JP2021046590A - Copper alloys, copper products and electronic equipment parts - Google Patents
Copper alloys, copper products and electronic equipment parts Download PDFInfo
- Publication number
- JP2021046590A JP2021046590A JP2019170800A JP2019170800A JP2021046590A JP 2021046590 A JP2021046590 A JP 2021046590A JP 2019170800 A JP2019170800 A JP 2019170800A JP 2019170800 A JP2019170800 A JP 2019170800A JP 2021046590 A JP2021046590 A JP 2021046590A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- copper alloy
- less
- particle size
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材やトランジスタ、集積回路(IC)等の半導体機器のリードフレーム材として好適な、優れた強度、導電性、耐焼鈍軟化特性等を備えた銅合金、伸銅品及び電子機器部品に関する。 The present invention provides excellent strength, conductivity, shrinkage and softening characteristics, etc., which are suitable as lead frame materials for conductive spring materials such as connectors, terminals, relays, and switches, and semiconductor devices such as transistors and integrated circuits (ICs). Regarding copper alloys, copper products and electronic device parts provided.
近年、電気・電子部品の小型化が進み、これら部品に使用される銅合金に良好な強度、導電率及び耐焼鈍軟化特性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金の一つであるCu−Ni−Si系合金は、Cuマトリックス中にNiとSiとの化合物粒子を析出させた合金であり、高強度、高い導電率、耐焼鈍軟化特性を兼ね備えている。プレス加工後の歪取り焼鈍等で焼鈍前の強度を維持できるようCu−Ni−Si系合金において更に耐焼鈍軟化特性を改善することが望まれている。 In recent years, the miniaturization of electrical and electronic parts has progressed, and the copper alloys used for these parts are required to have good strength, conductivity, and annealing softening characteristics. In response to this demand, the demand for precipitation-hardened copper alloys such as Corson alloys having high strength and conductivity is increasing in place of the conventional solid-melt reinforced copper alloys such as phosphor bronze and brass. A Cu-Ni-Si alloy, which is one of the Corson alloys, is an alloy in which compound particles of Ni and Si are precipitated in a Cu matrix, and has high strength, high conductivity, and annealing softening properties. .. It is desired to further improve the annealing softening resistance of the Cu—Ni—Si alloy so that the strength before annealing can be maintained by strain removal annealing after pressing.
近年、Cu−Ni−Si系合金の耐焼鈍軟化特性を改善する技術として、低温焼鈍硬化量を調整する方策が提唱されている。例えば、特許文献1では、鋳塊を熱間圧延、冷間圧延、溶体化処理、時効処理、導電率が2〜4%IACS低くなる条件の低温溶体化処理、加工率50%以上の時効後冷間圧延、200〜500℃で1〜1000秒間の歪取焼鈍を順次行うことにより、500℃×60秒の大気加熱による強度低下量を30〜140MPaに制御している。 In recent years, as a technique for improving the annealing softening resistance of Cu—Ni—Si alloys, a measure for adjusting the amount of low temperature annealing hardening has been proposed. For example, in Patent Document 1, ingots are hot-rolled, cold-rolled, solution-treated, aged, low-temperature solution-treated under conditions where the conductivity is 2 to 4% IACS lower, and after aging with a processing rate of 50% or more. By sequentially performing cold rolling and strain relief annealing at 200 to 500 ° C. for 1 to 1000 seconds, the amount of decrease in strength due to atmospheric heating at 500 ° C. for 60 seconds is controlled to 30 to 140 MPa.
しかしながら、特許文献1に記載された発明は、プレス加工前の耐焼鈍軟化特性のみを改善の対象としており、プレス加工時の変形によって生じる歪によって耐焼鈍軟化特性が低下し、プレス加工後の歪取焼鈍には耐えられない場合がある。 However, the invention described in Patent Document 1 targets only the annealing softening resistance before press working, and the annealing softening property deteriorates due to the strain generated by the deformation during press working, and the strain after pressing. It may not be able to withstand annealing.
そこで、本発明は、高強度、高導電率及び耐焼鈍軟化特性を兼備した銅合金、伸銅品及び電子機器部品を提供することを課題とする。 Therefore, it is an object of the present invention to provide a copper alloy, a copper wrought product, and an electronic device component having high strength, high conductivity, and annealing softening resistance.
本発明者が鋭意検討した結果、プレス加工後の歪取り焼鈍に耐え得る程度の耐焼鈍軟化特性を備え、高強度、高導電率であるCu−Ni−Si系合金を得るためには、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度を制御すれば改善することを見出した。 As a result of diligent studies by the present inventor, in order to obtain a Cu—Ni—Si alloy having high strength and high conductivity, which has annealing softening resistance to the extent that it can withstand strain removal annealing after press working, particles are required. It was found that the improvement can be achieved by controlling the number density of the second phase particles having a diameter of 1.0 μm or more and less than 5.0 μm.
以上の知見を背景にして完成した本発明の実施の形態に係る銅合金は一側面において、Niを1.0〜4.0質量%、Siを0.2〜1.5質量%含有し、残部が銅及び不可避的不純物からなり、粒径1.0μm以上5.0μm未満の第二相粒子を1000〜20000個/mm2含有する銅合金である。 The copper alloy according to the embodiment of the present invention completed based on the above findings contains 1.0 to 4.0% by mass of Ni and 0.2 to 1.5% by mass of Si on one side. The balance is a copper alloy composed of copper and unavoidable impurities, and containing 1000 to 20000 second-phase particles having a particle size of 1.0 μm or more and less than 5.0 μm / mm 2.
