[go: up one dir, main page]

JP2021059752A - Spheroidal graphite cast iron excellent in strength and toughness and having low hardness - Google Patents

Spheroidal graphite cast iron excellent in strength and toughness and having low hardness Download PDF

Info

Publication number
JP2021059752A
JP2021059752A JP2019184464A JP2019184464A JP2021059752A JP 2021059752 A JP2021059752 A JP 2021059752A JP 2019184464 A JP2019184464 A JP 2019184464A JP 2019184464 A JP2019184464 A JP 2019184464A JP 2021059752 A JP2021059752 A JP 2021059752A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019184464A
Other languages
Japanese (ja)
Other versions
JP7380051B2 (en
Inventor
將秀 川畑
Masahide Kawabata
將秀 川畑
英也 山根
Hideya Yamane
英也 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2019184464A priority Critical patent/JP7380051B2/en
Publication of JP2021059752A publication Critical patent/JP2021059752A/en
Application granted granted Critical
Publication of JP7380051B2 publication Critical patent/JP7380051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide spheroidal graphite cast iron which is suitable as a material that constitutes various machines and automotive parts, in particular a material constituting a suspension component, excellent in the strength and toughness, and having low hardness.SOLUTION: Spheroidal graphite cast iron having a composition made of, by mass ratio, C: 3.5 to 3.9%, Si: 2.45 to 2.85%, Mn: 0.2 to 0.6%, Cu: 0.70 to 1.20%, Mg: 0.02 to 0.06%, P: 0.04% or smaller, S: 0.02% or smaller, and the balance made of Fe and inevitable impurities, and having a two-phase mixed base tissue comprising, by area rate, a fine ferrite phase of 15 to 50% and a fine perlite phase of 50 to 85%, and in which the number of crystallites of a base texture obtained by a J-shaped method is 250 pieces/mm or larger.SELECTED DRAWING: None

Description

本発明は強度及び靭性に優れ、かつ低硬度な球状黒鉛鋳鉄に関する。 The present invention relates to spheroidal graphite cast iron having excellent strength and toughness and low hardness.

球状黒鉛鋳鉄は優れた機械的特性及び良好な鋳造性を有するので、種々の機械や自動車の部品に広く使用されている。なかでも自動車のサスペンションアーム、ステアリングナックル等の懸架装置部品には、車体を支えるための静的強度及び疲労強度に加え、事故等による衝撃があった場合にも破損しないための耐衝撃性が要求される。このため懸架装置部品に用いられる球状黒鉛鋳鉄には、引張強さ及び耐力の他に、伸び等の靭性が求められる。このような要求を満たすため、従来から基地組織がフェライト相主体で靭性を備えた球状黒鉛鋳鉄として、JIS G 5502に規定されるFCD400、FCD450等が使用されている。 Spheroidal graphite cast iron is widely used in various machine and automobile parts because of its excellent mechanical properties and good castability. In particular, suspension arm parts such as automobile suspension arms and steering knuckles are required to have static strength and fatigue strength to support the vehicle body, as well as impact resistance so that they will not be damaged even if there is an impact due to an accident or the like. Will be done. Therefore, spheroidal graphite cast iron used for suspension system parts is required to have toughness such as elongation in addition to tensile strength and proof stress. In order to satisfy such a requirement, FCD400, FCD450 and the like specified in JIS G5502 have been conventionally used as spheroidal graphite cast iron having a base structure mainly composed of a ferrite phase and having toughness.

近年、地球温暖化防止のために自動車のCO2排出量の削減が強く求められているが、そのためには自動車の燃費性能の向上が必要であり、その対応技術の一つとして懸架装置部品等の軽量化が求められている。必要な強度を確保しつつ部品を軽量化するには、部品の小型化及び薄肉化が有効である。このためにFCD400、FCD450等より高強度のFCD600、FCD700等のパーライト系球状黒鉛鋳鉄を用いることも考えられるが、球状黒鉛鋳鉄では強度と靭性は相反する特性であるので、FCD600、FCD700等は靭性が低く、耐衝撃性が要求される懸架装置部品に適さない。強度及び靭性を確保しつつ懸架装置部品の軽量化を図るためには、強度及び靭性の両方に優れた球状黒鉛鋳鉄が要求される。 In recent years, there has been a strong demand for reduction of CO 2 emissions of automobiles in order to prevent global warming. For that purpose, it is necessary to improve the fuel efficiency of automobiles. Is required to be lighter. In order to reduce the weight of parts while ensuring the required strength, it is effective to reduce the size and thickness of the parts. For this purpose, it is conceivable to use pearlite-based spheroidal graphite cast iron such as FCD600 and FCD700, which have higher strength than FCD400 and FCD450. However, since strength and toughness of spheroidal graphite cast iron are contradictory, FCD600, FCD700 and the like have toughness. Is not suitable for suspension equipment parts that require low impact resistance. In order to reduce the weight of suspension system parts while ensuring strength and toughness, spheroidal graphite cast iron having excellent both strength and toughness is required.

優れた強度及び靭性を有する球状黒鉛鋳鉄を得るために、従来より種々の提案がされている。例えば、特許文献1は、(a)質量比で、C:3.4〜4%、Si:1.9〜2.8%、Mg:0.02〜0.06%、Mn:0.2〜1%、Cu:0.2〜2%、Sn:0〜0.1%、(Mn+Cu+10×Sn):0.85〜3%、P:0.05%以下、S:0.02%以下、残部Fe及び不可避的不純物からなる組成を有し、(b)面積率で2〜40%の微細フェライト相と60〜98%の微細パーライト相とからなる二相混合基地組織を有し、前記フェライト相の最大長さが300μm以下であり、(c)前記二相混合基地組織に分散した黒鉛の周囲に前記パーライト相が形成された強度及び靭性に優れた球状黒鉛鋳鉄を提案している。 Various proposals have been made conventionally in order to obtain spheroidal graphite cast iron having excellent strength and toughness. For example, Patent Document 1 (a) has a mass ratio of C: 3.4 to 4%, Si: 1.9 to 2.8%, Mg: 0.02 to 0.06%, Mn: 0.2. ~ 1%, Cu: 0.2-2%, Sn: 0-0.1%, (Mn + Cu + 10 × Sn): 0.85-3%, P: 0.05% or less, S: 0.02% or less It has a composition of the balance Fe and unavoidable impurities, and (b) has a two-phase mixed matrix structure consisting of a fine ferrite phase of 2 to 40% and a fine pearlite phase of 60 to 98% in terms of area ratio. We propose a spheroidal graphite cast iron having a maximum length of a ferrite phase of 300 μm or less and (c) having the pearlite phase formed around graphite dispersed in the two-phase mixed matrix structure and having excellent strength and toughness.

ところで、球状黒鉛鋳鉄からなる種々の機械や自動車の部品は、鋳造した素材のままで機械や自動車に組み付けられることは稀で、素材に機械加工を施して組み付けられるのが一般的である。例えば懸架装置部品のステアリングナックルでは、鋳造後に車軸、緩衝装置、操舵装置及び制動装置などの周辺部品との取付け面、取付け孔等の連結部位や、高い寸法精度を要する部位等に切削等の機械加工を施した後、自動車に組み付けられるので高い被削性を有する必要がある。 By the way, various parts of machines and automobiles made of spheroidal graphite cast iron are rarely assembled to machines and automobiles as cast materials, and are generally assembled by machining the materials. For example, in the case of steering knuckles for suspension system parts, after casting, machines such as cutting machines for mounting surfaces with peripheral parts such as axles, shock absorbers, steering devices and braking devices, connecting parts such as mounting holes, and parts requiring high dimensional accuracy. After being processed, it must have high machinability because it can be assembled into an automobile.

ところが、高強度のFCD600、FCD700等のパーライト系球状黒鉛鋳鉄は難削材料であり、特にFCD700のように700MPa以上の引張強さを有する球状黒鉛鋳鉄は高強度と同時に高硬度であるため被削性に劣る。このため、引張強さ700MPa以上の球状黒鉛鋳鉄からなる部品を切削する場合、難削材料向けの比較的高価な切削工具を必要とし、かつ工具寿命も短いために工具交換の頻度が多く加工コストが上昇し、さらに低速での切削を余儀なくされ切削に長時間を要するために加工能率が低いなど、経済性及び生産性に劣るという問題がある。FCD600、FCD700等は靭性が低いのみならず、材料の硬さが高いことに起因して被削性に劣ることからも懸架装置部品に適さない。このように懸架装置部品を構成する材料には、強度及び靭性に加えて、低硬度であって高い被削性を有することが望まれる。特許文献1に記載の球状黒鉛鋳鉄は、優れた強度及び靱性を有するものの、高い被削性を得るための低硬度化についての検討は十分ではなく、改善の余地がある。 However, high-strength pearlite-based spheroidal graphite cast iron such as FCD600 and FCD700 is a difficult-to-cut material, and in particular, spheroidal graphite cast iron having a tensile strength of 700 MPa or more such as FCD700 has high strength and high hardness, so it is to be machined. Inferior in sex. For this reason, when cutting a part made of spheroidal graphite cast iron with a tensile strength of 700 MPa or more, a relatively expensive cutting tool for difficult-to-cut materials is required, and since the tool life is short, the tool is frequently replaced and the machining cost is high. There is a problem that the efficiency and productivity are inferior, for example, the machining efficiency is low because the cutting is forced to be performed at a low speed and the cutting takes a long time. FCD600, FCD700 and the like are not suitable for suspension system parts because they are not only low in toughness but also inferior in machinability due to high hardness of the material. As described above, it is desired that the material constituting the suspension device component has low hardness and high machinability in addition to strength and toughness. Although the spheroidal graphite cast iron described in Patent Document 1 has excellent strength and toughness, studies on lowering the hardness in order to obtain high machinability are not sufficient, and there is room for improvement.

国際公開第2013/100148号パンフレットInternational Publication No. 2013/100148 Pamphlet

従って、本発明の目的は、強度及び靭性に優れ、かつ低硬度な球状黒鉛鋳鉄を提供することである。 Therefore, an object of the present invention is to provide spheroidal graphite cast iron having excellent strength and toughness and low hardness.

上記目的に鑑み特許文献1の球状黒鉛鋳鉄をベースに鋭意検討した結果、本発明者らは、この球状黒鉛鋳鉄の合金組成のうちSi、Mn及びCuの含有量を比較的狭い適正範囲に制限するとともに、特許文献1の球状黒鉛鋳鉄の製造方法で提案された熱処理条件を適用することで、優れた強度及び靭性を確保しつつ低硬度を実現できることを発見し、本発明に想到した。 In view of the above object, as a result of diligent studies based on the spheroidal graphite cast iron of Patent Document 1, the present inventors limit the content of Si, Mn and Cu in the alloy composition of the spheroidal graphite cast iron to a relatively narrow appropriate range. At the same time, it was discovered that low hardness can be realized while ensuring excellent strength and toughness by applying the heat treatment conditions proposed in the method for producing spheroidal graphite cast iron in Patent Document 1, and the present invention was conceived.

すなわち、本発明の強度及び靭性に優れ、かつ低硬度な球状黒鉛鋳鉄は、
質量比で、
C:3.5〜3.9%
Si:2.45〜2.85%
Mn:0.2〜0.6%
Cu:0.70〜1.20%
Mg:0.02〜0.06%
P:0.04%以下
S:0.02%以下
残部Fe及び不可避的不純物からなる組成を有し、
面積率で15〜50%の微細フェライト相と50〜85%の微細パーライト相とからなる二相混合基地組織を有し、
交線法により求められた基地組織の結晶粒数が250個/mm以上であることを特徴とする。なお本発明における結晶粒数とは、後述のとおり交線法により求められる単位長さ当たりの結晶粒界の数である。
That is, the spheroidal graphite cast iron having excellent strength and toughness and low hardness of the present invention can be used.
By mass ratio,
C: 3.5-3.9%
Si: 2.45 to 2.85%
Mn: 0.2 to 0.6%
Cu: 0.70 to 1.20%
Mg: 0.02 to 0.06%
P: 0.04% or less S: 0.02% or less It has a composition consisting of the balance Fe and unavoidable impurities.
It has a two-phase mixed matrix structure consisting of a fine ferrite phase of 15 to 50% and a fine pearlite phase of 50 to 85% in area ratio.
It is characterized in that the number of crystal grains of the matrix structure determined by the line of intersection method is 250 grains / mm or more. The number of crystal grains in the present invention is the number of crystal grain boundaries per unit length obtained by the line of intersection method as described later.

本発明の球状黒鉛鋳鉄は、強度の指標としての引張強さが700MPa以上であり、靭性の指標としての室温伸びが10%以上であり、かつ硬度の指標としてのブリネル硬さが210〜240HBWであるのが好ましい。 The spheroidal graphite cast iron of the present invention has a tensile strength of 700 MPa or more as an index of strength, a room temperature elongation of 10% or more as an index of toughness, and a Brinell hardness of 210 to 240 HBW as an index of hardness. It is preferable to have it.

本発明の球状黒鉛鋳鉄は、引張強さが700MPa以上であって、引張強さとブリネル硬さが、下記式(1)を満足することが好ましい。
ブリネル硬さ≦(引張強さ/5)+82 ・・・(1)
ただし、式(1)において、ブリネル硬さは単位HBWの値を、引張強さは単位MPaの値を代入する。
The spheroidal graphite cast iron of the present invention preferably has a tensile strength of 700 MPa or more, and the tensile strength and Brinell hardness satisfy the following formula (1).
Brinell hardness ≤ (tensile strength / 5) +82 ... (1)
However, in the formula (1), the value of the unit HBW is substituted for the Brinell hardness, and the value of the unit MPa is substituted for the tensile strength.

本発明の球状黒鉛鋳鉄は、強度及び靭性に優れており、自動車の部品、特に耐衝撃性を求められる懸架装置部品に好適であり、部品の軽量化による自動車の低燃費化に貢献する。加えて本発明の球状黒鉛鋳鉄は、低硬度を兼備することから高い被削性を有し、懸架装置部品の機械加工における経済性及び生産性を改善することができる。 The spheroidal graphite cast iron of the present invention is excellent in strength and toughness, and is suitable for automobile parts, particularly suspension device parts that require impact resistance, and contributes to fuel efficiency of automobiles by reducing the weight of the parts. In addition, the spheroidal graphite cast iron of the present invention has high machinability because it has low hardness, and can improve economic efficiency and productivity in machining of suspension device parts.

本発明の球状黒鉛鋳鉄を以下詳細に説明する。特に断りがない限り、合金の構成元素の含有量は質量%で示す。 The spheroidal graphite cast iron of the present invention will be described in detail below. Unless otherwise specified, the content of constituent elements of the alloy is shown in% by mass.

[A]球状黒鉛鋳鉄の組成
(1)C:3.5〜3.9%
Cは、凝固開始温度を下げて鋳造性を向上するとともに、黒鉛を晶出させ、パーライト相を析出させるのに必要である。C含有量が3.5%未満ではチル化しやすく靭性が低下し、また3.9%を超えると異常黒鉛を生じやすくなり、球状黒鉛鋳鉄の強度は低下する。このため、C含有量を3.5〜3.9%とする。好ましいC含有量は3.6〜3.8%である。
[A] Composition of spheroidal graphite cast iron (1) C: 3.5 to 3.9%
C is necessary for lowering the solidification start temperature to improve castability, crystallizing graphite, and precipitating a pearlite phase. If the C content is less than 3.5%, chilling is likely to occur and the toughness is lowered, and if it exceeds 3.9%, abnormal graphite is likely to be generated and the strength of spheroidal graphite cast iron is lowered. Therefore, the C content is set to 3.5 to 3.9%. The preferred C content is 3.6-3.8%.

(2)Si:2.45〜2.85%
Siは、黒鉛の晶出を促進したり、溶湯の流動性を高めたりするのに必要である他、特に本発明においてはパーライト相より軟らかいフェライト相の析出を促進して球状黒鉛鋳鉄の硬さを低下させて被削性を改善する効果がある。また、Siはフェライト相に固溶して基地組織を強化する作用があることから、フェライト相の増加にともなう球状黒鉛鋳鉄の強度の低下を抑制する。Si含有量が2.45%未満ではフェライト相の析出が不十分で球状黒鉛鋳鉄の硬さが低下しない。また2.85%を超えるとパーライト化の抑制作用が高くなり、フェライト相が過剰となって球状黒鉛鋳鉄の強度が低下するとともに、フェライト相の靭性も悪化する。このため、Si含有量は2.45〜2.85%とする。好ましいSi含有量は2.50〜2.85%であり、より好ましくは2.55〜2.85%である。
(2) Si: 2.45 to 2.85%
Si is necessary for promoting the crystallization of graphite and increasing the fluidity of the molten metal. In particular, in the present invention, Si promotes the precipitation of the ferrite phase, which is softer than the pearlite phase, and the hardness of the spheroidal graphite cast iron. Has the effect of improving machinability. Further, since Si has an action of solid-solving in the ferrite phase to strengthen the matrix structure, it suppresses a decrease in the strength of spheroidal graphite cast iron due to an increase in the ferrite phase. If the Si content is less than 2.45%, the precipitation of the ferrite phase is insufficient and the hardness of the spheroidal graphite cast iron does not decrease. On the other hand, if it exceeds 2.85%, the effect of suppressing pearlite formation becomes high, the ferrite phase becomes excessive, the strength of the spheroidal graphite cast iron decreases, and the toughness of the ferrite phase also deteriorates. Therefore, the Si content is set to 2.45 to 2.85%. The preferred Si content is 2.50 to 2.85%, more preferably 2.55 to 2.85%.

(3)Mn:0.2〜0.6%
Mnは原料から不可避的に混入する元素であるが、パーライト相安定化元素として強度向上に寄与するパーライト相を析出させる作用を有する。Mn含有量が0.3%未満では、パーライト相を十分に生成させることができず、引張強さ、耐力等の必要な強度が得られない。パーライト化を促進するMn含有量は1%まで許容できるが、0.6%を超えるとチル化が促進されて、球状黒鉛鋳鉄が高硬度になり被削性及び靭性を悪化させる。このため、Mn含有量は0.2〜0.6%とする。好ましいMn含有量は0.3〜0.6%である。
(3) Mn: 0.2 to 0.6%
Mn is an element that is inevitably mixed from the raw material, but has an action of precipitating a pearlite phase that contributes to strength improvement as a pearlite phase stabilizing element. If the Mn content is less than 0.3%, the pearlite phase cannot be sufficiently generated, and the required strengths such as tensile strength and proof stress cannot be obtained. The Mn content that promotes pearlite formation is acceptable up to 1%, but if it exceeds 0.6%, chilling is promoted, the spheroidal graphite cast iron becomes high in hardness, and machinability and toughness are deteriorated. Therefore, the Mn content is set to 0.2 to 0.6%. The preferred Mn content is 0.3-0.6%.

(4)Cu:0.70〜1.20%
Cuは、パーライト相安定化元素として強度向上に寄与するパーライト相を析出させるのに必要である。また熱処理の際に、Cuは黒鉛と基地との界面でのバリア効果によりオーステナイト相から黒鉛粒子への炭素の拡散を抑制し、もってオーステナイト相からフェライト相への変態を遅延させて、フェライト相の析出と成長を抑制すると考えられる。加えてCuは熱処理の際に、基地組織よりCu析出物を析出させることでピン止め効果により、オーステナイト相の結晶粒の成長を抑制して結晶粒を微細化させる作用により球状黒鉛鋳鉄に必要な靭性を確保する。本発明の球状黒鉛鋳鉄において基地組織の結晶粒の微細化、即ち結晶粒数の増加は、上述したCuによるオーステナイト相の結晶粒の成長の抑制作用によって得られる。Cu含有量が0.70%未満では、パーライト相を十分に生成できず、またオーステナイト相の結晶粒の微細化が促進されず、球状黒鉛鋳鉄の引張強さ及び靭性が低下する。一方、Cuが1.20%を超えると上記特性の向上効果は飽和し、経済的に不利となる。このため、Cu含有量は0.70〜1.20%とする。好ましいCu含有量は0.80〜1.10%であり、より好ましくは0.80〜1.00%である。
(4) Cu: 0.70 to 1.20%
Cu is required to precipitate a pearlite phase that contributes to strength improvement as a pearlite phase stabilizing element. During the heat treatment, Cu suppresses the diffusion of carbon from the austenite phase to the graphite particles due to the barrier effect at the interface between graphite and the matrix, thereby delaying the transformation from the austenite phase to the ferrite phase and causing the ferrite phase to change. It is thought to suppress precipitation and growth. In addition, Cu is required for spheroidal graphite cast iron due to the pinning effect of precipitating Cu precipitates from the matrix structure during heat treatment, which suppresses the growth of crystal grains in the austenite phase and refines the crystal grains. Ensure toughness. In the spheroidal graphite cast iron of the present invention, the refinement of the crystal grains of the matrix structure, that is, the increase in the number of crystal grains is obtained by the above-mentioned action of suppressing the growth of the crystal grains of the austenite phase by Cu. If the Cu content is less than 0.70%, the pearlite phase cannot be sufficiently formed, the fineness of the crystal grains of the austenite phase is not promoted, and the tensile strength and toughness of the spheroidal graphite cast iron are lowered. On the other hand, if Cu exceeds 1.20%, the effect of improving the above characteristics is saturated, which is economically disadvantageous. Therefore, the Cu content is set to 0.70 to 1.20%. The Cu content is preferably 0.80 to 1.10%, more preferably 0.80 to 1.00%.

(5)Mg:0.02〜0.06%
Mgは、黒鉛球状化に必要な元素であるが、その含有量が0.02%未満では黒鉛球状化の効果が不十分である。一方、Mg含有量が0.06%を超えるとチルが生成しやすくなり、球状黒鉛鋳鉄の被削性及び靭性が低下する。このため、Mg含有量は0.02〜0.06%とする。好ましいMg含有量は0.03〜0.05%である。
(5) Mg: 0.02 to 0.06%
Mg is an element required for graphite spheroidization, but if the content is less than 0.02%, the effect of graphite spheroidization is insufficient. On the other hand, when the Mg content exceeds 0.06%, chills are likely to be generated, and the machinability and toughness of the spheroidal graphite cast iron are lowered. Therefore, the Mg content is set to 0.02 to 0.06%. The preferred Mg content is 0.03 to 0.05%.

(6)P:0.04%以下、S:0.02%以下、
P及びSは、いずれも原料から不可避的に混入する黒鉛球状化阻害元素であるので、その含有量をそれぞれ、Pは0.04%以下、Sは0.02%以下とする。
(6) P: 0.04% or less, S: 0.02% or less,
Since both P and S are graphite spheroidizing inhibitor elements that are inevitably mixed from the raw material, their contents are set to 0.04% or less for P and 0.02% or less for S, respectively.

[B]球状黒鉛鋳鉄の組織
本発明の球状黒鉛鋳鉄の基地組織は、微細フェライト相と微細パーライト相とが迷彩柄状に分布する(あるいは、微細なフェライト相がパーライト相中に島海状に分散した)二相混合基地組織である。基地組織中のフェライト相の面積率は15〜50%、パーライト相の面積率は50〜85%であるのが好ましい。フェライト相は後述する作用効果により微細分散して形成しているものの析出面積率としては特許文献1の球状黒鉛鋳鉄のフェライト相よりも比較的多く、その下限は15%である。基地組織中のフェライト相の面積率を15〜50%とすることで、球状黒鉛鋳鉄の硬さが低下して被削性を改善できる。
[B] Structure of spheroidal graphite cast iron In the matrix structure of spheroidal graphite cast iron of the present invention, the fine ferrite phase and the fine pearlite phase are distributed in a camouflage pattern (or the fine ferrite phase is island-like in the pearlite phase. It is a (dispersed) two-phase mixed matrix structure. The area ratio of the ferrite phase in the matrix structure is preferably 15 to 50%, and the area ratio of the pearlite phase is preferably 50 to 85%. Although the ferrite phase is formed by finely dispersing due to the action and effect described later, the precipitation area ratio is relatively larger than that of the ferrite phase of spheroidal graphite cast iron of Patent Document 1, and the lower limit thereof is 15%. By setting the area ratio of the ferrite phase in the matrix structure to 15 to 50%, the hardness of the spheroidal graphite cast iron can be reduced and the machinability can be improved.

微細なフェライト相は、熱処理におけるパーライト相安定化元素によるフェライト相の析出・成長の抑制及びCu析出物のピン止め効果によるオーステナイト相の結晶粒の成長抑制の作用によって、パーライト相の結晶粒界に沿って微細分散して形成されたものである。微細なフェライト相は網目状ではなく、パーライト結晶粒によって分断された細長い形状を有する。このようなフェライト相の形状を「樹枝状」と呼んでも良い。また、微細なパーライト相は、オーステナイト化熱処理により完全にオーステナイト化した基地の微細な結晶粒(オーステナイト結晶粒)が、降温により粗大化することなくパーライト変態したものである。 The fine ferrite phase is formed at the grain boundaries of the pearlite phase by the action of suppressing the precipitation and growth of the ferrite phase by the pearlite phase stabilizing element in the heat treatment and suppressing the growth of the crystal grains of the austenite phase by the pinning effect of Cu precipitates. It is formed by fine dispersion along the line. The fine ferrite phase is not reticulated but has an elongated shape divided by pearlite crystal grains. The shape of such a ferrite phase may be called "dendritic". Further, the fine pearlite phase is a pearlite-transformed matrix of fine crystal grains (austenite crystal grains) completely austenitized by austenitizing heat treatment without being coarsened by lowering the temperature.

本発明の球状黒鉛鋳鉄は、前述したフェライト相の析出・成長の抑制作用によって、フェライト相及びパーライト相が何れも微細に分散析出していることから、基地組織の結晶粒は微細化している。結晶粒の微細化の程度は結晶粒数により表すことができる。結晶粒数が多いほど靭性が向上する。具体的には、基地組織の結晶粒数は250個/mm以上であるのが好ましい。結晶粒数が250個/mm未満では、粗大な結晶粒が存在することから球状黒鉛鋳鉄は十分な靭性を有さない。基地組織の結晶粒数はより好ましくは270個/mm以上であり、最も好ましくは300個/mm以上である。 In the spheroidal graphite cast iron of the present invention, both the ferrite phase and the pearlite phase are finely dispersed and precipitated by the above-mentioned effect of suppressing the precipitation and growth of the ferrite phase, so that the crystal grains of the matrix structure are finely divided. The degree of grain refinement can be expressed by the number of crystal grains. The larger the number of crystal grains, the better the toughness. Specifically, the number of crystal grains in the matrix structure is preferably 250 grains / mm or more. When the number of crystal grains is less than 250 / mm, spheroidal graphite cast iron does not have sufficient toughness because coarse crystal grains are present. The number of crystal grains in the matrix structure is more preferably 270 grains / mm or more, and most preferably 300 grains / mm or more.

[C]球状黒鉛鋳鉄の特性
(1)強度及び靭性
懸架装置部品には高い引張強さ及び耐力の他に、高い伸び等が要求されるので球状黒鉛鋳鉄は優れた強度及び靭性を有するのが好ましい。具体的には、本発明の球状黒鉛鋳鉄は室温での引張強さが700MPa以上、室温での伸びが10%以上であるのが好ましい。
[C] Characteristics of spheroidal graphite cast iron (1) Strength and toughness Spheroidal graphite cast iron has excellent strength and toughness because high tensile strength and toughness are required in addition to high tensile strength and toughness. preferable. Specifically, the spheroidal graphite cast iron of the present invention preferably has a tensile strength of 700 MPa or more at room temperature and an elongation of 10% or more at room temperature.

球状黒鉛鋳鉄の室温での引張強さが700MPa以上であれば、懸架装置部品は車体を支えるのに必要な強度を確保しつつ部品を軽量化するための小型化及び薄肉化への対応が可能となる。球状黒鉛鋳鉄の引張強さは、より好ましくは720MPa以上であり、最も好ましくは740MPa以上である。なお、引張強さの上限は特に限定されないが、800MPa以下であれば、後述する硬度が過剰とならず好ましい。 If the tensile strength of spheroidal graphite cast iron at room temperature is 700 MPa or more, the suspension system parts can be miniaturized and thinned to reduce the weight while ensuring the strength required to support the vehicle body. It becomes. The tensile strength of the spheroidal graphite cast iron is more preferably 720 MPa or more, and most preferably 740 MPa or more. The upper limit of the tensile strength is not particularly limited, but it is preferable that the hardness is 800 MPa or less so that the hardness described later does not become excessive.

球状黒鉛鋳鉄の室温伸びが10%以上であれば、懸架装置部品は耐衝撃性を有して、衝突などの事故等による衝撃があった場合でも破損を抑制できる。球状黒鉛鋳鉄の室温伸びは、より好ましくは11%以上であり、最も好ましくは12%以上である。 If the room temperature elongation of the spheroidal graphite cast iron is 10% or more, the suspension device parts have impact resistance, and damage can be suppressed even if there is an impact due to an accident such as a collision. The room temperature elongation of spheroidal graphite cast iron is more preferably 11% or more, and most preferably 12% or more.

(2)硬度
懸架装置部品は鋳造後に周辺部品との取付け面、取付け孔等の連結部位や、高い寸法精度を要する部位等に切削等の機械加工を施すので高い被削性を有することが望まれる。一般に引張強さ700MPa以上となる球状黒鉛鋳鉄は硬度が高いため被削性に劣る。引張強さ700MPa以上であって、しかも高い被削性を有するためには低硬度であることが好ましい。具体的には、本発明の球状黒鉛鋳鉄はブリネル硬さが210〜240HBWであるのが好ましい。球状黒鉛鋳鉄のブリネル硬さは、より好ましくは210〜235HBWである。
(2) Hardness It is desirable that suspension device parts have high machinability because they are machined such as cutting on the mounting surface with peripheral parts, connecting parts such as mounting holes, and parts that require high dimensional accuracy after casting. Is done. Generally, spheroidal graphite cast iron having a tensile strength of 700 MPa or more is inferior in machinability because of its high hardness. It is preferable that the tensile strength is 700 MPa or more and the hardness is low in order to have high machinability. Specifically, the spheroidal graphite cast iron of the present invention preferably has a Brinell hardness of 210 to 240 HBW. The Brinell hardness of spheroidal graphite cast iron is more preferably 210 to 235 HBW.

ここで、一般に球状黒鉛鋳鉄など鉄系の材料においては、強度と硬度は正比例の関係にあり、材料の強度の増加にともなって材料の硬度も増加する。強度の増加に対して硬度の増加の割合が少なければ強度を確保しつつ低硬度となって被削性に優れた材料といえる。本発明の球状黒鉛鋳鉄も強度と硬度は正比例の関係にあるものの強度の増加に対して硬度の増加は緩やかで、引張強さ700MPa以上の高強度材料でありながら低硬度を実現している。具体的には、本発明の球状黒鉛鋳鉄は引張強さが700MPa以上であって、引張強さとブリネル硬さが、下記式(1)を満足することが好ましい。
ブリネル硬さ≦(引張強さ/5)+82 ・・・(1)
ただし、式(1)において、ブリネル硬さは単位HBWの値を、引張強さは単位MPaの値を代入する。(1)式において右辺の切片値82は、より好ましくは80であり、最も好ましくは78である。
Here, in general, in an iron-based material such as spheroidal graphite cast iron, the strength and the hardness are in a direct proportional relationship, and the hardness of the material increases as the strength of the material increases. If the rate of increase in hardness is small with respect to the increase in strength, it can be said that the material has low hardness and excellent machinability while ensuring strength. Although the strength and hardness of the spheroidal graphite cast iron of the present invention are in a direct proportion to each other, the increase in hardness is gradual with respect to the increase in strength, and the material has a tensile strength of 700 MPa or more and a low hardness. Specifically, it is preferable that the spheroidal graphite cast iron of the present invention has a tensile strength of 700 MPa or more, and the tensile strength and the Brinell hardness satisfy the following formula (1).
Brinell hardness ≤ (tensile strength / 5) +82 ... (1)
However, in the formula (1), the value of the unit HBW is substituted for the Brinell hardness, and the value of the unit MPa is substituted for the tensile strength. In the equation (1), the intercept value 82 on the right side is more preferably 80, and most preferably 78.

[D]球状黒鉛鋳鉄の製造方法
本発明の球状黒鉛鋳鉄の製造方法は、
(1)前述[A]の球状黒鉛鋳鉄の組成を有する溶湯を鋳造し、凝固させた後、
(2)(i)基地全体がオーステナイト化する温度に保持することにより、微細なオーステナイト結晶粒(降温後にパーライト結晶粒に変態する)を生成する工程を有する熱処理、
及び、
(ii)共析変態を起こす温度域内の所定温度区間において、微細なフェライト相が生成する冷却速度で冷却する工程を有する熱処理を行い、
もって、
(a)面積率で15〜50%の微細フェライト相と50〜85%の微細パーライト相とからなる二相混合基地組織を有し、
(b)交線法により求められた基地組織の結晶粒数が250個/mm以上である組織を有する球状黒鉛鋳鉄を製造する。
なお、共析変態温度域より低い温度域では、常温まで通常に冷却する。
以下、上記(1)及び(2)の球状黒鉛鋳鉄の製造方法と、それにより得られる上記(a)及び(b)の球状黒鉛鋳鉄の基地組織について詳細に説明する。
[D] Method for producing spheroidal graphite cast iron The method for producing spheroidal graphite cast iron of the present invention is as follows.
(1) After casting and solidifying the molten metal having the composition of the spheroidal graphite cast iron of the above-mentioned [A],
(2) (i) A heat treatment having a step of producing fine austenite crystal grains (transformed into pearlite crystal grains after lowering the temperature) by keeping the entire matrix at a temperature at which austenite is formed.
as well as,
(Ii) In a predetermined temperature section within the temperature range where eutectoid transformation occurs, a heat treatment is performed, which comprises a step of cooling at a cooling rate in which a fine ferrite phase is generated.
With
(A) It has a two-phase mixed matrix structure consisting of a fine ferrite phase of 15 to 50% and a fine pearlite phase of 50 to 85% in terms of area ratio.
(B) A spheroidal graphite cast iron having a structure in which the number of crystal grains of the matrix structure determined by the line of intersection method is 250 grains / mm or more is produced.
In a temperature range lower than the eutectoid transformation temperature range, the temperature is normally cooled to room temperature.
Hereinafter, the methods for producing the spheroidal graphite cast irons (1) and (2) and the matrix structure of the spheroidal graphite cast irons (a) and (b) obtained thereby will be described in detail.

(1)オーステナイト化熱処理条件[工程(i)]
基地組織全体が完全にオーステナイト化する温度に保持することにより、微細なオーステナイト結晶粒(降温後にパーライト結晶粒に変態する)を生成する。このオーステナイト化温度は800〜865℃が好ましい。この温度が800℃未満ではパーライト相が残留し、共析変態温度域に降温後にパーライト相からフェライト相が生成及び成長するので、結晶粒が粗大化し、強度が低下する。一方、この温度が865℃超になると、オーステナイト結晶粒(降温後にパーライト結晶粒に変態する)が粗大化し、靭性が悪化し、また熱処理ひずみが大きくなる。オーステナイト化温度に保持する時間は、保持温度に応じて変動するが、5〜30分が好ましい。5分未満では完全にはオーステナイト化しにくくフェライト相が成長して強度が低下し、また30分超ではオーステナイト結晶粒が粗大化して、降温後に微細なパーライト相が得られず、靭性が悪化し、また熱処理ひずみが大きくなる。オーステナイト化熱処理温度は好ましくは800〜860℃であり、より好ましくは800〜855℃である。また、オーステナイト化熱処理時間は好ましくは10〜25分である。
(1) Austenitic heat treatment conditions [step (i)]
By keeping the entire matrix structure at a temperature at which it completely austenites, fine austenite crystal grains (transformed into pearlite crystal grains after temperature reduction) are generated. The austenitizing temperature is preferably 800 to 865 ° C. If this temperature is less than 800 ° C., the pearlite phase remains, and the ferrite phase is formed and grown from the pearlite phase after the temperature is lowered to the eutectoid transformation temperature range, so that the crystal grains are coarsened and the strength is lowered. On the other hand, when this temperature exceeds 865 ° C., the austenite crystal grains (transformed into pearlite crystal grains after the temperature is lowered) become coarse, the toughness deteriorates, and the heat treatment strain becomes large. The time for holding at the austenitizing temperature varies depending on the holding temperature, but is preferably 5 to 30 minutes. In less than 5 minutes, it is difficult to completely austenite, the ferrite phase grows and the strength decreases, and in more than 30 minutes, the austenite crystal grains become coarse, and fine pearlite phase cannot be obtained after the temperature is lowered, and the toughness deteriorates. In addition, the heat treatment strain becomes large. The austenitizing heat treatment temperature is preferably 800 to 860 ° C, more preferably 800 to 855 ° C. The austenitizing heat treatment time is preferably 10 to 25 minutes.

(2)共析変態温度域での熱処理条件[工程(ii)]
完全にオーステナイト化した球状黒鉛鋳鉄を、共析変態を起こす温度域内の所定温度区間においてフェライト相が微細に生成する冷却速度で冷却すると、本発明においては基地組織が面積率で15〜50%の微細フェライト相と50〜85%の微細パーライト相とからなる二相混合組織となり、交線法により求められた基地組織の結晶粒数が250個/mm以上の組織となる。ここで、共析変態を起こす温度域(共析変態温度域)は、熱処理における冷却過程で、オーステナイトからフェライトへの変態を開始する温度Arから、オーステナイトがフェライト又はフェライト及びセメンタイトへの変態を完了する温度Ar(共析変態温度)までの温度域をいう。共析変態を起こす温度域内の所定温度区間は670〜750℃が好ましい。670〜750℃の温度範囲において後述の所定冷却速度で冷却すると、二相混合組織及び結晶粒数250個/mm以上の基地組織が得られる。所定温度区間の上限を730℃としても良い。
(2) Heat treatment conditions in the eutectoid transformation temperature range [Step (ii)]
When completely austenitic spheroidal graphite cast iron is cooled at a cooling rate at which a ferrite phase is finely formed in a predetermined temperature section within a temperature range where eutectoid transformation occurs, the matrix structure in the present invention is 15 to 50% in area ratio. It has a two-phase mixed structure consisting of a fine ferrite phase and a 50 to 85% fine pearlite phase, and has a structure in which the number of crystal grains of the matrix structure determined by the crossing method is 250 grains / mm or more. Here, the temperature range in which the eutectoid transformation occurs (eutectoid transformation temperature range) is such that austenite transforms into ferrite or ferrite and cementite from the temperature Ar 3 at which the transformation from austenite to ferrite starts in the cooling process in the heat treatment. Completion temperature The temperature range up to Ar 1 (evaporative transformation temperature). The predetermined temperature interval within the temperature range where the eutectoid transformation occurs is preferably 670 to 750 ° C. When cooled at a predetermined cooling rate described later in a temperature range of 670 to 750 ° C., a two-phase mixed structure and a matrix structure having 250 crystal grains / mm or more can be obtained. The upper limit of the predetermined temperature section may be 730 ° C.

共析変態を起こす温度域内の所定温度区間での冷却速度は、基地組織を二相混合組織とし、かつ基地組織の結晶粒数を250個/mm以上とするのに重要であり、具体的には5〜20℃/分とするのが好ましい。冷却速度が5℃/分未満では、フェライト化が促進され、微細なフェライト相が得られず強度が低下し、また結晶粒数が減少して靭性が低下する。一方、冷却速度が20℃/分を超えると、パーライト結晶粒界におけるフェライト相の生成が不足し、衝撃特性が悪化し、十分な靭性が得られないほか、低硬度とならず高い被削性が得られない。より好ましい冷却速度は5〜15℃/分である。なお、共析変態を起こす温度域内の所定温度区間における温度履歴は、パーライト結晶粒界に微細なフェライト相が過不足なく生成し、かつ基地組織の結晶粒数が250個/mm以上となるかぎり、一定速度の連続的な冷却でも断続的な冷却でも良い。共析変態温度域での熱処理後、常温まで冷却する。なお、オーステナイト化温度から共析変態温度域までの冷却速度は2〜20℃/分であるのが好ましい。 The cooling rate in a predetermined temperature section within the temperature range where the eutectoid transformation occurs is important for making the matrix structure a two-phase mixed structure and for the number of crystal grains of the matrix structure to be 250 grains / mm or more. Is preferably 5 to 20 ° C./min. If the cooling rate is less than 5 ° C./min, ferrite formation is promoted, a fine ferrite phase cannot be obtained, the strength is lowered, the number of crystal grains is reduced, and the toughness is lowered. On the other hand, if the cooling rate exceeds 20 ° C./min, the formation of the ferrite phase at the pearlite grain boundaries is insufficient, the impact characteristics deteriorate, sufficient toughness cannot be obtained, and the hardness is not low and high machinability. Cannot be obtained. A more preferable cooling rate is 5 to 15 ° C./min. The temperature history in a predetermined temperature section within the temperature range where eutectoid transformation occurs is as long as fine ferrite phases are generated at the pearlite grain boundaries in just proportion and the number of crystal grains in the matrix structure is 250 grains / mm or more. , Continuous cooling at a constant rate or intermittent cooling may be used. After heat treatment in the eutectoid transformation temperature range, it is cooled to room temperature. The cooling rate from the austenitizing temperature to the eutectoid transformation temperature range is preferably 2 to 20 ° C./min.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらの実施例により何ら限定されるものではない。また特に断りがない限り、合金を構成する各元素の含有量を質量%で示す。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to those examples. Unless otherwise specified, the content of each element constituting the alloy is shown in% by mass.

原材料となる銑鉄、鋼板屑、球状黒鉛鋳鉄の戻り屑を100kg容量の高周波溶解炉で溶解し、加炭材、パーライト相安定化元素及びFe−Si合金を添加して成分調整した溶湯を溶製した。この溶湯を黒鉛球状化剤としてFe−Si−Mg合金とこれを覆う鋼板屑からなるカバー材とを設置した取鍋に、約1500℃で出湯し、サンドイッチ法による球状化処理を行なった。球状化処理した溶湯を約1400℃で砂型に注湯し、供試材となる肉厚12mmの試験部を含む縦鋳込み段付きYブロックを複数個鋳造した。注湯の際、注湯の流れにFe−Si合金粉末を添加し、接種を行なった。このようにして、表1に示す組成を有する球状黒鉛鋳鉄を得た。実施例1〜11は本発明の組成範囲内にある球状黒鉛鋳鉄であり、比較例1〜9は本発明の組成範囲外の球状黒鉛鋳鉄である。また、比較例10はパーライト相基地を有するFCD700に相当し、鋳放しのままでは従来の球状黒鉛鋳鉄と同じである。 Pig iron, steel plate scraps, and spheroidal graphite cast iron return scraps, which are the raw materials, are melted in a high-frequency melting furnace with a capacity of 100 kg, and a molten metal containing a carbonizing material, a pearlite phase stabilizing element, and an Fe-Si alloy is added to melt the molten metal. did. Using this molten metal as a graphite spheroidizing agent, hot water was poured into a ladle in which a Fe-Si-Mg alloy and a covering material made of steel plate scrap covering the molten metal were installed at about 1500 ° C., and spheroidizing treatment was performed by a sandwich method. The spheroidized molten metal was poured into a sand mold at about 1400 ° C., and a plurality of vertically cast stepped Y blocks including a test portion having a wall thickness of 12 mm as a test material were cast. At the time of pouring, Fe—Si alloy powder was added to the pouring flow and inoculated. In this way, spheroidal graphite cast iron having the composition shown in Table 1 was obtained. Examples 1 to 11 are spheroidal graphite cast iron within the composition range of the present invention, and Comparative Examples 1 to 9 are spheroidal graphite cast iron outside the composition range of the present invention. Further, Comparative Example 10 corresponds to FCD700 having a pearlite phase matrix, and is the same as conventional spheroidal graphite cast iron as it is cast.

Figure 2021059752

注:(1)残部はFe及び不可避的不純物である。
Figure 2021059752

Note: (1) The balance is Fe and unavoidable impurities.

上記の実施例1〜11及び比較例1〜10の球状黒鉛鋳鉄からなる供試材のうち、比較例10を除く全ての供試材に対して以下の熱処理を施した。即ちオーステナイト化熱処理条件として、保持温度850℃、保持時間20分で熱処理後、オーステナイト化温度から共析変態温度域まで冷却速度5℃/分で冷却後、共析変態温度域での熱処理条件として、670〜750℃の温度範囲において冷却速度10℃/分で熱処理後、常温まで冷却した。また、比較例10の供試材は熱処理をしない鋳放しのままとした。各供試材に対して、下記の組織観察及び試験を行った。 Of the test materials made of spheroidal graphite cast iron of Examples 1 to 11 and Comparative Examples 1 to 10, all the test materials except Comparative Example 10 were subjected to the following heat treatment. That is, as austenitic heat treatment conditions, after heat treatment at a holding temperature of 850 ° C. and a holding time of 20 minutes, cooling from the austenitizing temperature to the eutectoid transformation temperature range at a cooling rate of 5 ° C./min, and then as heat treatment conditions in the eutectoid transformation temperature range. After heat treatment at a cooling rate of 10 ° C./min in a temperature range of 670 to 750 ° C., the mixture was cooled to room temperature. Further, the test material of Comparative Example 10 was left as-cast without heat treatment. The following microstructure observations and tests were performed on each test material.

(1)組織
後述する引張試験に供した試験片のつかみ部の切断面から、約φ10mm程度の試料を採取し、樹脂に埋め込んで鏡面研磨した後、基地組織のフェライト相の面積率及び基地組織の結晶粒数を測定した。フェライト相の面積率は、試料を腐食エッチングした後、倍率100倍で任意の5視野の光学顕微鏡写真を撮影し、撮影した各視野について画像解析装置により5視野の合計で4mmの領域における黒鉛を除いた基地組織のフェライト相の面積率を測定して求めた。
(1) Structure A sample of about φ10 mm is collected from the cut surface of the grip portion of the test piece used for the tensile test described later, embedded in a resin and mirror-polished, and then the area ratio of the ferrite phase of the matrix structure and the matrix structure. The number of crystal grains was measured. For the area ratio of the ferrite phase, after corrosion etching the sample, an optical micrograph of any 5 fields of view was taken at a magnification of 100 times, and graphite in a total of 4 mm 2 regions of the 5 fields of view was taken by an image analyzer for each field of view. It was determined by measuring the area ratio of the ferrite phase of the matrix structure excluding.

本発明の球状黒鉛鋳鉄の基地組織は、微細フェライト相と微細パーライト相とが迷彩柄状に分布した二相混合組織であり、しかもオーステナイト化熱処理及び共析変態温度域での熱処理によってオーステナイト相の結晶粒が多くの方位の異なる組織単位に分割しているため、通常の光学顕微鏡や走査型電子顕微鏡による組織観察では、結晶粒の組織単位を明確に識別するのが困難であった。そこで、基地組織の結晶粒数は、電子線後方散乱回折法(Electron Back Scatter Diffraction pattern:EBSD)により結晶粒の結晶方位を求め結晶粒界を可視化して評価した。 The matrix structure of the spheroidal graphite cast iron of the present invention is a two-phase mixed structure in which fine ferrite phases and fine pearlite phases are distributed in a camouflage pattern, and the austenite phase is subjected to austenitic heat treatment and heat treatment in the eutectoid transformation temperature range. Since the crystal grains are divided into many structural units having different orientations, it is difficult to clearly identify the structural units of the crystal grains by observing the structure with a normal optical microscope or a scanning electron microscope. Therefore, the number of crystal grains in the matrix structure was evaluated by determining the crystal orientation of the crystal grains by an electron backscatter diffraction method (EBSD) and visualizing the crystal grain boundaries.

基地組織の結晶粒数は、具体的には走査型電子顕微鏡(日立ハイテクノロジーズ社製SU70型)に付属した電子線後方散乱回析法検出器(アメテック社製DigiView5型)を用いて、試料の任意の5視野について、45×45μmの領域を0.1μmの測定ステップ間隔で結晶方位マッピング像を撮影し、撮影した結晶方位マッピング像について隣接する測定点において結晶方位差が2°以上の境界を結晶粒界とみなして交線法により求めた。交線法はJIS−G−0551「鋼−結晶粒度の顕微鏡試験方法」に準拠して、視野毎に、黒鉛を避けてかつ目的の基地組織にかかるように描画した長さ30μmの2本のクロスした直線(対角線)からなる試験線と交差(試験線が捕捉)した結晶粒界の数を測定し、試験線の長さで除して単位長さ(1mm)当たりの結晶粒界の数を算出した。算出した5視野の単位長さ当たりの結晶粒界の数の算術平均値を求めて結晶粒数として評価した。フェライト相の面積率及び基地組織の結晶粒数の測定結果を表2に示す。 Specifically, the number of crystal grains in the matrix structure was determined by using an electron backscatter diffraction detector (Ametec's DigiView 5 type) attached to a scanning electron microscope (Hitachi High Technologies' SU70 type). Crystal orientation mapping images are taken in a 45 × 45 μm region at 0.1 μm measurement step intervals for any of the five visual fields, and the captured crystal orientation mapping images have boundaries with crystal orientation differences of 2 ° or more at adjacent measurement points. It was determined by the crossing method, assuming that it was a grain boundary. The crossing method is based on JIS-G-0551 "Microscopic test method of steel-grain grain", and two lines with a length of 30 μm drawn so as to avoid graphite and cover the target matrix structure for each field of view. The number of grain boundaries that intersect (captured by the test line) with the test line consisting of crossed straight lines (diagonal lines) is measured, divided by the length of the test line, and the number of grain boundaries per unit length (1 mm). Was calculated. The arithmetic mean value of the number of grain boundaries per unit length of the calculated five visual fields was obtained and evaluated as the number of crystal grains. Table 2 shows the measurement results of the area ratio of the ferrite phase and the number of crystal grains in the matrix structure.

(2)引張試験及びブリネル硬さ試験
各供試材の縦鋳込み段付きYブロックの肉厚12mmの試験部から切り出して、JIS Z 2201の14A号の試験片を作製し、JIS Z 2241に従ってアムスラー引張試験機により室温での引張試験を行い、引張強さ及び室温伸びを測定した。また、各供試材の前記Yブロックの肉厚12mmの試験部の端面から約30mm以上離れた部位から切り出して表面を研磨して試験片を作製し、JIS Z 2243に従ってブリネル硬さ試験機により直径10mmの超硬合金球の圧子を用いて試験荷重29.42kNでブリネル硬さ試験を行ない、ブリネル硬さを測定した。引張強さ、室温伸び及びブリネル硬さの測定結果を表2に示す。
(2) Tensile test and Brinell hardness test A test piece of JIS Z 2201 No. 14A was prepared by cutting out from the test part of the vertical casting stepped Y block of each test material with a wall thickness of 12 mm, and Amsler was prepared according to JIS Z 2241. A tensile test was performed at room temperature with a tensile tester, and tensile strength and room temperature elongation were measured. Further, a test piece was prepared by cutting out from a portion of each test material at a distance of about 30 mm or more from the end face of the test portion having a wall thickness of 12 mm of the Y block and polishing the surface, and using a Brinell hardness tester according to JIS Z 2243. A Brinell hardness test was performed with a test load of 29.42 kN using an indenter of a cemented carbide ball having a diameter of 10 mm, and the Brinell hardness was measured. Table 2 shows the measurement results of tensile strength, room temperature elongation and Brinell hardness.

Figure 2021059752

注:(1) パーライト相の面積率は(100−フェライト相の面積率)%である。
Figure 2021059752

Note: (1) The area ratio of the pearlite phase is (area ratio of 100-ferrite phase)%.

表1及び2に示すように、本発明の組成範囲内の実施例1〜11の供試材は、基地組織のフェライト相の面積率は15〜50%であり、基地組織の結晶粒数は250個/mm以上であり、引張強さは700MPa以上であり、室温伸びは10%以上であった。これらのデータから、本発明の組成範囲内の実施例1〜11の供試材は高い強度及び靭性を有することが分かる。 As shown in Tables 1 and 2, in the test materials of Examples 1 to 11 within the composition range of the present invention, the area ratio of the ferrite phase of the matrix structure is 15 to 50%, and the number of crystal grains of the matrix structure is It was 250 pieces / mm or more, the tensile strength was 700 MPa or more, and the room temperature elongation was 10% or more. From these data, it can be seen that the test materials of Examples 1 to 11 within the composition range of the present invention have high strength and toughness.

加えて実施例1〜11の供試材は、ブリネル硬さが210〜240HBWの範囲にあり、引張強さが700MPa以上と高強度でありながら低硬度である。これにより実施例1〜11の球状黒鉛鋳鉄は高い被削性を実現し得る。 In addition, the test materials of Examples 1 to 11 have a Brinell hardness in the range of 210 to 240 HBW and a tensile strength of 700 MPa or more, which is high strength but low hardness. As a result, the spheroidal graphite cast iron of Examples 1 to 11 can realize high machinability.

これに対して、本発明の組成範囲外の比較例1〜10の供試材では引張強さ、室温伸び及びブリネル硬さのいずれかが、本発明で規定する値を満たさなかった。また、比較例1〜10の供試材は、本発明で規定するフェライト相の面積率15〜50%の範囲を満たさなかった。Si及び/又はCu含有量並びにMn含有量の少ない比較例1、4及び8は700MPa未満の低い引張強さしか有さなかった。また、Si含有量の多い比較例7も引張強さが700MPa未満であった。また、Si含有量の少ない比較例2並びにCu又はMn含有量の多い比較例5、6及び9は、700MPa以上の高い引張強さを有するものの、10%未満の低い室温伸びしか有さず、高い強度及び靭性を兼備するという要求を満たさなかった。また、パーライト相基地を有するFCD700に相当する鋳放しのままの比較例10は、780MPaの引張強さを有するものの、室温伸びは9.5%であった。 On the other hand, in the test materials of Comparative Examples 1 to 10 outside the composition range of the present invention, any of the tensile strength, the room temperature elongation and the Brinell hardness did not satisfy the values specified in the present invention. Further, the test materials of Comparative Examples 1 to 10 did not satisfy the range of the ferrite phase area ratio of 15 to 50% specified in the present invention. Comparative Examples 1, 4 and 8 having a low Si and / or Cu content and Mn content had a low tensile strength of less than 700 MPa. Further, Comparative Example 7 having a high Si content also had a tensile strength of less than 700 MPa. Further, Comparative Example 2 having a low Si content and Comparative Examples 5, 6 and 9 having a high Cu or Mn content had a high tensile strength of 700 MPa or more, but had a low room temperature elongation of less than 10%. It did not meet the requirement of having both high strength and toughness. Further, in Comparative Example 10 as-cast, which corresponds to FCD700 having a pearlite phase matrix, although it had a tensile strength of 780 MPa, the room temperature elongation was 9.5%.

比較例のうち、700MPa以上の高い引張強さを有する比較例2、3、5、6、9及び10は、いずれもブリネル硬さが240HBWを超えており、引張強さ700MPa以上の高強度材料でありながら低硬度であるという要求を満たさなかった。 Among the comparative examples, Comparative Examples 2, 3, 5, 6, 9 and 10 having a high tensile strength of 700 MPa or more all have a Brinell hardness of more than 240 HBW and are high-strength materials having a tensile strength of 700 MPa or more. However, it did not meet the requirement of low hardness.

上記の通り、本発明の球状黒鉛鋳鉄は、強度及び靭性に優れるとともに、加えて低硬度を兼備する球状黒鉛鋳鉄であることが確認された。 As described above, it was confirmed that the spheroidal graphite cast iron of the present invention is a spheroidal graphite cast iron having excellent strength and toughness as well as low hardness.

Claims (3)

強度及び靭性に優れ、かつ低硬度な球状黒鉛鋳鉄であって、
質量比で、
C:3.5〜3.9%
Si:2.45〜2.85%
Mn:0.2〜0.6%
Cu:0.70〜1.20%
Mg:0.02〜0.06%
P:0.04%以下
S:0.02%以下
残部Fe及び不可避的不純物からなる組成を有し、
面積率で15〜50%の微細フェライト相と50〜85%の微細パーライト相とからなる二相混合基地組織を有し、
交線法により求められた基地組織の結晶粒数が250個/mm以上であることを特徴とする球状黒鉛鋳鉄。
Spheroidal graphite cast iron with excellent strength and toughness and low hardness.
By mass ratio,
C: 3.5-3.9%
Si: 2.45 to 2.85%
Mn: 0.2 to 0.6%
Cu: 0.70 to 1.20%
Mg: 0.02 to 0.06%
P: 0.04% or less S: 0.02% or less It has a composition consisting of the balance Fe and unavoidable impurities.
It has a two-phase mixed matrix structure consisting of a fine ferrite phase of 15 to 50% and a fine pearlite phase of 50 to 85% in area ratio.
A spheroidal graphite cast iron characterized in that the number of crystal grains of the matrix structure determined by the line of intersection method is 250 grains / mm or more.
請求項1に記載の強度及び靭性に優れ、かつ低硬度な球状黒鉛鋳鉄において、引張強さが700MPa以上、室温伸びが10%以上であり、かつブリネル硬さが210〜240HBWであることを特徴とする球状黒鉛鋳鉄。 The spheroidal graphite cast iron having excellent strength and toughness and low hardness according to claim 1 is characterized in that it has a tensile strength of 700 MPa or more, a room temperature elongation of 10% or more, and a Brinell hardness of 210 to 240 HBW. Spheroidal graphite cast iron. 請求項1又は2に記載の強度及び靭性に優れ、かつ低硬度な球状黒鉛鋳鉄において、引張強さが700MPa以上であって、引張強さとブリネル硬さが、下記式(1)を満足することを特徴とする球状黒鉛鋳鉄。
ブリネル硬さ≦(引張強さ/5)+82 ・・・(1)
(ただし、ブリネル硬さは単位HBWの値を、引張強さは単位MPaの値を代入する。)
The spheroidal graphite cast iron having excellent strength and toughness and low hardness according to claim 1 or 2, has a tensile strength of 700 MPa or more, and the tensile strength and Brinell hardness satisfy the following formula (1). Spheroidal graphite cast iron characterized by.
Brinell hardness ≤ (tensile strength / 5) +82 ... (1)
(However, the value of the unit HBW is substituted for the Brinell hardness, and the value of the unit MPa is substituted for the tensile strength.)
JP2019184464A 2019-10-07 2019-10-07 Spheroidal graphite cast iron with excellent strength and toughness and low hardness Active JP7380051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019184464A JP7380051B2 (en) 2019-10-07 2019-10-07 Spheroidal graphite cast iron with excellent strength and toughness and low hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184464A JP7380051B2 (en) 2019-10-07 2019-10-07 Spheroidal graphite cast iron with excellent strength and toughness and low hardness

Publications (2)

Publication Number Publication Date
JP2021059752A true JP2021059752A (en) 2021-04-15
JP7380051B2 JP7380051B2 (en) 2023-11-15

Family

ID=75379675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184464A Active JP7380051B2 (en) 2019-10-07 2019-10-07 Spheroidal graphite cast iron with excellent strength and toughness and low hardness

Country Status (1)

Country Link
JP (1) JP7380051B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813079A (en) * 1994-07-01 1996-01-16 Mazda Motor Corp Spheroidal graphite cast iron and production thereof
JP2000026932A (en) * 1998-05-01 2000-01-25 Tokyo Tekko Co Ltd Spheroidal graphite cast iron article
JP2010189706A (en) * 2009-02-18 2010-09-02 Kurimoto Ltd Spheroidal graphite cast iron tube and method for producing the same
WO2013100148A1 (en) * 2011-12-28 2013-07-04 日立金属株式会社 Spheroidal graphite cast iron having exceptional strength and ductility and method for manufacturing same
JP2019119924A (en) * 2018-01-11 2019-07-22 トヨタ自動車株式会社 Spheroidal graphite cast iron
JP2020023747A (en) * 2018-07-25 2020-02-13 旭メタルズ株式会社 Spheroidal graphite cast iron and heat treatment method for spheroidal graphite cast iron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813079A (en) * 1994-07-01 1996-01-16 Mazda Motor Corp Spheroidal graphite cast iron and production thereof
JP2000026932A (en) * 1998-05-01 2000-01-25 Tokyo Tekko Co Ltd Spheroidal graphite cast iron article
JP2010189706A (en) * 2009-02-18 2010-09-02 Kurimoto Ltd Spheroidal graphite cast iron tube and method for producing the same
WO2013100148A1 (en) * 2011-12-28 2013-07-04 日立金属株式会社 Spheroidal graphite cast iron having exceptional strength and ductility and method for manufacturing same
JP2019119924A (en) * 2018-01-11 2019-07-22 トヨタ自動車株式会社 Spheroidal graphite cast iron
JP2020023747A (en) * 2018-07-25 2020-02-13 旭メタルズ株式会社 Spheroidal graphite cast iron and heat treatment method for spheroidal graphite cast iron

Also Published As

Publication number Publication date
JP7380051B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
KR101957274B1 (en) Spheroidal graphite cast iron having exceptional strength and ductility and method for manufacturing same
KR102223539B1 (en) Spheroidal graphite cast iron
KR102738290B1 (en) Hot working die steel, heat treatment method thereof and hot working die
JP4835424B2 (en) High strength spheroidal graphite cast iron
US8333923B2 (en) High strength gray cast iron
CN103952621B (en) A kind of vanadium titanium casting pig and production technology thereof
Seah et al. Effect of the cooling rate on the dendrite arm spacing and the ultimate tensile strength of cast iron
US6908589B2 (en) High manganese cast iron containing spheroidal vanadium carbide and method for making therof
WO2017017989A1 (en) Cast steel material
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP4527304B2 (en) High strength high toughness spheroidal graphite cast iron
JP7380051B2 (en) Spheroidal graphite cast iron with excellent strength and toughness and low hardness
JP2007154295A (en) Wear resistant cast steel and its production method
JP4565301B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
JP6083014B2 (en) High strength matrix high speed
JP4963444B2 (en) Spheroidal graphite cast iron member
KR102539284B1 (en) Nodular cast iron with excellent resistance to gas defects
JP2003306741A (en) High tensile cast steel and method for producing the same
JP2005256088A (en) Spheroidal graphite cast iron member
JP3648158B2 (en) Spheroidal graphite cast iron
Anıl Comparison of Different Inoculating (Methods) in Gray Cast Iron
JP3893564B2 (en) White cast iron forging roll manufacturing method
US20110256017A1 (en) High temperature cast iron with niobium and having compacted graphite structures
Campbell Cast Irons
KR20230025184A (en) Cgi cast iron having enhanced manufacturability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7380051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150