺、脾臓、臍帯血、病変部組織が挙げられる。これらの中では、ヒトに対する侵襲性が低く、調製が容易であるという観点から、末梢血が好ましい。
本発明において、HTLV−1感染CD4陽性T細胞としては、CD4CD25T細胞が挙げられ、好ましくはCD4CD25CCR4T細胞であり、より好ましくはCD4CD25CCR4Foxp3T細胞である。
The method for producing a CD4 positive regulatory T cell of the present invention includes a step of inducing iPS cells from HTLV-1-infected CD4 positive T cells and a step of inducing differentiation of the iPS cells into CD4 positive T cells.
(1) Isolation of HTLV-1-infected CD4-positive T cells HTLV-1-infected CD4-positive T cells can be isolated from, for example, tissues of ATL patients by a known method. Tissues of ALT patients include tissues containing CD4-positive T cells, such as peripheral blood, lymph nodes, bone marrow, thymus, spleen, cord blood, and lesion tissue. Among these, peripheral blood is preferable from the viewpoint of low invasiveness to humans and easy preparation.
In the present invention, examples of HTLV-1-infected CD4-positive T cells include CD4 + CD25 + T cells, preferably CD4 + CD25 + CCR4 + T cells, and more preferably CD4 + CD25 + CCR4 + Foxp3 + T cells. It is a cell.

HTLV−1感染CD4陽性T細胞を単離するための公知の手法としては、例えば、細胞分離用磁気ビーズなどを用いる磁気セレクション、抗CD4抗体とセルソーターとを用いたフローサイトメトリーなどが挙げられる。 Known methods for isolating HTLV-1-infected CD4-positive T cells include, for example, magnetic selection using magnetic beads for cell separation and flow cytometry using an anti-CD4 antibody and a cell sorter.

(2)HTLV−1感染CD4陽性T細胞からiPS細胞(「CD4T−iPS細胞」と称す)の樹立
単離されたHTLV−1感染CD4陽性T細胞は、初期化してiPS細胞とされる。
ここで、「iPS細胞」とは、人工多能性幹細胞(Induced pluripotent stem cell)又は誘導性多能性幹細胞とも称される細胞であり、HTLV−1感染CD4陽性T細胞に細胞初期化因子を導入することにより誘導することができる。
「細胞初期化因子」は、前記CD4陽性T細胞に導入されることにより、単独で、又は他の分化多能性因子と協働して該体細胞に分化多能性を付与できる因子であれば特に制限されることはないが、Oct3/4、c−Myc、Sox2、Klf4、Klf5、LIN28、Nanog、ECAT1、ESG1、Fbx15、ERas、ECAT7、ECAT8、Gdf3、Sox15、ECAT15−1、ECAT15−2、Fthl17、Sal14、Rex1、Utf1、Tcl1、Stella、β−catenin、Stat3、及びGrb2からなる群から選択される少なくとも一種のタンパク質であるであることが好ましい。さらにこれらのタンパク質の中では、少ない因子で効率良くiPS細胞を樹立できるという観点から、Oct3/4、Sox2、Klf4及びc−Mycの4因子を前記CD4陽性T細胞に導入することがより好ましい。
(2) Establishment of iPS cells (referred to as "CD4T-iPS cells") from HTLV-1-infected CD4-positive T cells The isolated HTLV-1-infected CD4-positive T cells are reprogrammed into iPS cells.
Here, the "iPS cell" is a cell also referred to as an induced pluripotent stem cell or an induced pluripotent stem cell, and a cell reprogramming factor is added to the HTLV-1-infected CD4-positive T cell. It can be induced by introducing it.
The "cell reprogramming factor" may be a factor capable of imparting pluripotency to the somatic cell alone or in cooperation with other pluripotency factors by being introduced into the CD4-positive T cell. Although not particularly limited, Oct3 / 4, c-Myc, Sox2, Klf4, Klf5, LIN28, Nanog, ECAT1, ESG1, Fbx15, Eras, ECAT7, ECAT8, Gdf3, Sox15, ECAT15-1, ECAT15- It is preferably at least one protein selected from the group consisting of 2, Fthl17, Sal14, Rex1, Utf1, Tcl1, Stella, β-catenin, Stat3, and Grb2. Further, among these proteins, it is more preferable to introduce four factors of Oct3 / 4, Sox2, Klf4 and c-Myc into the CD4 positive T cells from the viewpoint that iPS cells can be efficiently established with a small number of factors.

本発明において、HTLV−1感染CD4陽性T細胞に前記細胞初期化因子を導入する方法としては特に制限はなく、公知の手法を適宜選択して、タンパク質の形態又は核酸の形態で導入することができる。例えば、前記前記細胞初期化因子をコードする核酸の形態で前記CD4陽性T細胞に導入する場合においては、当該核酸(例えば、cDNA、RNA)を、T細胞で機能するプロモーターを含む適当な発現ベクターに挿入し、該発現ベクターを感染、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、エレクトロポレーション法、CRISPR/Cas9などのゲノム編集にて細胞に導入することができる。 In the present invention, the method for introducing the cell reprogramming factor into HTLV-1-infected CD4-positive T cells is not particularly limited, and a known method can be appropriately selected and introduced in the form of protein or nucleic acid. it can. For example, when introduced into the CD4-positive T cell in the form of a nucleic acid encoding the cell reprogramming factor, the nucleic acid (eg, cDNA, RNA) is an appropriate expression vector containing a promoter that functions in the T cell. The expression vector is injected into cells by genome editing such as infection, lipofection method, liposome method, electroporation method, calcium phosphate co-precipitation method, DEAE dextran method, microinjection method, electroporation method, and CRISPR / Cas9. Can be introduced.

