[go: up one dir, main page]

JP2021065834A - Bottom sediment environmental improvement material - Google Patents

Bottom sediment environmental improvement material Download PDF

Info

Publication number
JP2021065834A
JP2021065834A JP2019192607A JP2019192607A JP2021065834A JP 2021065834 A JP2021065834 A JP 2021065834A JP 2019192607 A JP2019192607 A JP 2019192607A JP 2019192607 A JP2019192607 A JP 2019192607A JP 2021065834 A JP2021065834 A JP 2021065834A
Authority
JP
Japan
Prior art keywords
liquid
sediment
improving
microbial
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019192607A
Other languages
Japanese (ja)
Other versions
JP7276850B2 (en
Inventor
善博 河津
Yoshihiro Kawazu
善博 河津
浩一 福岡
Koichi Fukuoka
浩一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torizen Oceans Co Ltd
Original Assignee
Torizen Oceans Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torizen Oceans Co Ltd filed Critical Torizen Oceans Co Ltd
Priority to JP2019192607A priority Critical patent/JP7276850B2/en
Publication of JP2021065834A publication Critical patent/JP2021065834A/en
Application granted granted Critical
Publication of JP7276850B2 publication Critical patent/JP7276850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

To provide a bottom sediment environmental improvement material which causes no change in quality in distribution and storage, is excellent in handling property, is hardly flown away with a water flow, exhibits a part where useful bacterial are aggregated with a comparatively high concentration in a bottom in a timed manner, and then is spread over the bottom and can give an improvement effect over a wide range.SOLUTION: A bottom sediment environmental improvement material stores liquid wetting peat moss obtained by impregnating 15-25 pts.wt. of dry peat moss with a bottom sediment improving microbial fermentation liquid in a supersaturated state, and 150-155 pts.wt. of particulate steel slag, in a mesh-like bag formed of a biodegradable resin.SELECTED DRAWING: None

Description

本発明は、海や湖、池や川などの底質の環境を改善するための資材に関する。 The present invention relates to materials for improving the environment of sediments such as seas, lakes, ponds and rivers.

海や湖、池や川などの水辺の底の状態は、海面漁業や内水面漁業をはじめ、様々な水産業に大きな影響を与えることが知られている。 It is known that the condition of the bottom of water such as the sea, lakes, ponds and rivers has a great influence on various fisheries including sea surface fisheries and inland fisheries.

特に、底質のヘドロ化が進行すると、酸素供給が不充分で腐敗が進み硫化水素臭等の悪臭を発したり、海面の変色など景観上の問題を生じせしめ、更には船舶の航行を困難にすることもある。 In particular, when sludge of the bottom sediment progresses, the oxygen supply is insufficient and putrefaction progresses, causing bad odors such as hydrogen sulfide odor, causing landscape problems such as discoloration of the sea surface, and further making it difficult for ships to navigate. Sometimes.

そこで、底質環境の改善を行うべく浚渫作業が行われることもあるが、ヘドロを浚った窪みに再びヘドロが堆積するなどして、底質環境を根本的に改善するのは難しいのが現状である。 Therefore, dredging work may be carried out to improve the sediment environment, but it is difficult to fundamentally improve the sediment environment because sludge accumulates again in the dents where sludge has been dredged. The current situation.

そこで近年、微生物資材を水域に沈めて底質環境を改善させるよう構成した底質環境改善資材が提案されている(例えば、特許文献1参照。)。 Therefore, in recent years, a sediment environment improving material configured to improve the sediment environment by submerging the microbial material in a water area has been proposed (see, for example, Patent Document 1).

このような底質環境改善資材によれば、底部に新たな環境改善微生物を生着させることができ、底質の改善を図ることができるとしている。 According to such a sediment environment improving material, new environment improving microorganisms can be engrafted on the bottom, and the sediment can be improved.

特開2016−069594号公報Japanese Unexamined Patent Publication No. 2016-609594

しかしながら、上記従来の底質環境改善資材は生菌を使用していることから、流通時や保管時においても繁殖や発酵が進んでしまうため、品質が変化しやすいという問題があった。 However, since the above-mentioned conventional sediment environment improving material uses live bacteria, there is a problem that the quality is liable to change because the reproduction and fermentation proceed even during distribution and storage.

また、潮の満ち引きや川の流れなど、水流によって資材が移動してしまい、底質改善を行いたい部位に資材を留めておくことが困難という問題もある。ただこの場合にも、所定期間が経過した後はできるだけ広い範囲に底質の環境改善効果を波及させたいため、資材を散逸させることができればより望ましいといえる。 In addition, there is also a problem that it is difficult to keep the material in the part where the bottom sediment is to be improved because the material moves due to the water flow such as the ebb and flow of the tide and the flow of the river. However, even in this case, it is more desirable if the materials can be dissipated because it is desired to spread the environmental improvement effect of the sediment over as wide a range as possible after the lapse of a predetermined period.

本発明は、斯かる事情に鑑みてなされたものであって、流通時や保管時は品質が変化しにくく、ハンドリングに優れ、また、水流によって流されにくく、更には、有用菌が比較的高濃度で集合した部位を時限的に底部に出現させ、その後底部に拡散して広範囲に改善効果をもたらすことが可能な底質環境改善資材を提供する。 The present invention has been made in view of such circumstances, and the quality does not easily change during distribution or storage, the handling is excellent, the water flow does not easily wash away, and the useful bacteria are relatively high. Provided is a sediment environment improving material capable of causing a part gathered at a concentration to appear at the bottom in a timely manner and then diffusing to the bottom to bring about a wide range of improvement effects.

上記従来の課題を解決するために、本発明に係る底質環境改善資材では、15〜25重量部の乾燥水苔に底質改善微生物発酵液を過飽和状態に含浸させた液濡水苔と、150〜155重量部の粒状の鉄鋼スラグと、を生分解性樹脂にて形成したメッシュ状の袋内に収容してなることとした。 In order to solve the above-mentioned conventional problems, the bottom sediment environment improving material according to the present invention includes liquid wet slag obtained by impregnating 15 to 25 parts by weight of dried moss with a fermentation broth for improving bottom sediment in a hypersaturated state. It was decided to house 150 to 155 parts by weight of granular steel slag in a mesh-shaped bag made of biodegradable resin.

また、前記底質改善微生物発酵液は、0.6重量部の乾燥ステビア茎粉末と、0.6重量部の米ぬか粉末と、0.6重量部の乾燥おから粉末と、耐塩性の酵母を少なくとも含有する11〜13重量部の汽水と、を混合した混合液を所定時間静置する静置工程と、前記静置工程を経た混合液を所定の容器に収容し、収容された混合液に同混合液の収容形状の外表面上のいずれの位置からも10cm以上であり、且つ、外表面上の少なくともいずれかの位置から17cm以下となる弱殺菌領域を形成する容器収容工程と、前記容器収容工程を経て混合液を収容した所定の容器を加熱空間内に配置し、同加熱空間を常温常圧の状態から約2.5気圧で150〜160℃の状態にまで45〜60分掛けて昇温し、約2.5気圧で150〜160℃の状態を1〜3分間維持し、その後加熱空間を約2気圧で115〜125℃の状態にまで3〜5分間掛けて降温設定し、約2気圧で115〜125℃の状態を20〜40分間維持し、更に加熱空間を常温常圧の状態にまで24〜30時間掛けて降温させて、前記混合液中に加熱選抜された微生物を残存させる微生物選抜工程と、少なくとも微生物が液相に移行可能な手段により前記微生物選抜工程を経た混合液を固液分離して微生物含有液を得る固液分離工程と、得られた微生物含有液に糖源を添加して常温常圧で所定時間発酵し、微生物含有液のpHを4.5以下で、且つ、酸化還元電位を-100mV以下とする第1の発酵工程と、第1の発酵工程を経た微生物含有液にステビア茎の熟成液を添加してpHが3.1以下となるまで発酵させて不良発酵防止剤とする第2の発酵工程と、を得て得られた発酵液であることにも特徴を有する。 In addition, the sediment-improving microbial fermentation broth contains at least 0.6 parts by weight of dried stevia stalk powder, 0.6 parts by weight of rice bran powder, 0.6 parts by weight of dried oak powder, and salt-tolerant yeast 11 to 13 A static step in which a mixed solution of a weight of steam water and a mixed solution is allowed to stand for a predetermined time, and a mixed solution that has undergone the static step are stored in a predetermined container, and the mixed solution is contained in a container shape. A mixed solution is formed through a container accommodating step of forming a weakly sterilized region which is 10 cm or more from any position on the outer surface and 17 cm or less from at least any position on the outer surface, and the container accommodating step. Place a predetermined container containing the above in a heating space, and raise the temperature of the heating space from normal temperature to about 2.5 atm for 150 to 160 ° C over 45 to 60 minutes at about 2.5 atm. Maintain the state of 150 to 160 ° C for 1 to 3 minutes, then set the heating space to a state of 115 to 125 ° C at about 2 atm for 3 to 5 minutes, and set the temperature to decrease at about 2 atm to 115 to 125 ° C. Is maintained for 20 to 40 minutes, and the temperature of the heating space is lowered to a state of normal temperature and pressure for 24 to 30 hours to leave the heat-selected microorganisms in the mixed solution, and at least the microorganisms A solid-liquid separation step of solid-liquid separation of the mixed solution that has undergone the microorganism selection step by means capable of shifting to a liquid phase to obtain a microorganism-containing liquid, and a solid-liquid separation step of adding a sugar source to the obtained microorganism-containing liquid at normal temperature and pressure. Ferment for a predetermined time, the pH of the microorganism-containing liquid is 4.5 or less, and the oxidation-reduction potential is -100 mV or less. It is also characterized by a second fermentation step in which it is added and fermented until the pH becomes 3.1 or less to obtain a defective fermentation inhibitor, and the fermented liquid obtained obtained.

本発明に係る底質環境改善資材によれば、15〜25重量部の乾燥水苔に底質改善微生物発酵液を過飽和状態に含浸させた液濡水苔と、150〜155重量部の粒状の鉄鋼スラグと、を生分解性樹脂にて形成したメッシュ状の袋内に収容して構成したため、流通時や保管時は品質が変化しにくく、ハンドリングに優れ、また、水流によって流されにくく、更には、有用菌が比較的高濃度で集合した部位を時限的に底部に出現させ、同部位にて環境を改善可能な有用菌を優勢に保ちつつ馴化させ、その後底部に拡散して広範囲に改善効果をもたらすことが可能な底質環境改善資材を提供することができる。 According to the bottom sediment environment improving material according to the present invention, 15 to 25 parts by weight of dry water moss is impregnated with a bottom sediment improving microbial fermented liquid in a supersaturated state, and 150 to 155 parts by weight of granular water moss. Since the steel slag is housed in a mesh-like bag made of biodegradable resin, the quality does not change easily during distribution and storage, it is excellent in handling, and it is difficult to be washed away by water flow. Makes a site where useful bacteria gather at a relatively high concentration appear at the bottom in a timely manner, and acclimatizes the useful bacteria that can improve the environment at the same site while keeping the predominance, and then spreads to the bottom and improves extensively. It is possible to provide a bottom sediment environment improving material that can bring about an effect.

本発明は、海や湖、池や川などの底質の環境を改善するための資材に関するものであり、特に、流通時や保管時は品質が変化しにくく、ハンドリングに優れ、また、水流によって流されにくく、更には、有用菌が比較的高濃度で集合した部位を時限的に底部に出現させ、同部位にて環境を改善可能な有用菌を優勢に保ちつつ馴化させ、その後底部に拡散して広範囲に改善効果をもたらすことが可能な底質環境改善資材を提供するものである。 The present invention relates to a material for improving the environment of bottom sediments such as the sea, lakes, ponds and rivers, and in particular, the quality does not change easily during distribution and storage, is excellent in handling, and depends on the water flow. In addition, a site where useful bacteria are gathered at a relatively high concentration that is difficult to be washed away appears at the bottom in a timely manner, and useful bacteria that can improve the environment at the same site are acclimatized while maintaining predominance, and then spread to the bottom. It provides materials for improving the sediment environment that can bring about a wide range of improvement effects.

すなわち、本実施形態に係る底質環境改善資材は、液濡水苔と粒状の鉄鋼スラグとをメッシュ状の袋内に収容して構成している点で特徴的である。 That is, the bottom sediment environment improving material according to the present embodiment is characterized in that it is configured by accommodating liquid-wet water moss and granular steel slag in a mesh-shaped bag.

ここで、本明細書において底質改善とは、底質環境の改善を図る対象の水底領域において、同領域の底土から分取した水(以下、検体水ともいう。)に関し、ORP値を改善処理前のORP値よりも高い値とし、且つ、硫化水素が検出されている場合にはその濃度を改善処理前の濃度よりも低下させることを主な目標としている。 Here, in the present specification, bottom sediment improvement means improving the ORP value of water (hereinafter, also referred to as sample water) collected from the bottom soil of the target water bottom region for which the bottom sediment environment is to be improved. The main goal is to set the ORP value higher than the ORP value before the treatment, and to lower the concentration of hydrogen sulfide when it is detected, than the concentration before the improvement treatment.