本発明の実施の形態に係る銅合金は一実施態様において、粒径0.2μm以上1.0μm未満の第二相粒子を3000〜150000個/mm2含有する。 In one embodiment, the copper alloy according to the embodiment of the present invention contains 3000 to 150,000 second-phase particles having a particle size of 0.2 μm or more and less than 1.0 μm / mm 2.
本発明の実施の形態に係る銅合金は別の一実施態様において、Coを0.0〜0.5質量%含有する。 In another embodiment, the copper alloy according to the embodiment of the present invention contains 0.0 to 0.5% by mass of Co.
本発明の実施の形態に係る銅合金は更に別の一実施態様において、Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する。 In still another embodiment, the copper alloy according to the embodiment of the present invention contains one or more of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr and Ag in a total amount of 0. Contains 005 to 3.0% by mass.
本発明の実施の形態に係る銅合金は更に別の一実施態様において、引張強さが700MPa以上、導電率が40%IACS以上であり、500℃の温度で1分間の焼鈍処理を行った場合に、焼鈍処理後の引張強さが、焼鈍処理前の引張強さに対して85%以上となる。 In still another embodiment, the copper alloy according to the embodiment of the present invention has a tensile strength of 700 MPa or more, a conductivity of 40% IACS or more, and is annealed at a temperature of 500 ° C. for 1 minute. In addition, the tensile strength after the annealing treatment is 85% or more of the tensile strength before the annealing treatment.
本発明は別の一側面において、上記銅合金を備えた伸銅品である。 In another aspect, the present invention is a copper product provided with the above-mentioned copper alloy.
本発明は更に別の一側面において、上記銅合金を備えた電子機器部品である。 In yet another aspect, the present invention is an electronic device component comprising the copper alloy.
本発明によれば、高強度、高導電率及び耐焼鈍軟化特性を兼備した銅合金、伸銅品及び電子機器部品を提供することができる。 According to the present invention, it is possible to provide a copper alloy, a copper wrought product, and an electronic device component having high strength, high conductivity, and annealing softening resistance.
(Ni及びSiの添加量)
Ni及びSiは、適当な時効処理を行うことにより、Ni2Si等の50nm以下の微細な金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi及びSiが減少するため導電率が向上する。しかしながら、Niが1.0質量%未満又はSiが0.2質量%未満になると所望の強度が得られず、反対にNiが4.0質量%を超えると又はSiが1.5質量%を超えると加工が難しくなる。このため、本発明に係るCu−Ni−Si系合金では、Niの添加量は1.0〜4.0質量%とし、Siの添加量は0.2〜1.5質量%としている。さらに、Niの添加量は1.5〜3.0質量%が好ましく、Siの添加量は0.3〜0.80質量%が好ましい。
(Amount of Ni and Si added)
Ni and Si are precipitated as fine intermetallic compounds of 50 nm or less, such as Ni 2 Si, by performing an appropriate aging treatment. The strength is improved by the action of this precipitate, and Ni and Si dissolved in the Cu matrix are reduced by the precipitation, so that the conductivity is improved. However, if Ni is less than 1.0% by mass or Si is less than 0.2% by mass, the desired strength cannot be obtained, and conversely, if Ni exceeds 4.0% by mass or Si is 1.5% by mass. If it exceeds, processing becomes difficult. Therefore, in the Cu—Ni—Si alloy according to the present invention, the amount of Ni added is 1.0 to 4.0% by mass, and the amount of Si added is 0.2 to 1.5% by mass. Further, the addition amount of Ni is preferably 1.5 to 3.0% by mass, and the addition amount of Si is preferably 0.3 to 0.80% by mass.
(その他の添加元素)
Coは導電率上昇に寄与する。Coが0.5質量%を超えると強度が低下する。このため、本実施形態に係るCu−Ni−Si系合金では、Coを0.0〜0.5質量%、好ましくは0.005〜0.5質量%含有することが好ましい。
(Other additive elements)
Co contributes to an increase in conductivity. When Co exceeds 0.5% by mass, the strength decreases. Therefore, the Cu—Ni—Si based alloy according to the present embodiment preferably contains 0.0 to 0.5% by mass, preferably 0.005 to 0.5% by mass of Co.
Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr、Agが総量で3.0質量%を超えると導電率が著しく低下する。このため、本発明に係るCu−Ni−Si系合金では、これらの元素のうち1種以上を総量で0.005〜3.0質量%含有することが好ましく、0.01〜2.0質量%含有することがより好ましい。 Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr and Ag contribute to the increase in strength. Further, Zn is effective in improving the heat-resistant peeling property of Sn plating, Mg is effective in improving stress relaxation characteristics, and Zr, Cr, and Mn are effective in improving hot workability. When the total amount of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr and Ag exceeds 3.0% by mass, the conductivity is significantly lowered. Therefore, the Cu—Ni—Si alloy according to the present invention preferably contains one or more of these elements in a total amount of 0.005 to 3.0% by mass, preferably 0.01 to 2.0% by mass. % Is more preferable.