このような発現ベクターとしては、例えば、レンチウィルス、レトロウィルス、アデノウィルス、アデノ随伴ウィルス、ヘルペスウィルス、センダイウィルス等のウィルスベクター、動物細胞発現プラスミドが挙げられるが、挿入変異が生じにくく、また遺伝子導入効率が高く、導入される遺伝子のコピー数も多いという観点から、センダイウィルスを用いて、前記細胞初期化因子をコードする核酸を前記CD4陽性T細胞に導入することが好ましい。
かかる発現ベクターにおいて使用されるプロモーターとしては、例えばSRαプロモーター、SV40プロモーター、LTRプロモーター、CMVプロモーター、RSVプロモーター、HSV−TKプロモーター等が挙げられる。また、かかるプロモーターは薬剤(例えば、テトラサイクリン)の有無等によって、該プロモーターの下流に挿入された遺伝子の発現を制御できるものであってもよい。発現ベクターは、さらに、プロモーターの他に、エンハンサー、ポリA付加シグナル、選択マーカー遺伝子(例えば、ネオマイシン耐性遺伝子)、SV40複製起点等を含有していてもよい。
Examples of such expression vectors include virus vectors such as lentivirus, retrovirus, adenovirus, adeno-associated virus, herpesvirus, and Sendai virus, and animal cell expression plasmids, but insertion mutations are unlikely to occur and gene transfer is performed. From the viewpoint of high efficiency and a large number of copies of the gene to be introduced, it is preferable to introduce a nucleic acid encoding the cell reprogramming factor into the CD4-positive T cell using Sendai virus.
Examples of the promoter used in such an expression vector include SRα promoter, SV40 promoter, LTR promoter, CMV promoter, RSV promoter, HSV-TK promoter and the like. Further, such a promoter may be capable of controlling the expression of a gene inserted downstream of the promoter depending on the presence or absence of a drug (for example, tetracycline). In addition to the promoter, the expression vector may further contain an enhancer, a poly A addition signal, a selectable marker gene (for example, a neomycin resistance gene), an SV40 origin of replication, and the like.

また、斯かる核初期化因子の導入に際しては、核初期化因子と共にSV40 large T抗原を導入対象の細胞に発現させるのが同細胞の初期化までに要する増殖と生存率の上昇をする点で好ましい。
したがって、HTLV−1感染CD4陽性T細胞に細胞初期化因子を導入する場合の最適な態様として、Oct3/4、Sox2、Klf4及びc−Mycの4因子をコードする核酸を挿入したセンダイウィルスベクターとSV40 large T抗原をコードする核酸を挿入したセンダイウィルスベクターを前記CD4陽性T細胞に感染することが挙げられるが、他の因子を追加したセンダイウイルスベクターで樹立する、もしくはSV40 large T抗原をコードする核酸を挿入したセンダイウィルスベクターを用いずに樹立することもある。
In addition, when introducing such a nuclear reprogramming factor, expressing the SV40 large T antigen together with the nuclear reprogramming factor in the cells to be introduced increases the proliferation and survival rate required for the reprogramming of the cells. preferable.
Therefore, as an optimal mode for introducing a cell reprogramming factor into HTLV-1-infected CD4-positive T cells, a Sendai virus vector having a nucleic acid encoding the four factors of Oct3 / 4, Sox2, Klf4 and c-Myc inserted therein is used. Infection of the CD4 positive T cells with a Sendai virus vector having a nucleic acid encoding the SV40 rage T antigen inserted can be mentioned, but it can be established with a Sendai virus vector to which other factors have been added, or it encodes the SV40 rage T antigen. It may be established without using the Sendai virus vector into which the nucleic acid is inserted.

また、T−iPS細胞を樹立する際には、HTLV−1感染CD4陽性T細胞は、前記遺伝子の導入前に、インターロイキン−2(IL−2)、インターロイキン−7(IL−7)又はインターロイキン−15(IL−15)の存在下にて抗CD3抗体、抗CD28抗体によって刺激して活性化してもよく、フィトヘマグルチニン(PHA)、インターロイキン−2(IL−2)、同種抗原発現細胞、抗CD3抗体、抗CD28抗体、CD3アゴニスト及びCD28アゴニストからなる群から選択される少なくとも1の物質によって刺激して活性化してもよい。かかる刺激は、例えば、培地中に、PHA、IL−2、抗CD3抗体及び/又は抗CD28抗体等を添加して前記HTLV−1感染CD4陽性T細胞を一定期間培養することによって行うことができる。また、抗CD3抗体及び/又は抗CD28抗体は磁性ビーズ等が結合されているものであってもよく、さらにこれらの抗体を培地中に添加する代わりに、抗CD3抗体及び/又は抗CD28抗体を表面に結合させた培養ディッシュ上で前記HTLV−1感染CD4陽性T細胞を一定期間培養することによって刺激を与えてもよい。 In addition, when establishing T-iPS cells, HTLV-1-infected CD4-positive T cells are treated with interleukin-2 (IL-2), interleukin-7 (IL-7), or interleukin-7 (IL-7) before the introduction of the gene. It may be activated by stimulating with an anti-CD3 antibody or an anti-CD28 antibody in the presence of interleukin-15 (IL-15), and expresses phytohemaglutinin (PHA), interleukin-2 (IL-2), and allogeneic antigen. It may be stimulated and activated by at least one substance selected from the group consisting of cells, anti-CD3 antibody, anti-CD28 antibody, CD3 agonist and CD28 agonist. Such stimulation can be performed, for example, by adding PHA, IL-2, anti-CD3 antibody and / or anti-CD28 antibody or the like to a medium and culturing the HTLV-1-infected CD4-positive T cells for a certain period of time. .. Further, the anti-CD3 antibody and / or the anti-CD28 antibody may be one to which magnetic beads or the like are bound, and instead of adding these antibodies to the medium, an anti-CD3 antibody and / or an anti-CD28 antibody is used. Stimulation may be given by culturing the HTLV-1-infected CD4-positive T cells on a culture dish bound to the surface for a certain period of time.

前記HTLV−1感染CD4陽性T細胞を培養する培地としては、例えば、T細胞の培養に適した公知の培地(より具体的には、他のサイトカイン類、ヒト血清を含む、ロズウェルパーク記念研究所(RPMI)1640培地、AIM VTM medium、NS−A2を用いることができる。培地には、培養に必要なアミノ酸(例えば、L−グルタミン)、抗生物質(例えば、ストレプトマイシン、ペニシリン)が添加してあっても良い。 As the medium for culturing the HTLV-1-infected CD4-positive T cells, for example, a known medium suitable for culturing T cells (more specifically, other cytokines, human serum, and the RPMI 1640) (RPMI) 1640 medium, AIM VTM medium, NS-A2 can be used. The medium is supplemented with amino acids (eg, L-glutamine) and antibiotics (eg, streptomycin, penicillin) necessary for culturing. There may be.

また、前記HTLV−1感染CD4陽性T細胞に前記細胞初期化因子等を導入する際、又はその後の条件としては特に制限はないが、前記因子を導入した前記HTLV−1感染CD4陽性T細胞は、フィーダーフリー条件下で培養するのが好ましい。例えば、ラミニン511E8断片であるiMatrix-511溶液又はビトロネクチンもしくはマトリジェルでコーティングされたウェルが挙げられる。フィーダー細胞条件下での培養でも樹立可能であり、フィーダー細胞としては例えば、放射線の照射や抗生物質処理により細胞分裂を停止させたマウス胎児繊維芽細胞(MEF)、STO細胞、SNL細胞が挙げられる。 Further, the conditions for introducing the cell reprogramming factor or the like into the HTLV-1-infected CD4-positive T cells are not particularly limited, but the HTLV-1-infected CD4-positive T cells into which the factor has been introduced are not particularly limited. , It is preferable to culture under feeder-free conditions. For example, laminin 511E8 fragment iMatrix-511 solution or wells coated with vitronectin or matrigel can be mentioned. It can also be established by culturing under feeder cell conditions, and examples of feeder cells include mouse embryonic fibroblasts (MEFs), STO cells, and SNL cells whose cell division has been stopped by irradiation with radiation or treatment with antibiotics. ..

さらに、前記HTLV−1感染CD4陽性T細胞からT−iPS細胞に誘導する過程において、翌日からiPS細胞の培地を添加しておくことが好ましい。その後は1日おきに半量ずつ培地交換を行い、徐々にCTL培地からiPS培地に置換するのが好ましい。 Furthermore, in the process of inducing T-iPS cells from the HTLV-1-infected CD4-positive T cells, it is preferable to add the iPS cell medium from the next day. After that, it is preferable to replace the medium by half every other day and gradually replace the CTL medium with the iPS medium.

また、前記HTLV−1感染CD4陽性T細胞からiPS細胞への移行に合わせて、T細胞の培養に適した公知の培地から、iPS細胞の培養に適した培地に徐々に置換していきながら培養することが好ましい。かかるiPS細胞の培養に適した培地としては、公知の培地を適宜選択して用いることができ、例えば、iMatrixコーティングした場合にはStemFit AK03Nもしくはビトロネクチンでコーティングした場合にはEssential 8 Medium、マトリジェルの場合はmTeSR、MEF細胞などのフィーダー細胞上ではノックアウト血清代替物、L−グルタミン、非必須アミノ酸、2−メルカプトエタノール、及びb−FGF等を含有する、ダルベッコ変法イーグル培地/F12培地(ヒトiPS細胞培地)が望ましい。 In addition, in accordance with the transition from the HTLV-1-infected CD4-positive T cells to iPS cells, the known medium suitable for culturing T cells is gradually replaced with a medium suitable for culturing iPS cells while culturing. It is preferable to do so. As a medium suitable for culturing such iPS cells, a known medium can be appropriately selected and used. For example, in the case of iMatrix coating, StemFit AK03N or in the case of coating with Vitronectin, Essential 8 Medium, Matrigel. Dalbeco modified Eagle's medium / F12 medium (human iPS) containing knockout serum substitute, L-glutamine, non-essential amino acids, 2-mercaptoethanol, b-FGF, etc. on feeder cells such as mTeSR and MEF cells. Cell culture medium) is desirable.

このようにして前記HTLV−1感染CD4陽性T細胞から誘導したT−iPS細胞の選択は、公知の手法を適宜選択することによって行うことができる。かかる公知の手法としては、例えば、iPS細胞様コロニーの形態を顕微鏡下にて観察して選択する方法が挙げられる。また、T−iPS細胞の各コロニーを選択せず、樹立できたコロニーを全てそのまま継代する方法でもよい。 The selection of T-iPS cells derived from the HTLV-1-infected CD4-positive T cells in this way can be performed by appropriately selecting a known method. As such a known method, for example, a method of observing and selecting the morphology of iPS cell-like colonies under a microscope can be mentioned. Alternatively, a method may be used in which all the colonies that have been established are subcultured as they are without selecting each colony of T-iPS cells.

選択された細胞がT−iPS細胞であるということの確認は、例えば、選択された細胞における未分化細胞特異的マーカー(SSEA−4、Tra−1−60、及びTra−1−81等)の発現をq−PCR等によって検出する方法やALP染色で確認する方法、選択された細胞をマウスに移植して、そのテラトーマ形成を観察する方法により行うことができる。また、このようにして選択された細胞が前記HTLV−1感染CD4陽性T細胞由来であることの確認は、Tax、HBZ遺伝子の定量をqPCRによって検出することにより行うことができる。 Confirmation that the selected cells are T-iPS cells can be determined, for example, by using undifferentiated cell-specific markers (SSEA-4, Tra-1-60, and Tra-1-81, etc.) in the selected cells. It can be carried out by a method of detecting expression by q-PCR or the like, a method of confirming by ALP staining, or a method of transplanting selected cells into mice and observing their teratoma formation. Further, confirmation that the cells selected in this manner are derived from the HTLV-1-infected CD4-positive T cells can be performed by detecting the quantification of Tax and HBZ genes by qPCR.

これらの細胞を選択して回収する時期は、コロニーの生育状態を観察しながら、適宜決定することができ、概ね、前記細胞初期化因子を前記HTLV−1感染CD4陽性T細胞に導入してから10〜40日、好ましくは14日〜28日である。培養環境としては、上記にて特に断りのない限り、好ましくは、5%CO2、35〜38℃、より好ましくは37℃の条件である。低酸素培養環境下(酸素濃度:例えば、5%)においてもコロニーの効率良い生育が観察できる。 The timing for selecting and collecting these cells can be appropriately determined while observing the growth state of the colony, and is generally after the cell reprogramming factor is introduced into the HTLV-1-infected CD4-positive T cells. It is 10 to 40 days, preferably 14 to 28 days. Unless otherwise specified, the culture environment is preferably 5% CO 2 , 35 to 38 ° C, and more preferably 37 ° C. Efficient growth of colonies can be observed even in a hypoxic culture environment (oxygen concentration: for example, 5%).

(3)T−iPS細胞からCD4陽性制御性T細胞への分化誘導
樹立されたCD4T−iPS細胞をCD4陽性制御性T細胞へ分化させるためには、中胚葉系への分化を誘導し易くするという観点から、先ずはT−iPS細胞をフィーダー細胞(好ましくはストローマ細胞、より好ましくはヒトストローマ細胞)上にて、VEGF、血清(例えば、ウシ胎児血清(FBS))、インスリン、トランスフェリン、L−グルタミン、α−モノチオグリセロール、アスコルビン酸等を含有する培地中にて培養することが好ましい。用いるストローマ細胞としては、造血系への分化を誘導し易くするという観点から、OP9細胞、10T1/2細胞(C3H10T1/2細胞)であることが好ましい。
また、培地としては、例えば、X−VIVO培地、イスコフ改変ダルベッコ培地(IMDM培地)、α−MEM、DMEMが挙げられるが、造血前駆細胞等の誘導細胞を含有する袋状の構造物(「T−iPSサック」とも称する)の形成効率が高いという観点から、IMDM培地が好ましい。このT−iPS細胞の培養期間としては、T−iPSサックを形成するまでの期間であることが好ましく、T−iPS細胞の培養を開始してから好ましくは8〜14日間、より好ましくは10〜14日間である。培養環境としては、特に制限はないが、好ましくは、5%CO、35〜38℃、より好ましくは37℃の条件である。また、T−iPSサックの形成効率が高く、T−iPSサックに含まれる血球細胞の数が多いという観点から、7日間は低酸素濃度条件(酸素濃度:例えば、5%)下にて培養することがより好ましい。
(3) Induction of differentiation of T-iPS cells into CD4 positive regulatory T cells In order to differentiate established CD4T-iPS cells into CD4 positive regulatory T cells, it is easy to induce differentiation into the mesophyll lineage. From this point of view, first, T-iPS cells are placed on feeder cells (preferably stromal cells, more preferably human stromal cells), VEGF, serum (for example, bovine fetal serum (FBS)), insulin, transferase, L-. It is preferable to culture in a medium containing glutamine, α-monothioglycerol, ascorbic acid and the like. The stromal cells used are preferably OP9 cells and 10T1 / 2 cells (C3H10T1 / 2 cells) from the viewpoint of facilitating the induction of differentiation into the hematopoietic system.
Examples of the medium include X-VIVO medium, Iskoff-modified Dalveco medium (IMDM medium), α-MEM, and DMEM, and a bag-shaped structure containing induced cells such as hematopoietic progenitor cells (“T”). IMDM medium is preferable from the viewpoint of high formation efficiency (also referred to as "iPS sack"). The culture period of the T-iPS cells is preferably a period until the formation of the T-iPS sack, preferably 8 to 14 days after the start of the culture of the T-iPS cells, and more preferably 10 to 10 days. 14 days. The culture environment is not particularly limited, but is preferably 5% CO 2 , 35 to 38 ° C, and more preferably 37 ° C. Further, from the viewpoint that the formation efficiency of the T-iPS sack is high and the number of blood cells contained in the T-iPS sack is large, the cells are cultured under a low oxygen concentration condition (oxygen concentration: for example, 5%) for 7 days. Is more preferable.

次いで、得られたサックに含有されている誘導細胞(造血前駆細胞等)を、サイトカインやFCS等を含有するα−MEM培地中におけるストローマ細胞上で培養する。なお、かかるサック状構造物の内部に存在する細胞は、物理的な手段、例えば、滅菌済みの篩状器具(例えば、セルストレイナーなど)に通すことにより、分離することができる。この培養に用いるフィーダー細胞としては、Notch受容体リガンドを発現するOP9細胞、10T1/2細胞であることが好ましい。培地に添加するサイトカインとしては、IL−7、FLT3L、SCF、TPOが好ましい。 Next, the induced cells (hematopoietic progenitor cells and the like) contained in the obtained sack are cultured on stromal cells in α-MEM medium containing cytokines, FCS and the like. The cells existing inside the sack-like structure can be separated by passing them through a physical means, for example, a sterilized sieve device (for example, a cell strainer). The feeder cells used for this culture are preferably OP9 cells and 10T1 / 2 cells expressing Notch receptor ligand. As the cytokine to be added to the medium, IL-7, FLT3L, SCF, and TPO are preferable.

このT−iPSサックに含有されている誘導細胞の培養期間としては、T−iPSサックに含有されている細胞の培養を開始してから約28日間であることが好ましい。培養環境としては、特に制限はないが、好ましくは、5%CO、35〜38℃、より好ましくは37℃の条件である。
尚、Treg様のphenotypeが発現しているか否かは、抗CD34抗体、抗CD45抗体、抗CD3抗体、抗CD4抗体、抗CD25抗体、FOXP−3、抗CCR4抗体等を用いた細胞内染色後のフローサイトメトリーにより評価することができる。
The culture period of the induced cells contained in the T-iPS sack is preferably about 28 days after the start of culturing the cells contained in the T-iPS sack. The culture environment is not particularly limited, but is preferably 5% CO 2 , 35 to 38 ° C, and more preferably 37 ° C.
Whether or not Treg-like flow cytometry is expressed is determined after intracellular staining with anti-CD34 antibody, anti-CD45 antibody, anti-CD3 antibody, anti-CD4 antibody, anti-CD25 antibody, FOXP-3, anti-CCR4 antibody and the like. It can be evaluated by the flow cytometry of.

次いで、誘導された細胞のT細胞受容体に刺激を与える。T細胞受容体に刺激を与える方法としては、抗CD3抗体、抗CD28抗体、X線照射した末梢血単核球にPHA等を添加して前記誘導細胞を一定期間培養することによって行うことができる。 It then stimulates the T cell receptors of the induced cells. The method of stimulating the T cell receptor can be carried out by adding PHA or the like to anti-CD3 antibody, anti-CD28 antibody, X-ray-irradiated peripheral blood mononuclear cells, and culturing the induced cells for a certain period of time. ..

斯くして分化誘導された細胞は、TCR遺伝子再構成の状態をゲノムPCRによって検出することや細胞内染色を用いたフローサイトメトリーにより、該T−iPS細胞の元となったCD4陽性T細胞(例えば、CD4CD25CCR4Foxp3T細胞)由来であることを確認することができる。 The cells thus induced to differentiate are the CD4-positive T cells (CD4-positive T cells) that are the source of the T-iPS cells by detecting the state of TCR gene rearrangement by genomic PCR and by flow cytometry using intracellular staining. For example, it can be confirmed that it is derived from CD4 + CD25 + CCR4 + Foxp3 + T cells).

斯くして得られたCD4陽性制御性T細胞は、公知の手法を適宜選択して単離することができる。かかる公知の手法としては、例えば、CD4等の細胞表面マーカーに対する抗体と、セルソーターとを用いたフローサイトメトリーが挙げられる。 The CD4 positive regulatory T cells thus obtained can be isolated by appropriately selecting a known method. Examples of such a known method include flow cytometry using an antibody against a cell surface marker such as CD4 and a cell sorter.

本発明の方法によって製造したCD4陽性制御性T細胞は、免疫応答抑制機能を有するため、例えば、自己免疫疾患、炎症性疾患、アレルギー疾患、移植片対宿主病(GVHD)の治療又は予防のために用いることができる。従って、本発明は、本発明の方法によって製造したCD4陽性制御性T細胞を含む医薬組成物を提供する。 Since the CD4 positive regulatory T cells produced by the method of the present invention have an immune response inhibitory function, for example, for the treatment or prevention of autoimmune diseases, inflammatory diseases, allergic diseases, and graft-versus-host diseases (GVHD). Can be used for. Therefore, the present invention provides a pharmaceutical composition containing CD4 positive regulatory T cells produced by the method of the present invention.

本発明の医薬組成物は、本発明の方法によって製造したCD4陽性制御性T細胞を、公知の製剤学的方法により製剤化することにより調製することができる。例えば、注射剤(静脈注射剤、点滴注射剤等)、カプセル剤、液剤、フィルムコーティング剤などとして、主に非経口的に使用することができる。 The pharmaceutical composition of the present invention can be prepared by formulating CD4 positive regulatory T cells produced by the method of the present invention by a known pharmaceutical method. For example, it can be mainly used parenterally as an injection (intravenous injection, drip injection, etc.), capsule, liquid, film coating, or the like.

これら製剤化においては、薬理学上許容される担体又は媒体、具体的には、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、溶解補助剤あるいはその他の添加剤等と適宜組み合わせることができる。また、前記疾患の治療又は予防に用いられる公知の医薬組成物や免疫賦活剤等と併用してもよい。 In these formulations, pharmacologically acceptable carriers or vehicles, specifically sterile water or saline, vegetable oils, solvents, bases, emulsifiers, suspending agents, surfactants, stabilizers, vehicles, etc. Appropriately combine with preservatives, binders, diluents, tonicity agents, soothing agents, bulking agents, disintegrants, buffers, coating agents, lubricants, colorants, solubilizers or other additives. Can be done. In addition, it may be used in combination with a known pharmaceutical composition or immunostimulatory agent used for the treatment or prevention of the disease.

本発明の医薬組成物を投与する場合、その投与量は、対象の年齢、体重、症状、健康状態、組成物の種類(医薬品、飲食品など)などに応じて、適宜選択される。 When the pharmaceutical composition of the present invention is administered, the dose thereof is appropriately selected according to the age, weight, symptom, health condition, type of composition (pharmaceutical product, food and drink, etc.) of the subject.

以下に実施例を挙げて本発明をさらに説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

実施例1 HTLV−1感染CD4陽性T細胞からCD4陽性T細胞(Treg)の製造
(1)HTLV−1感染CD4陽性T細胞の単離
ATL患者の末梢血より末梢血単核球を分離後、CD4ビーズでポジティブセレクションを行いCD4陽性T細胞を単離した。得られたT細胞の表現型を、各種細胞表面マーカーを用いてフローサイトメトリーにて分析して、CD3CD4CD25強陽性であることを確認した。
Example 1 Production of CD4-positive T cells (Treg) from HTLV-1-infected CD4-positive T cells (1) Isolation of HTLV-1-infected CD4-positive T cells After isolation of peripheral blood mononuclear cells from the peripheral blood of ATL patients, CD4 positive T cells were isolated by positive selection with CD4 beads. The phenotype of the obtained T cells was analyzed by flow cytometry using various cell surface markers, and it was confirmed that they were strongly positive for CD3CD4CD25.

(2)T−iPS細胞の樹立
(1)で取得したHTLV−1感染CD4陽性T細胞に、核初期化因子(Oct4,Sox2,Klf4,c−Myc)を含むセンダイウイルス(SeV)ベクター(SeVp[KOSM302L])と、SV40 large T抗原をコードする核酸を含むSeVベクターを感染させて遺伝子導入した。
iMatrixでコートした6wellプレートに遺伝子導入後のT細胞を移動し、IL−2を加えたT細胞培地(培地の組成:RPMI、10%ヒトAB血清)にて、COインキュベーターで培養した。
遺伝子導入の翌日に、iPSメディウム(StemFitAK03N)を等量加え、その後は1日おきに半量ずつStem FitAK03Nに置換した。
21日後にT−iPS細胞のコロニーが観察でき、その後コロニーピックアップを行った。
(2) Establishment of T-iPS cells Sendai virus (SeV) vector (SeVp) containing nuclear reprogramming factors (Oct4, Sox2, Klf4, c-Myc) in HTLV-1-infected CD4-positive T cells obtained in (1). [KOSM302L]) and a SeV vector containing a nucleic acid encoding the SV40 rage T antigen were infected and the gene was introduced.
T cells after gene transfer were transferred to a 6-well plate coated with iMatrix and cultured in a CO 2 incubator in a T cell medium containing IL-2 (medium composition: RPMI, 10% human AB serum).
The day after the gene transfer, an equal amount of iPS medium (StemFitAK03N) was added, and thereafter, half the amount was replaced with StemFitAK03N every other day.
After 21 days, colonies of T-iPS cells could be observed, and then colony pickup was performed.

(3)CD4T−iPS細胞からCD4陽性細胞への分化誘導
(2)で得られたT−iPS細胞を細かく砕きフィーダー細胞である10T1/2上でVEGF、FBS、インスリン、トランスフェリン、L−グルタミン、α−モノチオグリセロール、アスコルビン酸等を含有する培地中にて最初の1週間を低酸素培養、次の1週間を20%酸素濃度のインキュベーターで培養した。その後Notch Ligandが発現する10T1/2フィーダー細胞上で更に4週間サイトカイン(IL−7、FLT3L、SCF)と共に、1週間に1回新たなフィーダー細胞に載せかえながら培養し、4週間後に浮遊細胞を全て回収し、T細胞受容体(TCR)刺激した。TCR刺激はX線照射した同種末梢血単核球とPHA、もしくは抗CD3/CD28抗体で約2週間ごとに刺激した。
(3) Induction of differentiation of CD4T-iPS cells into CD4-positive cells VEGF, FBS, insulin, transferase, transferase, L-glutamine, on 10T1 / 2, which is a feeder cell, by finely crushing the T-iPS cells obtained in (2). The first week was hypoxic cultured in a medium containing α-monothioglycerol, ascorbic acid and the like, and the next week was cultured in an incubator with a 20% oxygen concentration. After that, the cells were cultured on 10T1 / 2 feeder cells expressing Notch Ligand together with cytokines (IL-7, FLT3L, SCF) for another 4 weeks while being transferred to new feeder cells once a week, and the floating cells were cultured after 4 weeks. All were harvested and stimulated with T cell receptor (TCR). TCR stimulation was stimulated with X-ray-irradiated allogeneic peripheral blood mononuclear cells and PHA, or anti-CD3 / CD28 antibody approximately every 2 weeks.

(4)結果と考察
CD4T−iPS細胞のTaxとHBZ遺伝子の発現をqPCRで確認した(図1)。 もとのHTLV−1感染CD4陽性T細胞(ATL PBMC)と比較し、CD4T−iPS細胞(CD4T−iPS)のTax遺伝子とHBZ遺伝子の発現は1/1000以下に低下していた。
(4) Results and discussion The expression of Tax and HBZ genes in CD4T-iPS cells was confirmed by qPCR (Fig. 1). Compared with the original HTLV-1-infected CD4-positive T cells (ATL PBMC), the expression of the Tax gene and the HBZ gene in the CD4T-iPS cells (CD4T-iPS) was reduced to 1/1000 or less.

図2にCD4T−iPSから分化誘導により得られたT細胞の表現型を、細胞内染色を行いフローサイトメトリーにて解析した結果を示す。コントロールとして健常人由来CD4T細胞クローンから樹立したCD4T cell clone−iPSから同時にCD4T細胞の分化誘導を試みている。HTLV−1感染CD4T細胞由来CD4T−iPS細胞から分化誘導を行うと、CD4T細胞が多数誘導されている(No.1:20%、No.2:20.9%)。さらにCD4陽性細胞にゲートしてFOXP3とCD25の発現を確認したところダブルポジティブの細胞が確認できた。一方でHTLV−1感染のないCD4T細胞から誘導したT−iPS細胞からはCD4陽性T細胞はわずか1.57%しか誘導されず、FOXP3,CD25陽性細胞は0%であった。図3に示すようにHTLV−1感染CD4T−iPSより誘導したCD4陽性T細胞はFOXP3陽性、CCR4陽性、CD25陽性でありTreg様のフェノタイプを示した。図4に示すようにサザンブロット法でTCRCβ1の再構成を確認すると、もとのATL細胞は腫瘍性のクローン性増殖を認めるが、樹立したiPS細胞と分化誘導したCD4T細胞には腫瘍性のクローン性増殖を認めなかった。また図5に示すように、分化誘導したCD4T細胞はTax,HBZの発現も消失していた。 FIG. 2 shows the results of intracellular staining and analysis of the phenotype of T cells obtained from CD4T-iPS by induction of differentiation by flow cytometry. As a control, we are trying to induce the differentiation of CD4 T cells from CD4 + T cell cellone-iPS established from healthy human-derived CD4 T cell clones at the same time. When differentiation induction was performed from HTLV-1-infected CD4T cell-derived CD4T-iPS cells, a large number of CD4T cells were induced (No. 1: 20%, No. 2: 20.9%). Furthermore, when the expression of FOXP3 and CD25 was confirmed by gated to CD4 positive cells, double positive cells were confirmed. On the other hand, only 1.57% of CD4-positive T cells were induced from T-iPS cells derived from CD4 T cells not infected with HTLV-1, and 0% of FOXP3 and CD25-positive cells. As shown in FIG. 3, the CD4-positive T cells induced by HTLV-1-infected CD4T-iPS were FOXP3-positive, CCR4-positive, and CD25-positive, and showed a Treg-like phenotype. When the rearrangement of TCRCβ1 was confirmed by Southern blotting as shown in FIG. 4, the original ATL cells showed neoplastic clonal proliferation, but the established iPS cells and the CD4T cells induced to differentiate were neoplastic clones. No sexual proliferation was observed. In addition, as shown in FIG. 5, the expression of Tax and HBZ was also abolished in the differentiation-induced CD4T cells.

これより、通常のiPS細胞からはCD4T細胞の誘導は極めて困難でありTregのフェノタイプも確認できなかったが、HTLV−1感染CD4T細胞から樹立したCD4T−iPS細胞からCD4陽性制御性T細胞が誘導できることを確認した。分化誘導したCD4T細胞は腫瘍性のクローン性増殖を認めず、またHTLV−1感染で陽性となるTax,HBZの発現も消失しているため、細胞治療に使用できることが期待できる。 From this, it was extremely difficult to induce CD4T cells from normal iPS cells, and the phenotype of Treg could not be confirmed, but CD4 positive regulatory T cells were found from CD4T-iPS cells established from HTLV-1-infected CD4T cells. It was confirmed that it could be induced. Differentiation-induced CD4T cells do not show neoplastic clonal proliferation, and the expression of Tax and HBZ, which are positive for HTLV-1 infection, has disappeared, so that they can be expected to be used for cell therapy.

制御性T細胞(Treg)は免疫応答抑制機能を持つため、自己免疫疾患の治療、炎症性疾患、アレルギー疾患、移植片対宿主病(GVHD)の治療や予防などに用いることが期待できる。体外で増幅させてTregを輸注し治療に用いる方法が考えられるが、Tregはin vitroでの増殖効率が悪く、凍結保存も困難である。必要時に十分なTregを安定して得ることは難しい。これまでに抗原特異的なT細胞からiPS細胞を作り、再び由来となった細胞と同じ抗原特異性を示すT細胞に分化誘導する方法が報告されている(前記特許文献1、特許文献2)。しかしながら、この方法ではCD8陽性T細胞の誘導はできるものCD4陽性T細胞を誘導することは困難であり、人工的にCD4遺伝子を遺伝子導入しないと誘導できないのが実状であった。本発明によれば、HTLV−1感染CD4T細胞から樹立したCD4T−iPS細胞からであればCD4遺伝子導入を行わずにCD4陽性制御性T細胞の誘導が可能である。分化誘導したCD4陽性制御性T細胞は腫瘍性のクローン性増殖を認めず、またHTLV−1感染で陽性となるTax,HBZの発現も消失しているため、免疫応答を抑制する細胞治療に使用できることが期待できる。 Since regulatory T cells (Treg) have an immune response-suppressing function, they can be expected to be used for the treatment of autoimmune diseases, inflammatory diseases, allergic diseases, and graft-versus-host disease (GVHD). A method of amplifying it in vitro and injecting Treg to use it for treatment is conceivable, but Treg has poor growth efficiency in vitro and is difficult to cryopreserve. It is difficult to stably obtain sufficient Tregs when needed. So far, a method of producing iPS cells from antigen-specific T cells and inducing differentiation into T cells showing the same antigen specificity as the cells from which they were derived again has been reported (Patent Documents 1 and 2). .. However, although CD8-positive T cells can be induced by this method, it is difficult to induce CD4-positive T cells, and the actual situation is that CD4 genes cannot be induced without artificial gene transfer. According to the present invention, it is possible to induce CD4 positive regulatory T cells from CD4T-iPS cells established from HTLV-1-infected CD4T cells without introducing the CD4 gene. Differentiation-induced CD4 positive regulatory T cells do not show neoplastic clonal proliferation, and the expression of Tax and HBZ, which are positive for HTLV-1 infection, has disappeared, so they are used for cell therapy that suppresses the immune response. You can expect to be able to do it.

Claims (2)

HTLV−1感染CD4陽性T細胞からiPS細胞を誘導する工程、及び該iPS細胞をCD4陽性制御性T細胞に分化させる工程を含む、CD4陽性制御性T細胞の製造方法。 A method for producing CD4 positive regulatory T cells, which comprises a step of inducing iPS cells from HTLV-1-infected CD4 positive T cells and a step of differentiating the iPS cells into CD4 positive regulatory T cells. 請求項1記載の方法により製造されたCD4陽性制御性T細胞を含有する医薬組成物。 A pharmaceutical composition containing CD4 positive regulatory T cells produced by the method according to claim 1.
JP2019197848A 2019-10-30 2019-10-30 Method for producing CD4-positive regulatory T cells Active JP7407415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197848A JP7407415B2 (en) 2019-10-30 2019-10-30 Method for producing CD4-positive regulatory T cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197848A JP7407415B2 (en) 2019-10-30 2019-10-30 Method for producing CD4-positive regulatory T cells

Publications (2)

Publication Number Publication Date
JP2021069322A true JP2021069322A (en) 2021-05-06
JP7407415B2 JP7407415B2 (en) 2024-01-04

Family

ID=75711721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197848A Active JP7407415B2 (en) 2019-10-30 2019-10-30 Method for producing CD4-positive regulatory T cells

Country Status (1)

Country Link
JP (1) JP7407415B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182328A1 (en) * 2022-03-23 2023-09-28 国立大学法人京都大学 Method for producing regulatory t cells
WO2024248157A1 (en) * 2023-05-31 2024-12-05 学校法人順天堂 Pluripotent stem cell-derived cd4-positive t cells, method for production thereof, and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164746B2 (en) * 2012-05-22 2017-07-19 国立大学法人 東京大学 Method for producing antigen-specific T cells
JP2018038409A (en) * 2010-02-03 2018-03-15 国立大学法人 東京大学 Method for reconstructing immune function using pluripotent stem cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038409A (en) * 2010-02-03 2018-03-15 国立大学法人 東京大学 Method for reconstructing immune function using pluripotent stem cells
JP6164746B2 (en) * 2012-05-22 2017-07-19 国立大学法人 東京大学 Method for producing antigen-specific T cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NATURE, vol. 341, JPN6023033785, 1989, pages 72 - 74, ISSN: 0005132647 *
住田孝之: "自己免疫疾患のイノベーション研究 シェーグレン症候群由来iPS細胞を用いた疾患特異的治療戦略開発に関す", 自己免疫疾患のイノベーション研究 平成26年度 委託業務成果報告書, JPN6023033786, 2015, pages 19 - 20, ISSN: 0005132645 *
日本臨床免疫学会会誌, vol. 37, JPN6023033787, 2014, pages 117 - 124, ISSN: 0005132646 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182328A1 (en) * 2022-03-23 2023-09-28 国立大学法人京都大学 Method for producing regulatory t cells
WO2024248157A1 (en) * 2023-05-31 2024-12-05 学校法人順天堂 Pluripotent stem cell-derived cd4-positive t cells, method for production thereof, and use thereof

Also Published As

Publication number Publication date
JP7407415B2 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP7440027B2 (en) Method for inducing T cells for immune cell therapy from pluripotent stem cells
US8945922B2 (en) Generating a mature NKT cell from a reprogrammed somatic cell with a T-cell antigen receptor α-chain region rearranged to uniform Va-Ja in a NKT-cell specific way
JP7092281B2 (en) Methods and kits for generating mimic innate immune cells from pluripotent stem cells
JP2021000108A (en) Method for producing antigen-specific T cells
WO2017179720A1 (en) Method for inducing cd8+ t cells
US20250084145A1 (en) Method for establishing pluripotent stem cells bearing genes encoding antigen specific t cell receptor
Kunisato et al. Direct generation of induced pluripotent stem cells from human nonmobilized blood
JPWO2016010155A1 (en) Method for producing pluripotent stem cells having antigen-specific T cell receptor gene
JPWO2010027062A1 (en) B cell-derived iPS cells and uses thereof
JP7407415B2 (en) Method for producing CD4-positive regulatory T cells
US10813950B2 (en) Immunotherapy using allo-NKT cells, cells for immunotherapy in which alpha chain of t-cell receptor (TCR) gene has been rearranged to uniform Vα-Jα, and banking of NKT cells derived from said cells
JPWO2016010153A1 (en) Method for inducing T cells for immune cell therapy
US20230071538A1 (en) Cytotoxic t cells derived from human t cell-derived ips cells
WO2022220146A1 (en) Cell bank composed of ips cells for introducing t cell receptor gene
US20220233665A1 (en) Medicinal composition
WO2017159087A1 (en) Method for inducing ny-eso1 antigen-specific t cells for immune cell therapy
WO2024248157A1 (en) Pluripotent stem cell-derived cd4-positive t cells, method for production thereof, and use thereof
JP2025090024A (en) T-cell receptor for cytotoxic T lymphocytes specific for Tax antigen encoded by HTLV-1 or functional fragment thereof
JP2022152704A (en) T cell receptor for Tax antigen-specific cytotoxic T lymphocytes encoded by HTLV-1 or a functional fragment thereof
WO2024190905A1 (en) T-cell receptor for hpv-specific cytotoxic t-cell, or functional fragment thereof
JP2024154083A (en) SARS-CoV-2-specific cytotoxic T lymphocyte T cell receptor or functional fragment thereof
Du Co-Expansion of Gamma Delta T Cells and Cytokine Induced Killer Cells for Adoptive Immune Cell Therapy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7407415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150