一例を挙げるならば、ORP値が負の値、例えば-500〜-150mVの検体水が分取された水底領域を、ORP値がより高い値、好ましくは正の値、例えば100mV〜200mVのORP値を示す検体水が分取される水底領域としたり、2〜5ppmの硫化水素が検出される検体水が分取された水底領域を、より低い値、好ましくは0.5ppm以下の値で検出され、又は測定装置の検出限界以下として検出されない水底領域とすることと言える。 To give an example, an ORP having a negative ORP value, for example, a bottom region where sample water of -500 to -150 mV has been separated, has a higher ORP value, preferably a positive value, for example, an ORP of 100 mV to 200 mV. The bottom region where the sample water showing the value is separated, or the bottom region where the sample water where 2 to 5 ppm of hydrogen sulfide is detected is separated is detected at a lower value, preferably 0.5 ppm or less. Or, it can be said that the water bottom region is not detected as being below the detection limit of the measuring device.

ここで液濡水苔は、15〜25重量部の乾燥水苔に底質改善微生物発酵液を過飽和状態に含浸させたものである。 Here, the liquid-wet water moss is obtained by impregnating 15 to 25 parts by weight of dry water moss with a bottom sediment-improving microbial fermentation liquid in a supersaturated state.

乾燥水苔は、園芸用として一般に使用される乾燥された水苔を使用することができる。一例を挙げるならば、ミズゴケ科に分類される水棲植物の乾燥物を採用することができる。 As the dried water moss, dried water moss generally used for gardening can be used. As an example, dried products of aquatic plants classified in the family Sphagnaceae can be adopted.

底質改善微生物発酵液は、底質環境改善の対象領域に存在する余剰な有機物、例えばヘドロ状となった領域を好気的に分解して底質環境を改善できる微生物(以下、底質改善微生物とも称する。)によって発酵され底質改善微生物の代謝産物を含有する液であり、水底において乾燥水草を足場としつつ底質改善微生物の菌叢を形成させるためのスタータとして機能する液である。 The sediment-improving microbial fermented liquid is a microorganism capable of aerobically decomposing excess organic matter existing in the target region for improving the sediment environment, for example, a sludge-like region, to improve the sediment environment (hereinafter, sediment improvement). It is a liquid that is fermented by (also referred to as microorganisms) and contains metabolites of sludge-improving microorganisms, and functions as a starter for forming a flora of sludge-improving microorganisms on the bottom of the water while using dry aquatic plants as a foothold.

この底質改善微生物の種類は特に限定されるものではないが、例えば、後述する汽水領域より採取した汽水中に含まれる微生物群の中から、後述のスクリーニング手法に従い選抜された微生物、特に、好塩性(耐塩性)の酵母を多く含んだ細菌叢を用いるのが望ましい。 The type of the bottom sediment improving microorganism is not particularly limited, but for example, microorganisms selected according to the screening method described later from the group of microorganisms contained in the brackish water collected from the brackish water region described later, particularly favorable. It is desirable to use a bacterial flora rich in salt-resistant (salt-tolerant) yeast.

すなわち、底質改善微生物発酵液は、上述の底質改善微生物の発酵による発酵代謝産物が含まれ、菌勢や菌量が高められた液であれば特に限定されるものではないが、例えば以下に説明する所定の静置工程と、容器収容工程と、微生物選抜工程と、固液分離工程と、第1の発酵工程と、第2の発酵工程とを経て製造された液を採用することができる。これら工程を経ることにより、汽水由来の好塩性(耐塩性)酵母を中心とし、その他原料等に由来する微生物群(例えば乳酸菌群など)との共生によって水底の有機物の分解に長けた微生物叢を構築して、効率的な底質の改善効果に寄与する。 That is, the bottom sediment-improving microbial fermentation liquid is not particularly limited as long as it contains the fermentation metabolites produced by the fermentation of the above-mentioned bottom sediment-improving microorganisms and has an increased bacterial vigor and amount. It is possible to adopt the liquid produced through the predetermined standing step, the container containing step, the microorganism selection step, the solid-liquid separation step, the first fermentation step, and the second fermentation step described in 1. it can. Through these steps, a microbial flora that excels in decomposing organic substances on the bottom of the water by coexisting with brackish water-derived halophilic (salt-tolerant) yeast and other microbial groups derived from raw materials (for example, lactic acid bacteria group). Contributes to the efficient improvement effect of sediment.

ここで静置工程は、不良発酵防止剤に含まれるエキス分の抽出原料となる資材(以下、総称してエキス抽出資材ともいう。)と、好塩性(耐塩性)の酵母を少なくとも含有する汽水とを混合し、静置しながら汽水中にエキス分を溶出させる工程であり、0.6重量部の乾燥ステビア茎粉末と、0.6重量部の米ぬか粉末と、0.6重量部の乾燥おから粉末と、好塩性(耐塩性)の酵母を少なくともを含有する11〜13重量部の汽水と、を混合した混合液を所定時間静置する工程である。本静置工程では、これらエキス抽出資材と汽水とを所定量ずつ混合し、例えば常温にて所定時間静置する。静置に要する時間は、例えば15〜20日間とすることができる。 Here, the standing step contains at least a material that is a raw material for extracting the extract contained in the defective fermentation inhibitor (hereinafter, also collectively referred to as an extract extraction material) and a salt-philic (salt-tolerant) yeast. It is a process of mixing brackish water and eluting the extract into brackish water while allowing it to stand. 0.6 parts by weight of dried stevia stem powder, 0.6 parts by weight of rice bran powder, and 0.6 parts by weight of dried oak powder. This is a step of allowing a mixed solution of 11 to 13 parts by weight of brackish water containing at least salt-philic (salt-tolerant) yeast to stand for a predetermined time. In this standing step, these extract extraction materials and brackish water are mixed in predetermined amounts and allowed to stand at room temperature for a predetermined time, for example. The time required for standing can be, for example, 15 to 20 days.

また、容器収容工程は、前記静置工程を経た混合液を所定の容器に収容し、収容された混合液に同混合液の収容形状の外表面上のいずれの位置からも10cm以上であり、且つ、外表面上の少なくともいずれかの位置から17cm以下となる弱殺菌領域を形成して後述の微生物選抜工程において加熱した際に完全滅菌が行われないようにする工程である。 Further, in the container accommodating step, the mixed solution that has undergone the standing step is accommodated in a predetermined container, and the contained mixed solution is 10 cm or more from any position on the outer surface of the accommodating shape of the mixed solution. Moreover, it is a step of forming a weakly sterilized region of 17 cm or less from at least any position on the outer surface so that complete sterilization is not performed when heated in the microorganism selection step described later.

また、微生物選抜工程は、前記容器収容工程を経て混合液を収容した所定の容器を加熱空間内に配置し、同加熱空間を常温常圧の状態から約2.5気圧で150〜160℃の状態にまで45〜60分掛けて昇温し、約2.5気圧で150〜160℃の状態を1〜3分間維持して第1の加熱工程を行い、その後加熱空間を約2気圧で115〜125℃の状態にまで3〜5分間掛けて降温設定し、約2気圧で115〜125℃の状態を20〜40分間維持して第2の加熱工程を行い、更に加熱空間を常温常圧の状態にまで24〜30時間掛けて降温させて降温工程を行い、前記混合液中に加熱選抜された微生物を残存させる工程である。 Further, in the microorganism selection step, a predetermined container containing the mixed solution is placed in the heating space through the container storage step, and the heating space is changed from a normal temperature and pressure state to a state of 150 to 160 ° C. at about 2.5 atm. The temperature is raised over 45 to 60 minutes, and the temperature is maintained at 150 to 160 ° C at about 2.5 atm for 1 to 3 minutes to perform the first heating step, and then the heating space is set to 115 to 125 ° C at about 2 atm. It takes 3 to 5 minutes to lower the temperature until it reaches the state, and the state of 115 to 125 ° C is maintained at about 2 atm for 20 to 40 minutes to perform the second heating step, and the heating space is further brought to the state of normal temperature and pressure. This is a step of lowering the temperature over 24 to 30 hours to perform a temperature lowering step, and to leave the heat-selected microorganisms in the mixed solution.

また、固液分離工程は、少なくとも微生物が液相に移行可能な手段により前記微生物選抜工程を経た混合液を固液分離して微生物含有液を得る工程である。固液分離は、必ずしも完全に固形分を除去する必要はなく、選抜した微生物を液相に移行させながら大まかに固形分を除き流動性を向上させる程度のイメージである。このような固液分離は、例えば布製の袋等に混合液を収容し、洗濯機の脱水機能等を利用して行うことができる。また、一般の固液分離装置を利用して微生物を液相に残せる程度の遠心力を付与して固液分離を行うようにしても良いし、同じく布製の袋に混合液を収容して搾汁することで液相を得ても良い。 Further, the solid-liquid separation step is a step of obtaining a microorganism-containing liquid by solid-liquid separation of the mixed liquid that has undergone the microorganism selection step by at least a means capable of transferring the microorganism to the liquid phase. The solid-liquid separation does not necessarily have to completely remove the solid content, and is an image of roughly removing the solid content while transferring the selected microorganisms to the liquid phase to improve the fluidity. Such solid-liquid separation can be performed by storing the mixed liquid in a cloth bag or the like and using the dehydration function of the washing machine or the like. Alternatively, a general solid-liquid separation device may be used to apply centrifugal force sufficient to leave microorganisms in the liquid phase to perform solid-liquid separation, or the mixed solution may be contained in a cloth bag and squeezed. A liquid phase may be obtained by squeezing.

また、第1の発酵工程は、得られた微生物含有液に糖源を添加して常温常圧で所定時間発酵し、微生物含有液のpHを4.5以下で、且つ、酸化還元電位を-100mV以下とする工程である。 In the first fermentation step, a sugar source is added to the obtained microbial-containing liquid and fermented at normal temperature and pressure for a predetermined time, the pH of the microbial-containing liquid is 4.5 or less, and the redox potential is -100 mV or less. This is the process.

また、第2の発酵工程は、第1の発酵工程を経た微生物含有液にステビア茎の熟成液を添加してpHが3.1以下となるまで発酵させて不良発酵防止剤とする工程である。微生物含有液に対するステビア茎熟成液の添加量は、微生物含有液0.38重量部に対して0.38〜0.4重量部程度とすることができる。 The second fermentation step is a step of adding a ripening liquid of Stevia stalk to the microorganism-containing liquid that has undergone the first fermentation step and fermenting it until the pH becomes 3.1 or less to obtain a defective fermentation inhibitor. The amount of the stevia stem aging liquid added to the microorganism-containing liquid can be about 0.38 to 0.4 parts by weight with respect to 0.38 parts by weight of the microorganism-containing liquid.

ここで、本第2の発酵工程にて使用するステビア茎の熟成液は、ステビア茎を水等に浸漬してエキス分を抽出しつつ、ステビア茎由来の微生物によって発酵を行うことにより得られた発酵液(以下、ステビア茎簡易熟成液ともいう。)を用いることもできる。 Here, the ripening liquid of the Stevia stem used in the second fermentation step was obtained by immersing the Stevia stem in water or the like to extract the extract and fermenting it with a microorganism derived from the Stevia stem. A fermented liquid (hereinafter, also referred to as a simple ripening liquid for Stevia stems) can also be used.

しかしながら、ステビア茎の熟成液は、ステビア茎分散液調製工程と、ステビア茎分散液容器収容工程と、ステビア茎由来微生物選抜工程と、ステビア茎抽出液調製工程と、抽出液濃縮工程と、熟成工程と、を経て調製するのがより望ましい。 However, the aging liquid of Stevia stalk is a Stevia stalk dispersion preparation step, a Stevia stalk dispersion container storage step, a Stevia stalk-derived microorganism selection step, a Stevia stalk extract preparation step, an extract concentration step, and a ripening step. It is more desirable to prepare through.

ステビア茎分散液調製工程は、乾燥ステビア茎の粉末に水を加えてステビア茎の分散液を調製する工程であり、具体的には、1重量部の乾燥ステビア茎粉末に対して10重量部±2重量部程度の水を添加して調製する。 The Stevia stalk dispersion preparation step is a step of adding water to the dried Stevia stalk powder to prepare the Stevia stalk dispersion. Specifically, 10 parts by weight ± 10 parts by weight with respect to 1 part by weight of the dried Stevia stalk powder. Prepare by adding about 2 parts by weight of water.

ステビア茎分散液容器収容工程は、前述の容器収容工程と略同様に後述のステビア茎由来微生物選抜工程において加熱した際に完全滅菌が行われないよう、弱殺菌領域を形成可能な容器に収容する工程である。 The Stevia stalk dispersion liquid container accommodating step is substantially the same as the above-mentioned container accommodating step, and is accommodating in a container capable of forming a weakly sterilized region so that complete sterilization is not performed when heated in the Stevia stalk-derived microorganism selection step described later. It is a process.

このステビア茎分散液容器収容工程における弱殺菌領域は、所定の容器内に収容したステビア茎分散液の収容形状のうち、外表面上のいずれの位置からも10cm以上であり、且つ、外表面上の少なくともいずれかの位置から17cm以下となる内部領域である。より好ましくは、外表面上のいずれの位置からも17cmを越える非選抜領域が形成されず弱殺菌領域を形成可能な容器を用いる。 The weakly sterilized region in the step of accommodating the stevia stalk dispersion liquid container is 10 cm or more from any position on the outer surface of the accommodation shape of the stevia stalk dispersion liquid contained in the predetermined container, and is on the outer surface. It is an internal area that is 17 cm or less from at least one of the positions. More preferably, a container is used in which a non-selected region exceeding 17 cm is not formed from any position on the outer surface and a weakly sterilized region can be formed.

ステビア茎由来微生物選抜工程もまた前述の微生物選抜工程と同様、ステビア茎分散液を加熱して、ステビア茎由来の微生物を選抜する工程であり、細かくは第1のステビア茎加熱工程と、第2のステビア茎加熱工程とで構成される。 The Stevia stem-derived microorganism selection step is also a step of heating the Stevia stem dispersion to select Stevia stem-derived microorganisms, similarly to the above-mentioned microorganism selection step. In detail, the first Stevia stem heating step and the second Stevia stem heating step It consists of a stevia stem heating step.

第1のステビア茎加熱工程は、ステビア茎分散液容器収容工程を経てステビア茎分散液を収容した所定の容器を加熱空間内に配置し、同加熱空間を常温常圧の状態から約2.5気圧で150〜160℃の状態にまで30〜40分掛けて昇温し、約2.5気圧で150〜160℃の状態を1〜3分間維持する。 In the first step of heating the stevia stalk, a predetermined container containing the stevia stalk dispersion liquid is placed in the heating space through the step of accommodating the stevia stalk dispersion liquid container, and the heating space is kept at about 2.5 atm from the state of normal temperature and pressure. The temperature is raised to a state of 150 to 160 ° C over 30 to 40 minutes, and the state of 150 to 160 ° C is maintained at about 2.5 atm for 1 to 3 minutes.

第2のステビア茎加熱工程は、第1のステビア茎加熱工程に引き続き、加熱空間を約2気圧で115〜125℃の状態にまで3〜5分間掛けて降温設定し、約2気圧で115〜125℃の状態を20〜40分間維持する。 In the second stevia stalk heating step, following the first stevia stalk heating step, the heating space is set to lower the temperature to 115 to 125 ° C. at about 2 atm for 3 to 5 minutes, and the temperature is set to 115 to 115 at about 2 atm. Maintain at 125 ° C for 20-40 minutes.

そして、この第1のステビア茎加熱工程と、第2のステビア茎加熱工程とを経た後に、85〜95℃まで冷却を行うことにより、ステビア茎分散液中に加熱選抜された乾燥ステビア茎由来の微生物を残存させる。 Then, after passing through the first stevia stalk heating step and the second stevia stalk heating step, by cooling to 85 to 95 ° C., the dried stevia stalks derived from the dried stevia stalks heat-selected in the stevia stalk dispersion. Leave the microorganisms behind.

ステビア茎抽出液調製工程は、ステビア茎由来微生物選抜工程を経たステビア茎分散液から、固液分離により液相を得る工程である。 The Stevia stem extract preparation step is a step of obtaining a liquid phase by solid-liquid separation from the Stevia stem dispersion which has undergone the Stevia stem-derived microorganism selection step.

具体的には、前述の第2のステビア茎加熱工程に引き続き、85〜95℃まで降温させたステビア茎分散液を、少なくとも微生物が液相に移行可能な手段により固液分離して、液相をステビア茎の抽出液として得る。このステビア茎抽出液は、Brix値が2.0〜4.0でステビア茎由来の微生物が含まれたものである。 Specifically, following the second Stevia stem heating step described above, the Stevia stem dispersion liquid, which has been cooled to 85 to 95 ° C., is solid-liquid separated by at least a means capable of transferring the microorganism to the liquid phase, and the liquid phase is obtained. Is obtained as an extract of Stevia stalk. This Stevia stalk extract has a Brix value of 2.0 to 4.0 and contains Stevia stalk-derived microorganisms.

抽出液濃縮工程は、ステビア茎抽出液を加熱して煮詰めることにより、所定の濃度まで濃縮することでステビア茎濃縮液を得る工程である。具体的には、ステビア茎抽出液を加熱して煮詰め、常温程度に冷却された状態においてBrix値が4.0〜7.0でpHが6.0以下、ORPが10〜99mVとなるように濃縮を行う。 The extract concentration step is a step of obtaining a stevia stem concentrate by heating and boiling the stevia stem extract to a predetermined concentration. Specifically, the stevia stalk extract is heated and boiled down, and concentrated so that the Brix value is 4.0 to 7.0, the pH is 6.0 or less, and the ORP is 10 to 99 mV in a state of being cooled to about room temperature.

熟成工程は、ステビア茎濃縮液を常温下にて発酵を伴いながら熟成させ、pHが5.0以下でORPが-100mV以下のステビア茎熟成液を得る工程である。 The aging step is a step of aging the Stevia stalk concentrate at room temperature with fermentation to obtain a Stevia stalk ripening solution having a pH of 5.0 or less and an ORP of -100 mV or less.

このように、ステビア茎分散液調製工程と、ステビア茎分散液容器収容工程と、ステビア茎由来微生物選抜工程と、ステビア茎抽出液調製工程と、抽出液濃縮工程と、熟成工程と、を経ることで、不良発酵防止剤の製造に適したステビア茎の熟成液を得ることができる。 As described above, the step of preparing the stevia stalk dispersion, the step of accommodating the stevia stalk dispersion container, the step of selecting the microbial stem-derived microorganisms, the step of preparing the stevia stalk extract, the step of concentrating the extract, and the aging step are performed. Therefore, a ripening liquid of Stevia stalk suitable for producing a defective fermentation inhibitor can be obtained.

そして、前述した静置工程と、容器収容工程と、微生物選抜工程と、固液分離工程と、第1の発酵工程と、第2の発酵工程とを経て製造された液を底質改善微生物発酵液として採用すれば、ヘドロ等が蓄積した底質の改善をより堅実に行うことができる。 Then, the liquid produced through the above-mentioned standing step, container storage step, microbial selection step, solid-liquid separation step, first fermentation step, and second fermentation step is subjected to bottom sediment improvement microbial fermentation. If it is used as a liquid, it is possible to more steadily improve the bottom sediment in which hedro and the like have accumulated.

なお、この底質改善微生物発酵液は上述した方法によって得られるものではあるが、これは当該底質改善微生物発酵液の製造方法を限定しているものではなく、底質改善微生物発酵液を、静置工程と容器収容工程と微生物選抜工程と固液分離工程と第1の発酵工程と第2の発酵工程との製造方法によって特定しているものである。 Although this sediment-improving microbial fermented liquid is obtained by the above-mentioned method, this does not limit the method for producing the sediment-improving microbial fermented liquid, and the sediment-improving microbial fermented liquid is used. It is specified by the production methods of the standing step, the container containing step, the microorganism selection step, the solid-liquid separation step, the first fermentation step, and the second fermentation step.

一般に、植物粉末や米ぬか、おから、汽水の如き天然物には、他の天然物と同様に、様々な成分や微生物が複雑な状態や配合比で含まれている。そして、上述のスクリーニング環境下で、他の微生物が利用し得なかった成分を利用できたり、ある微生物の代謝産物に利用価値を見出しうる所定の微生物が選抜され、更にはこれら原料を構成する成分の存在により好適な発酵が可能な底質改善微生物発酵液として機能しうるものと考えられる。 In general, natural products such as plant powder, rice bran, okara, and brackish water contain various components and microorganisms in a complicated state and compounding ratio, like other natural products. Then, under the above-mentioned screening environment, predetermined microorganisms that can utilize components that could not be used by other microorganisms or that can find utility value in metabolites of certain microorganisms are selected, and further, components constituting these raw materials. It is considered that it can function as a bottom sediment-improving microbial fermentation liquid capable of suitable fermentation due to the presence of.

しかしながら、このような底質改善を生起する微生物叢を構成する個々の菌を同定したりその菌数を定量することや、各原料に由来する成分の種類や濃度を規定することは、製造過程での微生物による発酵代謝やその産物まで勘案すると、所定のパラメーター等で直接特定することは、不可能であるか又はおよそ実際的でない。 However, identifying the individual bacteria that make up the microbial flora that cause such bottom sediment improvement, quantifying the number of the bacteria, and defining the type and concentration of the components derived from each raw material is a manufacturing process. Considering the fermentation metabolism by microorganisms and their products in the above, it is impossible or almost impractical to directly identify them with predetermined parameters or the like.

従って、底質改善微生物発酵液を製造方法で特定したのは、底質改善微生物発酵液は製造方法によってしか特定できないためである。また、本実施形態に係る底質環境改善資材の構成要素としての底質改善微生物発酵液についても同様である。但し、出願人が本願を権利化するに際し、底質改善微生物発酵液の製造方法の一部又は全部について意図的に限定する解釈を行うことを妨げるものではない。 Therefore, the bottom sediment-improving microbial fermentation broth was specified by the production method because the bottom sediment-improving microbial fermentation broth can be specified only by the production method. The same applies to the sediment-improving microbial fermented liquid as a component of the sediment-environment-improving material according to the present embodiment. However, this does not prevent the applicant from intentionally limiting the interpretation of a part or all of the method for producing the bottom sediment-improving microbial fermentation broth when acquiring the rights of the present application.

底質改善微生物発酵液は、乾燥水苔に過飽和状態に含浸させる。ここで過飽和状態とは乾燥水苔が含浸保持できる底質改善微生物発酵液の量を超えて添加することを意味しており、仮に手で摘みながら持ち上げると底質改善微生物発酵液が水苔から滴り落ちる程度の量である。このように乾燥水苔に対して底質改善微生物発酵液を過飽和状態に添加することで液濡水苔を調製することができる。 The bottom sediment-improving microbial fermented liquid impregnates dried water moss in a supersaturated state. Here, the supersaturated state means that the amount of the bottom sediment-improving microbial fermented liquid that can be impregnated and retained by the dried water moss is added in excess, and if it is lifted while being picked by hand, the bottom sediment-improving microbial fermented liquid will be released from the water moss. The amount is about to drip. In this way, the liquid-wet water moss can be prepared by adding the bottom sediment-improving microbial fermentation liquid to the dried water moss in a supersaturated state.

鉄鋼スラグは、鉄鋼製品の製造過程で副生したスラグであり、特に3〜10mm程度の粒状としたものが好適である。 The steel slag is slag produced as a by-product in the manufacturing process of steel products, and is particularly preferably granulated with a size of about 3 to 10 mm.

また、乾燥水苔と粒状の鉄鋼スラグとの配合割合は、15〜25重量部の乾燥水苔に対し、150〜155重量部の粒状の鉄鋼スラグとするのが好ましい。もし仮に乾燥水苔に対する鉄鋼スラグの割合が150重量部よりも下回ると、吸着力低下や比重量不足、更には底質改善効果が乏しくなるという問題がある。また、乾燥水苔に対する鉄鋼スラグの割合が155重量部よりも上回ると過酸化鉄となる場合があり、また、鉄イオンの供給過多によって底質改善効果が乏しくなったり、底質を乱してしまうおそれがある。 The mixing ratio of the dried water moss and the granular steel slag is preferably 150 to 155 parts by weight of the granular steel slag with respect to 15 to 25 parts by weight of the dried water moss. If the ratio of steel slag to dried water moss is less than 150 parts by weight, there are problems that the adsorption force is lowered, the specific weight is insufficient, and the effect of improving the bottom sediment is poor. In addition, if the ratio of steel slag to dried water moss exceeds 155 parts by weight, iron peroxide may be formed, and the effect of improving the bottom sediment may be poor or the bottom sediment may be disturbed due to excessive supply of iron ions. There is a risk that it will end up.

液濡水苔と粒状の鉄鋼スラグを収容するメッシュ状の袋は生分解性樹脂にて形成されており、例えば水底にて3〜5ヶ月経過した際に液濡水苔や粒状の鉄鋼スラグを集合させておく機能が失われる程度の強度にて構成している。このようなメッシュ状の袋は、例えばポリ乳酸にて形成した厚みが0.1mm程度の不織布などで実現することができる。 The mesh-like bag that houses the wet water moss and granular steel slag is made of biodegradable resin. For example, when 3 to 5 months have passed at the bottom of the water, the liquid wet water moss and granular steel slag are removed. The strength is such that the function of assembling is lost. Such a mesh-shaped bag can be realized by, for example, a non-woven fabric having a thickness of about 0.1 mm formed of polylactic acid.

そして、このようなメッシュ状の袋内に液濡水苔と粒状の鉄鋼スラグとを収容することで本実施形態に係る底質環境改善資材が構築される。 Then, the bottom sediment environment improving material according to the present embodiment is constructed by accommodating the liquid-wet water moss and the granular steel slag in such a mesh-shaped bag.

このように、底質環境改善資材は、粒状の鉄鋼スラグが15〜25重量部の乾燥水苔に対して150〜155重量部配合されているため、過飽和状態に添加された底質改善微生物発酵液中の微生物は、鉄鋼スラグからの溶出成分、特に鉄イオンによって生育が抑制されることとなり、流通時や保管時は品質変化を防止でき、保管時間等に比較的左右されることなく、略均一な初発菌数で底質の環境改善を開始させることができる。 As described above, since the sediment environment improving material contains 150 to 155 parts by weight of granular steel slag with respect to 15 to 25 parts by weight of dried water moss, the sediment improving microbial fermentation added to the hypersaturated state. The growth of microorganisms in the liquid is suppressed by the elution component from steel slag, especially iron ions, and quality changes can be prevented during distribution and storage, and it is not relatively affected by storage time, etc. It is possible to start improving the environment of the sediment with a uniform number of initial bacteria.

また、底質環境改善資材は、液濡水苔と粒状の鉄鋼スラグとがメッシュ状の袋内に収容された構成、より具体的には、内容物の少ない土嚢の如く、袋を掴んで遠方へ放り投げることができる構成としており、特に粒状の鉄鋼スラグが含まれているため遠投に適した重量を有しながらも変形可能な柔軟性を備えていることから、ヘドロの発生した広い領域においても作業者は底質環境改善資材を容易に配置できるという良好ハンドリング性を有している。 In addition, the bottom sediment environment improvement material has a structure in which liquid-wet water moss and granular steel slag are housed in a mesh-like bag. It has a structure that can be thrown into a bag, and since it contains granular steel slag, it has a weight suitable for long-distance casting but has flexibility that allows it to be deformed. In this case as well, the worker has good handleability that the material for improving the sediment environment can be easily placed.

また、上述の如くメッシュ状の袋で液濡水苔と粒状の鉄鋼スラグとをひとまとめとしつつ、着底した袋内で粒状の鉄鋼スラグが広く広がり底質環境改善資材を水底に安定して固定することができるため、水流によって流されにくいという効果を発揮できる。 In addition, as described above, the liquid-wet water moss and the granular steel slag are put together in a mesh-shaped bag, and the granular steel slag spreads widely in the bottomed bag, and the sediment environment improving material is stably fixed to the bottom of the water. Therefore, it is possible to exert the effect that it is difficult to be washed away by the water flow.

また、メッシュ袋は生分解性樹脂にて形成しているため、着底後所定期間経過すると、微生物等によりメッシュ袋が自然崩壊することとなり、袋により拘束された状態であった液濡水苔や粒状の鉄鋼スラグは、水流等によって自ずと拡散し散逸する。 In addition, since the mesh bag is made of biodegradable resin, the mesh bag spontaneously collapses due to microorganisms and the like after a predetermined period of time has passed after landing, and the wet water moss that was restrained by the bag. And granular steel slag naturally diffuses and dissipates due to water flow or the like.

すなわち、着底後一定期間は液濡水苔や粒状の鉄鋼スラグを集合させその場に留めることで底質改善微生物が比較的高濃度で存在する状態を時限的に出現させることとなる。それゆえ、この期間は底質改善微生物がヘドロ環境に存在する微生物群に比して優勢に増殖することが助長され、併せて底質改善微生物のヘドロ環境への馴化が進行する。 That is, for a certain period of time after landing, liquid-wet water moss and granular steel slag are gathered and kept in place, so that a state in which sediment-improving microorganisms are present at a relatively high concentration appears in a timely manner. Therefore, during this period, the sediment-improving microorganisms are promoted to proliferate predominantly in comparison with the microorganisms existing in the sludge environment, and at the same time, the acclimatization of the sediment-improving microorganisms to the sludge environment progresses.

そして、増菌し馴化した底質改善微生物は、メッシュ袋の自然崩壊に伴って乾燥水草(液濡水苔)と共に周辺環境へ拡散し、更に広範囲に亘って底質の改善効果を発揮することとなる。なおこの拡散時にも、底質改善微生物が単に広がるのではなく、底質改善微生物の拠り所となる水草と共に広がるため、拡散した先での底質改善微生物の着生をより助長することができる。 Then, the sediment-improving microorganisms that have been enriched and acclimated spread to the surrounding environment together with dried aquatic plants (liquid wet moss) along with the natural collapse of the mesh bag, and exert a sediment-improving effect over a wider area. It becomes. At the time of this diffusion, the bottom sediment improving microorganisms do not simply spread, but spread together with the aquatic plants that are the basis of the bottom sediment improving microorganisms, so that the settlement of the bottom sediment improving microorganisms at the diffused destination can be further promoted.

なお、底質環境改善資材の水中への投入は、流通時における底質改善微生物の繁殖や発酵の抑制状態からの離脱のトリガーとなり、上述の如く底質改善微生物は増殖や馴化を開始する。すなわち、流通時は滴るほど乾燥水草に含浸させた底質改善微生物発酵液を介して鉄鋼スラグ由来の鉄イオンが高濃度に存在し底質改善微生物の増殖や発酵を抑制するが、水中への投入により鉄イオンの希釈が起こり、これを契機として底質改善微生物は増殖や馴化を開始するのである。 It should be noted that the introduction of the sediment environment improving material into water triggers the withdrawal of the sediment improving microorganisms from the suppressed state of reproduction and fermentation during distribution, and the sediment improving microorganisms start to grow and acclimatize as described above. That is, during distribution, iron ions derived from steel slag are present in high concentration through the bottom sediment improving microbial fermentation liquid impregnated in dry aquatic plants so that they drip, which suppresses the growth and fermentation of bottom sediment improving microorganisms, but in water. The addition causes dilution of iron ions, which triggers the start of growth and acclimatization of the sediment-improving microorganisms.

以下、本実施形態に係る底質環境改善資材について、具体的な製造例を参照しながら更に詳説する。 Hereinafter, the sediment environment improving material according to the present embodiment will be described in more detail with reference to specific manufacturing examples.

〔1.底質改善微生物発酵液の調製〕
(1−1)底質改善微生物のスクリーニング
20L容量のステンレス容器(直径32cmで高さ38cm)内に、0.85kgの乾燥ステビア茎粉末と、0.85kgの米ぬか粉末と、0.85kgの乾燥おから粉末とを投入し、更に山口県の阿武川河口の汽水域(塩分濃度が0.8〜1.0%程度の領域)にて採取された汽水17kgを添加して攪拌混合したものを数バッチ調製し、常温で一晩(約15〜17時間)静置した(静置工程)。この静置した混合物の微生物検査の結果、検出された幾つかの微生物の中から、少なくともLactobacillus buchneriの存在が確認された。
[1. Preparation of sediment-improving microbial fermented liquid]
(1-1) Screening for sediment-improving microorganisms
In a 20L capacity stainless steel container (32 cm in diameter and 38 cm in height), 0.85 kg of dried brackish stem powder, 0.85 kg of rice brackish powder, and 0.85 kg of dried brackish water powder are put into it, and then Abu River in Yamaguchi Prefecture. Prepare several batches of brackish water collected in the brackish water area of the river mouth (area with a salinity of about 0.8 to 1.0%), add 17 kg of steam water, stir and mix, and leave it at room temperature overnight (about 15 to 17 hours). (Standing process). Microbial examination of this stationary mixture confirmed the presence of at least Lactobacillus buchneri among several detected microorganisms.

また、採取した汽水について別途微生物検査を行ったところ、汽水中には150cfu/mlの濃度で耐塩性酵母群が含まれていることが確認された。 In addition, a separate microbiological test was performed on the collected brackish water, and it was confirmed that the brackish water contained a group of salt-tolerant yeasts at a concentration of 150 cfu / ml.

次いで、約20.31L容量の蓋付きステンレス容器P1(内径28cmで高さ33cmの円筒状)内に静置工程を経た混合液を20L収容し、容器内に弱殺菌領域を形成させた(容器収容工程)。また、同様に、約21.04L容量の蓋付きステンレス容器Q1(内径20cmで高さ67cmの円筒状)に、静置工程を経た混合液を20.41L収容し、ステンレス容器Q1内に収容された混合液の収容形状を直径20cmで高さ65cmの円柱状として弱殺菌領域を形成した。併せて、約32.67L容量の蓋付きステンレス容器R1(内径34cmで高さ36cmの円筒状)に、静置工程を経た混合液を30.85L収容し、ステンレス容器R1内に収容された混合液の収容形状を直径34cmで高さ34cmの円柱状として弱殺菌領域を形成した。 Next, 20 L of the mixed solution that had undergone the static step was stored in a stainless steel container P1 with a lid (inner diameter 28 cm and height 33 cm) having a capacity of about 20.31 L, and a weakly sterilized region was formed in the container (container storage). Process). Similarly, in a stainless steel container Q1 with a lid having a capacity of about 21.04 L (cylindrical shape with an inner diameter of 20 cm and a height of 67 cm), 20.41 L of the mixed solution that has undergone the static process is stored, and the mixture is stored in the stainless steel container Q1. A weakly sterilized region was formed by forming the liquid storage shape into a cylinder with a diameter of 20 cm and a height of 65 cm. At the same time, 30.85 L of the mixed solution that has undergone the static process is stored in a stainless steel container R1 with a lid (inner diameter 34 cm and height 36 cm) having a capacity of about 32.67 L, and the mixed solution contained in the stainless steel container R1 is stored. A weakly sterilized region was formed with a cylindrical shape having a diameter of 34 cm and a height of 34 cm.

次に、加圧クッカー内に、混合液を各ステンレス容器P1Q1,R1ごと収納し、約2.5気圧で150〜160℃の状態にまで45〜60分掛けて昇温し、約2.5気圧で150〜160℃の状態を1〜3分間維持させた(第1の加熱工程)。 Next, the mixed solution is stored in the pressurized cooker together with each stainless steel container P1Q1 and R1, and the temperature is raised to 150 to 160 ° C. over 45 to 60 minutes at about 2.5 atm, and 150 to 150 at about 2.5 atm. The state of 160 ° C. was maintained for 1 to 3 minutes (first heating step).

次に、引き続いて約2気圧で115〜125℃の状態にまで3〜5分間掛けて降温し、約2気圧で115〜125℃の状態を20〜40分間維持させた(第2の加熱工程)。 Next, the temperature was subsequently lowered to a state of 115 to 125 ° C. at about 2 atm for 3 to 5 minutes, and the state of 115 to 125 ° C. was maintained at about 2 atm for 20 to 40 minutes (second heating step). ).

次に、加圧クッカーの加熱スイッチを切り、加圧クッカーの内部温度が常温常圧の状態となるまで24〜30時間掛けて降温させた(降温工程)。 Next, the heating switch of the pressurized cooker was turned off, and the temperature was lowered over 24 to 30 hours until the internal temperature of the pressurized cooker became a state of normal temperature and pressure (temperature lowering step).

そして、加圧クッカーの蓋を開けて、各ステンレス容器P1,Q1,R1内に底質改善微生物のスクリーニングが行われた混合液を得た。この混合液の微生物検査の結果、検出された幾つかの微生物の中から、少なくともLactobacillus buchneriの存在が確認された。 Then, the lid of the pressure cooker was opened to obtain a mixed solution in which the bottom sediment improving microorganisms were screened in each of the stainless steel containers P1, Q1 and R1. As a result of microbial examination of this mixed solution, the presence of at least Lactobacillus buchneri was confirmed among several detected microorganisms.

〔2.ステビア茎の熟成液の調製〕
まず、所定の容器に1kgの乾燥ステビア茎粉末に対して10±2kgの水を添加して満遍なく混合し、ステビア茎の分散液を調製した(ステビア茎分散液調製工程)。なお、このステビア茎の分散液は数バッチ調製した。
[2. Preparation of stevia stem ripening liquid]
First, 10 ± 2 kg of water was added to 1 kg of dried stevia stalk powder in a predetermined container and mixed evenly to prepare a stevia stalk dispersion (stevia stalk dispersion preparation step). Several batches of this Stevia stem dispersion were prepared.

次に、約12.27L容量の蓋付きステンレス容器P2(内径25cmで高さ25cm)内に、ステビア茎分散液調製工程にて調製したステビア茎分散液12Lを収容し、容器内に収容したステビア茎分散液に弱殺菌領域を形成させた(ステビア茎分散液容器収容工程)。また、同様に、約21.04L容量の蓋付きステンレス容器Q1(内径20cmで高さ67cmの円筒状)に、ステビア茎分散液調製工程にて調製したステビア茎分散液を12L収容し、ステンレス容器Q1内に収容されたステビア茎分散液の収容形状を直径20cmで高さ38cmの円柱状として弱殺菌領域を形成した。併せて、約32.67L容量の蓋付きステンレス容器R1(内径34cmで高さ36cmの円筒状)に、ステビア茎分散液調製工程にて調製したステビア茎分散液を30.85L収容し、ステンレス容器R1内に収容されたステビア茎分散液の収容形状を直径34cmで高さ34cmの円柱状として弱殺菌領域を形成した。 Next, 12 L of Stevia stalk dispersion prepared in the Stevia stalk dispersion preparation step was housed in a stainless steel container P2 with a lid (inner diameter 25 cm and height 25 cm) having a capacity of about 12.27 L, and the Stevia stalk was housed in the container. A weakly sterilized region was formed in the dispersion liquid (stevia stem dispersion liquid container storage step). Similarly, a stainless steel container Q1 with a lid having a capacity of about 21.04 L (cylindrical shape with an inner diameter of 20 cm and a height of 67 cm) contains 12 L of the stevia stem dispersion prepared in the stevia stem dispersion preparation step, and the stainless container Q1 A weakly sterilized region was formed by forming a cylindrical shape of the Stevia stem dispersion liquid contained therein with a diameter of 20 cm and a height of 38 cm. At the same time, 30.85 L of Stevia stalk dispersion prepared in the Stevia stalk dispersion preparation step is stored in a stainless steel container R1 with a lid (inner diameter 34 cm and height 36 cm) having a capacity of about 32.67 L, and inside the stainless steel container R1. A weakly sterilized region was formed as a columnar shape with a diameter of 34 cm and a height of 34 cm.

次に、加圧クッカー内に、ステビア茎分散液をステンレス容器P2,Q1,R1ごと収納し、約2.5気圧で150〜160℃の状態にまで30〜40分掛けて昇温し、約2.5気圧で150〜160℃の状態を1〜3分間維持させた(第1のステビア茎加熱工程)。 Next, in the pressurized cooker, the stevia stalk dispersion liquid is stored together with the stainless steel containers P2, Q1 and R1, and the temperature is raised to 150 to 160 ° C over 30 to 40 minutes at about 2.5 atm, and the temperature is raised to about 2.5 atm. The temperature was maintained at 150 to 160 ° C. for 1 to 3 minutes (first stevia stalk heating step).

次に、引き続いて約2気圧で115〜125℃の状態にまで3〜5分間掛けて降温設定し、約2気圧で115〜125℃の状態を20〜40分間維持させた(第2のステビア茎加熱工程)。 Next, the temperature was subsequently set to lower the temperature at about 2 atm for 3 to 5 minutes until the temperature was 115 to 125 ° C, and the temperature was maintained at about 2 atm at 115 to 125 ° C for 20 to 40 minutes (second stevia). Stevia heating process).

次に、加圧クッカーの加熱を終了し、加圧クッカーの内部が略常圧(開蓋可能な圧力)となり約85〜95℃となったのを見計らって、ステビア茎分散液を収容したステンレス容器P2,Q1,R1を加圧クッカーから取出し、綿製の布袋内にステビア茎分散液を移した。 Next, the heating of the pressure cooker was completed, and the temperature inside the pressure cooker became approximately normal pressure (pressure that can be opened) and reached about 85 to 95 ° C. The containers P2, Q1 and R1 were taken out from the pressure cooker, and the stevia stalk dispersion was transferred into a cotton cloth bag.

ステビア茎分散液を収容した布袋は、熱い状態のまま脱水装置に供し、固液分離を行ってステビア茎抽出液を得た(ステビア茎抽出液調製工程)。このステビア茎抽出液は、Brix値が2.0〜4.0であり、別途行った微生物検査によりステビア茎由来の微生物であるLactobacillus属の微生物がステンレス容器P2,Q1,R1のいずれにも含まれていることが確認された。 The cloth bag containing the Stevia stalk dispersion was subjected to a dehydrator in a hot state and solid-liquid separated to obtain a Stevia stalk extract (Stevia stalk extract preparation step). This Stevia stalk extract has a Brix value of 2.0 to 4.0, and a microorganism of the genus Lactobacillus, which is a microorganism derived from Stevia stalk, is contained in all of the stainless steel containers P2, Q1 and R1 according to a separate microbiological test. Was confirmed.

次に、得られたステビア茎抽出液を耐熱性の所定容器にそれぞれ収容し、ガスコンロ上に載置して4〜5時間程度加熱しつつ煮詰めることでステビア茎濃縮液の調製を行った(抽出液濃縮工程)。その後、加熱を終了し、常温まで放置冷却したした後にステビア茎濃縮液について理化学検査を行ったところ、Brix値が4.0〜7.0でpHが6.0以下、ORPが10〜99mVであることが確認された。 Next, the obtained stevia stalk extract was placed in a heat-resistant container, placed on a gas stove, and boiled while heating for about 4 to 5 hours to prepare a stevia stalk concentrate (extraction). Liquid concentration step). After that, when heating was completed and the stevia stalk concentrate was allowed to cool to room temperature and then subjected to a physicochemical test, it was confirmed that the Brix value was 4.0 to 7.0, the pH was 6.0 or less, and the ORP was 10 to 99 mV. ..

次に、得られたステビア茎濃縮液をステンレス製のフック付の発酵熟成缶(12L容量)に収容し、常温環境下にて静置して熟成を行った(熟成工程)。熟成中は、ステンレス容器P2,Q1,R1のいずれのステビア茎濃縮液からも発酵臭を伴うガスの発生があり、ステンレス容器P2,Q1,R1の容器形状の差異に拘わらず略同程度の発酵を伴っていることが確認された。 Next, the obtained Stevia stalk concentrate was housed in a fermentation aging can (12 L capacity) with a stainless steel hook, and allowed to stand in a room temperature environment for aging (aging step). During aging, gas with a fermented odor is generated from any of the stevia stem concentrates of the stainless steel containers P2, Q1 and R1, and the fermentation is about the same regardless of the difference in the container shape of the stainless steel containers P2, Q1 and R1. It was confirmed that it was accompanied by.

そして、熟成中のステビア茎濃縮液のpHが5.0以下で、且つ、ORPが-100mV以下となった時点でステビア茎熟成液とした。また、この時点においてもステンレス容器P2,Q1,R1の容器形状に由来する異常発酵などの差異は認められず、この後の実験においてステビア茎熟成液は、いずれも同じものとして扱うこととした。 Then, when the pH of the stevia stalk concentrate during aging was 5.0 or less and the ORP was -100 mV or less, the stevia stalk ripening solution was used. Further, at this time as well, no difference such as abnormal fermentation due to the container shape of the stainless steel containers P2, Q1 and R1 was observed, and the stevia stem aging liquid was treated as the same in the subsequent experiments.

〔3.底質改善微生物発酵液の調製〕
前述の〔1.底質改善微生物のスクリーニング〕により降温工程を経て底質改善微生物のスクリーニングが行われたステンレス容器P1,Q1,R1中の混合液をそれぞれ別個に綿製の布袋内に収容し、この布袋を脱水装置に供して固液分離を行って微生物含有液を得た(固液分離工程)。
[3. Preparation of sediment-improving microbial fermented liquid]
The above-mentioned [1. The mixed liquids in the stainless steel containers P1, Q1 and R1 that have been screened for the sediment-improving microorganisms through the temperature lowering step by [Screening for sediment-improving microorganisms] are separately housed in cotton cloth bags, and the cloth bags are dehydrated. The mixture was subjected to solid-liquid separation by using the apparatus to obtain a microorganism-containing liquid (solid-liquid separation step).

次に、フック付の発酵熟成缶(12L容量)に固液分離した微生物含有液約9kgをステンレス容器P1,Q1,R1別に入れ、0.1kgのメープルシロップを糖源としてそれぞれ添加して均一に攪拌し、常温常圧で大凡20〜30日間静置して発酵を行わせた(第1の発酵工程)。 Next, in a fermentation and aging can with a hook (12 L capacity), about 9 kg of solid-liquid separated microbial-containing liquid was placed in separate stainless steel containers P1, Q1 and R1, and 0.1 kg of maple syrup was added as a sugar source and stirred uniformly. Then, it was allowed to stand at normal temperature and pressure for about 20 to 30 days for fermentation (first fermentation step).

この第1の発酵工程の初期段階では、微生物含有液の液表面に上澄みが生成するが、これは発明者らの経験上、発酵を緩慢化させるため数日毎に取り除いた。また、この初期段階を経過すると、微生物含有液はあたかもビールのような感じで泡立ち初め、微生物により発酵が行われていることが確認された。 In the initial stage of this first fermentation step, a supernatant is formed on the surface of the microbial-containing liquid, which, in the experience of the inventors, was removed every few days to slow down the fermentation. In addition, after this initial stage, the microbial-containing liquid began to foam as if it were beer, and it was confirmed that fermentation was carried out by the microorganisms.

そして、微生物含有液のpHが4.5以下で、且つ、酸化還元電位が-100mV以下となった時点で第1の発酵工程を終了した。なお、この時点においてステンレス容器P1,Q1,R1の間における容器形状の差異に由来する異常発酵などの違いは確認されなかった。 Then, the first fermentation step was completed when the pH of the microorganism-containing liquid was 4.5 or less and the redox potential was -100 mV or less. At this time, no difference such as abnormal fermentation due to the difference in container shape among the stainless steel containers P1, Q1 and R1 was confirmed.

次に、第1の発酵工程を経た微生物含有液に対し、前述の〔2.ステビア茎の熟成液の調製〕にて得られたステビア茎熟成液を添加して均一に攪拌し、常温常圧で大凡20〜25日間静置して発酵を行わせた(第2の発酵工程)。 Next, with respect to the microorganism-containing liquid that has undergone the first fermentation step, the above-mentioned [2. Preparation of Stevia stalk aging solution] The Stevia stalk aging solution obtained was added, stirred uniformly, and allowed to stand at normal temperature and pressure for about 20 to 25 days for fermentation (second fermentation step). ).

具体的には、10L容量の二次発酵缶に、0.75kgの第1の発酵工程を経たステンレス容器P1,Q1,R1いずれかの微生物含有液と、0.75kgのステビア茎熟成液とを収容し、更に水を加えて10kgとし均一に攪拌することで、第2の発酵工程に供する被発酵液の調製を行った。なお、被発酵液に対しては、必要に応じて0.75kg程度の糖源を更に添加しても良く、例えば、オリゴ糖、より好ましくはテンサイ糖を添加することができる。 Specifically, a 0.75 kg stainless steel container P1, Q1, or R1 microbial-containing solution that has undergone the first fermentation step and 0.75 kg of stevia stalk aging solution are stored in a 10 L capacity secondary fermentation can. Further, water was added to make 10 kg, and the mixture was uniformly stirred to prepare a liquid to be fermented for the second fermentation step. If necessary, a sugar source of about 0.75 kg may be further added to the fermented liquid, and for example, oligosaccharides, more preferably sugar beet sugars can be added.

そして、pHが3.1以下となるまで発酵させた時点で第2の発酵工程を終了し、得られた発酵液を底質改善微生物発酵液とした。また、この時点においてもステンレス容器P1,Q1,R1の容器形状に由来する異常発酵などの差異は認められず、この後の試験において底質改善微生物発酵液は、いずれも同じものとして扱うこととした。底質改善微生物発酵液中のChromatium属に属する光合成細菌群の数は20cfu/ml以下であった。また、耐塩性酵母群の菌数は1,2×106cfu/mlであった。 Then, when the fermentation was performed until the pH became 3.1 or less, the second fermentation step was completed, and the obtained fermentation broth was used as a sediment-improving microbial fermentation broth. In addition, at this point as well, no difference such as abnormal fermentation due to the container shape of the stainless steel containers P1, Q1 and R1 was observed, and in the subsequent tests, the bottom sediment-improving microbial fermentation liquids were all treated as the same. did. The number of photosynthetic bacteria belonging to the genus Chromatium in the fermented microbial solution for improving sediment was 20 cfu / ml or less. Furthermore, cell counts salt tolerance yeast group was 1,2 × 10 6 cfu / ml.

〔4.鉄鋼スラグ〕
製鉄会社より鉄鋼スラグを入手し、本実施形態に係る底質環境改善資材の製造原料用の鉄鋼スラグとした。同鉄鋼スラグは直径が3〜10mm程度の粒状を呈していた。
[4. Steel slag]
Steel slag was obtained from a steel company and used as a raw material for manufacturing the sediment environment improvement material according to this embodiment. The steel slag was granular with a diameter of about 3 to 10 mm.

〔5.水苔〕
ホームセンターにて市販の乾燥水苔を入手し、本実施形態に係る底質環境改善資材の製造原料用の乾燥水苔とした。
[5. Sphagnum]
A commercially available dried moss was obtained from a home center and used as a raw material for producing the sediment environment improving material according to the present embodiment.

〔6.メッシュ袋〕
シンワ株式会社製のポリ乳酸製不織布(型番9051-89-2)を入手し、ヒートシーラーを用いて一辺を開口部とした25cm×25cmの矩形袋状とし、メッシュ袋の形成を行った。ポリ乳酸製不織布の厚みは大凡0.1mmであり、目開きは鉄鋼スラグや水苔が脱落しない程度の大きさ(概ね1mm以下)であった。
[6. Mesh bag]
A polylactic acid non-woven fabric (model number 9051-89-2) manufactured by Shinwa Co., Ltd. was obtained, and a 25 cm × 25 cm rectangular bag with an opening on one side was formed using a heat sealer to form a mesh bag. The thickness of the polylactic acid non-woven fabric was about 0.1 mm, and the opening was large enough to prevent steel slag and water moss from falling off (approximately 1 mm or less).

〔7.底質環境改善資材〕
次に、上述の底質改善微生物発酵液と鉄鋼スラグ、水苔、メッシュ袋を用いて底質環境改善資材の形成を行った。
[7. Sediment environment improvement material]
Next, a sediment environment improving material was formed using the above-mentioned sediment-improving microbial fermented liquid, steel slag, water moss, and mesh bag.

まず、メッシュ袋に15〜25gの乾燥水苔と150〜155gの粒状の鉄鋼スラグとを収容し、ヒートシーラーにて開口をシールしてメッシュ袋収容体を形成した。 First, 15 to 25 g of dried water moss and 150 to 155 g of granular steel slag were placed in a mesh bag, and the opening was sealed with a heat sealer to form a mesh bag container.

次に、得られたメッシュ袋収容体を底質改善微生物発酵液中に浸漬することでメッシュ袋収容体内の乾燥水苔に底質改善微生物発酵液を含浸させて液濡水苔とした。 Next, the obtained mesh bag container was immersed in the bottom sediment improving microbial fermented liquid to impregnate the dried water moss in the mesh bag containing body with the bottom sediment improving microbial fermented liquid to obtain a liquid wet water moss.

12〜24時間経過後、底質改善微生物発酵液から引き上げて、底質環境改善資材を得た。このとき、乾燥水苔は十分に底質改善微生物発酵液の吸水を完了しており、過飽和状態に含浸されていることが確認された。 After 12 to 24 hours had passed, it was pulled up from the bottom sediment improvement microbial fermentation broth to obtain a bottom sediment environment improvement material. At this time, it was confirmed that the dried water moss had sufficiently completed the absorption of the bottom sediment-improving microbial fermentation liquid and was impregnated in a supersaturated state.

得られた底質環境改善資材は、ポリエチレンを主体とするポリアミド複合の樹脂外装袋内に3袋収容し、更に過飽和状態を保つべく所定量の底質改善微生物発酵液を収容して開口をシールして底質環境改善資材包装体とした。収容する底質改善微生物発酵液の量は、例えば約200〜2000mlの範囲で特に限定されるものではないが、底質環境改善資材包装体の重量をできるだけ軽くしたい場合には、400〜600mlの範囲としたり、底質環境改善資材包装体内に収容された余剰の底質改善微生物発酵液に別途用途等がある場合には1300〜1700mlの範囲とすることができる。 Three bags of the obtained sediment environment improving material are housed in a polyethylene-based polyamide composite resin outer bag, and a predetermined amount of the bottom sediment improving microbial fermented liquid is stored to seal the opening in order to maintain a supersaturated state. Then, it was used as a packaging material for improving the sediment environment. The amount of the sediment-improving microbial fermented liquid to be contained is not particularly limited in the range of, for example, about 200 to 2000 ml, but if the weight of the sediment environment-improving material package is to be reduced as much as possible, 400 to 600 ml is used. It can be in the range of 1300 to 1700 ml if there is another use for the excess sediment-improving microbial fermented liquid contained in the packaging of the sediment environment-improving material.

〔8.底質環境改善試験(1)〕
次に、製造した底質環境改善資材を用い、底質の環境の改善効果を確認すべくフィールド試験を行った。
[8. Sediment environment improvement test (1)]
Next, using the manufactured sediment environment improvement material, a field test was conducted to confirm the effect of improving the sediment environment.

具体的には、長崎県佐世保市にて水産卸売業を営むY社において、荷上場として使用している浮桟橋の床下に位置する海の底を対象に底質改善を試みた。荷上場直下の海底は、魚介類の水揚げや漁業資材の積み下ろしにより、有機物が多く堆積し底質が悪化しており、環境改善試験前の状態は、対象領域の底土から分取した検体水によれば、pHは6.34、ORPは-261mV、硫化水素濃度は2.0ppmであった。 Specifically, Company Y, which operates a fishery wholesale business in Sasebo City, Nagasaki Prefecture, attempted to improve the bottom sediment of the sea, which is located under the floor of the floating pier used as a loading site. On the seabed directly under the loading site, a large amount of organic matter is accumulated due to the landing of seafood and the loading and unloading of fishery materials, and the sediment is deteriorated. According to this, the pH was 6.34, the ORP was -261 mV, and the hydrogen sulfide concentration was 2.0 ppm.

この対象領域について底質改善を施すにあたり、本試験では、同対象領域を以下の4つの領域に区分けし、それぞれ異なる条件にてその効果を確認した。 In order to improve the bottom sediment in this target area, in this test, the target area was divided into the following four areas, and the effects were confirmed under different conditions.

まず、第1の区画には、本実施形態に係る底質環境資材であって、ほぼ製造直後と言える製造して3日以内のものを概ね30m2に1個の割合で合計12個(底質環境改善資材包装体として4袋)配置した。 First, in the first section, a total of 12 sediment environmental materials according to the present embodiment, which can be said to be almost immediately after production and within 3 days of production, are approximately 1 in 30 m 2 (bottom). 4 bags) were placed as a packaging material for improving the quality and environment.

また、この第1の区画と比較すべく、第2区画には、本実施形態に係る底質環境資材であって、製造後12ヶ月間に亘り倉庫で保管したもの(以下、長期保管資材ともいう。)を、別に区画された360m2の領域に対し概ね30m2に1個の割合で合計12個(長期保管された底質環境改善資材包装体として4袋)配置した。 Further, in order to compare with the first section, the second section contains the bottom sediment environmental material according to the present embodiment, which is stored in the warehouse for 12 months after production (hereinafter, also referred to as long-term storage material). refers.) was roughly a total of 12 in a ratio of one to 30 m 2 (4 bags as long-term storage have been sediment environmental improvement materials packaging) arranged to separate the partitioned area of 360 m 2 it was.

また更なる比較領域として、第3の区画には、本実施形態に係る底質環境改善資材と略同様であるが粒状の鉄鋼スラグのみ除いた資材であって、ほぼ製造直後と言える製造して3日以内のもの(以下、スラグなし比較品ともいう。)を、別に区画された360m2の領域に対し概ね30m2に1個の割合で合計12個(底質環境改善資材様の包装体として4袋)配置した。 Further, as a further comparison area, the third section is a material which is substantially the same as the sediment environment improvement material according to the present embodiment but excluding only granular steel slag, and can be said to be manufactured almost immediately after production. 3 days within one (hereinafter, also referred to as slag no comparative.) a generally total of twelve in a ratio of one to 30 m 2 for a region of 360 m 2 which is partitioned separately (sediment environmental improvement materials like packaging As 4 bags) were placed.

また更なる比較対象として、第4の区画には、製造後12ヶ月間に亘り倉庫で保管したスラグなし比較品(以下、長期保管スラグなし比較品ともいう。)を、別に区画された360m2の領域に対し概ね30m2に1個の割合で合計12個(底質環境改善資材様の包装体として4袋)配置した。 As a further comparison target, in the fourth section, a slag-free comparative product (hereinafter, also referred to as a long-term storage slag-free comparative product) stored in the warehouse for 12 months after production is separately divided into 360 m 2 A total of 12 pieces (4 bags as a packaging material for sediment environment improvement materials) were placed at a ratio of about 1 piece per 30 m 2 to the area of.

なお、各区画に配置された資材や比較品は、配置当初の位置が分かるようにポールをマーカとして配置した。 For the materials and comparative products placed in each section, poles were placed as markers so that the initial positions could be known.

まず、各資材や比較品の配置作業時の作業性について確認したところ、第1区画及び第2区画では、資材に配合された粒状の鉄鋼スラグのほどよい重みにより、目標位置への放り投げによる作業を行うことができ、極めて作業性に優れていることが確認された。一方、第3区画及び第4区画では、配置する比較品に粒状の鉄鋼スラグが配合されておらず、メッシュ袋内には液濡水苔があるだけで金属の如き高密度な重量感に欠け、放り投げによる配置は不可能ではないものの目標位置へのコントロールが難しく、第1区画及び第2区画にて使用した本実施形態に係る底質環境改善資材に比して作業性に欠けていた。 First, when the workability of each material and comparative product during the placement work was confirmed, in the first and second sections, due to the moderate weight of the granular steel slag mixed in the material, it was thrown to the target position. It was confirmed that the work could be performed and the workability was extremely excellent. On the other hand, in the third section and the fourth section, granular steel slag is not blended in the comparative products to be arranged, and the mesh bag lacks a high-density weight feeling like metal only with liquid-wet water moss. Although it is not impossible to arrange by throwing, it is difficult to control the target position, and the workability is lacking as compared with the sediment environment improvement material according to the present embodiment used in the first section and the second section. ..

次に、各資材や比較品の配置作業後の経時変化について検討した。評価は、メッシュ袋の状態、メッシュ袋の当初配置位置からの移動量、pH、ORP、硫化水素濃度について行った。まずは、第1区画及び第2区画の結果を表1に示す。

Figure 2021065834
Next, the changes over time after the placement work of each material and comparative product were examined. The evaluation was performed on the state of the mesh bag, the amount of movement of the mesh bag from the initial placement position, pH, ORP, and hydrogen sulfide concentration. First, Table 1 shows the results of the first section and the second section.
Figure 2021065834

まず第1区画についてであるが、表1からも分かるようにメッシュ袋の状態は、配置後1ヶ月まではほぼ変化が見られなかったものの、2ヶ月目にやや解れたような脆弱化した部位が見られるようになった。なお、表1には記載していないが、メッシュ袋の状態はその後解れが進行し、4ヶ月目にはメッシュ袋の一部は崩壊し、5〜6ヶ月目には配置した12個の底質環境改善資材の多くが既に袋ごと海流などによって流失していた。このことから、メッシュ袋の状態が時限的に変化することが確認された。 First, regarding the first section, as can be seen from Table 1, the state of the mesh bag showed almost no change until one month after placement, but it was a fragile part that seemed to be slightly unraveled in the second month. Has come to be seen. Although not shown in Table 1, the state of the mesh bag gradually unraveled, and a part of the mesh bag collapsed in the 4th month, and the 12 bottoms arranged in the 5th to 6th months. Most of the materials for improving the quality and environment had already been washed away by the ocean current along with the bags. From this, it was confirmed that the state of the mesh bag changes in a timely manner.

またメッシュ袋の当初配置位置からの移動については、配置後2ヶ月目までは当初位置のマーカであるポールから1メートルの範囲内であった。またその後の経過を観察したところ、4〜6ヶ月経過したあとでも2メートルの範囲内に収まっていた。このことから、本実施形態に係る底質環境改善資材は、水流によっては比較的流されにくいことが示唆された。 Regarding the movement of the mesh bag from the initial placement position, it was within 1 meter from the pole, which is the marker of the initial position, until the second month after the placement. Moreover, when the progress after that was observed, it was within the range of 2 meters even after 4 to 6 months had passed. From this, it was suggested that the sediment environment improving material according to the present embodiment is relatively difficult to be washed away by the water flow.

また、検体水のpHは前述の如く配置直後は6.34であり、この値は1ヶ月後においてもあまり変化なく6.35であった。しかし、2ヶ月後には値が大きく変化し、5.93となった。 In addition, the pH of the sample water was 6.34 immediately after placement as described above, and this value was 6.35 without much change even after one month. However, after two months, the value changed significantly to 5.93.

検体水のORP値は、配置直後において-261mVであったが、1ヶ月後には-201mVと電位はやや上昇し、2ヶ月後には-185mVと更に上昇した。なお、その後の経過観察では、最終的に6ヶ月後においてORP値は128mVとなった。 The ORP value of the sample water was -261 mV immediately after placement, but the potential increased slightly to -201 mV after 1 month and further increased to -185 mV after 2 months. In the subsequent follow-up, the ORP value finally reached 128 mV after 6 months.

検体水の硫化水素濃度は、配置直後において2.0ppmであったが、1ヶ月後には0.2ppmと大幅に減少し、2ヶ月後には検出限界以下となった。またその後の経過観察では6ヶ月後においても、硫化水素は検出されなかった。 The hydrogen sulfide concentration in the sample water was 2.0 ppm immediately after placement, but decreased significantly to 0.2 ppm after 1 month and fell below the detection limit after 2 months. In the subsequent follow-up, hydrogen sulfide was not detected even after 6 months.

これら第1区画の結果から、メッシュ袋が維持されている着底後一定期間は底質改善微生物がヘドロ環境に存在する微生物群に比して優勢に増殖することが助長され、併せて底質改善微生物のヘドロ環境への馴化が進行し、その後増菌し馴化した底質改善微生物は、メッシュ袋の自然崩壊に伴って乾燥水草(液濡水苔)と共に周辺環境へ拡散し、更に広範囲に亘って底質の改善効果を発揮することが示唆された。 From the results of these first compartments, it is promoted that the sediment-improving microorganisms proliferate predominantly in comparison with the microorganisms existing in the sludge environment for a certain period after landing in which the mesh bag is maintained, and at the same time, the sediment The acclimatization of the improving microorganisms to the sludge environment progressed, and then the sediment-improving microorganisms that were enriched and acclimatized spread to the surrounding environment together with the dried aquatic plants (liquid wet water moss) with the natural collapse of the mesh bag, and spread more widely. It was suggested that the effect of improving the sediment was exhibited over the years.

このような第1区画の結果に対し、表1の略右半部に示すように、長期保管資材を使用した第2区画の場合、1ヶ月後のORP値や硫化水素濃度については第1区画での結果よりもやや劣っていたが、2ヶ月後には第1区画と概ね同等の結果となった。 In contrast to the results of the first section, as shown in the substantially right half of Table 1, in the case of the second section using long-term storage materials, the ORP value and hydrogen sulfide concentration after one month are the first section. Although it was slightly inferior to the result in, after 2 months, the result was almost the same as that in the first section.

これは、長期保存により試験開始直後における微生物増殖の瞬発力がやや低下していたことに由来すると思われるが、その瞬発力の低下もわずかであり、2ヶ月後には長期保管していない資材と同等の効果を生起することができた。すなわち、第2区画の結果は概ね第1区画の結果と同様であり、12ヶ月間の保管期間が製品に与える品質への影響は小さいものと考えられた。 It is thought that this is because the instantaneous power of microbial growth immediately after the start of the test decreased slightly due to long-term storage, but the decrease in the instantaneous power was also slight, and it was considered that the material was not stored for a long time after 2 months. The same effect could be produced. That is, the result of the second section was almost the same as the result of the first section, and it was considered that the influence of the storage period of 12 months on the quality of the product was small.

次に、第3区画及び第4区画の結果を表2に示す。

Figure 2021065834
Next, the results of the third and fourth sections are shown in Table 2.
Figure 2021065834

スラグなし比較品を用いた第3区画の結果について言及すると、表2に示すようにメッシュ袋の状態であるが、1ヶ月後に試験場所に訪れたところ、第3区画に配置したスラグなし比較品はいずれも潮流によって失われていた。そこで再度ポールマーカの位置にスラグなし比較品を配置し、錘にて固定することで失われないように対策した。 Regarding the results of the third section using the slag-free comparative product, it is in the state of a mesh bag as shown in Table 2, but when I visited the test site one month later, the slag-free comparative product placed in the third section Were all lost due to the tide. Therefore, we placed a slag-free comparison product at the position of the pole marker again and fixed it with a weight to prevent it from being lost.

この結果、2ヶ月(再配置後1ヶ月)の時点では変化は未だ確認されなかったものの、その後の経過観察において3ヶ月(再配置後2ヶ月)の時点で解れが出現し、再配置後4ヶ月目にはメッシュ袋の一部は崩壊し、再配置後5〜6ヶ月目には配置した12個の底質環境改善資材の多くが既に袋ごと海流などによって流失していた。このことから、メッシュ袋の状態の時限的な変化は、本実施形態に係る底質環境資材乃至長期保管資材と同様であることが確認された。 As a result, although no change was confirmed at 2 months (1 month after relocation), a solution appeared at 3 months (2 months after relocation) in the subsequent follow-up, and 4 after relocation. A part of the mesh bag collapsed in the month, and most of the 12 sediment environment improving materials placed 5 to 6 months after the rearrangement had already been washed away by the ocean current. From this, it was confirmed that the timed change in the state of the mesh bag is the same as that of the bottom sediment environmental material or the long-term storage material according to the present embodiment.

またメッシュ袋の当初配置位置からの移動については、前述の通りであり、粒状の鉄鋼スラグを有しないことから、資材自体が容易に流失してしまうようであった。 Further, the movement of the mesh bag from the initial arrangement position is as described above, and since it does not have granular steel slag, the material itself seems to be easily washed away.

また、検体水のpHは前述の如く配置直後は6.33であり、資材自体が失われていたため、この値は1ヶ月後においてもあまり変化なく6.35であった。また、2ヶ月後には値が6.11に変化したものの、その変化の度合いは第1区画や第2区画と比較して小幅なものであった。 In addition, the pH of the sample water was 6.33 immediately after placement as described above, and since the material itself was lost, this value did not change much even after one month and was 6.35. In addition, although the value changed to 6.11 after 2 months, the degree of the change was smaller than that in the first and second compartments.

検体水のORP値は、配置直後において-263mVであったが、1ヶ月後には資材自体が失われていたにも拘わらず-248mVと電位はやや上昇し、2ヶ月後には-222mVと小幅ながらも少しずつ上昇を続けた。これは、定着が困難ながらも製造後間もなくの活性の高い微生物を含む資材が用いられたことにより、資材が海流等によって失われた後も海底に定着し、少しずつではあるが底質環境の改善が図られたためであると考えられる。しかし、錘にて固定した後も飛躍的な底質環境の改善が見られないのは、鉄鋼スラグからの鉄イオンの供給がないためと考えられた。 The ORP value of the sample water was -263 mV immediately after placement, but after 1 month the potential rose slightly to -248 mV despite the loss of the material itself, and after 2 months it was slightly -222 mV. Continued to rise little by little. This is because materials containing highly active microorganisms, which are difficult to settle but are shortly after production, are used, so even after the materials are lost due to ocean currents, they settle on the seabed and gradually settle in the sediment environment. It is probable that this was due to improvements. However, it was considered that the reason why the bottom sediment environment did not improve dramatically even after fixing with a weight was that there was no supply of iron ions from the steel slag.

また検体水の硫化水素濃度は、配置直後に2.1ppmであり、1ヶ月後には1.9ppm、2ヶ月後には1.6ppmと推移した。この硫化水素濃度についてもORPの値と同様に、微生物の底土への定着により若干の底質環境改善が図られたものの、鉄鋼スラグの不存在(鉄イオン不足)により、硫化水素の飛躍的な低減は見られなかったものと考えられる。 The hydrogen sulfide concentration in the sample water was 2.1 ppm immediately after placement, 1.9 ppm after 1 month, and 1.6 ppm after 2 months. Similar to the ORP value, this hydrogen sulfide concentration also improved the sediment environment slightly by colonizing the bottom soil of microorganisms, but due to the absence of steel slag (insufficient iron ions), hydrogen sulfide was dramatically improved. It is probable that no reduction was seen.

これらのことから、底質環境の飛躍的な改善を行うためには、鉄鋼スラグの存在が有用であることが示された。 From these facts, it was shown that the existence of steel slag is useful for making a dramatic improvement in the sediment environment.

またこのような第3区画の結果に対し、表2の略右半部に示すように、長期保管スラグなし比較品を用いた第4区画では、メッシュ袋の状態や当初配置位置からの移動の点については同じであったが、底質環境改善効果の点では第3区画の結果よりも更に劣る結果となった。 In contrast to the results of the third section, as shown in the substantially right half of Table 2, in the fourth section using the long-term storage slag-free comparative product, the state of the mesh bag and the movement from the initial placement position Although the points were the same, the result was even inferior to the result of the third section in terms of the effect of improving the sediment environment.

すなわち、pHの値こそ6.33(直後)→6.28(1ヶ月後)→6.25(2ヶ月後)とわずかながらも低下し続ける傾向が観察されたが、ORPについては配置直後-255mVであった値が、1ヶ月後には-262mV、2ヶ月後には-248mVであり、改善傾向はほぼ観察されなかった。 That is, it was observed that the pH value continued to decrease slightly from 6.33 (immediately after) → 6.28 (1 month later) → 6.25 (2 months later), but for ORP, the value was -255 mV immediately after placement. It was -262 mV after 1 month and -248 mV after 2 months, and almost no improvement tendency was observed.

また、硫化水素濃度についても、2.1ppm(直後)→2.0ppm(1ヶ月後)→1.9ppm(2ヶ月後)と顕著な改善傾向は見られなかった。 In addition, the hydrogen sulfide concentration did not show a remarkable improvement tendency from 2.1 ppm (immediately after) → 2.0 ppm (1 month later) → 1.9 ppm (2 months later).

これらの結果を勘案すると、長期保管スラグなし比較品は、鉄イオン源となる鉄鋼スラグの不存在に加え、長期保管による微生物活性の低下により底土への定着が著しく劣ることで、底質改善効果が殆ど見られなかったものと考えられた。 Taking these results into consideration, the long-term storage slag-free comparative product has the effect of improving the bottom sediment due to the absence of steel slag, which is the source of iron ions, and the markedly inferior fixation to the bottom soil due to the decrease in microbial activity due to long-term storage. Was considered to have been rarely seen.

〔9.底質環境改善試験(2)〕
次に、製造した底質環境改善資材を用い、底質の環境の改善効果を確認すべく第2のフィールド試験を行った。
[9. Sediment environment improvement test (2)]
Next, a second field test was conducted to confirm the effect of improving the environment of the sediment using the manufactured material for improving the environment of the sediment.

水産種苗会社であるO社において、社屋前排水口近辺の干潟を対象に底質改善を試みた。干潟の環境改善試験前の状態は、対象領域の底土から分取した検体水によれば、pHは6.22、ORPは-151mV、硫化水素濃度は検出限界以下(0.1ppm以下)であった。 Company O, a fishery seedling company, tried to improve the bottom sediment in the tidal flats near the drainage outlet in front of the company building. According to the sample water collected from the bottom soil of the target area, the pH of the tidal flat before the environmental improvement test was 6.22, the ORP was -151 mV, and the hydrogen sulfide concentration was below the detection limit (0.1 ppm or less).

試験は、前述の底質環境改善試験(1)と同様に、対象領域を第1区画〜第4区画に区分けして行った。 The test was carried out by dividing the target area into the first to fourth sections as in the above-mentioned sediment environment improvement test (1).

その結果、第1区画においてメッシュ袋の状態や当初配置位置からの移動については、前述の試験と同様の傾向が見られた。またpHについては、6.22(直後)→6.42(1ヶ月後)→5.85(2ヶ月後)であり、試験開始直後と2ヶ月後との比較ではpHが低下する傾向が見られたが、1ヶ月後において一度上昇している点については、現在その理由を解明しているところである。 As a result, the same tendency as in the above-mentioned test was observed in the state of the mesh bag and the movement from the initial arrangement position in the first section. The pH was 6.22 (immediately after) → 6.42 (1 month later) → 5.85 (2 months later), and the pH tended to decrease between immediately after the start of the test and 2 months later, but 1 month. The reason for the rise once later is currently being clarified.

また、ORP値は、-151mV(直後)→41mV(1ヶ月後)→101mV(2ヶ月後)と順調に上昇した。特に着目すべきは、2ヶ月後において100mVを超える電位にまで底質環境の改善が図られた。なお、硫化水素濃度は当初より検出限界以下であり、これは試験終了まで続いた。 In addition, the ORP value steadily increased from -151 mV (immediately after) → 41 mV (1 month later) → 101 mV (2 months later). Of particular note was the improvement of the sediment environment to a potential exceeding 100 mV after 2 months. The hydrogen sulfide concentration was below the detection limit from the beginning, and this continued until the end of the test.

一方、その他の区画については、前述の底質環境改善試験(1)と同様の結果が得られた。すなわち、第2区画については、第1区画とほぼ遜色のない底質環境改善効果が確認された。また、第3区画は、若干の底質環境改善効果が観察されたものの、第1区画及び第2区画に比してその効果は著しく低いものであった。また第4区画については、第3区画よりも更に底質環境改善効果は低いものであった。 On the other hand, for the other plots, the same results as in the above-mentioned sediment environment improvement test (1) were obtained. That is, it was confirmed that the second section has an effect of improving the sediment environment, which is almost the same as that of the first section. In addition, although a slight effect of improving the sediment environment was observed in the third section, the effect was significantly lower than that of the first and second sections. Further, the effect of improving the sediment environment was lower in the fourth section than in the third section.

これらの結果から、本実施形態に係る底質環境改善資材は、流通時や保管時は品質が変化しにくく、ハンドリングに優れ、また、水流によって流されにくく、更には、有用菌が比較的高濃度で集合した部位を時限的に底部に出現させ、その後底部に拡散して広範囲に改善効果をもたらすことが可能であることが示唆された。 From these results, the sediment environment improving material according to the present embodiment is less likely to change in quality during distribution and storage, is excellent in handling, is not easily washed away by water flow, and has a relatively high amount of useful bacteria. It was suggested that it is possible to make the site gathered at the concentration appear at the bottom in a timely manner and then diffuse to the bottom to bring about a wide range of improvement effects.

上述してきたように、本実施形態に係る底質環境改善資材によれば、底質改善微生物発酵液を15〜25重量部の乾燥水苔に過飽和状態に含浸させた液濡水苔と、150〜155重量部の粒状の鉄鋼スラグと、を生分解性樹脂にて形成したメッシュ状の袋内に収容してなることとしたため、流通時や保管時は品質が変化しにくく、ハンドリングに優れ、また、水流によって流されにくく、更には、有用菌が比較的高濃度で集合した部位を時限的に底部に出現させ、その後底部に拡散して広範囲に改善効果をもたらすことが可能な底質環境改善資材を提供することができる。 As described above, according to the bottom sediment environment improving material according to the present embodiment, 15 to 25 parts by weight of dry water moss impregnated with the bottom sediment improving microbial fermented liquid in a hypersaturated state, and 150 ~ 155 parts by weight of granular steel slag and granulated steel slag are housed in a mesh-like bag made of biodegradable resin, so the quality does not change easily during distribution and storage, and it is excellent in handling. In addition, it is difficult to be washed away by water flow, and a site where useful bacteria are gathered at a relatively high concentration appears at the bottom in a timely manner, and then diffuses to the bottom to bring about a wide range of improvement effects. Improvement materials can be provided.

最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. Therefore, it goes without saying that various changes can be made according to the design and the like as long as the technical idea of the present invention is not deviated from the above-described embodiments.

Claims (2)

底質改善微生物発酵液を15〜25重量部の乾燥水苔に過飽和状態に含浸させた液濡水苔と、150〜155重量部の粒状の鉄鋼スラグと、を生分解性樹脂にて形成したメッシュ状の袋内に収容してなる底質環境改善資材。 A liquid-wet water moss obtained by impregnating 15 to 25 parts by weight of a dry water moss with a bottom sediment-improving microbial fermented liquid in a hypersaturated state and 150 to 155 parts by weight of granular steel slag were formed of a biodegradable resin. A material for improving the bottom sediment environment that is housed in a mesh-shaped bag. 前記底質改善微生物発酵液は、
0.6重量部の乾燥ステビア茎粉末と、0.6重量部の米ぬか粉末と、0.6重量部の乾燥おから粉末と、耐塩性酵母を少なくとも含有する11〜13重量部の汽水と、を混合した混合液を所定時間静置する静置工程と、
前記静置工程を経た混合液を所定の容器に収容し、収容された混合液に同混合液の収容形状の外表面上のいずれの位置からも10cm以上であり、且つ、外表面上の少なくともいずれかの位置から17cm以下となる弱殺菌領域を形成する容器収容工程と、
前記容器収容工程を経て混合液を収容した所定の容器を加熱空間内に配置し、同加熱空間を常温常圧の状態から約2.5気圧で150〜160℃の状態にまで45〜60分掛けて昇温し、約2.5気圧で150〜160℃の状態を1〜3分間維持し、その後加熱空間を約2気圧で115〜125℃の状態にまで3〜5分間掛けて降温設定し、約2気圧で115〜125℃の状態を20〜40分間維持し、更に加熱空間を常温常圧の状態にまで24〜30時間掛けて降温させて、前記混合液中に加熱選抜された微生物を残存させる微生物選抜工程と、
少なくとも微生物が液相に移行可能な手段により前記微生物選抜工程を経た混合液を固液分離して微生物含有液を得る固液分離工程と、
得られた微生物含有液に糖源を添加して常温常圧で所定時間発酵し、微生物含有液のpHを4.5以下で、且つ、酸化還元電位を-100mV以下とする第1の発酵工程と、
第1の発酵工程を経た微生物含有液にステビア茎の熟成液を添加してpHが3.1以下となるまで発酵させて不良発酵防止剤とする第2の発酵工程と、を得て得られた発酵液であることを特徴とする請求項1に記載の底質環境改善資材。
The sediment-improving microbial fermented liquid is
A mixture of 0.6 parts by weight of dried stevia stalk powder, 0.6 parts by weight of rice bran powder, 0.6 parts by weight of dried okara powder, and 11 to 13 parts by weight of brackish water containing at least salt-tolerant yeast was prepared. A standing process that allows the product to stand for a predetermined period of time,
The mixed solution that has undergone the standing step is contained in a predetermined container, and the contained mixed solution is 10 cm or more from any position on the outer surface of the containing shape of the mixed solution, and at least on the outer surface. A container storage process that forms a weakly sterilized area that is 17 cm or less from any position,
A predetermined container containing the mixed solution is placed in the heating space through the container storage step, and the heating space is heated from a normal temperature and pressure state to a state of 150 to 160 ° C. at about 2.5 atm for 45 to 60 minutes. The temperature is raised, maintained at about 2.5 atm at 150 to 160 ° C for 1 to 3 minutes, and then the heating space is set to a state of 115 to 125 ° C at about 2 atm over 3 to 5 minutes, and the temperature is set to decrease to about 2. The state of 115 to 125 ° C. at atmospheric pressure is maintained for 20 to 40 minutes, and the heating space is further lowered to a state of normal temperature and pressure for 24 to 30 hours to leave the heat-selected microorganisms in the mixed solution. Microbial selection process and
A solid-liquid separation step of obtaining a microorganism-containing liquid by solid-liquid separation of the mixture that has undergone the microorganism selection step by at least a means capable of transferring the microorganism to the liquid phase.
A first fermentation step in which a sugar source is added to the obtained microbial-containing liquid and fermented at normal temperature and pressure for a predetermined time to set the pH of the microbial-containing liquid to 4.5 or less and the redox potential to -100 mV or less.
Fermentation obtained by adding a ripening solution of Stevia stalk to a microbial-containing liquid that has undergone the first fermentation step and fermenting it until the pH becomes 3.1 or less to obtain a second fermentation step as a defective fermentation inhibitor. The sediment environment improving material according to claim 1, which is a liquid.
JP2019192607A 2019-10-23 2019-10-23 Sediment environment improvement material Active JP7276850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192607A JP7276850B2 (en) 2019-10-23 2019-10-23 Sediment environment improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192607A JP7276850B2 (en) 2019-10-23 2019-10-23 Sediment environment improvement material

Publications (2)

Publication Number Publication Date
JP2021065834A true JP2021065834A (en) 2021-04-30
JP7276850B2 JP7276850B2 (en) 2023-05-18

Family

ID=75636231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192607A Active JP7276850B2 (en) 2019-10-23 2019-10-23 Sediment environment improvement material

Country Status (1)

Country Link
JP (1) JP7276850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210068049A (en) * 2018-09-21 2021-06-08 베르살리스 에스.피.에이. Purification process of bio-1,3-butanediol from fermentation broth

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293A (en) * 1991-02-14 1993-01-08 Tomoaki Otsuka Quality improvement of water
JP2002161524A (en) * 2000-11-24 2002-06-04 Yamatoya:Kk Recovering and conserving material for landscape of water edge
JP2002292364A (en) * 2001-03-29 2002-10-08 Daisaku Tsutsumi Water quality improver
JP2003340482A (en) * 2002-05-29 2003-12-02 Seiji Yokokura Water quality improver and method for improving water quality
JP2006326526A (en) * 2005-05-27 2006-12-07 Taihei Kogyo Co Ltd Slag microorganism carrier and sand covering method of water bottom using it
JP2015231351A (en) * 2014-06-10 2015-12-24 アクアサービス株式会社 Bag-shaped microbial preparation in which sulfur bacteria are carried, and environmental purification method using the same
JP2017099339A (en) * 2015-12-02 2017-06-08 トリゼンフーズ株式会社 Screening method of microorganisms for poor fermentation preventing agents and production method of poor fermentation preventing agent as well as fermentation method of biomass using poor fermentation preventing agent obtained by the same method
JP2018143907A (en) * 2017-03-01 2018-09-20 学校法人福岡大学 Water quality improvement method and shellfish growth promotion method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293A (en) * 1991-02-14 1993-01-08 Tomoaki Otsuka Quality improvement of water
JP2002161524A (en) * 2000-11-24 2002-06-04 Yamatoya:Kk Recovering and conserving material for landscape of water edge
JP2002292364A (en) * 2001-03-29 2002-10-08 Daisaku Tsutsumi Water quality improver
JP2003340482A (en) * 2002-05-29 2003-12-02 Seiji Yokokura Water quality improver and method for improving water quality
JP2006326526A (en) * 2005-05-27 2006-12-07 Taihei Kogyo Co Ltd Slag microorganism carrier and sand covering method of water bottom using it
JP2015231351A (en) * 2014-06-10 2015-12-24 アクアサービス株式会社 Bag-shaped microbial preparation in which sulfur bacteria are carried, and environmental purification method using the same
JP2017099339A (en) * 2015-12-02 2017-06-08 トリゼンフーズ株式会社 Screening method of microorganisms for poor fermentation preventing agents and production method of poor fermentation preventing agent as well as fermentation method of biomass using poor fermentation preventing agent obtained by the same method
JP2018143907A (en) * 2017-03-01 2018-09-20 学校法人福岡大学 Water quality improvement method and shellfish growth promotion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210068049A (en) * 2018-09-21 2021-06-08 베르살리스 에스.피.에이. Purification process of bio-1,3-butanediol from fermentation broth

Also Published As

Publication number Publication date
JP7276850B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
Han et al. Composting of waste algae: a review
Callaway et al. Temperature‐driven variation in substrate oxygenation and the balance of competition and facilitation
Gravel et al. Organic potted plants amended with biochar: its effect on growth and Pythium colonization
Schrader et al. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus)
Van Lier Thermophilic anaerobic wastewater treatment: temperature aspects and process stability
JP5414090B2 (en) Solid support on which microorganism group performing parallel dual mineralization reaction is immobilized, catalyst column, and method for producing solid medium for plant cultivation
US20130299421A1 (en) Biological treatment method and waste-water treatment agent for refractory wastewater
Kobayashi et al. Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria
CN101629153A (en) Method for processing preserved szechuan pickle waste water by compound bacterial flora
JP2012147717A (en) Method for inhibiting algae, and algae inhibitor
CN103740634A (en) Trichoderma asperellum chlamydospore powder as well as preparation method thereof and application
JP7276850B2 (en) Sediment environment improvement material
JP6693731B2 (en) Method for screening microorganisms for defective fermentation inhibitor, method for producing defective fermentation inhibitor, and method for fermentation of biomass using defective fermentation inhibitor obtained by the same method
CN105645596B (en) A kind of activated sludge pre-treatment medicaments and its preparation method and application method
CN109266573A (en) Landfill leachate and reverse osmosis concentrated liquid processing leavening, microbial inoculum and processing method
Wollak et al. Evaluation of blue mussels (Mytilus edulis) as substrate for biogas production in Kalmar County (Sweden)
CN102626034B (en) Method by utilizing microorganisms and ryegrasses to collectively repair garbage compost heavy-metal seepage system
CN116693070A (en) Microbial degradation method for ecological restoration of eutrophic water body
KR101355658B1 (en) How to make meju using deep sea water
CN102659296A (en) Method for controlling lake plant siltation by white rot fungi
Min et al. Microbial aerobic oxidation of methane in paddy soil
CN104556403B (en) A kind of method reducing eutrophication in sea cucumber growth waters
CN102630475B (en) Method by utilizing microorganisms and tall fescues to recover compost heavy metal leakage system
CN108178319B (en) Application and treatment methods of hybrid Wedlock chrysanthemum in the treatment of cadmium-polluted water bodies
Van den Berg et al. Harvesting Microalgal Biomass from a Cultured Algae-Based Wastewater Pond System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230320

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7276850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150