(第二相粒子)
本実施形態における第二相粒子とは、銅に他の元素が含まれる場合に生成され、銅母相(マトリックス)とは異なる相を形成する粒子をいう。第二相粒子の個数密度は、機械研磨にて鏡面仕上げした後、電解研磨及び/又は酸洗エッチングをした後の銅合金の加工方向に対して直角な断面、即ち圧延加工した銅合金については圧延直角方向の断面、伸線加工した銅合金については伸線加工方向に直角な断面を任意に5箇所選択して得られた1視野の走査電子顕微鏡写真から該当する粒径範囲の粒子の個数を測定し、評価面積で除することで得られる。ここで、粒径とは、各粒子の短径と長径の平均値をいう。本実施形態に係る銅合金の第二相粒子の大部分はNi2Siであるが、他の金属間化合物も粒径が範囲内であれば個数密度の測定に含まれるものとする。第二相粒子を構成する元素は、例えば、FE−SEM(日本FEI株式会社型式XL30SFEG)に付属のEDXを使用して確認できる。
(Second phase particles)
The second phase particles in the present embodiment refer to particles that are formed when copper contains other elements and form a phase different from that of the copper matrix. The number density of the second phase particles is the cross section perpendicular to the processing direction of the copper alloy after mirror finishing by mechanical polishing and then electrolytic polishing and / or pickling etching, that is, for the rolled copper alloy. The number of particles in the corresponding particle size range from the one-field scanning electron micrograph obtained by arbitrarily selecting five cross sections perpendicular to the rolling direction and the wire drawing direction of the drawn copper alloy. Is measured and divided by the evaluation area. Here, the particle size means the average value of the minor axis and the major axis of each particle. Most of the second phase particles of the copper alloy according to this embodiment are Ni 2 Si, but other intermetallic compounds are also included in the measurement of the number density if the particle size is within the range. The elements constituting the second phase particles can be confirmed by using, for example, EDX attached to FE-SEM (Japan FEI Co., Ltd. model XL30SFEG).
本実施形態に係る銅合金は、銅合金の加工方向に対して直角な断面の電子顕微鏡を用いた組織観察において、粒径1.0μm以上5.0μm未満の第二相粒子が1000個/mm2以上、好ましくは2000個/mm2以上、更に好ましくは3000個/mm2以上含有される。粒径1.0μm以上5.0μm未満の第二相粒子の個数密度は、熱間加工後の冷却速度を遅くして析出させ、更に必要であれば熱間加工後に熱処理することで調整できる。粒径1.0μm以上5.0μm未満の第二相粒子が1000個/mm2以上であると耐焼鈍軟化特性が向上する。一方、粒径1.0μm以上5.0μm未満の第二相粒子が20000個を超えると析出強化に必要な50nm以下の微細な析出物が不足するため、強度が不足する。 The copper alloy according to the present embodiment contains 1000 second-phase particles having a particle size of 1.0 μm or more and less than 5.0 μm in the microstructure observation using an electron microscope having a cross section perpendicular to the processing direction of the copper alloy. It contains 2 or more, preferably 2000 pieces / mm 2 or more, and more preferably 3000 pieces / mm 2 or more. The number density of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm can be adjusted by slowing the cooling rate after hot working to precipitate the particles, and if necessary, heat-treating after hot working. When the number of second-phase particles having a particle size of 1.0 μm or more and less than 5.0 μm is 1000 particles / mm 2 or more, the annealing softening resistance is improved. On the other hand, if the number of second-phase particles having a particle size of 1.0 μm or more and less than 5.0 μm exceeds 20,000, fine precipitates having a particle size of 50 nm or less, which are necessary for strengthening precipitation, are insufficient, resulting in insufficient strength.
本実施形態に係る銅合金は、銅合金の加工方向に対して直角な断面の電子顕微鏡を用いた組織観察において、粒径0.2μm以上1.0μm未満の第二相粒子が好ましくは3000個/mm2以上、更に好ましくは5000個/mm2以上、より更に好ましくは10000個/mm2以上含有される。粒径0.2μm以上1.0μm未満の第二相粒子は、熱間加工後の冷却速度を遅くして析出させ、更に必要であれば熱間加工後に熱処理することで調整できる。粒径0.2μm以上1.0μm未満の第二相粒子が3000個/mm2以上であると、粒径1.0μm以上5.0μm未満の第二相粒子よりも効果は少ないが、耐焼鈍軟化特性を向上させる効果がある。一方、粒径0.2μm以上1.0μm未満の第二相粒子が150000個/mm2を超えると析出強化に必要な50nm以下の微細な析出物が不足するため、強度が不足する。 The copper alloy according to the present embodiment preferably has 3000 second-phase particles having a particle size of 0.2 μm or more and less than 1.0 μm in the microstructure observation using an electron microscope having a cross section perpendicular to the processing direction of the copper alloy. / mm 2 or more, more preferably 5000 / mm 2 or more, even more preferably contained 10000 / mm 2 or more. The second-phase particles having a particle size of 0.2 μm or more and less than 1.0 μm can be adjusted by slowing the cooling rate after hot working and precipitating them, and if necessary, heat-treating after hot working. When the number of second-phase particles having a particle size of 0.2 μm or more and less than 1.0 μm is 3000 particles / mm 2 or more, the effect is less than that of the second-phase particles having a particle size of 1.0 μm or more and less than 5.0 μm, but annealing resistance It has the effect of improving the softening characteristics. On the other hand, if the number of second-phase particles having a particle size of 0.2 μm or more and less than 1.0 μm exceeds 150,000 particles / mm 2 , the fine precipitates of 50 nm or less required for precipitation strengthening are insufficient, so that the strength is insufficient.
(引張強さ)
本実施形態に係る銅合金は、引張強さ(TS)が700MPa以上、より好ましくは750MPa以上、更に好ましくは800MPa以上である。銅合金の引張強さは、JIS Z 2241に準拠し、引張試験機を用いて圧延方向と平行な方向の引張強さを測定した結果を示す。本実施形態において、引張強さの上限値は、以下に限定されるものではないが、典型的には1600MPa以下とすることができる。
(Tensile strength)
The copper alloy according to this embodiment has a tensile strength (TS) of 700 MPa or more, more preferably 750 MPa or more, and even more preferably 800 MPa or more. The tensile strength of the copper alloy conforms to JIS Z 2241, and the result of measuring the tensile strength in the direction parallel to the rolling direction using a tensile tester is shown. In the present embodiment, the upper limit of the tensile strength is not limited to the following, but can be typically 1600 MPa or less.
(導電率)
本実施形態に係る銅合金は、導電率(EC)が40%IACS以上、より好ましくは45%IACS以上、更に好ましくは48%IACS以上である。銅合金の導電率は、JIS H 0505に準拠し、圧延方向と平行な方向の導電率を測定した結果を示す。本実施形態において、導電率の上限値は、以下に限定されるものではないが、典型的には70%IACS以下とすることができる。
(conductivity)
The copper alloy according to this embodiment has a conductivity (EC) of 40% IACS or more, more preferably 45% IACS or more, and even more preferably 48% IACS or more. The conductivity of the copper alloy conforms to JIS H 0505, and shows the result of measuring the conductivity in the direction parallel to the rolling direction. In the present embodiment, the upper limit of conductivity is not limited to the following, but can typically be 70% IACS or less.
(軟化特性)
本実施形態に係る銅合金は、500℃の温度で1分間の焼鈍処理を行った場合に、焼鈍処理後の引張強さが、焼鈍処理前の引張強さに対して85%以上となるような軟化特性が得られる。より典型的には、本実施形態に係る銅合金の軟化特性は、より典型的には88%以上であり、更に典型的には90%以上である。
(Softening characteristics)
When the copper alloy according to the present embodiment is annealed at a temperature of 500 ° C. for 1 minute, the tensile strength after the annealing treatment is 85% or more of the tensile strength before the annealing treatment. Excellent softening characteristics can be obtained. More typically, the softening properties of the copper alloy according to this embodiment are more typically 88% or more, and even more typically 90% or more.
(用途)
Cu−Ni−Si系合金は種々の伸銅品、例えば板、条、棒、線及び箔に加工することができ、更に、本発明のCu−Ni−Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、線材、撚線、二次電池用箔材等の電子機器部品等に使用することができる。
(Use)
The Cu-Ni-Si alloy can be processed into various copper products such as plates, strips, rods, wires and foils, and the Cu-Ni—Si alloy of the present invention can be used for lead frames, connectors, and so on. It can be used for electronic device parts such as pins, terminals, relays, switches, wire rods, stranded wires, and foil materials for secondary batteries.
(製造方法)
以下に本発明の実施の形態に係る銅合金の製造方法の一例を説明する。Cu−Ni−Si系合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間加工、冷間加工、溶体化処理、時効処理、冷間加工の順で所望の厚み、径および特性を有する板、条、棒、線及び箔等に仕上げる。熱処理後には、熱処理で生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間加工を行ってもよい。
(Production method)
An example of a method for producing a copper alloy according to an embodiment of the present invention will be described below. In a general manufacturing process for Cu—Ni—Si alloys, raw materials such as electrolytic copper, Ni, and Si are first melted in a melting furnace to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. After that, hot working, cold working, solution treatment, aging treatment, and cold working are performed in this order to finish a plate, strip, rod, wire, foil, or the like having a desired thickness, diameter, and characteristics. After the heat treatment, the surface may be pickled, polished, or the like in order to remove the surface oxide film formed by the heat treatment. Further, in order to increase the strength, cold working may be performed between the solution treatment and the aging or after the aging.
本実施形態では、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が1000〜20000個/mm2である銅合金を得るために、熱間加工後の冷却速度を調整し、必要であれば熱間加工後に熱処理をする。 In the present embodiment, the cooling rate after hot working is adjusted in order to obtain a copper alloy having a number density of 1000 to 20000 particles / mm 2 of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm. If necessary, heat treatment is performed after hot working.
熱間加工は、加熱した鋳塊を圧延や押出により加工する方法であり、好ましくは材料温度が900〜1000℃となるように加熱し、700℃以上で熱間加工を終了させることを含む。熱間加工終了後の700℃から500℃までの冷却速度を平均0.01〜0.1℃/sに調節することで、冷却中にNi2Si等が析出し、所望の第二相粒子の個数密度となる。熱間加工後に500〜700℃で1〜60分の熱処理を行うことによりNi2Si等の析出物を粗大化させて、粒径1.0μm以上5.0μm未満の第二相粒子と粒径0.2μm以上1.0μm未満の第二相粒子の個数密度を更に増加させることができる。700℃から500℃の冷却速度が0.01℃/sを下回ると、冷却中の析出量が多くなりすぎて、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が20000個/mm2を超え、引張強さが不足し、粒径0.2μm以上1.0μm未満の第二相粒子が150000個/mm2を超え、強度が不足する。 The hot working is a method of processing a heated ingot by rolling or extrusion, and preferably includes heating to a material temperature of 900 to 1000 ° C. and ending the hot working at 700 ° C. or higher. By adjusting the cooling rate from 700 ° C. to 500 ° C. after the completion of hot working to an average of 0.01 to 0.1 ° C./s, Ni 2 Si and the like are precipitated during cooling, and the desired second phase particles are formed. It becomes the number density of. After hot working, heat treatment is performed at 500 to 700 ° C. for 1 to 60 minutes to coarsen the precipitates such as Ni 2 Si, and the particle size is 1.0 μm or more and less than 5.0 μm. The number density of the second phase particles of 0.2 μm or more and less than 1.0 μm can be further increased. When the cooling rate from 700 ° C. to 500 ° C. is lower than 0.01 ° C./s, the amount of precipitation during cooling becomes too large, and the number density of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm becomes 20000. exceed pieces / mm 2, the tensile strength is insufficient, the second-phase particles size of less than 0.2μm or 1.0μm exceeds 150,000 / mm 2, the strength becomes insufficient.
本実施形態に係る銅合金の板材の場合の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造
(2)熱間圧延(加熱温度900〜1000℃、厚み5〜20mm程度まで、圧延後700℃から500℃の冷却速度0.01〜0.1℃/s)
(3)熱処理(500〜700℃で1〜60分)
(4)冷間圧延(加工度1〜99%)
(5)溶体化処理(800〜1050℃で5〜300秒)
(6)冷間圧延(加工度1〜60%)
(7)時効処理(400〜600℃で2〜20時間)
(8)冷間圧延(加工度1〜99.9%)
(9)歪取り焼鈍(300〜700℃で5秒〜10時間)
The manufacturing methods in the case of the copper alloy plate material according to the present embodiment are listed in the order of processes as follows.
(1) Casting of ingot (2) Hot rolling (heating temperature 900 to 1000 ° C, thickness to about 5 to 20 mm, cooling rate of 700 ° C to 500 ° C after rolling 0.01 to 0.1 ° C / s)
(3) Heat treatment (1 to 60 minutes at 500 to 700 ° C)
(4) Cold rolling (working degree 1-99%)
(5) Solution treatment (500 to 1050 ° C. for 5 to 300 seconds)
(6) Cold rolling (working degree 1-60%)
(7) Aging treatment (2 to 20 hours at 400 to 600 ° C)
(8) Cold rolling (working degree 1-99.9%)
(9) Strain removal annealing (5 seconds to 10 hours at 300 to 700 ° C)
ここで、熱間圧延(2)は、900〜1000℃に加熱し、700℃以上で圧延を終了させることが好ましく、加工終了後の700℃から500℃の冷却速度を平均0.01〜0.1℃/sに調節することが好ましく、0.01〜0.08℃/sに調節することが更に好ましい。 Here, in the hot rolling (2), it is preferable to heat to 900 to 1000 ° C. and finish the rolling at 700 ° C. or higher, and the cooling rate from 700 ° C. to 500 ° C. after the processing is finished is 0.01 to 0 on average. It is preferably adjusted to 1 ° C./s, and more preferably 0.01 to 0.08 ° C./s.
熱処理(3)は第二相粒子の個数密度を更に増加させられるが、行わなくても良い。冷間圧延(4)の加工度は1〜99%とすることが好ましいが行わなくても良い。冷間圧延(6)及び(8)は高強度化のために任意に行うものであり、圧延加工度の増加とともに強度が増加する反面、導電率が低下する。冷間圧延(6)及び(8)の有無およびそれぞれの加工度によらず、耐焼鈍軟化特性が向上するという本実施形態の効果は得られる。冷間圧延(6)及び(8)は行っても良いし行わなくても良い。 The heat treatment (3) can further increase the number density of the second phase particles, but it does not have to be performed. The workability of cold rolling (4) is preferably 1 to 99%, but it is not necessary. Cold rolling (6) and (8) are arbitrarily performed for high strength, and while the strength increases as the rolling degree increases, the conductivity decreases. The effect of the present embodiment that the annealing softening resistance is improved can be obtained regardless of the presence or absence of cold rolling (6) and (8) and the degree of processing of each. Cold rolling (6) and (8) may or may not be performed.
歪取り焼鈍(9)は、耐焼鈍軟化特性向上のために任意に行うものである。耐焼鈍軟化特性が向上する反面、強度が低下するため必要に応じて実施するものである。第二相粒子の個数密度を制御していれば、歪取り焼鈍(9)を行わなくても所望の耐焼鈍軟化特性は得られる。 The strain removing annealing (9) is arbitrarily performed in order to improve the annealing softening resistance. While the annealing softening resistance is improved, the strength is lowered, so this is carried out as necessary. If the number density of the second phase particles is controlled, the desired annealing softening resistance can be obtained without performing strain relief annealing (9).
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.
(銅合金の製造1)
電気銅、Ni、Siを原料とした溶湯に添加元素の量、種類を変更して添加し、厚みが30mmのインゴットを鋳造した。このインゴットを1000℃で3時間加熱し、終了温度が700℃以上となるように熱間圧延により厚み10mmの板にした。熱間圧延後の700℃から500℃の冷却速度を表1中の条件で実施した。次に、表面の酸化スケールを研削除去し、その後、冷間圧延、溶体化処理、時効、冷間圧延をこの順で行い最終厚みが0.1mmの最終製品に仕上げた。
(Manufacturing of copper alloy 1)
The amount and type of added elements were changed and added to the molten metal made of electrolytic copper, Ni, and Si, and an ingot having a thickness of 30 mm was cast. This ingot was heated at 1000 ° C. for 3 hours and hot-rolled to a plate having a thickness of 10 mm so that the end temperature was 700 ° C. or higher. The cooling rate of 700 ° C. to 500 ° C. after hot rolling was carried out under the conditions shown in Table 1. Next, the oxide scale on the surface was ground and removed, and then cold rolling, solution treatment, aging, and cold rolling were performed in this order to finish a final product having a final thickness of 0.1 mm.
製品試料について、次の評価を行った。
(強度(引張強さ)測定および焼鈍軟化特性の評価)
引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定した。また、この最終製品に500℃で1分焼鈍した試料を作製し、圧延方向と平行に引張強さを同様に測定した。焼鈍前のTS、焼鈍後のTSから焼鈍軟化特性(焼鈍後TS/焼鈍前TS)を求めた。
The following evaluations were performed on the product samples.
(Measurement of strength (tensile strength) and evaluation of annealing softening characteristics)
The tensile strength was measured in parallel with the rolling direction according to JIS Z 2241 using a tensile tester. In addition, a sample was annealed at 500 ° C. for 1 minute in this final product, and the tensile strength was measured in the same manner in parallel with the rolling direction. The annealing softening characteristics (TS after annealing / TS before annealing) were determined from the TS before annealing and the TS after annealing.
(導電率(EC)測定)
JIS H 0505に準拠して導電率を測定した。測定での通電は圧延方向と平行に行った。
(Conductivity (EC) measurement)
The conductivity was measured according to JIS H 0505. The energization in the measurement was performed parallel to the rolling direction.
(第二相粒子密度の測定)
第二相粒子の粒径及び密度は、最終製品の圧延直角断面を機械研磨して鏡面に仕上げた後、電解研磨及び/又は酸洗エッチングをして圧延直角断面を現出させ、走査電子顕微鏡を用いて測定した。粒径1.0μm以上5.0μm未満の第二相粒子については1000倍の顕微鏡写真5枚、粒径0.2〜1.0μmの第二相粒子については5000倍の顕微鏡写真5枚に対して行い、その平均値とした。表1に評価結果を示す。
(Measurement of second phase particle density)
The particle size and density of the second phase particles are determined by mechanically polishing the rolled rectangular cross section of the final product to give a mirror surface, and then performing electrolytic polishing and / or pickling etching to reveal the rolled rectangular cross section, and scanning electron microscope. Was measured using. For second-phase particles with a particle size of 1.0 μm or more and less than 5.0 μm, five 1000-fold micrographs, and for second-phase particles with a particle size of 0.2 to 1.0 μm, five 5000-fold micrographs. And used as the average value. Table 1 shows the evaluation results.
実施例1〜11は、いずれも本実施形態において規定される条件で熱間圧延後の冷却速度を制御して行ったものであり、引張強さ700MPa以上、導電率が40%IACS以上の高強度高導電率であり、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が本実施形態の範囲内となり、85%以上の軟化特性が得られた。 In Examples 1 to 11, the cooling rate after hot rolling was controlled under the conditions specified in the present embodiment, and the tensile strength was 700 MPa or more and the conductivity was 40% IACS or more. The number density of the second phase particles having high strength and high conductivity and a particle size of 1.0 μm or more and less than 5.0 μm was within the range of the present embodiment, and a softening property of 85% or more was obtained.
比較例1は、Ni濃度が高く、熱間圧延中に割れが発生しその後の加工が困難となった。比較例2、4及び5は、熱間圧延後の冷却速度が速く、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が1000個/mm2を下回り、軟化特性が低くなった。比較例3は、Ni濃度が低く強度が低かった。比較例6は、熱間圧延後の冷却速度が遅すぎたため、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が20000個/mm2を超え強度が低下した。比較例7は、その他添加元素濃度が3%を超え、導電率が低くなった。 In Comparative Example 1, the Ni concentration was high, cracks occurred during hot rolling, and subsequent processing became difficult. In Comparative Examples 2, 4 and 5, the cooling rate after hot rolling is high, the number density of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm is less than 1000 particles / mm 2 , and the softening characteristics are low. became. In Comparative Example 3, the Ni concentration was low and the strength was low. In Comparative Example 6, since the cooling rate after hot rolling was too slow, the number density of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm exceeded 20000 particles / mm 2 and the strength decreased. In Comparative Example 7, the concentration of other added elements exceeded 3%, and the conductivity was low.
(銅合金の製造2)
電気銅、Ni、Siを原料とした溶湯に添加元素の量、種類を変更して添加し、ビレットを鋳造した。このビレットを1000℃で3時間加熱し、終了温度が700℃以上となるように熱間押出により直径10mmの棒にした。熱間押出後の700℃から500℃の冷却速度を表中の条件で実施した。次に、表面の酸化スケールを研削除去し、その後、冷間伸線、溶体化処理、時効処理、冷間伸線をこの順で行い最終直径が0.1mmの最終製品に仕上げた。
(Manufacturing of copper alloy 2)
Billets were cast by adding different amounts and types of added elements to molten metal made from electrolytic copper, Ni, and Si. This billet was heated at 1000 ° C. for 3 hours and hot-extruded to a rod having a diameter of 10 mm so that the end temperature was 700 ° C. or higher. The cooling rate of 700 ° C. to 500 ° C. after hot extrusion was carried out under the conditions shown in the table. Next, the oxide scale on the surface was ground and removed, and then cold wire drawing, solution treatment, aging treatment, and cold wire drawing were performed in this order to finish a final product having a final diameter of 0.1 mm.
製品試料について、次の評価を行った。
(強度(TS)測定および焼鈍軟化特性の評価)
引張試験機を用いてJIS Z 2241に準拠し引張強さを測定した。また、この最終製品に500℃で1分焼鈍した試料を作製し、引張強さを同様に測定した。焼鈍前のTS、焼鈍後のTSから焼鈍軟化特性(焼鈍後TS/焼鈍前TS)を求めた。
The following evaluations were performed on the product samples.
(Strength (TS) measurement and evaluation of annealing softening characteristics)
Tensile strength was measured using a tensile tester in accordance with JIS Z 2241. In addition, a sample was annealed at 500 ° C. for 1 minute in this final product, and the tensile strength was measured in the same manner. The annealing softening characteristics (TS after annealing / TS before annealing) were determined from the TS before annealing and the TS after annealing.
(導電率(EC)測定)
JIS H 0505に準拠して導電率を測定した。測定での通電は伸線方向と平行に行った。
(Conductivity (EC) measurement)
The conductivity was measured according to JIS H 0505. The energization in the measurement was performed parallel to the wire drawing direction.
(第二相粒子密度の測定)
第二相粒子の粒径及び密度は、最終製品の伸線直角断面を機械研磨して鏡面に仕上げた後、電解研磨及び/又は酸洗エッチングをして伸線直角断面を現出させ、走査電子顕微鏡を用いて測定した。粒径1.0μm以上5.0μm未満の第二相粒子については1000倍の顕微鏡写真5枚、粒径0.2〜1.0μmの第二相粒子については5000倍の顕微鏡写真5枚に対して行い、その平均値とした。表2に評価結果を示す。
(Measurement of second phase particle density)
The particle size and density of the second phase particles are determined by mechanically polishing the right-angled cross section of the final product to make it mirror-finished, and then performing electrolytic polishing and / or pickling etching to reveal the right-angled cross section of the final product. It was measured using an electron microscope. For second-phase particles with a particle size of 1.0 μm or more and less than 5.0 μm, five 1000-fold micrographs, and for second-phase particles with a particle size of 0.2 to 1.0 μm, five 5000-fold micrographs. And used as the average value. Table 2 shows the evaluation results.
実施例1〜11は、いずれも本実施形態において規定される条件で熱間押出後の冷却速度を制御して行ったものであり、引張強さ700MPa以上、導電率が40%IACS以上の高強度高導電率であり、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が本実施形態の範囲内となり、85%以上の軟化特性が得られた。 In Examples 1 to 11, the cooling rate after hot extrusion was controlled under the conditions specified in the present embodiment, and the tensile strength was 700 MPa or more and the conductivity was 40% IACS or more. The number density of the second phase particles having high strength and high conductivity and a particle size of 1.0 μm or more and less than 5.0 μm was within the range of this embodiment, and a softening property of 85% or more was obtained.
比較例1は、Ni濃度が高く、熱間押出中に割れが発生しその後の加工が困難となった。比較例2、4及び5は、熱間押出後の冷却速度が速く、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が1000個/mm2を下回り、軟化特性が低くなった。比較例3は、Ni濃度が低く強度が不足した。比較例6は、熱間押出後の冷却速度が遅すぎたため、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が20000個/mm2を超え強度が不足した。比較例7は、添加元素濃度が3%を超え、導電率が低くなった。 In Comparative Example 1, the Ni concentration was high, cracks were generated during hot extrusion, and subsequent processing became difficult. In Comparative Examples 2, 4 and 5, the cooling rate after hot extrusion is high, the number density of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm is less than 1000 particles / mm 2 , and the softening characteristics are low. became. In Comparative Example 3, the Ni concentration was low and the strength was insufficient. In Comparative Example 6, since the cooling rate after hot extrusion was too slow, the number density of the second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm exceeded 20000 particles / mm 2 and the strength was insufficient. In Comparative Example 7, the concentration of the added element exceeded 3%, and the conductivity was low.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019170800A JP7430502B2 (en) | 2019-09-19 | 2019-09-19 | Copper alloy wire and electronic equipment parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019170800A JP7430502B2 (en) | 2019-09-19 | 2019-09-19 | Copper alloy wire and electronic equipment parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021046590A true JP2021046590A (en) | 2021-03-25 |
JP7430502B2 JP7430502B2 (en) | 2024-02-13 |
Family
ID=74877881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019170800A Active JP7430502B2 (en) | 2019-09-19 | 2019-09-19 | Copper alloy wire and electronic equipment parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7430502B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505782A (en) * | 2022-09-29 | 2022-12-23 | 苏州铂源航天航空新材料有限公司 | Continuous casting high-tin alloy pipe for airplane turbine worm and production process thereof |
WO2025079295A1 (en) * | 2023-10-10 | 2025-04-17 | 古河電気工業株式会社 | Copper alloy sheet material, bent product, and drawn product |
WO2025120909A1 (en) * | 2023-12-07 | 2025-06-12 | Jx金属株式会社 | Copper alloy sheet, electronic component, and copper alloy sheet production method |
WO2025120905A1 (en) * | 2023-12-07 | 2025-06-12 | Jx金属株式会社 | Copper alloy sheet, electronic component, and method for producing copper alloy sheet |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001244398A (en) * | 2000-02-29 | 2001-09-07 | Nippon Mining & Metals Co Ltd | Lead frame material for semiconductor package, solder plating method for lead frame material, and semiconductor package |
JP2007246931A (en) * | 2006-03-13 | 2007-09-27 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment parts having excellent electric conductivity |
JP2010007174A (en) * | 2008-05-29 | 2010-01-14 | Nippon Mining & Metals Co Ltd | Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL |
JP2011117034A (en) * | 2009-12-02 | 2011-06-16 | Furukawa Electric Co Ltd:The | Copper-alloy material |
WO2012081342A1 (en) * | 2010-12-13 | 2012-06-21 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME |
JP2017179512A (en) * | 2016-03-31 | 2017-10-05 | Jx金属株式会社 | Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR |
JP2018035437A (en) * | 2016-03-31 | 2018-03-08 | Dowaメタルテック株式会社 | Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL |
JP2019052343A (en) * | 2017-09-14 | 2019-04-04 | Jx金属株式会社 | Cu-Ni-Si copper alloy with excellent mold wear |
-
2019
- 2019-09-19 JP JP2019170800A patent/JP7430502B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001244398A (en) * | 2000-02-29 | 2001-09-07 | Nippon Mining & Metals Co Ltd | Lead frame material for semiconductor package, solder plating method for lead frame material, and semiconductor package |
JP2007246931A (en) * | 2006-03-13 | 2007-09-27 | Furukawa Electric Co Ltd:The | Copper alloy for electrical and electronic equipment parts having excellent electric conductivity |
JP2010007174A (en) * | 2008-05-29 | 2010-01-14 | Nippon Mining & Metals Co Ltd | Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL |
JP2011117034A (en) * | 2009-12-02 | 2011-06-16 | Furukawa Electric Co Ltd:The | Copper-alloy material |
WO2012081342A1 (en) * | 2010-12-13 | 2012-06-21 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME |
JP2017179512A (en) * | 2016-03-31 | 2017-10-05 | Jx金属株式会社 | Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR |
JP2018035437A (en) * | 2016-03-31 | 2018-03-08 | Dowaメタルテック株式会社 | Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL |
JP2019052343A (en) * | 2017-09-14 | 2019-04-04 | Jx金属株式会社 | Cu-Ni-Si copper alloy with excellent mold wear |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505782A (en) * | 2022-09-29 | 2022-12-23 | 苏州铂源航天航空新材料有限公司 | Continuous casting high-tin alloy pipe for airplane turbine worm and production process thereof |
WO2025079295A1 (en) * | 2023-10-10 | 2025-04-17 | 古河電気工業株式会社 | Copper alloy sheet material, bent product, and drawn product |
WO2025120909A1 (en) * | 2023-12-07 | 2025-06-12 | Jx金属株式会社 | Copper alloy sheet, electronic component, and copper alloy sheet production method |
WO2025120905A1 (en) * | 2023-12-07 | 2025-06-12 | Jx金属株式会社 | Copper alloy sheet, electronic component, and method for producing copper alloy sheet |
Also Published As
Publication number | Publication date |
---|---|
JP7430502B2 (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6039999B2 (en) | Cu-Ni-Co-Si based copper alloy sheet and method for producing the same | |
JP5312920B2 (en) | Copper alloy plate or strip for electronic materials | |
JP5117604B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP5476149B2 (en) | Copper alloy with low strength anisotropy and excellent bending workability | |
JP5261500B2 (en) | Cu-Ni-Si-Mg alloy with improved conductivity and bendability | |
JP4837697B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP6385382B2 (en) | Copper alloy sheet and method for producing copper alloy sheet | |
JP6696769B2 (en) | Copper alloy plate and connector | |
JP7430502B2 (en) | Copper alloy wire and electronic equipment parts | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP2010248592A (en) | Copper alloy manufacturing method and copper alloy | |
JP6228725B2 (en) | Cu-Co-Si alloy and method for producing the same | |
JP4834781B1 (en) | Cu-Co-Si alloy for electronic materials | |
JP2012193408A (en) | Cu-Ni-Si ALLOY HAVING EXCELLENT BENDABILITY | |
JP6835638B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP5135914B2 (en) | Manufacturing method of high-strength copper alloys for electrical and electronic parts | |
JP6222885B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP6835636B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP2016199808A (en) | Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR | |
TWI621721B (en) | Copper alloy sheet, connector, and method for manufacturing copper alloy sheet | |
JP6246454B2 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP2012229467A (en) | Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP6246173B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP7355569B2 (en) | Copper alloys, copper alloy products and electronic equipment parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240131 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7430502 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |