JP2021058852A - High-temperature dust collection ceramic filter element - Google Patents
High-temperature dust collection ceramic filter element Download PDFInfo
- Publication number
- JP2021058852A JP2021058852A JP2019185011A JP2019185011A JP2021058852A JP 2021058852 A JP2021058852 A JP 2021058852A JP 2019185011 A JP2019185011 A JP 2019185011A JP 2019185011 A JP2019185011 A JP 2019185011A JP 2021058852 A JP2021058852 A JP 2021058852A
- Authority
- JP
- Japan
- Prior art keywords
- filter element
- fibers
- ceramic filter
- temperature dust
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000428 dust Substances 0.000 title claims abstract description 196
- 239000000919 ceramic Substances 0.000 title claims abstract description 44
- 239000000945 filler Substances 0.000 claims abstract description 45
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 24
- 239000011230 binding agent Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000000835 fiber Substances 0.000 claims description 104
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 25
- 229910052863 mullite Inorganic materials 0.000 claims description 25
- 239000003365 glass fiber Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 238000000465 moulding Methods 0.000 claims description 13
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical group O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 12
- 239000010954 inorganic particle Substances 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims 2
- 230000035939 shock Effects 0.000 abstract description 40
- 239000002335 surface treatment layer Substances 0.000 abstract description 18
- 238000013461 design Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 description 63
- 238000005452 bending Methods 0.000 description 34
- 239000002245 particle Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 23
- 239000002002 slurry Substances 0.000 description 18
- 238000001914 filtration Methods 0.000 description 12
- 239000011148 porous material Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000004071 soot Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000010304 firing Methods 0.000 description 8
- 239000000292 calcium oxide Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000011001 backwashing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000012716 precipitator Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 208000012266 Needlestick injury Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Landscapes
- Filtering Materials (AREA)
Abstract
Description
本発明は、煤塵を含み常温から高温までの温度域を有する排ガスの集塵用の高温集塵セラミックフィルターエレメントに関する。 The present invention relates to a high temperature dust collecting ceramic filter element for collecting exhaust gas containing soot and having a temperature range from room temperature to high temperature.
下水汚泥焼却炉や工業用炉などから排出される高温の排ガスには、スス、未燃物などの粒子状物質からなる煤塵が含まれている。そのため、該高温の排ガスを処理するろ過集塵装置内には、該煤塵の除塵用の高温集塵セラミックフィルターエレメント(以下、フィルターエレメントとも称する)が取り付けられている。このフィルターエレメントの形状には様々なタイプが提案されており、例えば平面状、曲面状、又はろ過面積を広くするためジグザグ状に折り畳んだ形状、さらには両端が開口した円筒型や一端が開口し他端が封止された有底円筒状のいわゆるキャンドル型が提案されている。 The high-temperature exhaust gas emitted from sewage sludge incinerators and industrial furnaces contains soot dust composed of particulate matter such as soot and unburned matter. Therefore, a high-temperature dust collecting ceramic filter element (hereinafter, also referred to as a filter element) for removing soot and dust is installed in the filtration dust collector for treating the high-temperature exhaust gas. Various types of the shape of this filter element have been proposed, for example, a flat shape, a curved surface shape, a shape folded in a zigzag shape to widen the filtration area, a cylindrical shape with both ends open, or a cylindrical shape with one end open. A so-called candle type with a bottomed cylinder in which the other end is sealed has been proposed.
上記のフィルターエレメントには、できるだけ小さな圧力損失で所望の除塵性能を発揮することが要求されるほか、高温の排ガスに連続的に暴露されるので約500℃以上の耐熱性が要求される。また、ろ過集塵装置の規模や方式、煤塵の種類や粒度によって要求される仕様が異なることがあるため、様々な除塵性能や圧力損失の上限値等に柔軟に対応できるように高い設計自由度を有していることが好ましい。さらには、取り扱いが容易になるように軽量で高強度であること、及び目詰まりが生じにくく長期間に亘って使用できること、すなわち長寿命であることが望ましい。 The above filter element is required to exhibit desired dust removal performance with as little pressure loss as possible, and is also required to have heat resistance of about 500 ° C. or higher because it is continuously exposed to high-temperature exhaust gas. In addition, since the required specifications may differ depending on the scale and method of the filtration dust collector, the type and particle size of soot, a high degree of freedom in design is possible so that various dust removal performances and upper limits of pressure loss can be flexibly dealt with. It is preferable to have. Further, it is desirable that the product is lightweight and has high strength so that it can be easily handled, and that it can be used for a long period of time without clogging, that is, it has a long life.
1次側(熱面側又は集塵面側とも称する)から2次側(冷面側とも称する)に高温の排ガスを透過させることで除塵を行う高温集塵セラミックフィルターエレメントは、通常は該冷面側からブロワーなどを引いて排ガスを吸引することで該集塵面側に煤塵を捕集する。そのため、時間の経過と共に集塵面側に煤塵が堆積していき、ある程度時間が経過すると圧力損失が大きくなりすぎて除塵性能が低下する。そこで、定期的に冷面側からパルスエアー(洗浄用高圧空気)を導入することで、フィルターエレメントに通常とは逆方向(すなわち、2次側から1次側の方向)にエアーを流し、これにより集塵面側に堆積した煤塵を払い落すいわゆる逆洗が一般的に行われる。 A high-temperature dust collecting ceramic filter element that removes dust by allowing high-temperature exhaust gas to permeate from the primary side (also referred to as the hot surface side or the dust collecting surface side) to the secondary side (also referred to as the cold surface side) is usually cold. By pulling a blower or the like from the surface side to suck the exhaust gas, soot dust is collected on the dust collecting surface side. Therefore, soot and dust accumulate on the dust collecting surface side with the passage of time, and after a certain period of time, the pressure loss becomes too large and the dust removing performance deteriorates. Therefore, by periodically introducing pulse air (high-pressure air for cleaning) from the cold surface side, air is flowed through the filter element in the direction opposite to the normal direction (that is, the direction from the secondary side to the primary side). So-called backwashing is generally performed to remove soot and dust accumulated on the dust collecting surface side.
上記の逆洗により圧力損失がほぼ元に戻るので、除塵性能をある程度回復させることができる。しかしながら、長期間に亘って使用しているうちに上記の逆洗では回復が困難な程度の目詰まりが生じ、これに伴い圧力損失が徐々に増大することがある。この場合は、圧力損失が高くなりすぎて例えば上記の吸引側のブロワーで排ガスを吸引することができなくなった時点でフィルターを新しいものと交換することが一般的に行われている。従って、フィルターエレメントは、できるだけ上記の目詰まりが生じにくいものが望ましい。 Since the pressure loss is almost restored by the above-mentioned backwashing, the dust removal performance can be recovered to some extent. However, during long-term use, clogging may occur to the extent that it is difficult to recover by the above-mentioned backwash, and the pressure loss may gradually increase accordingly. In this case, it is common practice to replace the filter with a new one when the pressure loss becomes too high and the exhaust gas cannot be sucked by the blower on the suction side, for example. Therefore, it is desirable that the filter element is one in which the above-mentioned clogging is less likely to occur.
また、上記の交換に用いる新たなフィルターエレメントが、輸送時や設置時のハンドリングにより破損しない強度を有することが望まれる。さらに、近年はろ過集塵装置を小型化する傾向があり、これに合わせてキャンドル型フィルターの場合は軸方向の長さを長くしたり、隣接するフィルター同士の間隔を狭くしたりすることが行われている。その結果、地震等の揺れによりこれら隣接するフィルターが互いに接触しやすくなっており、その場合でも容易に破損しない程度の強度や構造が求められている。 Further, it is desired that the new filter element used for the above replacement has a strength that is not damaged by handling during transportation or installation. Furthermore, in recent years, there has been a tendency to reduce the size of filtration dust collectors, and in the case of candle-type filters, the length in the axial direction can be increased or the distance between adjacent filters can be reduced accordingly. It has been. As a result, these adjacent filters are likely to come into contact with each other due to shaking such as an earthquake, and even in that case, strength and structure that are not easily damaged are required.
上記のキャンドル型や円筒型のフィルターエレメントの製造方法としては、例えば特許文献1に開示されているような湿式成形法や、特許文献2に開示されているような射出成形法が知られている。なお、湿式成形法とは、無機繊維、無機バインダー、及び水を所定の配合割合で混合して得たスラリーを脱水成形して所定の形状の成形体を作製する方法であり、射出成形法とは、上記と同様に調製した無機繊維を含むスラリーを射出して成形体を成形する方法である。 As a method for manufacturing the above-mentioned candle-shaped or cylindrical filter element, for example, a wet molding method as disclosed in Patent Document 1 and an injection molding method as disclosed in Patent Document 2 are known. .. The wet molding method is a method for producing a molded product having a predetermined shape by dehydration molding a slurry obtained by mixing inorganic fibers, an inorganic binder, and water in a predetermined blending ratio. Is a method for molding a molded product by injecting a slurry containing an inorganic fiber prepared in the same manner as described above.
しかしながら、従来のセラミックフィルターは強度不足で破損しやすいため、特許文献3に開示されているように、セラミックフィルターに保護装着用部材を取り付けることで、破損してもある程度は操業を継続できるようにする技術が提案されている。このように保護装着用部材を設けることでセラミックフィルターを補強することが可能になるものの、該部材の取り付けに手間とコストがかかるので、上記のような保護装着用部材を用いることなくセラミックフィルター自体を高強度にするか、又は加圧等により応力がかかったときにある程度変形しても破断にまでは至らない構造にするのが好ましい。 However, since the conventional ceramic filter is insufficient in strength and easily damaged, as disclosed in Patent Document 3, by attaching a protective mounting member to the ceramic filter, the operation can be continued to some extent even if the ceramic filter is damaged. The technology to do is proposed. Although it is possible to reinforce the ceramic filter by providing the protective mounting member in this way, it takes time and cost to attach the member, so the ceramic filter itself does not use the protective mounting member as described above. It is preferable to increase the strength of the ceramic or to have a structure that does not break even if it is deformed to some extent when stress is applied by pressurization or the like.
このようなセラミックフィルター自体の高強度化の技術として、特許文献4には、セラミック繊維からなる基材と、その表面に形成したフィルター層とから構成されるセラミックフィルターにおいて、ムライト質の長繊維を用いてフィラメントワインディング法により製織した後、アルミナゾル及びシリカゾルを含浸させて焼成することで基材を形成する方法が開示されており、これにより主としてムライトからなる結合部により結合固化されたセラミックフィルターエレメントの基材が得られると記載されている。 As a technique for increasing the strength of the ceramic filter itself, Patent Document 4 describes mullite long fibers in a ceramic filter composed of a base material made of ceramic fibers and a filter layer formed on the surface thereof. A method of forming a base material by impregnating and firing alumina sol and silica sol after weaving by a filament winding method using the ceramic filter element is disclosed, whereby a ceramic filter element bonded and solidified by a bonding portion mainly composed of mullite is disclosed. It is stated that a substrate is obtained.
また、特許文献5には、積層したブランケット状セラミックファイバーをシリカゾル等のバインダーに含浸させた後、乾燥することで平板状の繊維質成形体を作製する技術が提案されている。この繊維質成形体は湿式成形品と比べてかさ比重が小さくて軽量であり、繊維の絡みが多いのでたわみ性に優れ、バインダーにより表面が適当な硬さを有するため、炉内において物体が当たっても損傷しにくく、耐熱衝撃性にも優れると記載されている。さらに特許文献6には、セラミックファイバーブランケットにシリカゾル等を無機接着剤として塗布してロール表面に巻回積層し、これにより円筒状にした成型品が提案されている。 Further, Patent Document 5 proposes a technique for producing a flat fibrous molded product by impregnating a binder such as silica sol with laminated blanket-shaped ceramic fibers and then drying the laminated blanket-shaped ceramic fibers. Compared to wet molded products, this fibrous molded product has a smaller bulk specific gravity and is lighter in weight, has excellent flexibility due to the large amount of fiber entanglement, and has an appropriate hardness on the surface due to the binder, so it hits an object in the furnace. However, it is stated that it is not easily damaged and has excellent thermal shock resistance. Further, Patent Document 6 proposes a molded product in which a ceramic fiber blanket is coated with silica sol or the like as an inorganic adhesive, wound and laminated on a roll surface, and thereby formed into a cylindrical shape.
しかしながら、上記の湿式成形や射出成形による成形方法では、繊維を均一に分散するために解繊する必要がある。この解繊では繊維が折れて繊維長が短くなるため、繊維の絡みが少なくなって強度が不足することがあった。その対策として、繊維の配合割合を多くしたり、無機粒子や無機バインダーの配合割合を多くしたりする等の対処法があり、これにより強度を向上させることが可能になるが、その際、気孔率が小さくなる問題が生じることがあった。逆に、要求される除塵性能と圧力損失を優先させると、耐久試験や耐震試験において強度不足により破損することがあった。 However, in the above-mentioned molding method by wet molding or injection molding, it is necessary to defibrate in order to uniformly disperse the fibers. In this defibration, the fibers are broken and the fiber length is shortened, so that the entanglement of the fibers is reduced and the strength may be insufficient. As a countermeasure, there are countermeasures such as increasing the blending ratio of fibers and increasing the blending ratio of inorganic particles and inorganic binders, which makes it possible to improve the strength. There was a problem that the rate became small. On the contrary, if the required dust removal performance and pressure loss are prioritized, the durability test and the seismic test may be damaged due to insufficient strength.
また、特許文献4の技術は圧力損失が大きくなりすぎて、所望の除塵性能と圧力損失の条件を短期間で満たさなくなることがあった。さらに特許文献5及び6の技術は断熱材を用途にしているため、表面の硬さや強度及び耐熱衝撃性が優先されており、よって高温集塵セラミックフィルターエレメントの用途としては、圧力損失が高くなりすぎて適していないと考えられる。 Further, in the technique of Patent Document 4, the pressure loss becomes too large, and the desired dust removing performance and pressure loss conditions may not be satisfied in a short period of time. Further, since the techniques of Patent Documents 5 and 6 use heat insulating materials, the surface hardness, strength and heat impact resistance are prioritized, and therefore, the pressure loss becomes high as the use of the high temperature dust collecting ceramic filter element. It is considered too unsuitable.
上記のように、セラミックフィルターエレメントには繰り返しかかる熱応力や振動等で容易に破断することのない強度や構造が求められている。本発明はかかる事情に鑑みてなされたものであり、常温から高温までの温度域において耐熱衝撃性を有し、輸送時や設置時のハンドリング性に優れ、運転時の振動や地震の揺れに耐える強度や構造を有し、様々な仕様に対応して除塵性能や圧力損失を変更できる設計の自由度を有する高温集塵用のセラミックフィルターエレメントを提供することを目的としている。 As described above, the ceramic filter element is required to have a strength and a structure that do not easily break due to repeated thermal stress, vibration, or the like. The present invention has been made in view of such circumstances, has thermal shock resistance in a temperature range from room temperature to high temperature, is excellent in handleability during transportation and installation, and withstands vibration during operation and shaking of an earthquake. It is an object of the present invention to provide a ceramic filter element for high temperature dust collection which has strength and structure and has a degree of freedom in design that can change dust removal performance and pressure loss according to various specifications.
本発明者は、上記の種々の要件のうち、繰り返しかかる熱応力や振動等で容易に破断することがなく、低圧力損失を実現するには、セラミック繊維同士の絡みを多くすることが望ましいと考えて鋭意研究を重ねたところ、繊維同士の絡みが多いマット状の集積体、又はこれをニードリング処理したニードルブランケットをフィルターエレメントの基材として用いることで、上記要件を満たす高温集塵用のセラミックフィルターエレメントが得られることを見出し、本発明を完成するに至った。 Among the various requirements described above, the present inventor desires that the ceramic fibers should be entangled with each other in order to realize a low pressure loss without being easily broken by repeated thermal stress or vibration. After careful research, we found that a mat-like aggregate with many fibers entangled with each other or a needle blanket obtained by needling this was used as the base material for the filter element for high-temperature dust collection that meets the above requirements. They have found that a ceramic filter element can be obtained, and have completed the present invention.
すなわち、本発明に係る高温集塵セラミックフィルターエレメントは、1種以上の耐熱性無機繊維をマット状に成形した集積体、若しくは該集積体をニードリング処理したニードルブランケット、又はこれらの両方を基材として用いたセラミックフィルターエレメントであって、無機バインダーとフィラーとからなる表面処理層を有し、かさ密度が250〜600kg/m3であることを特徴とする。 That is, the high-temperature dust collecting ceramic filter element according to the present invention is based on an aggregate obtained by molding one or more heat-resistant inorganic fibers into a mat shape, a needle blanket obtained by needling the aggregate, or both of them. The ceramic filter element used as the above is characterized by having a surface treatment layer composed of an inorganic binder and a filler, and having a bulk density of 250 to 600 kg / m 3.
本発明によれば、常温から1000℃程度の高温までの温度域において耐熱衝撃性を有し、輸送時や設置時のハンドリング性に優れ、運転時や地震時の揺れに対する強度を有し、除塵性能や圧力損失をある程度変更できる設計自由度を有する高温集塵セラミックフィルターエレメントを提供することができる。 According to the present invention, it has thermal shock resistance in a temperature range from room temperature to a high temperature of about 1000 ° C., has excellent handleability during transportation and installation, has strength against shaking during operation and earthquake, and removes dust. It is possible to provide a high temperature dust collecting ceramic filter element having a degree of freedom in design that can change the performance and pressure loss to some extent.
以下、本発明に係る高温集塵セラミックフィルターエレメントの実施形態について詳細に説明する。この本発明の実施形態の高温集塵セラミックフィルターエレメントは、その基材に、1種以上の耐熱性無機繊維をマット状に成形した集積体(以降、マット状集積体とも称する)、若しくは該マット状集積体をニードリング処理したニードルブランケット、又はこれらの両方を用いている。該耐熱性無機繊維は、耐熱温度500℃以上1600℃以下の無機繊維であり、例えばアルミナ繊維、ムライト繊維、シリカ・アルミナ繊維、ガラス繊維、シリカ繊維、シリカ・マグネシア・カルシア系繊維等の生体溶解性繊維等を挙げることができる。なお、耐熱温度T℃とは、最高使用温度T℃と称することもあり、雰囲気温度T℃で24時間加熱したときの加熱線収縮率が4.0%以下の場合をいう。 Hereinafter, embodiments of the high temperature dust collecting ceramic filter element according to the present invention will be described in detail. The high-temperature dust collecting ceramic filter element according to the embodiment of the present invention is an aggregate (hereinafter, also referred to as a mat-like aggregate) obtained by molding one or more heat-resistant inorganic fibers into a mat shape on the base material thereof, or the mat. Needle blankets obtained by needling the state aggregate, or both of them are used. The heat-resistant inorganic fiber is an inorganic fiber having a heat-resistant temperature of 500 ° C. or higher and 1600 ° C. or lower. Sex fibers and the like can be mentioned. The heat-resistant temperature T ° C. is sometimes referred to as the maximum operating temperature T ° C., and refers to a case where the heating line shrinkage rate when heated at an ambient temperature T ° C. for 24 hours is 4.0% or less.
上記耐熱性無機繊維は、平均繊維径が2〜15μmであるのが好ましく、4〜10μmであるのがより好ましい。この平均繊維径が2μm未満では、最終的に成形したフィルターエレメントの圧力損失が大きくなりすぎるおそれがあり、逆にこの平均繊維径が15μmを超えると、靭性が損なわれやすくなるので最終的に成形したフィルターエレメントの耐熱衝撃性が悪化するおそれがある。また、上記耐熱性無機繊維は、平均繊維長が1000μm以上であるのが好ましく、3000μm以上であるのがより好ましい。さらに上記耐熱性無機繊維は、かさ密度が30〜160kg/m3であるのが好ましく、80〜130kg/m3であるのがより好ましい。 The heat-resistant inorganic fiber preferably has an average fiber diameter of 2 to 15 μm, and more preferably 4 to 10 μm. If the average fiber diameter is less than 2 μm, the pressure loss of the finally molded filter element may become too large. On the contrary, if the average fiber diameter exceeds 15 μm, the toughness is likely to be impaired, so that the final molding is performed. There is a risk that the thermal shock resistance of the filter element will deteriorate. Further, the heat-resistant inorganic fiber preferably has an average fiber length of 1000 μm or more, and more preferably 3000 μm or more. Further, the heat-resistant inorganic fiber preferably has a bulk density of 30 to 160 kg / m 3 , more preferably 80 to 130 kg / m 3.
なお、上記の平均繊維長とは、測定対象となる繊維群を電子顕微鏡で撮影し、得られた画像上の任意の100本の繊維に対して、それらの長手方向の端から端までの直線距離を計測し、それらを算術平均して求めたものである。一方、上記の平均繊維径とは、測定対象となる繊維群を電子顕微鏡で撮影し、得られた画像上の任意の200本の繊維に対して、それらの任意の部分の幅を計測し、それらを算術平均して求めたものである。 The average fiber length is a straight line from one end to the other in the longitudinal direction of any 100 fibers on the obtained image obtained by photographing the group of fibers to be measured with an electron microscope. The distances are measured and calculated by arithmetically averaging them. On the other hand, the above average fiber diameter means that a group of fibers to be measured is photographed with an electron microscope, and the width of any part of any 200 fibers on the obtained image is measured. It is calculated by arithmetically averaging them.
本発明の実施形態のフィルターエレメントは、その基材に、上記の耐熱性無機繊維をマット状に成形した集積体を使用してもよいし、該マット状集積体をニードリング処理したいわゆるニードルブランケットを使用してもよいし、1層以上のマット状集積体及び1層以上のニードルブランケットを積層して使用してもよい。なお、ニードリング処理とは、無機繊維からなるマット状の集積体に対して、その少なくとも一方の面(処理面)からニードルパンチ機の複数の針状体を繰り返し打ち込むことで繊維同士を交絡させるいわゆる針刺し処理のことである。 As the filter element of the embodiment of the present invention, an aggregate obtained by molding the above-mentioned heat-resistant inorganic fiber into a mat shape may be used as the base material thereof, or a so-called needle blanket obtained by needling the mat-like aggregate. May be used, or one or more layers of matte aggregates and one or more layers of needle blankets may be laminated and used. The needling treatment involves repeatedly driving a plurality of needle-shaped bodies of a needle punching machine into a mat-shaped aggregate made of inorganic fibers from at least one surface (treated surface) to entangle the fibers. This is the so-called needle stick process.
上記のニードリング処理においては、ニードリング密度として定義される針状体が打ち込まれる処理面の1cm2あたりの打込み数が5〜200打であるのが好ましく、10〜100打であるのがより好ましい。このニードルリング密度が5打/cm2未満では、ニードルブランケットからなる基材の厚みの均一性が低下し、最終的にフィルターエレメントの形態に成形したときのろ過厚さが不均一になるおそれがある。逆に、このニードリング密度が200打/cm2を超えると、耐熱性無機繊維を折損したり、小さな曲率を有する形状に基材を加工できにくくなったりする等の問題が生じるおそれがある。 In the above-mentioned needling process, the number of impacts per cm 2 of the processed surface on which the needle-shaped body defined as the needling density is impacted is preferably 5 to 200 strokes, more preferably 10 to 100 strokes. preferable. If the needle ring density is less than 5 strokes / cm 2 , the uniformity of the thickness of the base material made of the needle blanket will decrease, and the filtration thickness when finally molded into the form of the filter element may become non-uniform. is there. On the contrary, if the needling density exceeds 200 strokes / cm 2 , problems such as breakage of the heat-resistant inorganic fiber and difficulty in processing the base material into a shape having a small curvature may occur.
上記のマット状集積体には、例えば、アルミナ繊維ではデンカ株式会社製のアルセン(登録商標)、ムライト繊維では株式会社ITM製のファイバーマックス(登録商標)、ガラス繊維では日本グラスファイバー工業株式会社製のMNA(商品名)、シリカ繊維では日本グラスファイバー工業株式会社製のMSS(商品名)、シリカ・アルミナ繊維ではイソライト工業株式会社製のイソウール(商品名)、シリカ・マグネシア・カルシア系繊維等の生体溶解性繊維ではイソライト工業株式会社製のイソウールBSSR1300(商品名)などを好適に使用することができる。 The above mat-like aggregates include, for example, Arsen (registered trademark) manufactured by Denka Co., Ltd. for alumina fibers, Fibermax (registered trademark) manufactured by ITM Co., Ltd. for Murite fibers, and Nippon Glass Fiber Industry Co., Ltd. for glass fibers. MNA (trade name), MSS (trade name) manufactured by Nippon Glass Fiber Industry Co., Ltd. for silica fiber, Isowool (trade name) manufactured by Isolite Industry Co., Ltd. for silica / alumina fiber, silica, magnesia, calcia fiber, etc. As the biosoluble fiber, Isowool BSSR1300 (trade name) manufactured by Isolite Industry Co., Ltd. can be preferably used.
一方、上記のニードルブランケットにも市販のものを用いてもよく、例えば、アルミナ繊維ではデンカ株式会社製のアルセン(登録商標)、ムライト繊維では株式会社ITM製のファイバーマックス(登録商標)、ガラス繊維では日本グラスファイバー工業株式会社製のMNA(商品名)、シリカ繊維では日本グラスファイバー工業株式会社製のMSS(商品名)、シリカ・アルミナ繊維ではイソライト工業株式会社製のイソウール(商品名)、シリカ・マグネシア・カルシア系繊維等の生体溶解性繊維ではイソライト工業株式会社製のイソウールBSSR1300(商品名)などを好適に使用することができる。 On the other hand, commercially available needle blankets may also be used. For example, Arsen (registered trademark) manufactured by Denka Co., Ltd. for alumina fibers, Fibermax (registered trademark) manufactured by ITM Co., Ltd. for Murite fibers, and glass fiber. MNA (trade name) manufactured by Nippon Glass Fiber Industry Co., Ltd., MSS (trade name) manufactured by Nippon Glass Fiber Industry Co., Ltd. for silica fiber, Isowool (trade name) manufactured by Isolite Industry Co., Ltd. for silica / alumina fiber, silica -As the biosoluble fiber such as magnesia-calcia fiber, Isoool BSSR1300 (trade name) manufactured by Isolite Industry Co., Ltd. can be preferably used.
上記の基材としてのマット状集積体又はニードルブランケットは、フィルターエレメントとして用いる際に1次側となる表面部に無機バインダーとフィラーとからなる表面処理層が形成されている。表面処理層を構成するこれら無機バインダーとフィラーとの配合割合は、質量基準で70:30〜90:10の範囲内にあるのが好ましい。上記の無機バインダーには、シリカゾル、アルミナゾル若しくはジルコニアゾル又はそれらの2種以上の混合物を用いるのが好ましい。一方、上記のフィラーには、上記の耐熱性無機繊維からなるニードリング処理された集積体のうち、表面部の繊維間の空隙を部分的に埋めて適正な気孔径にすることが可能な充填材が用いられる。 The mat-like aggregate or needle blanket as the base material has a surface treatment layer composed of an inorganic binder and a filler formed on the surface portion on the primary side when used as a filter element. The blending ratio of these inorganic binders and fillers constituting the surface treatment layer is preferably in the range of 70:30 to 90:10 on a mass basis. As the above-mentioned inorganic binder, it is preferable to use a silica sol, an alumina sol, a zirconia sol, or a mixture of two or more thereof. On the other hand, the filler is filled with a needling-treated aggregate made of the above-mentioned heat-resistant inorganic fibers, which can partially fill the voids between the fibers on the surface portion to obtain an appropriate pore diameter. The material is used.
このような充填材としては、具体的にはアルミナ及びムライトのうち少なくとも一方からなるメジアン径D50が2〜10μmの無機粒子と、上記の集積体の素材としても用いることが可能な耐熱温度が500℃以上1600℃以下の耐熱性無機繊維、すなわち、アルミナ繊維、ムライト繊維、シリカ・アルミナ繊維、シリカ繊維、ガラス繊維、及び生体溶解性繊維からなる群のうちの1種以上とを用いるのが好ましい。上記フィラーを構成するこれら無機粒子と耐熱性無機繊維との配合割合は、質量基準で70:30〜90:10の範囲内にあるのが好ましい。上記のフィラーとして用いる無機粒子のメジアン径D50が2μm未満では、上記繊維間の空隙を埋めた時に形成される気孔径が小さくなり過ぎてフィルターエレメントとして用いた時に圧力損失が大きくなるので好ましくない。逆にこの無機粒子のメジアン径D50が10μmより大きいと、適正な大きさの気孔径を超えた過大な気孔径の割合が増えるので好ましくない。なお、メジアン径D50とは、レーザー回折式粒度分布測定装置により求めた体積基準の粒度分布における積算値50%での粒径を意味する。 Specifically, as such a filler, inorganic particles having a median diameter D50 of 2 to 10 μm composed of at least one of alumina and mullite and a heat resistant temperature of 500 that can be used as a material for the above-mentioned aggregate are 500. It is preferable to use heat-resistant inorganic fibers of ° C. or higher and 1600 ° C. or lower, that is, one or more of the group consisting of alumina fibers, mullite fibers, silica-alumina fibers, silica fibers, glass fibers, and biosoluble fibers. .. The blending ratio of these inorganic particles constituting the filler and the heat-resistant inorganic fiber is preferably in the range of 70:30 to 90:10 on a mass basis. If the median diameter D50 of the inorganic particles used as the filler is less than 2 μm, the pore diameter formed when the voids between the fibers are filled becomes too small, and the pressure loss becomes large when used as a filter element, which is not preferable. On the contrary, when the median diameter D50 of the inorganic particles is larger than 10 μm, the ratio of the excessive pore diameter exceeding the pore diameter of an appropriate size increases, which is not preferable. The median diameter D50 means a particle size at an integrated value of 50% in a volume-based particle size distribution obtained by a laser diffraction type particle size distribution measuring device.
このように、無機バインダーとフィラーとを用いてニードリング処理された積層体を表面処理することで、部分的に緻密な層が形成されるので高強度や耐食性向上等の特性が得られるうえ、適正な気孔径を形成することが可能になる。例えば、ニードルブランケットでは、その気孔径が50〜800μm程度と広範囲にばらついているが、上記のように無機バインダーとフィラーとを用いて表面処理することで、50〜100μm程度の適正な気孔径を形成することが可能になる。この場合、無機バインダーや無機粒子だけで適正な気孔径に調整するのは容易でない。なお、上記の気孔径は「JIS R1665 ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」によって測定したものである。 By surface-treating the needling-treated laminate using the inorganic binder and the filler in this way, a partially dense layer is formed, so that properties such as high strength and improved corrosion resistance can be obtained. It becomes possible to form an appropriate pore diameter. For example, needle blankets have a wide range of pore diameters of about 50 to 800 μm, but by surface-treating with an inorganic binder and filler as described above, an appropriate pore diameter of about 50 to 100 μm can be obtained. It becomes possible to form. In this case, it is not easy to adjust the pore size to an appropriate level using only the inorganic binder and the inorganic particles. The above-mentioned pore diameter was measured by "JIS R1665 fine ceramics pore diameter distribution test method for molded body by mercury press-fitting method".
上記の表面処理層の形成方法としては、例えば上記のニードルブランケットを所定の形状に成形した後、そこに上記無機バインダーとフィラーとの混合物に水を加えて調製したスラリーを含浸させる方法でもよいし、上記のニードルブランケットに先ず上記無機バインダーに水を加えて調製したスラリーを含浸しながら所定の形状に成形し、これを乾燥した後、再度上記無機バインダーとフィラーとの混合物に水を加えて調製したスラリーを含浸させる方法でもかまわない。 As a method for forming the surface treatment layer, for example, a method may be used in which the needle blanket is formed into a predetermined shape and then impregnated with a slurry prepared by adding water to a mixture of the inorganic binder and the filler. The needle blanket is first impregnated with a slurry prepared by adding water to the inorganic binder to form a predetermined shape, dried, and then water is added to the mixture of the inorganic binder and the filler again to prepare the needle blanket. The method of impregnating the slurry may also be used.
上記の含浸させる方法には特に限定はなく、上記1次側の表面部にハケなどを用いて塗布してもよいし、該表面部にスプレー等により塗布してもよいし、該スラリーを調製した容器に該表面部を浸漬してもよい。その際、上記の無機バインダーやフィラーを含んだスラリーの固形分濃度は、最終的に作製するフィルターエレメントの所望のかさ密度、厚さ、硬度、曲げ強さ、耐熱衝撃性等の諸特性を実現するために適宜設定される所定の含浸量又はスラリー乾燥後に残留する所定の固形分量を得るため、一般的には20〜50質量%が好ましい。このスラリーの固形分濃度が20質量%未満では、所望の含浸量が得られにくくなるおそれがあり、逆に50質量%を超えると粘度が高くなりすぎて含浸しにくくなり、含浸むらになったり、上記諸物性が悪化したりするおそれがある。 The method of impregnation is not particularly limited, and the surface portion on the primary side may be coated with a brush or the like, or the surface portion may be coated with a spray or the like to prepare the slurry. The surface portion may be immersed in the container. At that time, the solid content concentration of the slurry containing the above-mentioned inorganic binder and filler realizes various characteristics such as desired bulk density, thickness, hardness, bending strength, and thermal shock resistance of the filter element to be finally produced. Generally, 20 to 50% by mass is preferable in order to obtain a predetermined impregnation amount or a predetermined solid content remaining after the slurry is dried. If the solid content concentration of this slurry is less than 20% by mass, it may be difficult to obtain the desired impregnation amount, and conversely, if it exceeds 50% by mass, the viscosity becomes too high and it becomes difficult to impregnate, resulting in uneven impregnation. , The above physical properties may deteriorate.
上記のスラリーを含浸させた後は、フィルターエレメントとして用いるとき1次側となる面側、すなわち高温の排ガスが流入する面側から乾燥する。これにより、高温集塵フィルターエレメントとして用いるときに、煤塵を含む高温の排ガスが接触する1次側に表面処理層(被覆層)が形成される。上記の乾燥は、一般的に雰囲気温度90〜130℃で5〜10時間程度保持する乾燥条件が好ましい。上記の温度が90℃未満では十分に乾燥されなくなるおそれがあり、逆に130℃を超えると基材の表層部で急激な水分の蒸発が起こり、これにより発生した蒸気の表面側への移行に伴って固形分が表面近傍に集中し、厚み方向での含浸むらが生じるおそれがある。また、乾燥時間が5時間未満では十分に乾燥されなくなるおそれがあり、逆に10時間を超えても乾燥により得られる効果はほとんど変わらないので不経済になる。 After impregnating the above slurry, it is dried from the surface side that becomes the primary side when used as a filter element, that is, the surface side on which high-temperature exhaust gas flows. As a result, when used as a high-temperature dust collection filter element, a surface treatment layer (coating layer) is formed on the primary side where high-temperature exhaust gas containing soot and dust comes into contact. Generally, the above drying is preferably carried out under a drying condition in which the ambient temperature is 90 to 130 ° C. for about 5 to 10 hours. If the above temperature is less than 90 ° C, it may not be sufficiently dried. On the contrary, if it exceeds 130 ° C, rapid evaporation of water occurs on the surface layer of the base material, and the generated vapor is transferred to the surface side. As a result, the solid content may be concentrated near the surface, causing uneven impregnation in the thickness direction. Further, if the drying time is less than 5 hours, it may not be sufficiently dried, and conversely, if it exceeds 10 hours, the effect obtained by drying is almost the same, which is uneconomical.
上記の乾燥処理後は、ろ過集塵装置への設置前に、必要に応じて該基材を焼成処理する。その際の焼成条件としては、雰囲気温度500〜1000℃で0.3時間以上保持するのが好ましく、0.5時間以上保持するのがより好ましい。なお、上記のろ過集塵装置への設置前の焼成処理に代えて、該ろ過集塵装置への設置直後に、操業開始段階の高温の排ガスにより基材を焼成処理してもよい。上記のように焼成処理することで無機バインダーの強度が発現される。なお、上記の表面処理層の厚みは0.4〜1.0mm程度が好ましく、この厚みから上記1次側の表面の1cm2あたりに必要な上記スラリーの量を求めることができる。 After the above drying treatment, the base material is fired if necessary before installation in the filtration dust collector. As the firing conditions at that time, it is preferable to hold the air temperature at an atmospheric temperature of 500 to 1000 ° C. for 0.3 hours or more, and more preferably 0.5 hours or more. Instead of the firing treatment before installation in the filtration dust collector, the base material may be fired with high-temperature exhaust gas at the start of operation immediately after installation in the filtration dust collector. The strength of the inorganic binder is expressed by the firing treatment as described above. The thickness of the surface treatment layer is preferably about 0.4 to 1.0 mm, and the amount of the slurry required per 1 cm 2 of the surface on the primary side can be obtained from this thickness.
上記のフィルターエレメントの形状は、ろ過集塵装置に合わせて様々な形状に成形することができ、例えば図1に示すような(a)平板状若しくは(b)曲板状、又はろ過面積をより広くするため、図2に示すようなジグザグ状に折り畳んだ形状、さらには図3に示すような(a)円筒型や(b)角筒型、図4に示すようなキャンドル型に成形することができる。なお、図1〜4には、フィルターエレメントFの1次側となる面に表面処理層Sを形成した例が示されているが、この表面処理層Sが形成される面は、図1〜4に示されている面とは反対側の面に形成してもよい。例えば、図3(a)では円筒状フィルターエレメントの外周側に表面処理層Sが設けられているが、これに限定されるものではなく、内周側に表面処理層を設けてもよい。この場合は該内周側が1次側となり、円筒形フィルターエレメントの内側から外側に向って降温の排ガスが透過することになる。 The shape of the filter element can be formed into various shapes according to the filtration dust collector, for example, (a) flat plate shape or (b) curved plate shape as shown in FIG. In order to make it wider, it should be folded into a zigzag shape as shown in FIG. 2, and further formed into a (a) cylindrical shape, a (b) square cylinder shape as shown in FIG. 3, and a candle shape as shown in FIG. Can be done. Although FIGS. 1 to 4 show an example in which the surface treatment layer S is formed on the surface of the filter element F on the primary side, the surface on which the surface treatment layer S is formed is shown in FIGS. It may be formed on the surface opposite to the surface shown in 4. For example, in FIG. 3A, the surface treatment layer S is provided on the outer peripheral side of the cylindrical filter element, but the present invention is not limited to this, and the surface treatment layer may be provided on the inner peripheral side. In this case, the inner peripheral side becomes the primary side, and the exhaust gas having a lower temperature permeates from the inside to the outside of the cylindrical filter element.
上記の焼成処理により、かさ密度250〜600kg/m3、3点曲げ試験による破断が生じにくく、タイプCデュロメータによる硬度45以上、圧力損失100〜500Paのフィルターエレメントを作製することができる。上記の圧力損失の値は、従来の湿式成形により作製したフィルターエレメントとほぼ同じ圧力損失の値を有しており、除塵性能においてもほぼ同等の性能を実現することができる。また、上記のかさ密度と硬度であれば、常温から1000℃程度の高温の温度域で用いても耐熱衝撃性に優れ、輸送時や設置時のハンドリング性に優れ、運転時の振動や地震を想定した耐震試験において容易に損傷しないようにすることができる。 By the above firing treatment, a filter element having a bulk density of 250 to 600 kg / m 3 , which is less likely to break due to a three-point bending test, a hardness of 45 or more by a type C durometer, and a pressure loss of 100 to 500 Pa can be produced. The above pressure loss value has almost the same pressure loss value as that of the filter element manufactured by the conventional wet molding, and almost the same dust removal performance can be realized. In addition, with the above bulk density and hardness, it has excellent heat and shock resistance even when used in a high temperature range of about 1000 ° C from room temperature, and it has excellent handleability during transportation and installation, and it is resistant to vibrations and earthquakes during operation. It can be prevented from being easily damaged in the assumed seismic test.
なお、上記の本発明の実施形態の高温集塵フィルターエレメントのかさ密度及び圧力損失等は、該フィルターエレメントの使用環境、煤塵の種類、所望の除塵性能や圧力損失の値等を考慮して、圧縮して成形体を形成するときのプレス圧、アルミナゾルやシリカゾル等の無機バインダーの種類の選択及びその含浸量、含浸回数等を適宜変えることで調整することができる。具体的には、かさ密度を高めたいときは成形体の形成時のプレス圧を高めればよく、曲げ特性を高めたいときはニードリング密度を高めればよく、硬度を高めたいときは含浸量や含浸回数を増やすことで表面処理層の厚みを厚くすればよく、圧力損失を下げたいときは平均繊維径がより大きな耐熱性無機繊維が多く含まれるようにすればよく、気孔径のサイズを小さくしたいときはフィラーを構成する無機粒子の配合割合を増やせばよい。 The bulk density, pressure loss, etc. of the high-temperature dust collecting filter element according to the embodiment of the present invention are determined in consideration of the usage environment of the filter element, the type of dust, the desired dust removal performance, the value of pressure loss, and the like. It can be adjusted by appropriately changing the press pressure when compressing to form a molded body, the selection of the type of inorganic binder such as alumina sol and silica sol, the impregnation amount thereof, the number of impregnation times, and the like. Specifically, when it is desired to increase the bulk density, the press pressure at the time of forming the molded product may be increased, when it is desired to improve the bending characteristics, the needling density may be increased, and when it is desired to increase the hardness, the impregnation amount or impregnation may be increased. The thickness of the surface treatment layer may be increased by increasing the number of times, and when it is desired to reduce the pressure loss, it is sufficient to contain a large amount of heat-resistant inorganic fibers having a larger average fiber diameter, and it is desired to reduce the size of the pore diameter. In some cases, the mixing ratio of the inorganic particles constituting the filler may be increased.
様々な耐熱性無機繊維を用いて下記に示す実施例及び比較例の高温集塵フィルターエレメントを作製し、それらの各々に対して、かさ密度、曲げ特性、硬度、耐熱衝撃性、圧力損失、除塵性能、及び除塵の耐久性について評価した。これら特性の評価は、下記の方法に基づいて行った。 High-temperature dust collection filter elements of Examples and Comparative Examples shown below were prepared using various heat-resistant inorganic fibers, and for each of them, bulk density, bending characteristics, hardness, thermal shock resistance, pressure loss, and dust removal The performance and the durability of dust removal were evaluated. The evaluation of these characteristics was carried out based on the following method.
(かさ密度)
高温集塵フィルターエレメントの寸法を測定して算出した体積でその質量を除算することで求めた。このかさ密度が250〜600kg/m3の範囲内のものを「良」と評価した。
(Bulk density)
It was obtained by measuring the dimensions of the high-temperature dust collection filter element and dividing its mass by the calculated volume. Those having a bulk density in the range of 250 to 600 kg / m 3 were evaluated as "good".
(曲げ特性)
高温集塵フィルターエレメントを長さ150mm×幅50mm×厚さ25mmに加工し、スパン100mmで支持したときの中央を載荷することによる3点曲げ試験により求めた。この方法で破断しないものを「良」と評価した。
(Bending characteristics)
The high-temperature dust collection filter element was processed into a length of 150 mm, a width of 50 mm, and a thickness of 25 mm, and was obtained by a three-point bending test by loading the center when supported by a span of 100 mm. Those that did not break by this method were evaluated as "good".
(硬度)
高温集塵フィルターエレメントの1次側の硬度をJIS K7312に準拠してタイプCデュロメータにより測定し、45以上のものを「良」と評価した。なお、デュロメータとは、測定対象物の表面に計器の加圧面を当接させることで、該加圧面から突出する押針の突出方向に付勢するスプリングの力と該測定対象物の弾性力とをバランスさせ、その際指針が指示する0−100の範囲内の目盛りを読みとることで硬度を測定する計器である。
(hardness)
The hardness of the primary side of the high temperature dust collection filter element was measured by a type C durometer in accordance with JIS K7312, and those of 45 or more were evaluated as "good". The durometer refers to the force of a spring urging in the protruding direction of the push needle protruding from the pressure surface of the instrument by bringing the pressure surface of the instrument into contact with the surface of the object to be measured and the elastic force of the object to be measured. It is an instrument that measures hardness by balancing and reading the scale in the range of 0-100 indicated by the pointer at that time.
(耐熱衝撃性)
高温集塵フィルターエレメントを雰囲気温度1000℃に加熱した加熱炉に装入して15分間保持した後、取り出して常温空気雰囲気で15分間自然冷却させ、その後再び加熱炉に装入して同じ条件で15分間保持した後、取り出して常温空気雰囲気で15分間自然冷却をした。この加熱と冷却のサイクルを合計10サイクル繰り返したときの外観変化を目視で観察し、損傷ない場合に耐熱衝撃性は「良」と評価した。
(Heat-resistant impact resistance)
The high-temperature dust collecting filter element is placed in a heating furnace heated to an atmospheric temperature of 1000 ° C. and held for 15 minutes, then taken out and naturally cooled in a room temperature air atmosphere for 15 minutes, and then charged again in the heating furnace under the same conditions. After holding for 15 minutes, it was taken out and naturally cooled in a room temperature air atmosphere for 15 minutes. The change in appearance when the heating and cooling cycles were repeated for a total of 10 cycles was visually observed, and the thermal shock resistance was evaluated as "good" when there was no damage.
(圧力損失)
室温の空気をろ過速度1m/minで高温集塵フィルターエレメントに流しながら、その1次側の圧力と2次側の圧力の圧力差を、静圧ピトー管を用いて測定した。この圧力差が100〜500Paのものを「良」と評価した。
(Pressure loss)
While flowing air at room temperature through a high-temperature dust collecting filter element at a filtration rate of 1 m / min, the pressure difference between the pressure on the primary side and the pressure on the secondary side was measured using a static pressure pitot tube. Those having this pressure difference of 100 to 500 Pa were evaluated as "good".
(除塵性能)
高温集塵フィルターエレメントをろ過集塵装置に取り付け、室温の空気をろ過速度1m/minで高温集塵フィルターエレメントに流し、圧力0.25MPaの逆洗エアーを打ち込み間隔10秒(バルブ開放時間0.5秒)に設定して6時間運転を行った。その際、1時間おきに5gの試験用ダスト投入した。6時間経過後、捕集したダストの質量を供給したダストの全質量で除算して得た割合が95%以上のものを「良」と評価した。
(Dust removal performance)
The high-temperature dust collection filter element is attached to the filtration dust collector, air at room temperature is flowed through the high-temperature dust collection filter element at a filtration rate of 1 m / min, and backwash air with a pressure of 0.25 MPa is blown in at intervals of 10 seconds (valve opening time 0. It was set to 5 seconds) and operated for 6 hours. At that time, 5 g of test dust was added every hour. After 6 hours, those obtained by dividing the mass of the collected dust by the total mass of the supplied dust and obtained by dividing it by 95% or more were evaluated as "good".
(除塵の耐久性)
上記除塵性能試験での測定開始時の圧力損失の値をP0とし、6時間後の圧力損失の値をP1としたとき、P0/P1が0.6以上のものを「良」と評価した。
(Durability of dust removal)
When the value of the pressure loss at the start of measurement in the above dust removal performance test is P 0 and the value of the pressure loss after 6 hours is P 1 , the value of P 0 / P 1 of 0.6 or more is “good”. I evaluated it.
[実施例1]
耐熱性無機繊維としてシリカ・マグネシア・カルシア系の生体溶解性繊維質からなるイソライト工業株式会社製のかさ密度100kg/m3、厚さ12.5mmのニードルブランケット(BSSR)の一方の面に、日産化学株式会社製の固形分濃度40質量%のシリカゾルのスラリー(スノーテックス40)を、フィルターエレメントとして用いるときの1次側に厚み0.4mmの硬化剤の層が形成されるように、スプレー法により含浸させた。
[Example 1]
Nissan has a needle blanket (BSSR) with a bulk density of 100 kg / m 3 and a thickness of 12.5 mm manufactured by Isolite Industries, Ltd., which is made of silica, magnesia, and calcia-based biosoluble fibers as heat-resistant inorganic fibers. A spray method in which a silica sol slurry (Snowtex 40) having a solid content concentration of 40% by mass manufactured by Chemical Industries, Ltd. is used as a filter element so that a layer of a curing agent having a thickness of 0.4 mm is formed on the primary side. Impregnated with.
上記にて含浸させたニードルブランケットを2層に重ねて厚さ20mmになるように均等に圧縮して平板状に成型した。この成型体を雰囲気温度105℃で8時間かけて乾燥処理した後、アルミナ粒子(メジアン径D50が2μm)とガラス繊維(平均繊維径10μm)とを質量基準で80:20の配合割合で調製した混合物からなるフィラー20質量部に対して80質量部の上記のシリカゾルを混合し、更に水を加えて固形分濃度10質量%に調製したスラリーをフィルターエレメントとして用いるときの1次側に厚み0.6mmの表面処理層が形成されるように、スプレー法により含浸させた。これを雰囲気温度105℃で8時間かけて乾燥処理した後、雰囲気温度730℃で0.5時間かけて焼成処理した。 The needle blanket impregnated above was layered in two layers and evenly compressed to a thickness of 20 mm to form a flat plate. After drying this molded product at an atmospheric temperature of 105 ° C. for 8 hours, alumina particles (median diameter D50 of 2 μm) and glass fibers (average fiber diameter of 10 μm) were prepared at a mixing ratio of 80:20 on a mass basis. When a slurry prepared by mixing 80 parts by mass of the above silica sol with 20 parts by mass of a filler composed of a mixture and further adding water to a solid content concentration of 10% by mass is used as a filter element, the thickness is 0. It was impregnated by the spray method so that a 6 mm surface treatment layer was formed. This was dried at an ambient temperature of 105 ° C. for 8 hours and then fired at an ambient temperature of 730 ° C. for 0.5 hours.
得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度45、圧力損失200Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。さらに、逆洗では除去が困難な長期的な目詰まりの有無を確認するため、上記の除塵の耐久性の試験時間を6時間から2160時間に延長して同様に測定した。その結果、試験前の圧力損失の値をP0、試験後の圧力損失の値をP2としたとき、P0/P2が0.5であった。表面処理層を形成しない場合はP0/P2が0.3であったので、表面処理層を形成することにより長期的な目詰まりが生じにくくなっていることが分かる。 The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 45, and a pressure loss of 200 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good". Further, in order to confirm the presence or absence of long-term clogging that is difficult to remove by backwashing, the above-mentioned dust removal durability test time was extended from 6 hours to 2160 hours and measured in the same manner. As a result, when the value of the pressure loss before the test was P 0 and the value of the pressure loss after the test was P 2 , P 0 / P 2 was 0.5. Since P 0 / P 2 was 0.3 when the surface treatment layer was not formed, it can be seen that the formation of the surface treatment layer makes it difficult for long-term clogging to occur.
[実施例2]
実施例1と同様にして含浸させたニードルブランケットを2層に代えて4層とし、以降は実施例1と同様に厚さ20mmに圧縮してからフィラーを塗布し、乾燥処理及び焼成処理を行った。得られた平板状の高温集塵フィルターエレメントは、かさ密度600kg/m3、曲げ特性で破断がなく、硬度70、圧力損失500Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は95%であり、除塵の耐久性は0.6であり、これらの評価も全て「良」であった。
[Example 2]
The needle blanket impregnated in the same manner as in Example 1 was replaced with two layers to form four layers, and thereafter, as in Example 1, the needle blanket was compressed to a thickness of 20 mm, then a filler was applied, and drying and firing treatments were performed. It was. The obtained flat plate-shaped high-temperature dust collecting filter element had a bulk density of 600 kg / m 3 , bending characteristics of no breakage, a hardness of 70, and a pressure loss of 500 Pa, and all of these evaluations were "good". In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 95%, the dust removal durability was 0.6, and all of these evaluations were "good".
[実施例3]
ムライト繊維質からなる株式会社ITM社製のかさ密度100kg/m3、厚さ12.5mmのニードルブランケット(ファイバーマックス)を耐熱性無機繊維に用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失180Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 3]
A flat plate in the same manner as in Example 1 above, except that a needle blanket (Fibermax) having a bulk density of 100 kg / m 3 and a thickness of 12.5 mm made of mullite fiber manufactured by ITM Co., Ltd. was used for the heat-resistant inorganic fiber. High temperature dust collection filter element was manufactured. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 180 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例4]
アルミナ粒子(メジアン径D50が10μm)とガラス繊維(平均繊維径10μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失100Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 4]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 10 μm) and glass fibers (average fiber diameter of 10 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 100 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例5]
ムライト粒子(メジアン径D50が2μm)とガラス繊維(平均繊維径10μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失は200Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 5]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 2 μm) and glass fibers (average fiber diameter of 10 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , bending characteristics of no breakage, a hardness of 65, and a pressure loss of 200 Pa, and all of these evaluations were "good". In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例6]
ムライト粒子(メジアン径D50が10μm)とガラス繊維(平均繊維径10μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失100Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 6]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 10 μm) and glass fibers (average fiber diameter of 10 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 100 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例7]
アルミナ粒子(メジアン径D50が2μm)とアルミナ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 7]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 2 μm) and alumina fibers (average fiber diameter of 4 μm) was used as the filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例8]
アルミナ粒子(メジアン径D50が10μm)とアルミナ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 8]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 10 μm) and alumina fibers (average fiber diameter of 4 μm) was used as the filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例9]
ムライト粒子(メジアン径D50が2μm)とアルミナ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 9]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 2 μm) and alumina fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例10]
ムライト粒子(メジアン径D50が10μm)とアルミナ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 10]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 10 μm) and alumina fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例11]
アルミナ粒子(メジアン径D50が2μm)とムライト繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 11]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 2 μm) and mullite fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例12]
アルミナ粒子(メジアン径D50が10μm)とムライト繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 12]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 10 μm) and mullite fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例13]
ムライト粒子(メジアン径D50が2μm)とムライト繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 13]
A flat plate-shaped high-temperature dust collection filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 2 μm) and mullite fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例14]
ムライト粒子(メジアン径D50が10μm)とムライト繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 14]
A flat plate-shaped high-temperature dust collection filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 10 μm) and mullite fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例15]
アルミナ粒子(メジアン径D50が2μm)とシリカ・アルミナ繊維(平均繊維径3μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 15]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 2 μm) and silica-alumina fibers (average fiber diameter of 3 μm) was used as the filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例16]
アルミナ粒子(メジアン径D50が10μm)とシリカ・アルミナ繊維(平均繊維径3μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 16]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 10 μm) and silica-alumina fibers (average fiber diameter of 3 μm) was used as the filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例17]
ムライト粒子(メジアン径D50が2μm)とシリカ・アルミナ繊維(平均繊維径3μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 17]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 2 μm) and silica-alumina fibers (average fiber diameter of 3 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例18]
ムライト粒子(メジアン径D50が10μm)とシリカ・アルミナ繊維(平均繊維径3μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 18]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 10 μm) and silica-alumina fibers (average fiber diameter of 3 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例19]
アルミナ粒子(メジアン径D50が2μm)とシリカ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 19]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 2 μm) and silica fibers (average fiber diameter of 4 μm) was used as the filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例20]
アルミナ粒子(メジアン径D50が10μm)とシリカ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 20]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 10 μm) and silica fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例21]
ムライト粒子(メジアン径D50が2μm)とシリカ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 21]
A flat plate-shaped high-temperature dust collection filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 2 μm) and silica fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例22]
ムライト粒子(メジアン径D50が10μm)とシリカ繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 22]
A flat plate-shaped high-temperature dust collection filter element was produced in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 of 10 μm) and silica fibers (average fiber diameter of 4 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例23]
アルミナ粒子(メジアン径D50が2μm)とシリカ・マグネシア・カルシア系の生体溶解性繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 23]
A flat plate-shaped high-temperature precipitator similar to Example 1 above, except that a mixture of alumina particles (median diameter D50 is 2 μm) and silica-magnesia-calcia-based biosoluble fibers (average fiber diameter 4 μm) is used as a filler. A dust filter element was manufactured. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例24]
アルミナ粒子(メジアン径D50が10μm)とシリカ・マグネシア・カルシア系の生体溶解性繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 24]
A flat plate-shaped high-temperature precipitator similar to Example 1 above except that a mixture of alumina particles (median diameter D50 is 10 μm) and silica-magnesia-calcia-based biosoluble fibers (average fiber diameter 4 μm) is used as a filler. A dust filter element was manufactured. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例25]
ムライト粒子(メジアン径D50が2μm)とシリカ・マグネシア・カルシア系の生体溶解性繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失250Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 25]
A flat plate-shaped high-temperature collection in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 is 2 μm) and silica-magnesia-calcia-based biosoluble fibers (average fiber diameter 4 μm) is used as a filler. A dust filter element was manufactured. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 250 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例26]
ムライト粒子(メジアン径D50が10μm)とシリカ・マグネシア・カルシア系の生体溶解性繊維(平均繊維径4μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失150Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価も全て「良」であった。
[Example 26]
A flat plate-shaped high-temperature collection in the same manner as in Example 1 above, except that a mixture of mullite particles (median diameter D50 is 10 μm) and silica-magnesia-calcia-based biosoluble fibers (average fiber diameter 4 μm) is used as a filler. A dust filter element was manufactured. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 150 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, the dust removal durability was 0.7, and all of these evaluations were "good".
[実施例27]
ニードルブランケットに代えてイソライト工業株式会社製のマット状集積体を用意し、このマット状集積体に、実施例1と同様にしてシリカゾルのスラリーを1次側に厚み0.4mmの硬化剤の層が形成されるように含浸させた。これを2層に重ねて厚さ20mmになるように均等に圧縮して平板状に成型し、雰囲気温度105℃で8時間かけて乾燥処理した。
[Example 27]
A mat-like aggregate manufactured by ISOLITE INSULA Co., Ltd. was prepared in place of the needle blanket, and a silica sol slurry was placed on the mat-like aggregate in the same manner as in Example 1 to form a layer of a curing agent having a thickness of 0.4 mm on the primary side. Was impregnated so that This was layered in two layers, compressed evenly to a thickness of 20 mm, molded into a flat plate, and dried at an atmospheric temperature of 105 ° C. for 8 hours.
以降は実施例1と同様にしてアルミナ粒子とガラス繊維との混合物からなるフィラー20質量部に対して80質量部のシリカゾルのスラリーを1次側に厚み0.6mmの表面処理層が形成されるように含浸させ、乾燥及び焼成して平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度60、圧力損失100Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.8であり、これらの評価でも全て「良」であった。 After that, in the same manner as in Example 1, a surface treatment layer having a thickness of 0.6 mm is formed on the primary side of a slurry of silica sol of 80 parts by mass with respect to 20 parts by mass of a filler composed of a mixture of alumina particles and glass fibers. A flat plate-shaped high-temperature dust collecting filter element was produced by impregnating, drying and firing. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 60, and a pressure loss of 100 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, and the dust removal durability was 0.8, and all of these evaluations were "good".
[実施例28]
実施例1と同様にして作製した含浸させたニードルブランケットと、実施例27と同様にして作製した含浸させたマット状集積体とをこの順で上下になるように1層ずつ重ねて厚さ20mmになるように均等に圧縮し、平板状に成形した。
[Example 28]
The impregnated needle blanket produced in the same manner as in Example 1 and the impregnated mat-like aggregate produced in the same manner as in Example 27 are stacked one layer at a time in this order so as to have a thickness of 20 mm. It was compressed evenly so as to be, and formed into a flat plate.
以降は実施例1と同様にしてアルミナ粒子とガラス繊維との混合物からなるフィラー20質量部に対して80質量部のシリカゾルのスラリーを1次側に厚み0.6mmの表面処理層が形成されるように含浸させ、乾燥及び焼成して平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65、圧力損失110Paであり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、除塵の耐久性は0.7であり、これらの評価でも全て「良」であった。 After that, in the same manner as in Example 1, a surface treatment layer having a thickness of 0.6 mm is formed on the primary side of a slurry of silica sol of 80 parts by mass with respect to 20 parts by mass of a filler composed of a mixture of alumina particles and glass fibers. A flat plate-shaped high-temperature dust collecting filter element was produced by impregnating, drying and firing. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, a hardness of 65, and a pressure loss of 110 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, and the dust removal durability was 0.7, and all of these evaluations were "good".
[比較例1]
ムライト繊維質からなる株式会社ITM社製のバルク(ファイバーマックス)を耐熱性無機繊維に用い、これに無機バインダーとしてのシリカゾルと有機バインダーと水とを混合してスラリーを調製した。得られたスラリーを外径90mmの成形型を用いて湿式成形することで、肉厚20mmのキャンドル型成型体を得た。この成型体を表面側から雰囲気温度105℃で8時間かけて乾燥処理した後、雰囲気温度730℃で0.5時間かけて焼成処理した。
[Comparative Example 1]
Bulk (Fibermax) manufactured by ITM Co., Ltd., which is made of mullite fiber, was used as a heat-resistant inorganic fiber, and a silica sol as an inorganic binder, an organic binder, and water were mixed thereto to prepare a slurry. The obtained slurry was wet-molded using a molding die having an outer diameter of 90 mm to obtain a candle-shaped molded body having a wall thickness of 20 mm. This molded product was dried from the surface side at an atmospheric temperature of 105 ° C. for 8 hours, and then fired at an atmospheric temperature of 730 ° C. for 0.5 hours.
得られたキャンドル型の高温集塵フィルターエレメントは、かさ密度250kg/m3で、圧力損失500Paであり、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は97%であり、除塵の耐久性は0.6であり、硬度が50であり、これら特性についてはいずれも評価が「良」であった。しかし、曲げ特性で破断が生じた。 The resulting high temperature dust collecting filter element candle, with bulk density 250 kg / m 3, a pressure drop 500 Pa, thermal shock resistance are intact even after 10 cycles, dust removal performance is 97%, the durability of the dust The property was 0.6 and the hardness was 50, and all of these characteristics were evaluated as "good". However, fracture occurred due to the bending characteristics.
[比較例2]
アルミナ粒子(メジアン径D50が12μm)とガラス繊維(平均繊維径10μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、硬度65、圧力損失100Paとなり、これらの評価はいずれも「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、これら評価も「良」であった。しかし、除塵の耐久性が0.5となり、評価基準を満たさなかった。
[Comparative Example 2]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 12 μm) and glass fibers (average fiber diameter of 10 μm) was used as a filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a hardness of 65, and a pressure loss of 100 Pa, and all of these evaluations were “good”. In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, and these evaluations were also "good". However, the durability of dust removal was 0.5, which did not meet the evaluation criteria.
[比較例3]
アルミナ粒子(メジアン径D50が1μm)とガラス繊維(平均繊維径10μm)との混合物をフィラーに用いた以外は上記実施例1と同様にして平板状の高温集塵フィルターエレメントを作製した。得られた高温集塵フィルターエレメントは、かさ密度250kg/m3、曲げ特性で破断がなく、硬度65であり、これらの評価は全て「良」であった。また、耐熱衝撃性は10サイクル後でも損傷がなく、除塵性能は99%であり、これらの評価も全て「良」であった。しかし、圧力損失が520Pa、除塵の耐久性が0.4となり、これらについては評価基準を満たさなかった。
[Comparative Example 3]
A flat plate-shaped high-temperature dust collecting filter element was produced in the same manner as in Example 1 above, except that a mixture of alumina particles (median diameter D50 of 1 μm) and glass fibers (average fiber diameter of 10 μm) was used as the filler. The obtained high-temperature dust collection filter element had a bulk density of 250 kg / m 3 , a bending characteristic of no breakage, and a hardness of 65, and all of these evaluations were "good". In addition, the thermal shock resistance was not damaged even after 10 cycles, the dust removal performance was 99%, and all of these evaluations were "good". However, the pressure loss was 520 Pa and the dust removal durability was 0.4, which did not meet the evaluation criteria.
F セラミックフィルターエレメント
S 表面処理層
F Ceramic filter element S Surface treatment layer
Claims (7)
In the ceramic filter element, the needling base material is formed in a single layer or multiple layers in the shape of a cylinder or a square cylinder, and both ends in the axial direction thereof are open or one end thereof is formed. The high-temperature dust collecting ceramic filter element according to any one of claims 1 to 5, wherein the high-temperature dust collecting ceramic filter element is sealed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019185011A JP7327871B2 (en) | 2019-10-08 | 2019-10-08 | High temperature dust collection ceramic filter element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019185011A JP7327871B2 (en) | 2019-10-08 | 2019-10-08 | High temperature dust collection ceramic filter element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021058852A true JP2021058852A (en) | 2021-04-15 |
JP7327871B2 JP7327871B2 (en) | 2023-08-16 |
Family
ID=75381091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019185011A Active JP7327871B2 (en) | 2019-10-08 | 2019-10-08 | High temperature dust collection ceramic filter element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7327871B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021058850A (en) * | 2019-10-08 | 2021-04-15 | イソライト工業株式会社 | High-temperature dust collection ceramic filter element |
CN116392900A (en) * | 2023-03-31 | 2023-07-07 | 安徽省利特环保技术有限公司 | A high service performance dust filter cartridge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53477A (en) * | 1976-06-24 | 1978-01-06 | Toshiba Monofrax | Filter cloth for high temperature gases |
JP2002045627A (en) * | 2000-08-03 | 2002-02-12 | Nichias Corp | Ceramic dust filter |
JP2002114580A (en) * | 2000-09-14 | 2002-04-16 | Three M Innovative Properties Co | Heat-resistant laminated body, method for manufacturing heat resistant laminated body and heat resistant filter |
JP2006075727A (en) * | 2004-09-09 | 2006-03-23 | Fujikoo:Kk | Molded filter for dust collection and manufacturing method thereof |
JP2017170357A (en) * | 2016-03-24 | 2017-09-28 | 日立化成株式会社 | Filter having weather resistance |
-
2019
- 2019-10-08 JP JP2019185011A patent/JP7327871B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53477A (en) * | 1976-06-24 | 1978-01-06 | Toshiba Monofrax | Filter cloth for high temperature gases |
JP2002045627A (en) * | 2000-08-03 | 2002-02-12 | Nichias Corp | Ceramic dust filter |
JP2002114580A (en) * | 2000-09-14 | 2002-04-16 | Three M Innovative Properties Co | Heat-resistant laminated body, method for manufacturing heat resistant laminated body and heat resistant filter |
JP2006075727A (en) * | 2004-09-09 | 2006-03-23 | Fujikoo:Kk | Molded filter for dust collection and manufacturing method thereof |
JP2017170357A (en) * | 2016-03-24 | 2017-09-28 | 日立化成株式会社 | Filter having weather resistance |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021058850A (en) * | 2019-10-08 | 2021-04-15 | イソライト工業株式会社 | High-temperature dust collection ceramic filter element |
JP7186687B2 (en) | 2019-10-08 | 2022-12-09 | イソライト工業株式会社 | High temperature dust collection ceramic filter element |
CN116392900A (en) * | 2023-03-31 | 2023-07-07 | 安徽省利特环保技术有限公司 | A high service performance dust filter cartridge |
Also Published As
Publication number | Publication date |
---|---|
JP7327871B2 (en) | 2023-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5238813B2 (en) | Exhaust gas treatment equipment | |
US5876537A (en) | Method of making a continuous ceramic fiber composite hot gas filter | |
JP4324185B2 (en) | Support elements for brittle structures such as catalytic converters | |
CA2747775C (en) | High strength biosoluble inorganic fiber insulation mat | |
US6984253B2 (en) | Honeycomb filter | |
CN102770630B (en) | For the multilayer mounting mat of pollution control device | |
CN107075805B (en) | High-temperature-resistant heat insulation pad | |
CN102753795B (en) | The purposes of microsphere in emission-control equipment mounting mat | |
KR20120074284A (en) | Multiple layer mat and exhaust gas treatment device | |
JP7327871B2 (en) | High temperature dust collection ceramic filter element | |
JP6544890B2 (en) | Method of manufacturing holding material for pollution control element | |
CN112118909A (en) | Polycrystalline aluminosilicate ceramic filaments, fibers, and nonwoven mats and methods of making and using same | |
JP7186687B2 (en) | High temperature dust collection ceramic filter element | |
JP2021058851A (en) | High-temperature dust collection ceramic filter element | |
EP1965887A1 (en) | Improved filter element | |
KR101559640B1 (en) | Mounting mat and exhaust gas treatment device | |
JP2002114580A (en) | Heat-resistant laminated body, method for manufacturing heat resistant laminated body and heat resistant filter | |
JP2002301322A (en) | Ceramic filter element and its manufacturing method | |
JP6346215B2 (en) | Catalytic converter and method for producing catalytic converter | |
JP2001046818A (en) | Ceramic filter element and its manufacture | |
KR20170095954A (en) | Mounting mat for an exhaust gas treatment device | |
CZ260299A3 (en) | Composite filter for hot gas with continuous ceramic fibers | |
JPH0699011A (en) | Fibrous ceramic filter | |
JP2002186811A (en) | Oxide ceramics filter and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7327871 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |