JP2021036325A - Optical laminate - Google Patents
Optical laminate Download PDFInfo
- Publication number
- JP2021036325A JP2021036325A JP2020177425A JP2020177425A JP2021036325A JP 2021036325 A JP2021036325 A JP 2021036325A JP 2020177425 A JP2020177425 A JP 2020177425A JP 2020177425 A JP2020177425 A JP 2020177425A JP 2021036325 A JP2021036325 A JP 2021036325A
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- retardation
- resin
- optical laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/03—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/34—Inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/42—Polarizing, birefringent, filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
Abstract
【課題】本発明の目的は、偏光板と位相差フィルムを有する光学積層体であって、熱衝撃を受けてもクラックの発生を抑制できる光学積層体を提供することである。
【解決手段】偏光板と位相差フィルムを有する光学積層体であって、前記位相差フィルムは、フィルム面に対し突刺し冶具の先端を垂直に押圧し、破断が生じたときの、前記突刺し冶具の先端から前記位相差フィルムへ加えられた応力F(g)と前記位相差フィルムのひずみ量S(mm)を用いて下記式(1)にて算出される突刺し弾性率が50g/mm以下であることを特徴とする光学積層体。
(1)突刺し弾性率(g/mm)=F(g)/S(mm)
【選択図】図1PROBLEM TO BE SOLVED: To provide an optical laminate having a polarizing plate and a retardation film, which can suppress the occurrence of cracks even when subjected to a thermal impact.
An optical laminate having a polarizing plate and a retardation film, the retardation film presses the tip of a piercing jig perpendicularly to a film surface, and the piercing occurs when a break occurs. The puncture elastic modulus calculated by the following formula (1) using the stress F (g) applied to the retardation film from the tip of the jig and the strain amount S (mm) of the retardation film is 50 g / mm. An optical laminate characterized by the following.
(1) Puncture elastic modulus (g / mm) = F (g) / S (mm)
[Selection diagram] Fig. 1
Description
本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
近年、有機エレクトロルミネッセンス(以下、有機ELともいう。)表示装置に代表される画像表示装置が急速に普及している。有機EL表示装置には、偏光子及び位相差フィルムを備える円偏光板やさらに他光学機能層を積層された光学積層体が搭載される。 In recent years, image display devices typified by organic electroluminescence (hereinafter, also referred to as organic EL) display devices have rapidly become widespread. The organic EL display device is equipped with a circular polarizing plate including a polarizer and a retardation film, and an optical laminate on which other optical functional layers are laminated.
有機EL表示装置等の画像表示装置向けの位相差フィルムとしては、従来の樹脂フィルムを延伸したものや、液晶化合物を材料にして形成したものが検討され、画像表示装置の薄型化への要望が強くなるに伴って、位相差フィルム及びそれを備える光学積層体についても薄型化が求められている(例えば、特許文献1参照)。この様な位相差フィルムを有する光学積層体は、温度変化による膨張収縮により位相差フィルムを起点としてクラックが生じることがあった。特に急激な温度変化(熱衝撃)が与えられると、クラックが生じやすい。この様なクラックが発生すると光学積層体の耐久性はもとより、表示装置の視認性も低下することがあった。 As a retardation film for an image display device such as an organic EL display device, a stretched conventional resin film or a film formed of a liquid crystal compound as a material has been studied, and there is a demand for a thinner image display device. As the strength increases, the retardation film and the optical laminate provided with the retardation film are also required to be thinner (see, for example, Patent Document 1). An optical laminate having such a retardation film may have cracks starting from the retardation film due to expansion and contraction due to a temperature change. Especially when a sudden temperature change (thermal shock) is applied, cracks are likely to occur. When such a crack occurs, not only the durability of the optical laminate but also the visibility of the display device may be deteriorated.
本発明の目的は、上記課題を解決することであり、位相差フィルムを有する光学積層体であって、急激な温度変化(熱衝撃)を受ける環境でも、クラックの発生を抑制できる光学積層体を提供することである。 An object of the present invention is to solve the above problems, and to provide an optical laminate having a retardation film and capable of suppressing the occurrence of cracks even in an environment subject to a sudden temperature change (thermal shock). To provide.
本発明は、以下の[1]〜[5]で示される光学積層体を提供する。
[1]位相差フィルムを有する光学積層体であって、前記位相差フィルムは、フィルム面に対し突刺し冶具の先端を垂直に押圧し、破断が生じたときの、前記突刺し冶具の先端から前記位相差フィルムへ加えられた応力F(g)と前記位相差フィルムのひずみ量S(mm)を用いて下記式(1)にて算出される突刺し弾性率が50g/mm以下であることを特徴とする光学積層体。
(1)突刺し弾性率(g/mm)=F(g)/S(mm)
[2]前記位相差フィルムは、重合性液晶化合物が硬化した位相差層を含む[1]の光学積層体。
[3]前記位相差フィルムは、配向層をさらに含む[2]の光学積層体。
[4]前記位相差層は、垂直配向性を有する[2]または[3]の光学積層体。
[5]前記光学積層体は、さらに偏光板を有する[1]〜[4]のいずれかの光学積層体。
本発明は、以下の[6]で示される表示装置も提供する。
[6][1]〜[5]のいずれかに記載の光学積層体が、表示素子に積層されている表示装置。
The present invention provides an optical laminate represented by the following [1] to [5].
[1] An optical laminate having a retardation film, the retardation film presses the tip of the piercing jig perpendicularly to the film surface, and when a break occurs, the tip of the piercing jig is pressed. The puncture elastic modulus calculated by the following formula (1) using the stress F (g) applied to the retardation film and the strain amount S (mm) of the retardation film is 50 g / mm or less. An optical laminate characterized by.
(1) Puncture elastic modulus (g / mm) = F (g) / S (mm)
[2] The retardation film is the optical laminate of [1] containing a retardation layer in which a polymerizable liquid crystal compound is cured.
[3] The retardation film is the optical laminate of [2] further including an alignment layer.
[4] The retardation layer is an optical laminate of [2] or [3] having vertical orientation.
[5] The optical laminate is any of [1] to [4] that further has a polarizing plate.
The present invention also provides a display device shown by the following [6].
[6] A display device in which the optical laminate according to any one of [1] to [5] is laminated on a display element.
本発明によれば、位相差フィルムを有する光学積層体であって、急激な温度変化を受ける環境下でも、クラックの発生を抑制できる光学積層体を提供することができる。 According to the present invention, it is possible to provide an optical laminate having a retardation film and capable of suppressing the occurrence of cracks even in an environment subject to a sudden temperature change.
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)突刺し弾性率
フィルム面に対し突刺し冶具の先端を垂直に押圧し、破断が生じたときの、前記突刺し冶具の先端から前記フィルムへ加えられた応力F(g)と貫通穴または破断が生じるまでにフィルムに生じたひずみ量S(mm)を用いて定義したフィルムの物性値であり、応力FとひずみSの間の比例定数(応力F/ひずみS)として表される。
突刺し弾性率の測定には、ロードセルを備えた圧縮試験機で行うことができ、圧縮試験機の例としては、カトーテック株式会社製の突き刺し試験機“NDG5”、ハンディー圧縮試験機“KES−G5”、株式会社島津製作所の小型卓上試験機 “EZ Test”等を挙げられる。この様な圧縮試験機を用いてもとめられる応力―ひずみ曲線から、破断が生じた際にフィルムに加えられた応力とそれまでにフィルムに生じたひずみ量を測定することができる。
突刺し冶具押圧時にフィルムに生じる破断には、冶具先端によりフィルムに貫通穴が生じる場合も含まれる。
(2)配向層
位相差層を形成する重合性液晶化合物の分子軸の方向を所望の位相差特性となるように規制する能力を有する層を示す。重合性液晶化合物が硬化した層(位相差層)は、配向層を介して基板上に形成される。配向層としては、配向性ポリマーを含む配向層、光配向膜及び表面に凹凸パターンや複数の溝を形成し配向させるグルブ配向層が挙げられる。
(3)垂直配向性
位相差層を形成する重合性液晶化合物の分子軸の方向が、光学積層体を構成する各層の積層面に対し、略垂直となった状態を示す。垂直配向性を示す位相差層として代表的なものとしてポジティブC層が挙げられる。
(4)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向、「nz」は厚み方向の屈折率である。
(5)面内の位相差値
面内の位相差値(Re[λ])は、23℃、波長λ(nm)におけるフィルムの面内の位相差値をいう。Re[λ]は、フィルムの厚みをd(nm)としたとき、Re[λ]=(nx−ny)×dによって求められる。
(6)厚み方向の位相差値
面内の位相差値(Rth[λ])は、23℃、波長λ(nm)におけるフィルムの厚み方向の位相差値をいう。Rth[λ]は、フィルムの厚みをd(nm)としたとき、Rth[λ]=((nx+ny)/2−nz)×dによって求められる。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Puncture elastic modulus The stress F (g) applied to the film from the tip of the piercing jig and the through hole when the tip of the piercing jig is pressed perpendicularly to the film surface and breakage occurs. Alternatively, it is a physical property value of the film defined by using the strain amount S (mm) generated in the film before fracture occurs, and is expressed as a proportional constant (stress F / strain S) between the stress F and the strain S.
The puncture elastic modulus can be measured with a compression tester equipped with a load cell. Examples of the compression tester include the puncture tester "NDG5" manufactured by Kato Tech Co., Ltd. and the handy compression tester "KES-". G5 ”, small desktop testing machine“ EZ Test ”of Shimadzu Corporation, etc. can be mentioned. From the stress-strain curve that can be determined by using such a compression tester, it is possible to measure the stress applied to the film when fracture occurs and the amount of strain generated in the film up to that point.
The breakage that occurs in the film when the piercing jig is pressed includes the case where the tip of the jig creates a through hole in the film.
(2) Orientation layer A layer having an ability to regulate the direction of the molecular axis of the polymerizable liquid crystal compound forming the retardation layer so as to have a desired retardation characteristic is shown. The cured layer (phase difference layer) of the polymerizable liquid crystal compound is formed on the substrate via the alignment layer. Examples of the alignment layer include an alignment layer containing an orientation polymer, a photoalignment film, and a grub alignment layer in which an uneven pattern or a plurality of grooves are formed and oriented on the surface.
(3) Vertical Orientation A state in which the direction of the molecular axis of the polymerizable liquid crystal compound forming the retardation layer is substantially perpendicular to the laminated surface of each layer constituting the optical laminate. A positive C layer is a typical example of a retardation layer exhibiting vertical orientation.
(4) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), “ny” is the direction orthogonal to the slow-phase axis in the in-plane, and “nz” is the thickness direction. Refractive index.
(5) In-plane retardation value The in-plane retardation value (Re [λ]) refers to the in-plane retardation value of the film at 23 ° C. and a wavelength of λ (nm). Re [λ] is obtained by Re [λ] = (nx−ny) × d, where d (nm) is the thickness of the film.
(6) Phase difference value in the thickness direction The in-plane retardation value (Rth [λ]) refers to the phase difference value in the thickness direction of the film at 23 ° C. and a wavelength of λ (nm). Rth [λ] is obtained by Rth [λ] = ((nx + ny) /2-nz) × d, where d (nm) is the thickness of the film.
<光学積層体>
本発明の光学積層体は、位相差フィルムを有し、前記位相差フィルムの突刺し弾性率は、50g/mm以下である。また、前記位相差フィルムは位相差層を有する。位相差層は、重合性液晶化合物を含む組成物から構成される層を有することが好ましい。重合性液晶化合物を含む組成物から構成される層とは、具体的には、重合性液晶化合物が硬化した層を意味する。本明細書において、λ/2の位相差を与える層、λ/4の位相差を与える層(ポジティブA層)及びポジティブC層等を総称して、位相差層ということがある。さらに、位相差フィルムは後述の配向層を含んでいてもよい。
<Optical laminate>
The optical laminate of the present invention has a retardation film, and the puncture elastic modulus of the retardation film is 50 g / mm or less. Further, the retardation film has a retardation layer. The retardation layer preferably has a layer composed of a composition containing a polymerizable liquid crystal compound. The layer composed of the composition containing the polymerizable liquid crystal compound specifically means a layer in which the polymerizable liquid crystal compound is cured. In the present specification, a layer giving a phase difference of λ / 2, a layer giving a phase difference of λ / 4 (positive A layer), a positive C layer, and the like are collectively referred to as a retardation layer. Further, the retardation film may include an alignment layer described later.
以下、図1を参照して、本発明の光学積層体の層構成の一例を説明する。図1(a)に示す光学積層体100は、配向層11の一方の面に位相差層10が積層され、配向層11のもう一方の面に粘着剤層12を備える層構成を有する。粘着剤層12は、有機EL表示素子等へ貼合するための粘着剤層であることができる。この光学積層体100において、位相差フィルム1は、位相差層10と配向層11とで構成されている。
Hereinafter, an example of the layer structure of the optical laminate of the present invention will be described with reference to FIG. The
図1(b)に示す光学積層体101は、図1(a)の位相差層10の配向層11と積層される反対側の面に、接着剤層13を介して第2の位相差フィルム2を積層した層構成を有する。粘着剤層12は、図1(a)と同様、有機EL表示素子等へ貼合するための粘着剤層であることができる。この光学積層体101において、第1の位相差フィルム1は、位相差層10と配向層11とで構成されている。
The
図1(c)に示す光学積層体102は、図1(b)の第2の位相差フィルム2の第1の位相差フィルム1と積層される反対側の面に、接着剤層または粘着剤層を介して偏光板3を積層した層構成を有する。ここで、第2の位相差フィルム2と偏光板3とを貼合するための接着剤層または粘着剤層については図示していない。粘着剤層12は、図1(a)、(b)と同様、有機EL表示素子、タッチセンサ等へ貼合するための粘着剤層であることができる。この光学積層体102において、第1の位相差フィルム1は位相差層10と配向層11とで構成されている。
The
図1に示すように本発明の光学積層体は、位相差フィルムを2層以上有していてもよい。光学積層体中に複数の位相差フィルムを備える場合は、少なくとも1つの位相差フィルムの突刺し弾性率が、50g/mm以下であればよいが、温度変化によるクラック発生を抑制する観点から光学積層体中に含まれるすべての位相差フィルムの突刺し弾性率が、50g/mm以下であることが好ましい。 As shown in FIG. 1, the optical laminate of the present invention may have two or more retardation films. When a plurality of retardation films are provided in the optical laminate, the puncture elastic modulus of at least one retardation film may be 50 g / mm or less, but from the viewpoint of suppressing the generation of cracks due to temperature changes, the optical laminates are optically laminated. It is preferable that the puncture elastic modulus of all the retardation films contained in the body is 50 g / mm or less.
位相差フィルムの位相差層を、重合性液晶化合物を含む組成物から構成される層(重合性液晶化合物が硬化した層)とすると、本発明の突刺し弾性率50g/mm以下とすることが容易となるので好ましい。また、位相差フィルムは、重合性液晶化合物を配向させるための配向層を有していてもよい。また、その製造段階においては、配向層を支持する基材をさらに有していてもよい。 When the retardation layer of the retardation film is a layer composed of a composition containing a polymerizable liquid crystal compound (a layer obtained by curing the polymerizable liquid crystal compound), the puncture elastic modulus of the present invention may be 50 g / mm or less. It is preferable because it becomes easy. Further, the retardation film may have an alignment layer for orienting the polymerizable liquid crystal compound. Further, in the manufacturing stage thereof, a base material for supporting the alignment layer may be further provided.
重合性液晶化合物は、重合性基を有する化合物であって、液晶状態となりうる化合物である。重合性液晶化合物の重合性基同士が反応して重合性液晶化合物が重合することにより、重合性液晶化合物が硬化する。
重合性液晶化合物が硬化した層は例えば、基材に設けられた配向層上に形成される。前記基材は、配向層を支持する機能を有し、長尺に形成されている基材であってもよい。この基材は、離型性支持体として機能し、転写用の位相差層や配向層を支持することができる。さらに、その表面が剥離可能な程度の接着力を有するものが好ましい。前記基材としては、透光性を有する(好ましくは光学的に透明な)熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロースのようなセルロース系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリカーボネート系樹脂;メタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリ塩化ビニル系樹脂;アクリロニトリル・ブタジエン・スチレン系樹脂;アクリロニトリル・スチレン系樹脂;ポリ酢酸ビニル系樹脂;ポリ塩化ビニリデン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;変性ポリフェニレンエーテル系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアリレート系樹脂;ポリアミドイミド系樹脂;ポリイミド系樹脂;マレイミド系樹脂等からなるフィルムであることができる。
The polymerizable liquid crystal compound is a compound having a polymerizable group and can be in a liquid crystal state. The polymerizable liquid crystal compound is cured by reacting the polymerizable groups of the polymerizable liquid crystal compound with each other to polymerize the polymerizable liquid crystal compound.
The cured layer of the polymerizable liquid crystal compound is formed on, for example, an orientation layer provided on the base material. The base material may be a long base material having a function of supporting the alignment layer. This base material functions as a releasable support and can support a retardation layer or an orientation layer for transfer. Further, it is preferable that the surface has an adhesive force that can be peeled off. The base material is a translucent (preferably optically transparent) thermoplastic resin such as a chain polyolefin resin (polypropylene resin or the like) or a cyclic polyolefin resin (norbornen resin or the like). Polyolefin resin; Cellulosic resin such as triacetyl cellulose and diacetyl cellulose; Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonate resin; (Meta) acrylic resin such as methyl methacrylate resin; Polystyrene resin; Polyvinyl chloride resin; Acrylonitrile / butadiene / styrene resin; Acrylonitrile / styrene resin; Polyvinyl acetate resin; Polyvinylidene chloride resin; Polyacetal resin; Polyacetal resin; Modified polyphenylene ether resin; A film made of a polysulfone-based resin; a polyethersulfone-based resin; a polyarylate-based resin; a polyamideimide-based resin; a polyimide-based resin; a maleimide-based resin, or the like can be used.
基材の厚みとしては、特に限定されないが、例えば20μm以上200μm以下の範囲とすることが好ましい。基材の厚さが20μm以上であると、強度が付与される。 The thickness of the base material is not particularly limited, but is preferably in the range of, for example, 20 μm or more and 200 μm or less. When the thickness of the base material is 20 μm or more, strength is imparted.
なお、基材は、種々のブロッキング防止処理が施されていてもよい。ブロッキング防止処理としては、例えば、易接着処理、フィラー等を練り込ませる処理、エンボス加工(ナーリング処理)等が挙げられる。このようなブロッキング防止処理を基材に対して施すことによって、基材を巻き取る際の基材同士の張り付き、いわゆるブロッキングを効果的に防止することができ、生産性高く光学フィルムを製造することが可能となる。 The base material may be subjected to various blocking prevention treatments. Examples of the blocking prevention treatment include an easy-adhesion treatment, a treatment of kneading a filler and the like, an embossing treatment (knurling treatment) and the like. By applying such a blocking prevention treatment to the base material, it is possible to effectively prevent the base materials from sticking to each other when the base material is wound, so-called blocking, and to manufacture an optical film with high productivity. Is possible.
重合性液晶化合物が硬化した層は、配向層を介して基材上に形成される。すなわち、基材、配向層の順で積層され、重合性液晶化合物が硬化した層は前記配向層上に積層される。 The cured layer of the polymerizable liquid crystal compound is formed on the substrate via the alignment layer. That is, the base material and the alignment layer are laminated in this order, and the layer on which the polymerizable liquid crystal compound is cured is laminated on the alignment layer.
なお、配向層は、垂直配向層に限らず、重合性液晶化合物の分子軸を水平配向させる配向層であってもよく、重合性液晶化合物の分子軸を傾斜配向させる配向層であってもよい。配向層としては、後述する重合性液晶化合物を含む組成物の塗工等により溶解しない溶媒耐性を有し、また、溶媒の除去や液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向層としては、配向性ポリマーを含む配向層、光配向膜及び表面に凹凸パターンや複数の溝を形成し配向させるグルブ配向層が挙げられる。配向層の厚さは、通常10nm〜10000nmの範囲である。 The alignment layer is not limited to the vertically oriented layer, and may be an oriented layer that horizontally aligns the molecular axis of the polymerizable liquid crystal compound, or may be an oriented layer that obliquely orients the molecular axis of the polymerizable liquid crystal compound. .. The alignment layer has solvent resistance that does not dissolve due to coating of a composition containing a polymerizable liquid crystal compound, which will be described later, and heat resistance in heat treatment for removing the solvent and aligning the liquid crystal compound. preferable. Examples of the alignment layer include an alignment layer containing an orientation polymer, a photoalignment film, and a grub alignment layer in which an uneven pattern or a plurality of grooves are formed and oriented on the surface. The thickness of the oriented layer is usually in the range of 10 nm to 10000 nm.
また、配向層は位相差層を支持する機能を有し、離型性支持体として機能してもよい。転写用の位相差層を支持することができ、さらにその表面が剥離可能な程度の接着力を有するものでもよい。 Further, the alignment layer has a function of supporting the retardation layer and may function as a releasable support. A retardation layer for transfer can be supported, and the surface thereof may have an adhesive force that can be peeled off.
配向層に用いる樹脂としては、重合性化合物が重合した樹脂が用いられる。重合性化合物は、重合性基を有する化合物であって、通常は、液晶状態とならない非液晶性の重合性非液晶性化合物である。重合性化合物の重合性基同士が反応して重合性化合物が重合することにより、樹脂となる。このような樹脂としては、位相差層の形成段階で重合性液晶化合物を配向させるための配向層として利用し、位相差フィルムに含まれないものであれば、公知の配向層の材料として用いられる樹脂であれば特に限定されるものではなく、従来公知の単官能又は多官能の(メタ)アクリレート系モノマーを重合開始剤下で硬化させた硬化物等を用いることができる。具体的に、(メタ)アクリレート系モノマーとしては、例えば、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート、ジエチレングリコールモノ2−エチルヘキシルエーテルアクリレート、ジエチレングリコールモノフェニルエーテルアクリレート、テトラエチレングリコールモノフェニルエーテルアクリレート、トリメチロールプロパントリアクリレート、ラウリルアクリレート、ラウリルメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、2−フェノキシエチルアクリレート、テトラヒドロフルフリルアクリレート、2−ヒドロキシプロピルアクリレート、ベンジルアクリレート、テトラヒドロフルフリルメタクリレート、2−ヒドロキシエチルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、メタクリル酸、ウレタンアクリレート等を例示することができる。なお、樹脂としては、これらの1種類であってもよいし、2種類以上の混合物であってもよい。
配向層は、位相差層を形成した後、他光学フィルム等と積層させる工程の前後において、基材とともに剥離除去することができる。
As the resin used for the alignment layer, a resin obtained by polymerizing a polymerizable compound is used. The polymerizable compound is a compound having a polymerizable group, and is usually a non-liquid crystalline non-liquid crystal compound that does not become a liquid crystal state. The polymerizable groups of the polymerizable compound react with each other to polymerize the polymerizable compound, thereby forming a resin. Such a resin is used as an alignment layer for orienting a polymerizable liquid crystal compound at the stage of forming the retardation layer, and if it is not contained in the retardation film, it is used as a material for a known alignment layer. The resin is not particularly limited, and a cured product obtained by curing a conventionally known monofunctional or polyfunctional (meth) acrylate-based monomer under a polymerization initiator can be used. Specifically, examples of the (meth) acrylate-based monomer include 2-ethylhexyl acrylate, cyclohexyl acrylate, diethylene glycol mono2-ethylhexyl ether acrylate, diethylene glycol monophenyl ether acrylate, tetraethylene glycol monophenyl ether acrylate, and trimethyl propantriacrylate. , Lauryl acrylate, lauryl methacrylate, isobornyl acrylate, isobornyl methacrylate, 2-phenoxyethyl acrylate, tetrahydrofurfuryl acrylate, 2-hydroxypropyl acrylate, benzyl acrylate, tetrahydrofurfuryl methacrylate, 2-hydroxyethyl methacrylate, benzyl methacrylate. , Cyclohexyl methacrylate, methacrylic acid, urethane acrylate and the like can be exemplified. The resin may be one of these or a mixture of two or more.
The alignment layer can be peeled off together with the base material before and after the step of forming the retardation layer and then laminating it with another optical film or the like.
また、基材との剥離性向上および位相差フィルムに膜強度を付与する目的で、位相差フィルムに配向層を含めることができる。位相差フィルムが配向層を含む場合、突刺し弾性率50g/mm以下とする観点から、配向層に用いる樹脂として単官能や2官能の(メタ)アクリレート系モノマー、イミド系モノマーもしくはビニルエーテル系モノマーを硬化させた硬化物等を用いることが好ましい。
単官能の(メタ)アクリレート系モノマーとしては、炭素数4から16のアルキル(メタ)アクリレート、炭素数2から14のβカルボキシアルキル(メタ)アクリレート、炭素数2から14のアルキル化フェニル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート及びイソボニル(メタ)アクリレート等が挙げられ、2官能の(メタ)アクリレート系モノマーとしては、1,3−ブタンジオールジ(メタ)アクリレート;1,3−ブタンジオール(メタ)アクリレート;1,6−ヘキサンジオールジ(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート;ネオペンチルグリコールジ(メタ)アクリレート;トリエチレングリコールジ(メタ)アクリレート;テトラエチレングリコールジ(メタ)アクリレート;ポリエチレングリコールジアクリレート;ビスフェノールAのビス(アクリロイロキシエチル)エーテル;エトキシ化ビスフェノールAジ(メタ)アクリレート;プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート;エトキシ化ネオペンチルグリコールジ(メタ)アクリレート及び3−メチルペンタンジオールジ(メタ)アクリレート等が挙げられる。
また、イミド系モノマーを硬化させたイミド系樹脂としては、ポリアミド、ポリイミド等が挙げられる。なお、イミド系樹脂としては、これらの1種類であってもよいし、2種類以上の混合物であってもよい。
また、配向層を形成する樹脂として、単官能や2官能の(メタ)アクリレート系モノマー、イミド系モノマーおよびビニルエーテル系モノマー以外のモノマーを含んでいてもよいが、単官能や2官能の(メタ)アクリレート系モノマー、イミド系モノマーおよびビニルエーテル系モノマーの含有割合が、総モノマー中で50重量%以上であってもよく、55重量%以上であることが好ましく、60重量%以上であることがより好ましい。
Further, an orientation layer can be included in the retardation film for the purpose of improving the peelability from the substrate and imparting film strength to the retardation film. When the retardation film contains an alignment layer, a monofunctional or bifunctional (meth) acrylate-based monomer, an imide-based monomer, or a vinyl ether-based monomer is used as the resin used for the alignment layer from the viewpoint of piercing elastic modulus of 50 g / mm or less. It is preferable to use a cured product or the like that has been cured.
Examples of the monofunctional (meth) acrylate-based monomer include alkyl (meth) acrylates having 4 to 16 carbon atoms, βcarboxyalkyl (meth) acrylates having 2 to 14 carbon atoms, and alkylated phenyl (meth) having 2 to 14 carbon atoms. Examples thereof include acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate and isobonyl (meth) acrylate, and examples of the bifunctional (meth) acrylate-based monomer include 1,3-butanediol di (meth). Acrylate; 1,3-butanediol (meth) acrylate; 1,6-hexanediol di (meth) acrylate; ethylene glycol di (meth) acrylate; diethylene glycol di (meth) acrylate; neopentyl glycol di (meth) acrylate; tri Ethylene glycol di (meth) acrylate; tetraethylene glycol di (meth) acrylate; polyethylene glycol diacrylate; bisphenol A bis (acryloyloxyethyl) ether; ethoxylated bisphenol A di (meth) acrylate; propoxylated neopentyl glycol di (Meta) Acrylate; Examples thereof include ethoxylated neopentyl glycol di (meth) acrylate and 3-methylpentanediol di (meth) acrylate.
Examples of the imide-based resin obtained by curing the imide-based monomer include polyamide and polyimide. The imide-based resin may be one of these or a mixture of two or more.
Further, the resin forming the alignment layer may contain a monomer other than the monofunctional or bifunctional (meth) acrylate-based monomer, the imide-based monomer and the vinyl ether-based monomer, but the monofunctional or bifunctional (meth) The content ratio of the acrylate-based monomer, the imide-based monomer, and the vinyl ether-based monomer may be 50% by weight or more, preferably 55% by weight or more, and more preferably 60% by weight or more in the total monomer. ..
配向層が位相差フィルムに含まれる場合、配向層の厚さは、通常10nm〜10000nmの範囲であり、位相差層の配向性がフィルム面に対し面内配向である場合、配向層の厚みは、10nm〜1000nmであることが好ましく、配向層の配向性がフィルム面に対し垂直配向である場合は、100nm〜10000nmであることが好ましい。配向層の厚みが上記範囲内であると、基材の剥離性向上および適度な膜強度を付与することができる。 When the alignment layer is included in the retardation film, the thickness of the alignment layer is usually in the range of 10 nm to 10,000 nm, and when the orientation of the alignment layer is in-plane orientation with respect to the film surface, the thickness of the alignment layer is It is preferably 10 nm to 1000 nm, and when the orientation of the alignment layer is perpendicular to the film surface, it is preferably 100 nm to 10000 nm. When the thickness of the oriented layer is within the above range, the peelability of the base material can be improved and appropriate film strength can be imparted.
本実施形態で使用される重合性液晶化合物の種類については、特に限定されないものの、その形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(円盤状液晶化合物、ディスコティック液晶化合物)とに分類できる。さらに、それぞれ低分子タイプと高分子タイプとがある。なお、高分子とは、一般に重合度が100以上のものを言う(高分子物理・相転移ダイナミクス、土井 正男著、2頁、岩波書店、1992)。 The type of the polymerizable liquid crystal compound used in the present embodiment is not particularly limited, but is classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (disk-shaped liquid crystal compound, discotic liquid crystal compound) according to its shape. it can. Further, there are a low molecular weight type and a high molecular weight type, respectively. The polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
本実施形態では、何れの重合性液晶化合物を用いることもできる。さらに、2種以上の棒状液晶化合物や、2種以上の円盤状液晶化合物、又は棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。 In this embodiment, any polymerizable liquid crystal compound can be used. Further, two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of disk-shaped liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a disk-shaped liquid crystal compound may be used.
なお、棒状液晶化合物としては、例えば、特表平11−513019号公報の請求項1に記載のものを好適に用いることができる。円盤状液晶化合物としては、例えば、特開2007−108732号公報の段落[0020]〜[0067]、又は、特開2010−244038号公報の段落[0013]〜[0108]に記載のものを好適に用いることができる。
As the rod-shaped liquid crystal compound, for example, the compound described in
重合性液晶化合物は、2種類以上を併用してもよい。その場合、少なくとも1種類が分子内に2以上の重合性基を有している。すなわち、前記重合性液晶化合物が硬化した層は、重合性基を有する液晶化合物が重合によって固定されて形成された層であることが好ましい。この場合、層となった後はもはや液晶性を示す必要はない。 Two or more kinds of polymerizable liquid crystal compounds may be used in combination. In that case, at least one type has two or more polymerizable groups in the molecule. That is, the cured layer of the polymerizable liquid crystal compound is preferably a layer formed by fixing a liquid crystal compound having a polymerizable group by polymerization. In this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
重合性液晶化合物は、重合反応をし得る重合性基を有する。重合性基としては、例えば、重合性エチレン性不飽和基や環重合性基などの付加重合反応が可能な官能基が好ましい。より具体的には、重合性基としては、例えば、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などを挙げることができる。その中でも、(メタ)アクリロイル基が好ましい。なお、(メタ)アクリロイル基とは、メタアクリロイル基及びアクリロイル基の両者を包含する概念である。 The polymerizable liquid crystal compound has a polymerizable group capable of carrying out a polymerization reaction. As the polymerizable group, for example, a functional group capable of an addition polymerization reaction such as a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, examples of the polymerizable group include a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, the (meth) acryloyl group is preferable. The (meth) acryloyl group is a concept that includes both a meta-acryloyl group and an acryloyl group.
重合性液晶化合物が硬化した層は、後述するように、重合性液晶化合物を含む組成物を、例えば配向層上に塗工し、活性エネルギー線を照射することによって形成することができる。前記組成物には、上述した重合性液晶化合物以外の成分が含まれていてもよい。例えば、前記組成物には、重合開始剤が含まれていることが好ましい。使用される重合開始剤は、重合反応の形式に応じて、例えば、熱重合開始剤や光重合開始剤が選択される。例えば、光重合開始剤としては、α−カルボニル化合物、アシロインエーテル、α−炭化水素置換芳香族アシロイン化合物、多核キノン化合物、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせなどが挙げられる。重合開始剤の使用量は、前記塗工液中の全固形分に対して、0.01〜20質量%であることが好ましく、0.5〜5質量%であることがより好ましい。
本発明における「硬化した」とは、形成された層単独でも変形、流動することなく自立して存在できる状態を示し、形成された層の突刺し弾性率は、通常3g/mm以上である。
As will be described later, the cured layer of the polymerizable liquid crystal compound can be formed by applying a composition containing the polymerizable liquid crystal compound onto, for example, an alignment layer and irradiating it with active energy rays. The composition may contain components other than the above-mentioned polymerizable liquid crystal compound. For example, the composition preferably contains a polymerization initiator. As the polymerization initiator used, for example, a thermal polymerization initiator or a photopolymerization initiator is selected according to the type of the polymerization reaction. For example, examples of the photopolymerization initiator include α-carbonyl compounds, acyloin ethers, α-hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimers and p-aminophenyl ketones. The amount of the polymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the total solid content in the coating liquid.
The term "cured" in the present invention means that the formed layer alone can exist independently without being deformed or flowed, and the puncture elastic modulus of the formed layer is usually 3 g / mm or more.
また、前記組成物には、塗工膜の均一性及び膜の強度の点から、重合性モノマーが含まれていてもよい。重合性モノマーとしては、ラジカル重合性又はカチオン重合性の化合物が挙げられる。その中でも、多官能性ラジカル重合性モノマーが好ましい。 Further, the composition may contain a polymerizable monomer from the viewpoint of the uniformity of the coating film and the strength of the film. Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Among them, a polyfunctional radically polymerizable monomer is preferable.
なお、重合性モノマーとしては、上述した重合性液晶化合物と共重合することができるものが好ましい。重合性モノマーの使用量は、重合性液晶化合物の全質量に対して、1〜50質量%であることが好ましく、2〜30質量%であることがより好ましい。 The polymerizable monomer is preferably one that can be copolymerized with the above-mentioned polymerizable liquid crystal compound. The amount of the polymerizable monomer used is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the polymerizable liquid crystal compound.
また、前記組成物には、塗工膜の均一性及び膜の強度の点から、界面活性剤が含まれていてもよい。界面活性剤としては、従来公知の化合物が挙げられる。その中でも特に、フッ素系化合物が好ましい。 Further, the composition may contain a surfactant from the viewpoint of the uniformity of the coating film and the strength of the film. Examples of the surfactant include conventionally known compounds. Among them, fluorine-based compounds are particularly preferable.
また、前記組成物には、溶媒が含まれていてもよく、有機溶媒が好ましく用いられる。有機溶媒としては、例えば、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が挙げられる。その中でも、アルキルハライド、ケトンが好ましい。また、2種類以上の有機溶媒を併用してもよい。 In addition, the composition may contain a solvent, and an organic solvent is preferably used. Examples of the organic solvent include amide (eg, N, N-dimethylformamide), sulfoxide (eg, dimethyl sulfoxide), heterocyclic compound (eg, pyridine), hydrocarbon (eg, benzene, hexane), alkyl halide (eg, eg). , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Among them, alkyl halides and ketones are preferable. Further, two or more kinds of organic solvents may be used in combination.
また、前記組成物には、偏光子界面側垂直配向剤、空気界面側垂直配向剤などの垂直配向促進剤、並びに、偏光子界面側水平配向剤、空気界面側水平配向剤などの水平配向促進剤といった各種配向剤が含まれていてもよい。さらに、前記組成物には、上記成分以外にも、密着改良剤、可塑剤、ポリマーなどが含まれていてもよい。 Further, the composition includes a vertical alignment promoter such as a polarizer interface side vertical alignment agent and an air interface side vertical alignment agent, and a horizontal alignment promotion agent such as a polarizer interface side horizontal alignment agent and an air interface side horizontal alignment agent. Various orienting agents such as agents may be included. Further, the composition may contain an adhesion improver, a plasticizer, a polymer and the like in addition to the above components.
上記活性エネルギー線は、紫外線、可視光、電子線、X線を含み、好ましくは紫外線である。前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380〜440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 The active energy beam includes ultraviolet rays, visible light, electron beams, and X-rays, and is preferably ultraviolet rays. Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excima laser, and a wavelength range. Examples thereof include an LED light source that emits 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
紫外線の照射強度は、通常、紫外線B波(波長域280〜310nm)の場合、100mW/cm2〜3,000mW/cm2である。紫外線照射強度は、好ましくはカチオン重合開始剤又はラジカル重合開始剤の活性化に有効な波長領域における強度である。紫外線を照射する時間は、通常0.1秒〜10分であり、好ましくは0.1秒〜5分であり、より好ましくは0.1秒〜3分であり、さらに好ましくは0.1秒〜1分である。 The irradiation intensity of ultraviolet radiation is typically the case of ultraviolet B wave (wavelength region 280~310Nm), a 100mW / cm 2 ~3,000mW / cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the cationic polymerization initiator or the radical polymerization initiator. The time for irradiating with ultraviolet rays is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, and even more preferably 0.1 seconds. ~ 1 minute.
紫外線は、1回または複数回に分けて照射することができる。使用する重合開始剤にもよるが、波長365nmにおける積算光量は、700mJ/cm2以上とすることが好ましく、1,100mJ/cm2以上とすることがより好ましく、1,300mJ/cm2以上とすることがさらに好ましい。上記積算光量とすることは、位相差フィルムを構成する重合性液晶化合物の重合率を高め、耐熱性を向上させるのに有利である。波長365nmにおける積算光量は、2,000mJ/cm2以下とすることが好ましく、1,800mJ/cm2以下とすることがより好ましい。上記積算光量とすることは、位相差フィルムの着色を招くおそれがある。また、紫外線の照射後に、冷却工程を設けてもよい。冷却温度は、例えば、20℃以下とすることができ、10℃以下とすることができる。冷却時間は、例えば、10秒間以上とすることができ、20秒間以上とすることができる。 Ultraviolet rays can be irradiated once or in a plurality of times. Depending on the polymerization initiator used, the accumulated amount of light at a wavelength of 365nm is preferably in a 700 mJ / cm 2 or more, more preferably, to 1,100mJ / cm 2 or more, 1,300mJ / cm 2 or more and It is more preferable to do so. The integrated light intensity is advantageous for increasing the polymerization rate of the polymerizable liquid crystal compound constituting the retardation film and improving the heat resistance. Integrated light intensity at a wavelength of 365nm is preferably in a 2,000 mJ / cm 2 or less, and more preferably to 1,800mJ / cm 2 or less. The integrated light intensity may cause coloring of the retardation film. Further, a cooling step may be provided after irradiation with ultraviolet rays. The cooling temperature can be, for example, 20 ° C. or lower, and can be 10 ° C. or lower. The cooling time can be, for example, 10 seconds or more, and 20 seconds or more.
本実施形態において位相差層の厚みは、0.5μm以上であることが好ましい。また、前記位相差層の厚みは、10μm以下であることが好ましく、5μm以下であることがより好ましい。なお、上述した上限値及び下限値は、任意に組み合わせることができる。位相差層の厚みが前記下限値以上であると、十分な耐久性が得られる。位相差層の厚みが前記上限値以下であると、光学積層体の薄層化に貢献し得る。位相差層の厚みは、λ/4の位相差を与える層、λ/2の位相差を与える層、又はポジティブC層の所望の面内位相差値、及び厚み方向の位相差値が得られるよう調整され得る。
位相差フィルム中には、それぞれ別の異なる位相差特性を有する複数の位相差層が積層されたものが含まれていてもよい。それぞれの位相差層は、接着剤や粘着剤を介して積層してもよいし、すでに形成された位相差層の表面に重合性液晶化合物を含む組成物を塗工し、硬化させてもよい。
In the present embodiment, the thickness of the retardation layer is preferably 0.5 μm or more. The thickness of the retardation layer is preferably 10 μm or less, and more preferably 5 μm or less. The above-mentioned upper limit value and lower limit value can be arbitrarily combined. When the thickness of the retardation layer is at least the above lower limit value, sufficient durability can be obtained. When the thickness of the retardation layer is not more than the upper limit value, it can contribute to thinning the optical laminate. As the thickness of the retardation layer, a desired in-plane retardation value of a layer giving a retardation of λ / 4, a layer giving a retardation of λ / 2, or a positive C layer, and a retardation value in the thickness direction can be obtained. Can be adjusted.
The retardation film may include a film in which a plurality of retardation layers having different retardation characteristics are laminated. Each of the retardation layers may be laminated via an adhesive or an adhesive, or a composition containing a polymerizable liquid crystal compound may be applied to the surface of the already formed retardation layer and cured. ..
位相差フィルムが、重合性液晶化合物が硬化した位相差層のみから形成される場合、突刺し弾性率を大幅に小さくすることができるため、熱衝撃によるクラック発生を抑えることができるので好ましい。位相差フィルムが、重合性液晶化合物が硬化した位相差層のみから形成される場合、位相差フィルムの突刺し弾性率は、例えば40g/mm以下や35g/mm以下であることができ、好ましくは30g/mm以下、より好ましくは25g/mm以下、さらに好ましくは15g/mm以下であり、通常3g/mm以上である。膜強度を保持する観点から突刺し弾性率は7g/mm以上であることが好ましい。 When the retardation film is formed only from the retardation layer obtained by curing the polymerizable liquid crystal compound, the puncture elastic modulus can be significantly reduced, and crack generation due to thermal shock can be suppressed, which is preferable. When the retardation film is formed only from the retardation layer obtained by curing the polymerizable liquid crystal compound, the puncture modulus of the retardation film can be, for example, 40 g / mm or less or 35 g / mm or less, preferably 35 g / mm or less. It is 30 g / mm or less, more preferably 25 g / mm or less, still more preferably 15 g / mm or less, and usually 3 g / mm or more. From the viewpoint of maintaining the film strength, the puncture elastic modulus is preferably 7 g / mm or more.
一方、位相差フィルムは、重合性液晶化合物が硬化した位相差層と配向層から形成される場合、温度変化よるクラック抑制と適度な基材との剥離性および膜強度を維持する観点から、位相差フィルムの突刺し弾性率の下限値は、好ましくは15g/mm以上、より好ましくは20g/mm以上であり、上限値としては50g/mm以下、好ましくは40g/mm以下、さらに好ましくは30g/mm以下(通常5g/mm以上)とすることができる。 On the other hand, when the retardation film is formed from a retardation layer and an alignment layer obtained by curing a polymerizable liquid crystal compound, the retardation film is positioned from the viewpoint of suppressing cracks due to temperature changes, maintaining appropriate releasability from a substrate and film strength. The lower limit of the puncture modulus of the retardation film is preferably 15 g / mm or more, more preferably 20 g / mm or more, and the upper limit is 50 g / mm or less, preferably 40 g / mm or less, further preferably 30 g / mm. It can be mm or less (usually 5 g / mm or more).
上記のとおり、本発明の位相差フィルムは、位相差層のみから構成されていてもよいし、位相差層と配向層とから構成されていてもよいが、この位相差フィルムは、以下の計算式(A)
で示される重合性基量Nが0.67以下、さらには0.64以下であることが好ましい。
重合性基量Nは通常0.01以上、好ましくは0.03以上である。
ここで、
ALは、位相差フィルムを構成する配向層を構成する樹脂を構成する重合性化合物に由来する構成単位の種類数を示す。なお、位相差フィルムが位相差層のみから構成されている場合には、AL=0である。
Cwiは、配向層を構成する樹脂における重合性化合物に由来する全構成単位を基準として、重合性化合物iに由来する構成単位の含有量(質量%)を示し、
Miは、配向層を構成する重合性化合物iの分子量を示し、
Niは、配向層を構成する重合性化合物iが有する重合性基の数を示す。
LCは、位相差層が重合性液晶化合物の硬化した層である場合に、位相差層を構成する重合性液晶化合物に由来する構成単位の種類数を示す。
Cwjは、位相差層における重合性液晶化合物に由来する全構成単位を基準として、重合性液晶化合物jに由来する構成単位の含有量(質量%)を示し、
Mjは、位相差層を構成する重合性液晶化合物jの分子量を示し、
Njは、位相差層を構成する重合性液晶化合物iが有する重合性基の数を示す。
LALは配向層の厚さ(μm)を示し、LLCは位相差層の厚さ(μm)を示す。
Ltotalは、LALとLLCとの和を示す。
As described above, the retardation film of the present invention may be composed of only the retardation layer or the alignment layer, and the retardation film may be composed of the retardation layer and the alignment layer. Equation (A)
The polymerizable group amount N represented by (1) is preferably 0.67 or less, more preferably 0.64 or less.
The polymerizable group amount N is usually 0.01 or more, preferably 0.03 or more.
here,
AL indicates the number of types of structural units derived from the polymerizable compound that constitutes the resin that constitutes the alignment layer that constitutes the retardation film. When the retardation film is composed of only the retardation layer, AL = 0.
Cwi indicates the content (mass%) of the structural units derived from the polymerizable compound i, based on all the structural units derived from the polymerizable compound in the resin constituting the alignment layer.
Mi indicates the molecular weight of the polymerizable compound i constituting the alignment layer.
Ni indicates the number of polymerizable groups contained in the polymerizable compound i constituting the alignment layer.
LC indicates the number of types of structural units derived from the polymerizable liquid crystal compound constituting the retardation layer when the retardation layer is a cured layer of the polymerizable liquid crystal compound.
Cwj indicates the content (mass%) of the structural units derived from the polymerizable liquid crystal compound j with reference to all the structural units derived from the polymerizable liquid crystal compound in the retardation layer.
Mj indicates the molecular weight of the polymerizable liquid crystal compound j constituting the retardation layer.
Nj indicates the number of polymerizable groups contained in the polymerizable liquid crystal compound i constituting the retardation layer.
L AL denotes the thickness of the alignment layer (μm), L LC denotes the thickness of the retardation layer ([mu] m).
L total indicates the sum of L AL and LLC.
光学積層体が積層された表示装置の使用環境下において、温度変化が生じると光学積層体を構成する位相差フィルム、他光学フィルムや接着剤、粘着剤層において膨張、収縮が生じる。他構成部材の膨張、収縮による寸法変化の影響が位相差フィルムに集中し易い。温度変化による他部材の寸法変化に対し、位相差フィルムが追従できなくなり、位相差フィルムを起点としたクラックが生じやすい。
この様な温度変化によるクラックは、位相差フィルムが10μm以下の薄膜である場合や位相差フィルムが、重合性液晶化合物が硬化した位相差層を有する場合に生じやすい。特に位相差フィルムが位相差層または位相差層と配向層から形成され、位相差層または配向層に直接粘着剤や接着剤層が積層された場合にクラックが生じやすく、位相差層の配向性が、ポジティブC層の様な垂直配向性を有する場合は、その傾向が顕著となることがある。
本願の光学積層体は、その構成要素である位相差フィルムの突刺し弾性率を50g/mm以下とすることにより、前述の温度変化による他部材の寸法変化に対しても位相差フィルムが追従でき、上述のクラックが生じやすい位相差フィルムや光学積層体の構成でも好適にその発生を抑制することができる。
When a temperature change occurs in the usage environment of the display device in which the optical laminates are laminated, expansion and contraction occur in the retardation film, other optical films, adhesives, and adhesive layers constituting the optical laminate. The influence of dimensional changes due to expansion and contraction of other components tends to concentrate on the retardation film. The retardation film cannot follow the dimensional change of other members due to the temperature change, and cracks are likely to occur starting from the retardation film.
Cracks due to such a temperature change are likely to occur when the retardation film is a thin film of 10 μm or less or when the retardation film has a retardation layer in which the polymerizable liquid crystal compound is cured. In particular, when the retardation film is formed from the retardation layer or the retardation layer and the alignment layer, and the pressure-sensitive adhesive or the adhesive layer is directly laminated on the retardation layer or the alignment layer, cracks are likely to occur, and the orientation of the retardation layer is likely to occur. However, when it has a vertical orientation such as a positive C layer, the tendency may become remarkable.
In the optical laminate of the present application, by setting the puncture elastic modulus of the retardation film, which is a component thereof, to 50 g / mm or less, the retardation film can follow the dimensional change of other members due to the above-mentioned temperature change. The occurrence of cracks can be suitably suppressed even in the above-mentioned constitution of a retardation film or an optical laminate in which cracks are likely to occur.
本願の光学積層体は、2つ以上の位相差フィルムを有してもよい。光学積層体が、位相差フィルムを2層含む場合、2層はλ/4の位相差を与える層およびポジティブC層、またはλ/4の位相差を与える層およびλ/2の位相差を与える層であることが好ましい。
光学積層体が、位相差フィルムを2層含む場合、それぞれの位相差フィルムの位相差層を接着剤層や粘着剤層を介して積層してもよい。光学積層体の薄膜化の観点から複数の層を積層した位相差フィルムの厚みは、3〜30μmであることが好ましく、5〜25μmであることがより好ましい。
The optical laminate of the present application may have two or more retardation films. When the optical laminate contains two layers of retardation films, the two layers provide a λ / 4 phase difference and a positive C layer, or a λ / 4 phase difference and a λ / 2 phase difference. It is preferably a layer.
When the optical laminate contains two layers of retardation films, the retardation layers of the respective retardation films may be laminated via an adhesive layer or an adhesive layer. From the viewpoint of thinning the optical laminate, the thickness of the retardation film in which a plurality of layers are laminated is preferably 3 to 30 μm, more preferably 5 to 25 μm.
光学積層体の構成において、2つ以上の位相差フィルムを有し、それら位相差フィルムの少なくとも一つが、重合性液晶化合物が硬化した垂直配向性を示す位相差層を有する場合、熱衝撃によりクラックがより発生しやすい傾向がある。特に活性エネルギー線硬化性接着剤を介して位相差フィルム同士が積層され、且つその接着剤層の貯蔵弾性率が3000MPa以上である場合にクラックの発生が顕著となることがある。光学積層体が二つの位相差フィルムを有する場合の位相差特性の組み合わせとしては、例えば、位相差層がλ/4の位相差を与える層を有する位相差フィルムと垂直配向性を与える層を有する位相差フィルムの組み合わせが挙げられる。この様な構成の光学積層体でも、位相差フィルムの突刺し弾性率を本願で規定する範囲とすることにより、効率的にクラックの発生を抑制することができる。 In the configuration of the optical laminate, when there are two or more retardation films and at least one of the retardation films has a retardation layer exhibiting vertical orientation in which the polymerizable liquid crystal compound is cured, cracks are caused by thermal impact. Tends to occur more easily. In particular, when the retardation films are laminated with each other via an active energy ray-curable adhesive and the storage elastic modulus of the adhesive layer is 3000 MPa or more, the occurrence of cracks may become remarkable. As a combination of the retardation characteristics when the optical laminate has two retardation films, for example, the retardation layer has a retardation film having a layer giving a retardation of λ / 4 and a layer giving vertical orientation. A combination of retardation films can be mentioned. Even in an optical laminate having such a configuration, the occurrence of cracks can be efficiently suppressed by setting the puncture elastic modulus of the retardation film within the range specified in the present application.
位相差フィルム中に配向層が含まれる場合は、配向層の鉛筆硬度やスチールウール硬度等の耐摩耗性評価を熱衝撃によるクラック抑制の指標として用いることができる。
例えば鉛筆硬度は、JIS K 5600−5−4:1999に準じて求められ、各硬度の鉛筆を用いて引っかいたときに傷が生じない最も硬い鉛筆の硬度で表される。配向層の鉛筆硬度は、3B以下とすると熱衝撃によるクラック発生を抑制することができるので好ましい。
他指標としてのスチールウール硬度は、例えばスチールウール試験機(大栄精機社製)にて、クリーンルーム用ワイパー(旭化成株式会社製 BEMCOT AZ-8)を試験対象の表面にそれぞれ500gの荷重で接触させ、40r/minの速度で4往復摩耗試験を行い、目視にて確認されたキズの本数にて示すことができる。配向層に対するスチールウール試験にて測定されるキズの本数は、熱衝撃によるクラック発生を抑制するうえで、4本以上であることが好ましく、8本以上であることがさらに好ましい。
取り扱い性や有機EL表示装置等の表示装置の視認性の観点から、鉛筆硬度は通常5B以上であり、スチールウール試験で測定されるキズの本数は、通常50本以下であり、20本以下であることが好ましく、10本以下であることがより好ましい。
When the retardation film contains an alignment layer, evaluation of abrasion resistance such as pencil hardness and steel wool hardness of the alignment layer can be used as an index for suppressing cracks due to thermal shock.
For example, the pencil hardness is determined according to JIS K 5600-5-4: 1999, and is represented by the hardness of the hardest pencil that does not cause scratches when scratched with a pencil of each hardness. When the pencil hardness of the alignment layer is 3B or less, crack generation due to thermal shock can be suppressed, which is preferable.
For the steel wool hardness as another index, for example, a steel wool testing machine (manufactured by Daiei Seiki Co., Ltd.) is used to bring a clean room wiper (BEMCOT AZ-8 manufactured by Asahi Kasei Co., Ltd.) into contact with the surface to be tested with a load of 500 g. The four reciprocating wear test is performed at a speed of 40 r / min, and the number of scratches confirmed visually can be indicated. The number of scratches measured in the steel wool test on the oriented layer is preferably 4 or more, and more preferably 8 or more, in order to suppress the generation of cracks due to thermal shock.
From the viewpoint of handleability and visibility of display devices such as organic EL display devices, the pencil hardness is usually 5B or more, and the number of scratches measured in the steel wool test is usually 50 or less, and 20 or less. It is preferably present, and more preferably 10 or less.
上記位相差フィルムの光弾性係数は、好ましくは3〜100×10−13Pa−1、より好ましくは5〜70×10−13Pa−1であり、さらに好ましくは15〜60×10−13Pa−1であり、よりさらに好ましくは20〜60×10−13Pa−1である。なお、光弾性係数は、例えば、位相差測定装置KOBRA−WPR(王子計測機器株式会社製)を用いて、サンプル(サイズ1cm×10cm)の両端を挟持して応力(0.5N〜3N)をかけながら、サンプル中央の位相差値(23℃/波長550nm)を測定し、応力と位相差値の関数の傾きから算出することができる。
The photoelastic coefficient of the retardation film is preferably 3 to 100 × 10 -13 Pa -1 , more preferably 5 to 70 × 10 -13 Pa -1 , and even more preferably 15 to 60 × 10 -13 Pa. It is -1 , and even more preferably 20 to 60 × 10 -13 Pa -1 . For the photoelastic coefficient, for example, using a phase difference measuring device KOBRA-WPR (manufactured by Oji Measuring Instruments Co., Ltd.), both ends of the sample (
光学積層体は、図1に示した層以外の層を有することができる。光学積層体がさらに有していてもよい層としては、前面板、遮光パターン、偏光板などの光学機能層や、他光学機能層と積層させるための接着剤層や粘着剤層、タッチセンサ等が挙げられる。前面板は、偏光板3における位相差フィルムが積層された側とは反対側に配置されることができる。遮光パターンは、前面板における偏光板側の面上に形成することができる。遮光パターンは、画像表示装置の額縁(非表示領域)に形成され、画像表示装置の配線が使用者に視認されないようにすることができる。タッチセンサは、粘着剤層12を介して、光学積層体に積層されることができる。
The optical laminate can have layers other than those shown in FIG. Layers that the optical laminate may further include include an optical functional layer such as a front plate, a light-shielding pattern, and a polarizing plate, an adhesive layer or an adhesive layer for laminating with another optical functional layer, a touch sensor, and the like. Can be mentioned. The front plate can be arranged on the side of the
光学積層体の主面の形状は、実質的に矩形であることができる。主面とは表示面に対応する最も広い面積を有する面を意味する。実質的に矩形であるとは、4つの隅(角部)のうち少なくとも1つの角部が鈍角となるように切除された形状や丸みを設けた形状であったり、主面に垂直な端面の一部が面内方向に窪んだ凹み部(切り欠け)を有したり、主面内の一部が、円形、楕円形、多角形及びそれらの組合せ等の形状にくり抜かれた穴あき部を有したりしてもよいことをいう。 The shape of the main surface of the optical laminate can be substantially rectangular. The main surface means the surface having the largest area corresponding to the display surface. A substantially rectangular shape is a shape in which at least one of the four corners (corners) is cut off at an obtuse angle, a rounded shape, or an end face perpendicular to the main surface. A part of the main surface has a recess (notch) that is recessed in the in-plane direction, or a part of the main surface is hollowed out into a shape such as a circle, an ellipse, a polygon, or a combination thereof. It means that you may have it.
光学積層体の大きさは特に限定されない。光学積層体が実質的に矩形である場合、長辺の長さは6cm以上35cm以下であることが好ましく、10cm以上30cm以下であることがより好ましく、短辺の長さは5cm以上30cm以下であることが好ましく、6cm以上25cm以下であることがより好ましい。 The size of the optical laminate is not particularly limited. When the optical laminate is substantially rectangular, the length of the long side is preferably 6 cm or more and 35 cm or less, more preferably 10 cm or more and 30 cm or less, and the length of the short side is 5 cm or more and 30 cm or less. It is preferably 6 cm or more and 25 cm or less.
光学積層体の厚さは、通常50〜500μmであるが、薄膜化の観点から、150μm以下が好ましく、105μm以下がより好ましいが、光学積層体の厚さが105μm以下となると熱衝撃を受けた際、位相差フィルムを起点としたクラックが光学積層体全体に広がりやすい。
この様な薄膜の光学積層体となっても、位相差フィルムの突刺し弾性率を本願で規定する範囲とすることにより、温度変化によるクラック発生を好適に抑制することができる。
The thickness of the optical laminate is usually 50 to 500 μm, but from the viewpoint of thinning, it is preferably 150 μm or less, more preferably 105 μm or less, but when the thickness of the optical laminate is 105 μm or less, it receives a thermal shock. At this time, cracks originating from the retardation film tend to spread over the entire optical laminate.
Even in such an optical laminate of thin films, the occurrence of cracks due to temperature changes can be suitably suppressed by setting the puncture elastic modulus of the retardation film within the range specified in the present application.
本願の位相差フィルムは、熱衝撃によるクラック発生を抑えるという観点から、基材付きのカール量を低減させた方がよい。カール量は基材付きの構成で、10cm×10cm角に切り出し、23℃55%に24時間調湿後に測定することができる。カール量は、基材の種類、厚みによって異なるが、基材が15〜25μm(例えば20μm)の環状ポリオレフィン系樹脂(COP)フィルムの場合、4辺のカール量の平均値として、10mm以下が好ましく、さら5mm以下が好ましい。 In the retardation film of the present application, it is preferable to reduce the amount of curl with the base material from the viewpoint of suppressing the generation of cracks due to thermal shock. The amount of curl can be measured after controlling the humidity at 23 ° C. and 55% for 24 hours by cutting out into a 10 cm × 10 cm square with a base material. The curl amount varies depending on the type and thickness of the base material, but in the case of a cyclic polyolefin resin (COP) film having a base material of 15 to 25 μm (for example, 20 μm), the average value of the curl amount on four sides is preferably 10 mm or less. Further, 5 mm or less is preferable.
<偏光板>
本発明において偏光板とは、偏光子単独、または、偏光子の少なくとも1つの面に貼合された保護フィルムとからなる積層体のことをいう。偏光フィルムが備える保護フィルムは、後述のハードコート層、反射防止層、帯電防止層などの表面処理層を有していてもよい。偏光子と保護フィルムとは、例えば接着剤層や粘着剤層を介して積層することができる。偏光板が備える部材について、以下に説明する。
<Polarizer>
In the present invention, the polarizing plate refers to a laminate composed of a polarizing element alone or a protective film bonded to at least one surface of the polarizer. The protective film included in the polarizing film may have a surface treatment layer such as a hard coat layer, an antireflection layer, and an antistatic layer, which will be described later. The polarizer and the protective film can be laminated, for example, via an adhesive layer or an adhesive layer. The members included in the polarizing plate will be described below.
(1)偏光子
偏光板が備える偏光子は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光子であることができる。第1の層が有する偏光子としては、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させた偏光子を好適に用いることができる。偏光子は、例えば、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程;ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程;二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液等の架橋液で処理する工程;及び、架橋液による処理後に水洗する工程を含む方法によって製造できる。
(1) Polarized light The polarizer provided by the polarizing plate absorbs linearly polarized light having a vibrating surface parallel to its absorption axis and transmits linearly polarized light having a vibrating surface orthogonal to the absorption axis (parallel to the transmission axis). It can be an absorption type polarizer having properties. As the polarizing element of the first layer, a polarizer in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be preferably used. The polarizer is, for example, a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye; It can be produced by a method including a step of treating the alcohol-based resin film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the treatment with the cross-linking solution.
ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体の例は、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、及びアンモニウム基を有する(メタ)アクリルアミド類等を含む。 As the polyvinyl alcohol-based resin, a saponified polyvinyl acetate-based resin can be used. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable with the vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。 As used herein, the term "(meth) acrylic" means at least one selected from acrylic and methacrylic. The same applies to "(meth) acryloyl", "(meth) acrylate" and the like.
ポリビニルアルコール系樹脂のケン化度は通常、85〜100mol%であり、98mol%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール又はポリビニルアセタール等を用いることもできる。ポリビニルアルコール系樹脂の平均重合度は通常、1000〜10000であり、1500〜5000が好ましい。ポリビニルアルコール系樹脂の平均重合度は、JIS K 6726に準拠して求めることができる。 The degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used. The average degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000. The average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
このようなポリビニルアルコール系樹脂を製膜したものが、偏光子(偏光子)の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法が採用される。ポリビニルアルコール系原反フィルムの厚みは特に制限されないが、偏光子の厚みを15μm以下とするためには、5〜35μmのものを用いることが好ましい。より好ましくは、20μm以下である。 A film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer (polarizer). The method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and a known method is adopted. The thickness of the polyvinyl alcohol-based raw film is not particularly limited, but in order to reduce the thickness of the polarizer to 15 μm or less, it is preferable to use one having a thickness of 5 to 35 μm. More preferably, it is 20 μm or less.
ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、架橋処理の前又は架橋処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行ってもよい。 The uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before the cross-linking treatment or during the cross-linking treatment. Moreover, uniaxial stretching may be performed in these a plurality of steps.
一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤や水を用いてポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は通常、3〜8倍である。 In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch the rolls. The uniaxial stretching may be a dry stretching in which the film is stretched in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen with a solvent or water. The draw ratio is usually 3 to 8 times.
ポリビニルアルコール系樹脂フィルムを二色性色素で染色する方法としては、例えば、該フィルムを二色性色素が含有された水溶液に浸漬する方法が採用される。二色性色素としては、ヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。 As a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye, for example, a method of immersing the film in an aqueous solution containing a dichroic dye is adopted. As the dichroic dye, iodine or a dichroic organic dye is used. The polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
二色性色素による染色後の架橋処理としては通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法が採用される。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液は、ヨウ化カリウムを含有することが好ましい。 As the cross-linking treatment after dyeing with a dichroic dye, a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution is usually adopted. When iodine is used as the dichroic pigment, the boric acid-containing aqueous solution preferably contains potassium iodide.
偏光子の厚みは、通常30μm以下であり、好ましくは15μm以下であり、より好ましくは13μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは8μm以下である。偏光子の厚みは、通常2μm以上であり、3μm以上であることが好ましい。 The thickness of the polarizer is usually 30 μm or less, preferably 15 μm or less, more preferably 13 μm or less, still more preferably 10 μm or less, and particularly preferably 8 μm or less. The thickness of the polarizer is usually 2 μm or more, preferably 3 μm or more.
偏光子としては、例えば特開2016−170368号公報に記載されるように、液晶化合物が重合した硬化膜中に、二色性色素が配向したものを使用してもよい。二色性色素としては、波長380〜800nmの範囲内に吸収を有するものを用いることができ、有機染料を用いることが好ましい。二色性色素として、例えば、アゾ化合物が挙げられる。液晶化合物は、配向したまま重合することができる液晶化合物であり、分子内に重合性基を有することができる。また、WO2011/024891に記載されるように、液晶性を有する二色性色素から偏光子を形成してもよい。 As the polarizer, for example, as described in JP-A-2016-170368, a dichroic dye may be oriented in a cured film in which a liquid crystal compound is polymerized. As the dichroic dye, those having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye. Examples of the dichroic dye include an azo compound. The liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule. Further, as described in WO2011 / 024891, a polarizer may be formed from a dichroic dye having a liquid crystallinity.
偏光子の収縮力は、好ましくは2.0N/2mm以下であり、より好ましくは1.8N/mm以下であり、さらに好ましくは1.5N以下である。 The contractile force of the polarizer is preferably 2.0 N / 2 mm or less, more preferably 1.8 N / mm or less, and further preferably 1.5 N or less.
(2)保護フィルム
本発明の偏光板は、偏光子の少なくとも1つの面に保護フィルムを有していてもよい。偏光子と位相差フィルムの間に保護フィルムを有する場合は、負の複屈折性を持つことが好ましい。ここで、負の複屈折性とは、樹脂の延伸方向と垂直な方向に遅相軸が発現することを意味する。位相差フィルムとしては、正の複屈折性を持つ位相差層を含むものを用いることから、偏光子の熱収縮に伴う位相差フィルムの位相差発現とは逆の位相差が発現されるため、色変化が小さくなると考えられる。ここで、正の複屈折性とは、位相差フィルムの延伸方向と平行な方向に遅相軸が発現することを意味する。
(2) Protective film The polarizing plate of the present invention may have a protective film on at least one surface of the polarizer. When a protective film is provided between the polarizer and the retardation film, it is preferable to have negative birefringence. Here, the negative birefringence means that the slow-phase axis appears in the direction perpendicular to the stretching direction of the resin. Since a retardation film containing a retardation layer having positive birefringence is used, a retardation opposite to that of the retardation film due to thermal shrinkage of the polarizer is exhibited. It is considered that the color change becomes small. Here, the positive birefringence means that the slow axis appears in the direction parallel to the stretching direction of the retardation film.
偏光子に積層される保護フィルムは、透光性を有する(好ましくは光学的に透明な)熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロースのようなセルロース系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリカーボネート系樹脂;メタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリ塩化ビニル系樹脂;アクリロニトリル・ブタジエン・スチレン系樹脂;アクリロニトリル・スチレン系樹脂;ポリ酢酸ビニル系樹脂;ポリ塩化ビニリデン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;変性ポリフェニレンエーテル系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアリレート系樹脂;ポリアミドイミド系樹脂;ポリイミド系樹脂;マレイミド系樹脂等からなるフィルムであることができる。 The protective film laminated on the polarizer is a translucent (preferably optically transparent) thermoplastic resin, for example, a chain polyolefin resin (polypropylene resin or the like), a cyclic polyolefin resin (norbornene resin, etc.). Polyethylene resin such as triacetyl cellulose, diacetyl cellulose; polyester resin such as polyethylene terephthalate, polybutylene terephthalate; polycarbonate resin; (meth) such as methyl methacrylate resin. Acrylic resin; Polystyrene resin; Polyvinyl chloride resin; Acrylonitrile / butadiene / styrene resin; Acrylonitrile / styrene resin; Polyvinyl acetate resin; Polyvinylidene chloride resin; Polyamide resin; Polyacetal resin; Modified polyphenylene A film made of an ether resin; a polysulfone resin; a polyether sulfone resin; a polyarylate resin; a polyamideimide resin; a polyimide resin; a maleimide resin or the like can be used.
特に、偏光子と位相差フィルムの間に用いる保護フィルムは、負の複屈折性を持つものを用いることが好ましい。つまり、(メタ)アクリル系樹脂、ポリスチレン系樹脂、マレイミド系樹脂からなる群から選ばれる少なくとも1種を含むフィルムを用いることが好ましい。このような樹脂フィルムを保護フィルムとして用いることで、異形形状に加工した場合でも、耐久性に優れた偏光板とすることができる。 In particular, the protective film used between the polarizer and the retardation film preferably has negative birefringence. That is, it is preferable to use a film containing at least one selected from the group consisting of (meth) acrylic resin, polystyrene resin, and maleimide resin. By using such a resin film as a protective film, it is possible to obtain a polarizing plate having excellent durability even when it is processed into a deformed shape.
(メタ)アクリル系樹脂は、(メタ)アクリロイル基を有する化合物を主な構成モノマーとする樹脂である。(メタ)アクリル系樹脂の具体例は、例えば、ポリメタクリル酸メチルのようなポリ(メタ)アクリル酸エステル;メタクリル酸メチル−(メタ)アクリル酸共重合体;メタクリル酸メチル−(メタ)アクリル酸エステル共重合体;メタクリル酸メチル−アクリル酸エステル−(メタ)アクリル酸共重合体;(メタ)アクリル酸メチル−スチレン共重合体(MS樹脂等);メタクリル酸メチルと脂環族炭化水素基を有する化合物との共重合体(例えば、メタクリル酸メチル−メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル−(メタ)アクリル酸ノルボルニル共重合体等)を含む。好ましくは、ポリ(メタ)アクリル酸メチルのようなポリ(メタ)アクリル酸C1-6アルキルエステルを主成分とする重合体が用いられ、より好ましくは、メタクリル酸メチルを主成分(50〜100重量%、好ましくは70〜100重量%)とするメタクリル酸メチル系樹脂が用いられる。 The (meth) acrylic resin is a resin containing a compound having a (meth) acryloyl group as a main constituent monomer. Specific examples of the (meth) acrylic resin include poly (meth) acrylic acid esters such as polymethyl methacrylate; methyl methacrylate- (meth) acrylic acid copolymers; methyl methacrylate- (meth) acrylic acid. Ester copolymer; methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer; (meth) methyl acrylate-styrene copolymer (MS resin, etc.); methyl methacrylate and alicyclic hydrocarbon group It contains a copolymer with a compound having (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.). Preferably, a polymer containing poly (meth) acrylic acid C 1-6 alkyl ester as a main component, such as methyl poly (meth) acrylate, is used, and more preferably, methyl methacrylate as a main component (50 to 100) is used. A methyl methacrylate-based resin having a weight of% by weight, preferably 70 to 100% by weight) is used.
前記(メタ)アクリル系樹脂フィルムの波長590nmにおける面内の位相差値Reは、好ましくは10nm以下であり、より好ましくは7nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。
波長590nmにおける(メタ)アクリル系樹脂フィルムの厚み方向の位相差値Rthは、好ましくは15nm以下であり、より好ましくは10nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。面内の位相差値および厚み方向の位相差値がこのような範囲であれば、位相差フィルムの特性を損なうことなく、耐熱試験時における色変化を抑制することができる。面内の位相差値および厚み方向の位相差値をこのような範囲とするためには、例えば、後述のグルタルイミド構造を有する(メタ)アクリル系樹脂を用いて得ることができる。
The in-plane retardation value Re of the (meth) acrylic resin film at a wavelength of 590 nm is preferably 10 nm or less, more preferably 7 nm or less, still more preferably 5 nm or less, and particularly preferably 3 nm or less. Yes, most preferably 1 nm or less.
The retardation value Rth in the thickness direction of the (meth) acrylic resin film at a wavelength of 590 nm is preferably 15 nm or less, more preferably 10 nm or less, still more preferably 5 nm or less, and particularly preferably 3 nm or less. Most preferably, it is 1 nm or less. When the in-plane retardation value and the thickness direction retardation value are in such a range, color change during the heat resistance test can be suppressed without impairing the characteristics of the retardation film. In order to set the in-plane retardation value and the thickness direction retardation value in such a range, for example, a (meth) acrylic resin having a glutarimide structure described later can be used.
前記(メタ)アクリル系樹脂は、負の複屈折性を持つ範囲で好ましくは、正の複屈折を発現する構造単位を有していてもよい。正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有していれば、その存在比を調整して、(メタ)アクリル系樹脂フィルムの位相差を制御することができ、低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。正の複屈折を発現する構造単位としては、例えば、ラクトン環、ポリカーボネート、ポリビニルアルコール、酢酸セルロース、ポリエステル、ポリアリレート、ポリイミド、ポリオレフィン等を構成する構造単位、後述の一般式(1)で示される構造単位が挙げられる。負の複屈折を発現する構造単位としては、例えば、スチレン系モノマー、マレイミド系モノマー等を由来とする構造単位、ポリメチルメタクリレートの構造単位、後述の一般式(3)で示される構造単位等が挙げられる。 The (meth) acrylic resin preferably has a structural unit that expresses positive birefringence as long as it has negative birefringence. If you have a structural unit that expresses positive birefringence and a structural unit that expresses negative birefringence, you can adjust the abundance ratio to control the phase difference of the (meth) acrylic resin film. It is possible to obtain a (meth) acrylic resin film having a low phase difference. As the structural unit that expresses positive birefringence, for example, a structural unit constituting a lactone ring, polycarbonate, polyvinyl alcohol, cellulose acetate, polyester, polyarylate, polyimide, polyolefin, etc., is represented by the general formula (1) described later. Structural units can be mentioned. Examples of the structural unit that expresses negative birefringence include structural units derived from styrene-based monomers, maleimide-based monomers, etc., polymethylmethacrylate structural units, structural units represented by the general formula (3) described later, and the like. Can be mentioned.
前記(メタ)アクリル系樹脂として、ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂が好ましく用いられる。ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂は耐熱性に優れる。より好ましくは、グルタルイミド構造を有する(メタ)アクリル系樹脂である。グルタルイミド構造を有する(メタ)アクリル系樹脂を用いれば、上記のように、低透湿、かつ、位相差および紫外線透過率の小さい(メタ)アクリル系樹脂フィルムを得ることができる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報、特開2007−009182号公報、特開2009−161744号公報に記載されている。これらの記載は、本明細書に参考として援用される。 As the (meth) acrylic resin, a (meth) acrylic resin having a lactone ring structure or a glutarimide structure is preferably used. A (meth) acrylic resin having a lactone ring structure or a glutarimide structure has excellent heat resistance. More preferably, it is a (meth) acrylic resin having a glutarimide structure. By using a (meth) acrylic resin having a glutarimide structure, as described above, a (meth) acrylic resin film having low moisture permeability and low phase difference and ultraviolet transmittance can be obtained. Examples of the (meth) acrylic resin having a glutarimide structure (hereinafter, also referred to as glutarimide resin) include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744. These statements are incorporated herein by reference.
好ましくは、上記グルタルイミド樹脂は、下記一般式(1)で表される構造単位(以下、グルタルイミド単位とも称する)と、下記一般式(2)で表される構造単位(以下、(メタ)アクリル酸エステル単位とも称する)とを含む。 Preferably, the glutarimide resin has a structural unit represented by the following general formula (1) (hereinafter, also referred to as a glutarimide unit) and a structural unit represented by the following general formula (2) (hereinafter, (meth)). Also referred to as an acrylic acid ester unit).
グルタルイミド樹脂は、必要に応じて、下記一般式(3)で表される構造単位(以下、芳香族ビニル単位とも称する)をさらに含んでいてもよい。 The glutarimide resin may further contain a structural unit represented by the following general formula (3) (hereinafter, also referred to as an aromatic vinyl unit), if necessary.
式(3)において、R7は、水素または炭素数1〜8のアルキル基であり、R8は、炭素数6〜10のアリール基である。 In formula (3), R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 is an aryl group having 6 to 10 carbon atoms.
上記一般式(1)において、好ましくは、R1およびR2は、それぞれ独立して、水素またはメチル基であり、R3は水素、メチル基、ブチル基、またはシクロヘキシル基であり、さらに好ましくは、R1はメチル基であり、R2は水素であり、R3はメチル基である。 In the above general formula (1), preferably, R 1 and R 2 are independently hydrogen or methyl groups, and R 3 is hydrogen, methyl group, butyl group, or cyclohexyl group, and more preferably. , R 1 is a methyl group, R 2 is a hydrogen, and R 3 is a methyl group.
上記グルタルイミド樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR1、R2、およびR3が異なる複数の種類を含んでいてもよい。 The glutarimide resin is a glutarimide unit, may include only a single type, R 1 in the general formula (1), R 2, and R 3 also include a plurality of different types Good.
グルタルイミド単位は、上記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより、形成することができる。また、グルタルイミド単位は、無水マレイン酸等の酸無水物、または、このような酸無水物と炭素数1〜20の直鎖または分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β−エチレン性不飽和カルボン酸等をイミド化することによっても、形成することができる。 The glutarimide unit can be formed by imidizing the (meth) acrylic acid ester unit represented by the above general formula (2). The glutarimide unit is an acid anhydride such as maleic anhydride, or a half ester of such an acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms; crotonic acid, methacrylic acid, maleic acid. It can also be formed by imidizing α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid, and citraconic acid.
上記一般式(2)において、好ましくは、R4およびR5は、それぞれ独立して、水素またはメチル基であり、R6は水素またはメチル基であり、さらに好ましくは、R4は水素であり、R5はメチル基であり、R6はメチル基である。 In the above general formula (2), preferably R 4 and R 5 are independently hydrogen or methyl groups, R 6 is hydrogen or methyl group, and more preferably R 4 is hydrogen. , R 5 is a methyl group and R 6 is a methyl group.
上記グルタルイミド樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR4、R5、およびR6が異なる複数の種類を含んでいてもよい。 The glutarimide resin is a (meth) acrylic acid ester unit, may include only a single type, R 4 in the general formula (2), R 5, and R 6 is different types of It may be included.
上記グルタルイミド樹脂は、上記一般式(3)で表される芳香族ビニル単位として、好ましくはスチレン、α−メチルスチレン等を含み、さらに好ましくはスチレンを含む。このような芳香族ビニル単位を有することにより、グルタルイミド構造の正の複屈折性を低減し、より低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。 The glutarimide resin preferably contains styrene, α-methylstyrene and the like, and more preferably styrene, as the aromatic vinyl unit represented by the general formula (3). By having such an aromatic vinyl unit, the positive birefringence of the glutarimide structure can be reduced, and a (meth) acrylic resin film having a lower phase difference can be obtained.
上記グルタルイミド樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、R7およびR8が異なる複数の種類を含んでいてもよい。 The glutarimide resin is aromatic vinyl unit, may include only a single kind, and may include a plurality of types of R 7 and R 8 are different.
上記グルタルイミド樹脂における上記グルタルイミド単位の含有量は、例えばR3の構造等に依存して変化させることが好ましい。グルタルイミド単位の含有量は、グルタルイミド樹脂の総構造単位を基準として、好ましくは1重量%〜80重量%であり、より好ましくは1重量%〜70重量%であり、さらに好ましくは1重量%〜60重量%であり、特に好ましくは1重量%〜50重量%である。グルタルイミド単位の含有量がこのような範囲であれば、耐熱性に優れた低位相差の(メタ)アクリル系樹脂フィルムが得られ得る。 The content of the glutarimide unit in the glutarimide resin is preferably varied depending on for example the structure of R 3 or the like. The content of the glutarimide unit is preferably 1% by weight to 80% by weight, more preferably 1% by weight to 70% by weight, still more preferably 1% by weight, based on the total structural unit of the glutarimide resin. It is ~ 60% by weight, and particularly preferably 1% by weight to 50% by weight. When the content of the glutarimide unit is in such a range, a low phase difference (meth) acrylic resin film having excellent heat resistance can be obtained.
上記グルタルイミド樹脂における上記芳香族ビニル単位の含有量は、目的や所望の特性に応じて適切に設定され得る。用途によっては、芳香族ビニル単位の含有量は0であってもよい。芳香族ビニル単位が含まれる場合、その含有量は、グルタルイミド樹脂のグルタルイミド単位を基準として、好ましくは10重量%〜80重量%であり、より好ましくは20重量%〜80重量%であり、さらに好ましくは20重量%〜60重量%であり、特に好ましくは20重量%〜50重量%である。芳香族ビニル単位の含有量がこのような範囲であれば、低位相差、かつ、耐熱性および機械的強度に優れた(メタ)アクリル系樹脂フィルムが得られ得る。 The content of the aromatic vinyl unit in the glutarimide resin can be appropriately set according to the purpose and desired properties. Depending on the application, the content of the aromatic vinyl unit may be zero. When the aromatic vinyl unit is contained, the content thereof is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 80% by weight, based on the glutarimide unit of the glutarimide resin. It is more preferably 20% by weight to 60% by weight, and particularly preferably 20% by weight to 50% by weight. When the content of the aromatic vinyl unit is in such a range, a (meth) acrylic resin film having a low phase difference and excellent heat resistance and mechanical strength can be obtained.
上記グルタルイミド樹脂には、必要に応じて、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の構造単位がさらに共重合されていてもよい。その他の構造単位としては、例えば、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体から構成される構造単位が挙げられる。これらのその他の構造単位は、上記グルタルイミド樹脂中に、直接共重合していてもよいし、グラフト共重合していてもよい。 If necessary, the glutarimide resin may be further copolymerized with other structural units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit. Other structural units include, for example, a structure composed of nitrile-based monomers such as acrylonitrile and methacrylonitrile, and maleimide-based monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. The unit is mentioned. These other structural units may be directly copolymerized or graft-copolymerized in the glutarimide resin.
上記(メタ)アクリル系樹脂フィルムは、目的に応じて任意の適切な添加剤を含有し得る。添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、紫外線吸収剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;可塑剤;滑剤;位相差低減剤等が挙げられる。含有される添加剤の種類、組み合わせ、含有量等は、目的や所望の特性に応じて適切に設定され得る。 The (meth) acrylic resin film may contain any suitable additive depending on the purpose. Examples of the additive include antioxidants such as hindered phenol-based, phosphorus-based and sulfur-based; stabilizers such as light-resistant stabilizers, ultraviolet absorbers, weather-resistant stabilizers and heat stabilizers; glass fibers, carbon fibers and the like. Reinforcing material; Near infrared absorber; Flame retardant such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; Antistatic agent such as anionic, cationic, nonionic surfactant; Inorganic pigment, organic pigment, Coloring agents such as dyes; organic fillers and inorganic fillers; resin modifiers; plasticizers; lubricants; phase difference reducing agents and the like. The type, combination, content, etc. of the additives contained can be appropriately set according to the purpose and desired characteristics.
上記(メタ)アクリル系樹脂フィルムの製造方法としては、特に限定されるものではないが、例えば、(メタ)アクリル系樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、任意の適切な混合方法で充分に混合し、予め熱可塑性樹脂組成物としてから、これをフィルム成形することができる。あるいは、(メタ)アクリル系樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、それぞれ別々の溶液にしてから混合して均一な混合液とした後、フィルム成形してもよい。 The method for producing the (meth) acrylic resin film is not particularly limited, but for example, a (meth) acrylic resin, an ultraviolet absorber, and if necessary, other polymers and additives, etc. Can be sufficiently mixed by any suitable mixing method to prepare a thermoplastic resin composition in advance, and then film-molded. Alternatively, the (meth) acrylic resin, the ultraviolet absorber, and if necessary, other polymers and additives are made into separate solutions and then mixed to obtain a uniform mixed solution, and then film molding is performed. You may.
上記熱可塑性樹脂組成物を製造するには、例えば、オムニミキサー等、任意の適切な混合機で上記のフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いられる混合機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、任意の適切な混合機を用いることができる。 To produce the thermoplastic resin composition, the film raw materials are preblended in any suitable mixer, such as an omni mixer, and then the resulting mixture is extruded and kneaded. In this case, the mixer used for extrusion kneading is not particularly limited, and any suitable mixer such as an extruder such as a single-screw extruder or a twin-screw extruder or a pressure kneader may be used. Can be done.
上記フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法等、任意の適切なフィルム成形法が挙げられる。溶融押出法が好ましい。溶融押出法は溶剤を使用しないので、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。 Examples of the film molding method include any suitable film molding method such as a solution casting method (solution casting method), a melt extrusion method, a calender method, and a compression molding method. The melt extrusion method is preferable. Since the melt extrusion method does not use a solvent, it is possible to reduce the manufacturing cost and the load on the global environment and the working environment due to the solvent.
上記溶融押出法としては、例えば、Tダイ法、インフレーション法等が挙げられる。成形温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。 Examples of the melt extrusion method include a T-die method and an inflation method. The molding temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
上記Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻取って、ロール状のフィルムを得ることができる。この際、巻取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸等を行うこともできる。 When forming a film by the above T-die method, a T-die is attached to the tip of a known single-screw extruder or twin-screw extruder, and the film extruded into a film is wound to obtain a roll-shaped film. Can be done. At this time, uniaxial stretching is also possible by appropriately adjusting the temperature of the take-up roll and adding stretching in the extrusion direction. Further, by stretching the film in the direction perpendicular to the extrusion direction, simultaneous biaxial stretching, sequential biaxial stretching and the like can be performed.
上記(メタ)アクリル系樹脂フィルムは、上記所望の位相差が得られる限りにおいて、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。 The (meth) acrylic resin film may be either an unstretched film or a stretched film as long as the desired phase difference can be obtained. When it is a stretched film, it may be either a uniaxially stretched film or a biaxially stretched film. When it is a biaxially stretched film, it may be either a simultaneous biaxially stretched film or a sequential biaxially stretched film.
上記延伸温度は、フィルム原料である熱可塑性樹脂組成物のガラス転移温度近傍であることが好ましく、具体的には、好ましくは(ガラス転移温度−30℃)〜(ガラス転移温度+30℃)、より好ましくは(ガラス転移温度−20℃)〜(ガラス転移温度+20℃)の範囲内である。延伸温度が(ガラス転移温度−30℃)未満であると、得られるフィルムのヘイズが大きくなり、あるいは、フィルムが裂けたり、割れたりして所定の延伸倍率が得られないおそれがある。逆に、延伸温度が(ガラス転移温度+30℃)を超えると、得られるフィルムの厚みムラが大きくなったり、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質が十分に改善できなかったりする傾向がある。さらに、フィルムがロールに粘着するといったトラブルが発生しやすくなる傾向がある。 The stretching temperature is preferably close to the glass transition temperature of the thermoplastic resin composition which is the raw material of the film, and more specifically, preferably (glass transition temperature −30 ° C.) to (glass transition temperature + 30 ° C.). It is preferably in the range of (glass transition temperature −20 ° C.) to (glass transition temperature + 20 ° C.). If the stretching temperature is less than (glass transition temperature −30 ° C.), the haze of the obtained film may increase, or the film may be torn or cracked to obtain a predetermined stretching ratio. On the contrary, when the stretching temperature exceeds (glass transition temperature + 30 ° C.), the thickness unevenness of the obtained film becomes large, and the mechanical properties such as elongation rate, tear propagation strength, and kneading fatigue cannot be sufficiently improved. Tend to do. Further, there is a tendency that troubles such as the film sticking to the roll are likely to occur.
上記延伸倍率は、好ましくは1.1〜3倍、より好ましくは1.3〜2.5倍である。延伸倍率がこのような範囲であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。結果として、厚みムラが小さく、複屈折が実質的にゼロであり(したがって、位相差が小さく)、さらに、ヘイズが小さいフィルムを製造することができる。 The draw ratio is preferably 1.1 to 3 times, more preferably 1.3 to 2.5 times. When the draw ratio is within such a range, mechanical properties such as film elongation, tear propagation strength, and kneading fatigue resistance can be significantly improved. As a result, it is possible to produce a film having small thickness unevenness, substantially zero birefringence (and therefore small phase difference), and low haze.
上記(メタ)アクリル系樹脂フィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)等を行うことができる。熱処理の条件は、任意の適切な条件を採用し得る。 The (meth) acrylic resin film can be heat-treated (annealed) or the like after the stretching treatment in order to stabilize its optical isotropic property and mechanical properties. As the heat treatment conditions, any suitable conditions may be adopted.
上記(メタ)アクリル系樹脂フィルムの光弾性係数は、好ましくは−3〜−100×10−13Pa−1、より好ましくは−5〜−70×10−13Pa−1であり、さらに好ましくは−15〜−50×10−13Pa−1である。なお、光弾性係数は前述の方法で測定することができる。 The photoelastic coefficient of the (meth) acrylic resin film is preferably -3 to -100 × 10 -13 Pa -1 , more preferably -5 to −70 × 10 -13 Pa -1 , and even more preferably. It is -15 to -50 × 10 -13 Pa -1 . The photoelastic coefficient can be measured by the method described above.
上記(メタ)アクリル系樹脂フィルムの厚みは、好ましくは10μm〜200μmであり、より好ましくは20μm〜100μmである。厚みが10μm未満であると、強度が低下するおそれがある。厚みが200μmを超えると、透明性が低下するおそれがある。 The thickness of the (meth) acrylic resin film is preferably 10 μm to 200 μm, and more preferably 20 μm to 100 μm. If the thickness is less than 10 μm, the strength may decrease. If the thickness exceeds 200 μm, the transparency may decrease.
偏光子の両面に保護フィルムを積層する場合は、前記と同一のフィルムを両面に貼合してもよいし、その他の樹脂フィルムを用いてもよい。例えば、オレフィン系樹脂フィルム、ポリエステル系樹脂フィルム、セルロース系樹脂フィルムが好ましく用いられる。 When the protective film is laminated on both sides of the polarizer, the same film as described above may be laminated on both sides, or another resin film may be used. For example, an olefin resin film, a polyester resin film, and a cellulosic resin film are preferably used.
鎖状ポリオレフィン系樹脂としては、ポリエチレン樹脂(エチレンの単独重合体であるポリエチレン樹脂や、エチレンを主体とする共重合体)、ポリプロピレン樹脂(プロピレンの単独重合体であるポリプロピレン樹脂や、プロピレンを主体とする共重合体)のような鎖状オレフィンの単独重合体の他、2種以上の鎖状オレフィンからなる共重合体を挙げることができる。 Examples of the chain polyolefin resin include polyethylene resin (polyethylene resin which is a homopolymer of ethylene and a copolymer mainly composed of ethylene) and polypropylene resin (polypropylene resin which is a homopolymer of propylene and propylene as a main component). In addition to homopolymers of chain olefins such as (copolymers), copolymers composed of two or more kinds of chain olefins can be mentioned.
環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1−240517号公報、特開平3−14882号公報、特開平3−122137号公報等に記載されている樹脂が挙げられる。環状ポリオレフィン系樹脂の具体例を挙げれば、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレンのような鎖状オレフィンとの共重合体(代表的にはランダム共重合体)、及びこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びにそれらの水素化物である。中でも、環状オレフィンとしてノルボルネンや多環ノルボルネン系モノマーのようなノルボルネン系モノマーを用いたノルボルネン系樹脂が好ましく用いられる。 Cyclic polyolefin resin is a general term for resins that are polymerized using cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin is mentioned. Specific examples of the cyclic polyolefin resin include an open (co) polymer of a cyclic olefin, an addition polymer of a cyclic olefin, and a copolymer of a cyclic olefin and a chain olefin such as ethylene and propylene (typically). Is a random copolymer), a graft polymer obtained by modifying these with an unsaturated carboxylic acid or a derivative thereof, and a hydride thereof. Among them, a norbornene-based resin using a norbornene-based monomer such as norbornene or a polycyclic norbornene-based monomer is preferably used as the cyclic olefin.
ポリエステル系樹脂は、下記セルロースエステル系樹脂を除く、エステル結合を有する樹脂であり、多価カルボン酸又はその誘導体と多価アルコールとの重縮合体からなるものが一般的である。多価カルボン酸又はその誘導体としては2価のジカルボン酸又はその誘導体を用いることができ、例えばテレフタル酸、イソフタル酸、ジメチルテレフタレート、ナフタレンジカルボン酸ジメチルが挙げられる。多価アルコールとしては2価のジオールを用いることができ、例えばエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノールが挙げられる。ポリエステル系樹脂の代表例として、テレフタル酸とエチレングリコールの重縮合体であるポリエチレンテレフタレートが挙げられる。 The polyester-based resin is a resin having an ester bond, excluding the following cellulose ester-based resin, and is generally composed of a polyvalent carboxylic acid or a polycondensate of a derivative thereof and a polyhydric alcohol. As the polyvalent carboxylic acid or a derivative thereof, a divalent dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylic acid. As the polyhydric alcohol, a divalent diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol. A typical example of the polyester resin is polyethylene terephthalate, which is a polycondensate of terephthalic acid and ethylene glycol.
セルロースエステル系樹脂は、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例は、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートを含む。また、これらの共重合物や、水酸基の一部が他の置換基で修飾されたものも挙げられる。これらの中でも、セルローストリアセテート(トリアセチルセルロース)が特に好ましい。 Cellulose ester-based resins are esters of cellulose and fatty acids. Specific examples of the cellulosic ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. In addition, these copolymers and those in which a part of the hydroxyl group is modified with another substituent can also be mentioned. Among these, cellulose triacetate (triacetyl cellulose) is particularly preferable.
保護フィルムの厚みは通常1〜100μmであるが、強度や取扱性等の観点から5〜60μmであることが好ましく、10〜55μmであることがより好ましく、15〜40μmであることがさらに好ましい。 The thickness of the protective film is usually 1 to 100 μm, but is preferably 5 to 60 μm, more preferably 10 to 55 μm, and even more preferably 15 to 40 μm from the viewpoint of strength, handleability, and the like.
上述のように、保護フィルムは、その外面(偏光子とは反対側の面)に、ハードコート層、防眩層、光拡散層、反射防止層、低屈折率層、帯電防止層、防汚層のような表面処理層(コーティング層)を備えるものであってもよい。なお、保護フィルムの厚みは、表面処理層の厚みを含んだものである。 As described above, the protective film has a hard coat layer, an antiglare layer, a light diffusing layer, an antireflection layer, a low refractive index layer, an antistatic layer, and an antifouling layer on the outer surface (the surface opposite to the polarizer). It may be provided with a surface treatment layer (coating layer) such as a layer. The thickness of the protective film includes the thickness of the surface treatment layer.
保護フィルムは、例えば接着剤層または粘着剤層を介して偏光子に貼合することができる。接着剤層を形成する接着剤としては、水系接着剤、活性エネルギー線硬化性接着剤又は熱硬化性接着剤を用いることができ、好ましくは水系接着剤、活性エネルギー線硬化性接着剤である。粘着剤層としては後述のものが使用できる。 The protective film can be attached to the polarizer, for example, via an adhesive layer or an adhesive layer. As the adhesive forming the adhesive layer, a water-based adhesive, an active energy ray-curable adhesive or a thermosetting adhesive can be used, and a water-based adhesive or an active energy ray-curable adhesive is preferable. As the pressure-sensitive adhesive layer, those described later can be used.
水系接着剤としては、ポリビニルアルコール系樹脂水溶液からなる接着剤、水系二液型ウレタン系エマルジョン接着剤等が挙げられる。中でもポリビニルアルコール系樹脂水溶液からなる水系接着剤が好適に用いられる。ポリビニルアルコール系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるポリビニルアルコール系共重合体、又はそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体等を用いることができる。水系接着剤は、アルデヒド化合物(グリオキザール等)、エポキシ化合物、メラミン系化合物、メチロール化合物、イソシアネート化合物、アミン化合物、多価金属塩等の架橋剤を含むことができる。 Examples of the water-based adhesive include an adhesive composed of a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. Of these, a water-based adhesive composed of an aqueous solution of a polyvinyl alcohol-based resin is preferably used. The polyvinyl alcohol-based resin includes a vinyl alcohol homopolymer obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable therewith. A polyvinyl alcohol-based copolymer obtained by saponifying the polymer, or a modified polyvinyl alcohol-based polymer in which the hydroxyl groups thereof are partially modified can be used. The water-based adhesive may contain a cross-linking agent such as an aldehyde compound (glioxal or the like), an epoxy compound, a melamine compound, a methylol compound, an isocyanate compound, an amine compound, or a polyvalent metal salt.
水系接着剤を使用する場合は、偏光子と保護フィルムとを貼合した後、水系接着剤中に含まれる水を除去するための乾燥工程を実施することが好ましい。乾燥工程後、例えば20〜45℃の温度で養生する養生工程を設けてもよい。 When a water-based adhesive is used, it is preferable to carry out a drying step for removing water contained in the water-based adhesive after the polarizer and the protective film are bonded together. After the drying step, a curing step of curing at a temperature of, for example, 20 to 45 ° C. may be provided.
上記活性エネルギー線硬化性接着剤とは、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含有する接着剤であり、好ましくは紫外線硬化性接着剤である。 The active energy ray-curable adhesive is an adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, and is preferably an ultraviolet curable adhesive. Is.
上記硬化性化合物は、カチオン重合性の硬化性化合物やラジカル重合性の硬化性化合物であることができる。カチオン重合性の硬化性化合物としては、例えば、エポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)や、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、又はこれらの組み合わせを挙げることができる。ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)や、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。カチオン重合性の硬化性化合物とラジカル重合性の硬化性化合物とを併用してもよい。活性エネルギー線硬化性接着剤は通常、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤及び/又はラジカル重合開始剤をさらに含む。 The curable compound can be a cationically polymerizable curable compound or a radically polymerizable curable compound. Examples of the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds), or a combination thereof. Examples of the radically polymerizable curable compound include a (meth) acrylic compound (a compound having one or more (meth) acryloyloxy groups in the molecule) and a radically polymerizable double bond. Other vinyl compounds or combinations thereof can be mentioned. A cationically polymerizable curable compound and a radically polymerizable curable compound may be used in combination. The active energy ray-curable adhesive usually further contains a cationic polymerization initiator and / or a radical polymerization initiator for initiating the curing reaction of the curable compound.
偏光子と保護フィルムとを貼合するにあたっては、接着性を高めるために、これらの少なくともいずれか一方の貼合面に表面活性化処理を施してもよい。表面活性化処理としては、コロナ処理、プラズマ処理、放電処理(グロー放電処理等)、火炎処理、オゾン処理、UVオゾン処理、電離活性線処理(紫外線処理、電子線処理等)のような乾式処理;水やアセトン等の溶媒を用いた超音波処理、ケン化処理、アンカーコート処理のような湿式処理を挙げることができる。これらの表面活性化処理は、単独で行ってもよいし、2つ以上を組み合わせてもよい。 When the polarizer and the protective film are bonded, a surface activation treatment may be applied to at least one of these bonding surfaces in order to enhance the adhesiveness. Surface activation treatment includes dry treatment such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionization active ray treatment (ultraviolet ray treatment, electron beam treatment, etc.). Wet treatments such as ultrasonic treatment using a solvent such as water or acetone, saponification treatment, and anchor coating treatment can be mentioned. These surface activation treatments may be performed alone or in combination of two or more.
偏光子の両面に保護フィルムが貼合される場合においてこれらの保護フィルムを貼合するための接着剤は、同種の接着剤であってもよいし異種の接着剤であってもよい。
また、前述の接着剤や接着剤を介した貼合方法については、偏光子と保護フィルムの貼合だけでなく、本願発明の光学積層体に含まれる他光学機能層の貼合に用いてもよい。例えば、光学積層体が2層以上の位相差フィルムを有する場合、位相差フィルム同士の貼合に用いることができる。
When the protective films are bonded to both sides of the polarizer, the adhesive for bonding these protective films may be the same type of adhesive or different types of adhesives.
Further, the above-mentioned bonding method using an adhesive or an adhesive can be used not only for bonding a polarizer and a protective film but also for bonding other optical functional layers contained in the optical laminate of the present invention. Good. For example, when the optical laminate has two or more layers of retardation films, it can be used for bonding the retardation films to each other.
<粘着剤層>
粘着剤層12は、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。粘着剤層の厚みは、通常3〜30μmであり、好ましくは3〜25μmである。
<Adhesive layer>
The pressure-
粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meth) acrylate.
粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
粘着剤層及び粘着剤組成物について、本願発明の光学積層体と有機EL表示素子の貼合に用いる粘着剤層12に用いる例として説明したが、それに限らない。例えば、本願発明の光学積層体と他光学機能層との貼合や、光学積層体中を構成する光学機能層同士の貼合にも用いてもよい。
The pressure-sensitive adhesive layer and the pressure-sensitive adhesive composition have been described as examples of being used for the pressure-
<前面板>
前面板は、偏光板の視認側に配置される。前面板は、接着層を介して偏光板に積層されることができる。接着層としては、例えば前述の粘着剤層や接着剤層が挙げられる。図2に示すように、前面板5は、偏光板3上に、不図示の粘着剤層を介して積層されることができる。前面板5は、図2に示すように、遮光パターン6が形成されていてもよい。
<Front plate>
The front plate is arranged on the visible side of the polarizing plate. The front plate can be laminated on the polarizing plate via the adhesive layer. Examples of the adhesive layer include the above-mentioned adhesive layer and adhesive layer. As shown in FIG. 2, the
前面板としては、ガラス、樹脂フィルムの少なくとも一面にハードコート層を含んでなるものなどが挙げられる。ガラスとしては、例えば、高透過ガラスや、強化ガラスを用いることができる。特に薄い透明面材を使用する場合には、化学強化を施したガラスが好ましい。ガラスの厚みは、例えば100μm〜5mmとすることができる。 Examples of the front plate include those having a hard coat layer on at least one surface of glass or a resin film. As the glass, for example, highly transparent glass or tempered glass can be used. Especially when a thin transparent surface material is used, chemically strengthened glass is preferable. The thickness of the glass can be, for example, 100 μm to 5 mm.
樹脂フィルムの少なくとも一面にハードコート層を含んでなる前面板は、既存のガラスのように硬直ではなく、フレキシブルな特性を有することができる。ハードコート層の厚さは特に限定されず、例えば、5〜100μmであってもよい。 The front plate, which includes a hard coat layer on at least one surface of the resin film, can have a flexible property rather than being rigid like existing glass. The thickness of the hard coat layer is not particularly limited and may be, for example, 5 to 100 μm.
樹脂フィルムとしては、ノルボルネンまたは多環ノルボルネン系単量体のようなシクロオレフィンを含む単量体の単位を有するシクロオレフィン系誘導体、セルロース(ジアセチルセルロース、トリアセチルセルロース、アセチルセルロースブチレート、イソブチルエステルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース)エチレン-酢酸ビニル共重合体、ポリシクロオレフィン、ポリエステル、ポリスチレン、ポリアミド、 ポリエーテルイミド、ポリアクリル、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリウレタン、エポキシなどの高分子で形成されたフィルムであってもよい。樹脂フィルムは、未延伸、1軸または2軸延伸フィルムを使用することができる。これらの高分子はそれぞれ単独または2種以上混合して使用することができる。樹脂フィルムとしては、透明性及び耐熱性に優れたポリアミドイミドフィルムまたはポリイミドフィルム、1軸または2軸延伸ポリエステルフィルム、透明性及び耐熱性に優れるとともに、フィルムの大型化に対応できるシクロオレフィン系誘導体フィルム、ポリメチルメタクリレートフィルム及び透明性と光学的に異方性のないトリアセチルセルロース及びイソブチルエステルセルロースフィルムが好ましい。樹脂フィルムの厚さは5〜200μm、好ましくは、20〜100μmであってもよい。 Examples of the resin film include cycloolefin derivatives having a unit of a monomer containing cycloolefin such as norbornene or polycyclic norbornene-based monomer, and cellulose (diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl ester cellulose). , Propionyl cellulose, butyryl cellulose, acetylpropionyl cellulose) ethylene-vinyl acetate copolymer, polycycloolefin, polyester, polystyrene, polyamide, polyetherimide, polyacrylic, polyimide, polyamideimide, polyethersulfone, polysulfone, polyethylene, Polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate , Polyethylene, a film made of a polymer such as epoxy. As the resin film, an unstretched uniaxial or biaxially stretched film can be used. Each of these polymers can be used alone or in combination of two or more. As the resin film, a polyamideimide film or a polyimide film having excellent transparency and heat resistance, a uniaxial or biaxially stretched polyester film, a cycloolefin derivative film having excellent transparency and heat resistance and capable of adapting to a large size of the film. , Polymethylmethacrylate films and triacetylcellulose and isobutylester cellulose films that are transparent and not optically anisotropic are preferred. The thickness of the resin film may be 5 to 200 μm, preferably 20 to 100 μm.
前記ハードコート層は、光或いは熱エネルギーを照射して架橋構造を形成する反応性材料を含むハードコート組成物の硬化により形成することができる。前記ハードコート層は、光硬化型(メタ)アクリレートモノマー、或いはオリゴマー及び光硬化型エポキシモノマー、或いはオリゴマーを同時に含むハードコート組成物の硬化により形成することができる。前記光硬化型(メタ)アクリレートモノマーは、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートで構成された群から選択された1種以上を含むことができる。前記エポキシ(メタ)アクリレートは、エポキシ化合物に対して(メタ)アクリロイル基を有するカルボン酸を反応させて得ることができる。 The hard coat layer can be formed by curing a hard coat composition containing a reactive material that is irradiated with light or heat energy to form a crosslinked structure. The hard coat layer can be formed by curing a hard coat composition containing a photocurable (meth) acrylate monomer, or an oligomer and a photocurable epoxy monomer, or an oligomer at the same time. The photocurable (meth) acrylate monomer may contain one or more selected from the group composed of epoxy (meth) acrylate, urethane (meth) acrylate and polyester (meth) acrylate. The epoxy (meth) acrylate can be obtained by reacting an epoxy compound with a carboxylic acid having a (meth) acryloyl group.
ハードコート組成物は溶剤、光開始剤及び添加剤からなる群から選択される一つ以上をさらに含むことができる。添加剤は、無機ナノ粒子、レベリング剤及び安定剤からなる群から選択される一つ以上を含むことができ、それ以外にも当該技術分野で一般的に使用される各成分として、例えば、抗酸化剤、UV吸収剤、界面活性剤、潤滑剤、防汚剤などをさらに含むことができる。 The hard coat composition may further comprise one or more selected from the group consisting of solvents, photoinitiators and additives. Additives can include one or more selected from the group consisting of inorganic nanoparticles, leveling agents and stabilizers, and other components commonly used in the art, such as anti. Excipients, UV absorbers, surfactants, lubricants, antifouling agents and the like can be further included.
<遮光パターン>
遮光パターンは、前面板または前面板が適用される表示装置のベゼルまたはハウジングの少なくとも一部として提供することができる。遮光パターンは、前面板における表示素子側に形成することができる。遮光パターンは、表示装置の各配線を隠し使用者に視認されないようにすることができる。遮光パターンの色及び/または材質は特に制限されることはなく、黒色、白色、金色などの多様な色を有する樹脂物質で形成することができる。一実施形態において、遮光パターンの厚さは2μm〜50μmであってもよく、好ましくは4μm〜30μmであってもよく、より好ましくは6μm〜15μmの範囲であってもよい。また、遮光パターンと表示部の間の段差による気泡混入及び境界部の視認を抑制するために、遮光パターンに形状を付与することができる。
<Shading pattern>
The shading pattern can be provided as at least part of the front plate or the bezel or housing of the display device to which the front plate is applied. The light-shielding pattern can be formed on the display element side of the front plate. The shading pattern can hide each wiring of the display device so that it cannot be seen by the user. The color and / or material of the light-shielding pattern is not particularly limited, and can be formed of a resin substance having various colors such as black, white, and gold. In one embodiment, the thickness of the shading pattern may be 2 μm to 50 μm, preferably 4 μm to 30 μm, and more preferably 6 μm to 15 μm. Further, in order to suppress the mixing of air bubbles due to the step between the light-shielding pattern and the display unit and the visibility of the boundary portion, the light-shielding pattern can be shaped.
<タッチセンサ>
タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチセンサは活性領域及び活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は画像表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチセンサは基板と;基板の活性領域に形成された感知パターンと;基板の非活性領域に形成され、感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。基板としては、ガラスや上述の前面板を構成する樹脂フィルムと同様の材料が使用できる。タッチセンサの基板は、靱性が2,000MPa%以上のものがタッチセンサのクラック抑制の面から好ましい。より好ましくは靱性が2,000MPa%以上30,000MPa%以下であってもよい。
<Touch sensor>
The touch sensor is used as an input means. As the touch sensor, various types such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method have been proposed, and any method may be used. Of these, the capacitance method is preferable. The capacitive touch sensor is divided into an active region and an inactive region located outside the active region. The active area is an area corresponding to the area (display unit) on which the screen is displayed on the display panel, the area where the user's touch is sensed, and the inactive area is the area where the screen is not displayed on the image display device ( This is the area corresponding to the non-display part). The touch sensor shall include the substrate; the sensing pattern formed in the active region of the substrate; the sensing pattern formed in the inactive region of the substrate and each sensing line for connecting to an external drive circuit via the pad section. Can be done. As the substrate, the same material as glass or the resin film constituting the above-mentioned front plate can be used. The substrate of the touch sensor preferably has a toughness of 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch sensor. More preferably, the toughness may be 2,000 MPa% or more and 30,000 MPa% or less.
感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは各単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは各単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。感知パターンは周知の透明電極素材を適用することができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4―ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独または2種以上混合して使用することができる。好ましくはITOを使用することができる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、テレニウム、クロムなどを挙げることができる。これらは単独または2種以上混合して使用することができる。 The sensing pattern can include a first pattern formed in the first direction and a second pattern formed in the second direction. The first pattern and the second pattern are arranged in different directions from each other. The first pattern and the second pattern are formed in the same layer, and each pattern must be electrically connected in order to sense the point of being touched. The first pattern is a form in which the unit patterns are connected to each other via a joint, but the second pattern has a structure in which the unit patterns are separated from each other into an island form, so that the second pattern is electrically connected. A separate bridge electrode is required for connection. A well-known transparent electrode material can be applied to the sensing pattern. For example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin oxide oxide (IZTO), cadmium tin oxide (CTO), PEDOT (poly (3,4-). Ethylenedioxythiophene)), carbon nanotubes (CNTs), graphenes, metal wires and the like can be mentioned, and these can be used alone or in admixture of two or more. ITO can be preferably used. The metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, telenium, and chromium. These can be used alone or in combination of two or more.
ブリッジ電極は感知パターン上部に絶縁層を介して絶縁層上部に形成することができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタンまたはこれらのうちの2種以上の合金などの金属で形成することもできる。第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。絶縁層は第1パターンの継ぎ手とブリッジ電極の間にのみ形成することもでき、感知パターンを覆う層の構造に形成することもできる。後者の場合は、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。
タッチセンサはパターンが形成されたパターン領域と、パターンが形成されていない非パターン領域間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができ、光学調節層は無機絶縁物質または有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。光硬化組成物は無機粒子をさらに含むことができる。無機粒子によって光学調節層の屈折率が上昇することができる。
The bridge electrode can be formed on the upper part of the insulating layer via the insulating layer on the upper part of the sensing pattern, the bridge electrode is formed on the substrate, and the insulating layer and the sensing pattern can be formed on the bridge electrode. The bridge electrode can also be made of the same material as the sensing pattern and is made of metals such as molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium or alloys of two or more of these. You can also do it. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode. The insulating layer can be formed only between the joint of the first pattern and the bridge electrode, or can be formed in a layer structure covering the sensing pattern. In the latter case, the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer.
The touch sensor has a difference in transmittance between a patterned region in which a pattern is formed and a non-patterned region in which a pattern is not formed, specifically, a difference in light transmittance induced by a difference in refractive index in these regions. An optical control layer can be further included between the substrate and the electrode as a means for appropriately compensating for the above, and the optical control layer can include an inorganic insulating material or an organic insulating material. The optical control layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate. The photocurable composition can further contain inorganic particles. Inorganic particles can increase the refractive index of the optical control layer.
光硬化性有機バインダーは、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。無機粒子は、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などを含むことができる。光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。 The photocurable organic binder can contain, for example, a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer. The photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit. The inorganic particles can include, for example, zirconia particles, titania particles, alumina particles and the like. The photocuring composition may further contain each additive such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
<光学積層体の製造方法>
図1(a)〜(c)に示した光学積層体を例に、光学積層体の製造方法を説明する。
光学積層体100(図1(a))は、例えば次のように製造することができる。基材上に配向層11を形成し、配向層11上に重合性液晶化合物を含む塗工液を塗工する。重合性液晶化合物を配向させた状態で、加熱処理または活性エネルギー線を照射し、重合性液晶化合物を硬化させる。重合性液晶化合物が硬化し、位相差層10を形成した後、基材を剥離し、剥離フィルム上に形成された粘着剤層12を配向層11における基材を剥離した面に積層させる。
図1(b)に示した光学積層体101の場合、図1(a)に示した光学積層体100と位相差層10を形成するところまでは同様であり、位相差層10を形成後、位相差層10と第2の位相差フィルムを接着剤層13を介して積層させる。光学積層体100と位相差層10が長尺状である場合は、接着剤層13を介して、ロール・トゥ・ロールでそれぞれの部材を貼り合わせてもよい。光学積層体100と第2の位相差フィルムを積層した後、基材を剥離し、剥離フィルム上に形成された粘着剤層12を配向層11における基材を剥離した面に積層させる。
図1(c)に示した光学積層体102の場合、まず偏光板3を製造する。偏光板3は、偏光子と保護フィルムとを、それぞれ接着剤層を介して積層して製造することができる。保護フィルムは、偏光子の少なくとも一方の面に積層されていればよい。偏光板は、長尺の部材を準備し、ロール・トゥ・ロールでそれぞれの部材を貼り合わせた後、所定形状に裁断して製造してもよいし、それぞれの部材を所定の形状に裁断した後、貼り合わせてもよい。偏光子に保護フィルムを貼り合わせた後、加熱工程や調湿工程を設けてもよい。位相差フィルムは、図1(b)の光学積層体101と同様、第2の位相差フィルムを積層したところまでは同じであり、第2の位相差フィルムの接着剤層13とは反対側の面に接着剤層または粘着剤層を介して偏光板3と積層させる。偏光板3や光学積層体101が長尺状である場合は、ロール・トゥ・ロールでそれぞれの部材を貼り合わせてもよい。偏光板3を積層後、基材を剥離し、剥離フィルム上に形成された粘着剤層12を配向層11における基材を剥離した面に積層させる。
<Manufacturing method of optical laminate>
A method for manufacturing the optical laminate will be described by taking the optical laminate shown in FIGS. 1 (a) to 1 (c) as an example.
The optical laminate 100 (FIG. 1A) can be manufactured, for example, as follows. The
In the case of the
In the case of the
そして、粘着剤層12上に積層された剥離フィルムを剥離し、粘着剤層12を介して光学積層体と有機EL表示素子を貼合することにより、有機EL表示装置を作製することができる。
Then, the organic EL display device can be manufactured by peeling off the release film laminated on the pressure-
<用途>
本発明の光学積層体は、さまざまな表示装置に用いることができる。表示装置とは、表示素子を有する装置であり、発光源として発光素子又は発光装置を含む。表示装置としては、例えば、液晶表示装置、有機EL表示装置、無機エレクトロルミネッセンス(以下、無機ELともいう)表示装置、電子放出表示装置(例えば電場放出表示装置(FEDともいう)、表面電界放出表示装置(SEDともいう))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLVともいう)表示装置、デジタルマイクロミラーデバイス(DMDともいう)を有する表示装置)及び圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。光学積層体は、特に有機EL表示装置又は無機EL表示装置に特に有効に用いることができる。
<Use>
The optical laminate of the present invention can be used in various display devices. The display device is a device having a display element, and includes a light emitting element or a light emitting device as a light emitting source. Examples of the display device include a liquid crystal display device, an organic EL display device, an inorganic electroluminescence (hereinafter, also referred to as inorganic EL) display device, an electron emission display device (for example, an electric field emission display device (also referred to as FED), and a surface electric field emission display. Device (also called SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection type display device (for example, grating light valve (GLV) display device, digital micromirror device (DMD)) (Also referred to as), a piezoelectric ceramic display, and the like. The liquid crystal display device includes any of a transmissive liquid crystal display device, a transflective liquid crystal display device, and the like. These display devices include a two-dimensional image. It may be a display device for displaying a three-dimensional image, or a three-dimensional display device for displaying a three-dimensional image. The optical laminate can be particularly effectively used for an organic EL display device or an inorganic EL display device. ..
図2において、有機EL表示装置103は、位相差フィルム1上に積層された粘着剤層12を介して、光学積層体が有機EL表示素子4に積層された層構成を有する。
In FIG. 2, the organic
また、表示装置は、フレキシブル表示装置であることもでき、フレキシブル有機EL表示装置であることができる。フレキシブル有機EL表示装置は、本発明の光学積層体と、有機EL表示素子とを含む。有機EL表示素子に対して視認側に本発明の光学積層体が配置され、折り曲げ可能に構成されている。折り曲げ可能とは、クラック及び破断を生じさせずに屈曲できることを意味する。本発明の光学積層体をフレキシブル有機EL表示装置に適用する場合、光学積層体は、前面板およびタッチセンサの少なくとも一方を備えることが好ましい。 Further, the display device can be a flexible display device, or can be a flexible organic EL display device. The flexible organic EL display device includes the optical laminate of the present invention and an organic EL display element. The optical laminate of the present invention is arranged on the visual side with respect to the organic EL display element, and is configured to be bendable. Bendable means that it can be bent without causing cracks and breaks. When the optical laminate of the present invention is applied to a flexible organic EL display device, the optical laminate preferably includes at least one of a front plate and a touch sensor.
具体的な光学積層体としては、視認側から前面板、偏光板、位相差フィルム、タッチセンサの順に積層された態様、または視認側から前面板、タッチセンサ、偏光板、位相差フィルムの順に積層された態様が挙げられる。タッチセンサの視認側に偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、前面板、偏光板、位相差フィルム、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。 As a specific optical laminate, the front plate, the polarizing plate, the retardation film, and the touch sensor are laminated in this order from the visual side, or the front plate, the touch sensor, the polarizing plate, and the retardation film are laminated in this order from the visual side. Examples are mentioned. The presence of the polarizing plate on the visual side of the touch sensor is preferable because the pattern of the touch sensor is less likely to be visually recognized and the visibility of the displayed image is improved. Each member can be laminated using an adhesive, an adhesive, or the like. Further, a light-shielding pattern formed on at least one surface of any layer of the front plate, the polarizing plate, the retardation film, and the touch sensor can be provided.
以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す部及び%は、特記しないかぎり重量基準である。なお、以下の例における各物性の測定は、次の方法で行った。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples. In the examples, the part indicating the content or the amount used and% are based on weight unless otherwise specified. The physical properties of each of the following examples were measured by the following methods.
(1)フィルム厚みの測定
株式会社ニコン製のデジタルマイクロメーターであるMH−15Mを用いて測定した。
(1) Measurement of film thickness Measurement was performed using a digital micrometer MH-15M manufactured by Nikon Corporation.
(突刺し弾性率の測定)
実施例、比較例で得られた基材フィルム付き第1の位相差フィルムを、縦40mm×横40mmの断片を切り出した。また縦40mm×横40mmの糊付き台紙を用意した。この糊付き台紙は、中央部が30mm×30mmの正方形で切り抜かれている。位相差層1の表面が糊付き台紙における糊に接するように、上記積層体を糊付き台紙に貼合した後、第1の位相差フィルムから基材を剥離して、突刺し試験用サンプルを作製した。
(Measurement of puncture elastic modulus)
A fragment of 40 mm in length × 40 mm in width was cut out from the first retardation film with a base film obtained in Examples and Comparative Examples. In addition, a glued mount having a length of 40 mm and a width of 40 mm was prepared. This glued mount is cut out in a square having a central portion of 30 mm × 30 mm. After the laminate is attached to the glued mount so that the surface of the
突刺し弾性率の測定は、次のように行った。カトーテック株式会社製の“NDG5 突き刺し試験機”にニードルを取り付けて行った。ニードルを突刺し試験用サンプルの主面(位相差層1の表面)に対して垂直に突刺し、突刺し試験用サンプルが破断する直前の応力F(g)とそのときのひずみ量S(mm)を算出し、突刺し弾性率(g/mm)を応力F(g)/ひずみ量S(mm)にて算出した。ニードルとしては、先端径が1mmφ、0.5Rであるものを使用した。ニードルを突き刺す速度は、0.33cm/秒とした。位相差フィルム1の突刺し弾性率を表1に示す。測定は温度23℃、湿度50%の室温環境下で行った。
The puncture elastic modulus was measured as follows. The needle was attached to the "NDG5 piercing tester" manufactured by Kato Tech Co., Ltd. The needle is pierced perpendicularly to the main surface (surface of the retardation layer 1) of the piercing test sample, and the stress F (g) immediately before the piercing test sample breaks and the strain amount S (mm) at that time. ) Was calculated, and the puncture elastic modulus (g / mm) was calculated by stress F (g) / strain amount S (mm). As the needle, a needle having a tip diameter of 1 mmφ and 0.5R was used. The speed at which the needle was pierced was 0.33 cm / sec. Table 1 shows the puncture elastic modulus of the
(3)耐摩耗性評価(スチールウール硬度)
位相差フィルムの配向層表面の耐摩耗性の評価をスチールウール試験にて行った。
スチールウール試験機(大栄精機社製)にて、クリーンルーム用ワイパー(旭化成株式会社製 BEMCOT AZ-8)をガラス板上に配置した環状ポリオレフィン系樹脂(COP)基材(厚み20μm)上に各実施例、比較例と同様の方法で製膜した配向層表面に500gの荷重で接触させ、40r/minの速度で4往復摩耗試験をおこない、蛍光灯下で目視にて発生したキズの本数を数えた。
(3) Abrasion resistance evaluation (steel wool hardness)
The wear resistance of the surface of the alignment layer of the retardation film was evaluated by a steel wool test.
A steel wool tester (manufactured by Daiei Seiki Co., Ltd.) was used to carry out each operation on a cyclic polyolefin resin (COP) substrate (thickness 20 μm) in which a wiper for a clean room (BEMCOT AZ-8 manufactured by Asahi Kasei Co., Ltd.) was placed on a glass plate. For example, the surface of the alignment layer formed by the same method as in the comparative example was brought into contact with a load of 500 g, a four-reciprocating wear test was performed at a speed of 40 r / min, and the number of scratches visually generated under a fluorescent lamp was counted. It was.
(4)耐摩耗性評価(鉛筆硬度評価)
位相差フィルムの配向層表面の表面硬度評価を鉛筆硬度試験にて行った。
鉛筆硬度試験器(安田精機製作所製No.553−M1)にて、試験用の鉛筆(三菱鉛筆株式会社製ユニスター)をガラス板上に配置した環状ポリオレフィン系樹脂(COP)基材(厚み20μm)上に各実施例、比較例と同様の方法で製膜した配向層表面に500gの荷重で斜め45度から接触させ、0.5mm/secの速度で硬度試験をおこない、蛍光灯下で目視にて発生したキズの有無を数えた。5本試験の内、1本以下の傷つきとなる硬度を確認した。
(4) Abrasion resistance evaluation (pencil hardness evaluation)
The surface hardness of the surface of the alignment layer of the retardation film was evaluated by a pencil hardness test.
Cyclic polyolefin resin (COP) base material (thickness 20 μm) in which a pencil for testing (Unistar manufactured by Mitsubishi Pencil Co., Ltd.) is placed on a glass plate with a pencil hardness tester (No. 535-M1 manufactured by Yasuda Seiki Seisakusho). The surface of the alignment layer formed by the same method as in each of the examples and comparative examples was brought into contact with the surface of the alignment layer at an angle of 45 degrees with a load of 500 g, and a hardness test was performed at a speed of 0.5 mm / sec, and visually observed under a fluorescent lamp. The presence or absence of scratches that occurred was counted. Of the five tests, one or less was confirmed to have a hardness that would cause scratches.
[実施例1]
(第1の位相差フィルム1の作製)
配向層形成用の組成物として、
ポリエチレングリコールジ(メタ)アクリレート(新中村化学工業(株)製 A−600)10.0重量部と、
トリメチロールプロパントリアクリレート(新中村化学工業(株)製 A−TMPT)10.0重量部と、
1,6−ヘキサンジオールジ(メタ)アクリレート(新中村化学工業(株)製 A−HD−N)10.0重量部と、
光重合開始材としてイルガキュア907(BASF社製 Irg−907)1.50重量部とを、
溶媒メチルエチルケトン 70.0重量部中で溶解させ、配向層形成用塗工液を調整した。
[Example 1]
(Preparation of the first retardation film 1)
As a composition for forming an oriented layer,
Polyethylene glycol di (meth) acrylate (A-600 manufactured by Shin Nakamura Chemical Industry Co., Ltd.) 10.0 parts by weight and
Trimethylolpropane triacrylate (A-TMPT manufactured by Shin Nakamura Chemical Industry Co., Ltd.) 10.0 parts by weight and
10.0 parts by weight of 1,6-hexanediol di (meth) acrylate (A-HD-N manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
1.50 parts by weight of Irgacure 907 (Irg-907 manufactured by BASF) as a photopolymerization initiator.
Solvent Methyl ethyl ketone Dissolved in 70.0 parts by weight to prepare a coating solution for forming an orientation layer.
基材フィルムとして厚さ20μmの長尺状の環状オレフィン系樹脂フィルム(日本ゼオン株式会社製)を準備し、基材フィルムの片面に、得られた配向層形成用塗工液をバーコーターにて塗布した。
塗工後の塗布層に温度80℃で60秒間の熱処理を施した後、紫外線(UVB)を220mJ/cm2照射し、配向層形成用の組成物を重合、硬化させて、基材フィルム上に厚さ3.5μmの配向層1を形成した。
A long cyclic olefin resin film (manufactured by Nippon Zeon Corporation) with a thickness of 20 μm was prepared as a base film, and the obtained coating liquid for forming an alignment layer was applied to one side of the base film with a bar coater. It was applied.
After the coating layer after coating is heat-treated at a temperature of 80 ° C. for 60 seconds, it is irradiated with ultraviolet rays (UVB) at 220 mJ / cm 2 to polymerize and cure the composition for forming an orientation layer, and then on the substrate film. An oriented
位相差形成用の組成物として、光重合性ネマチック液晶化合物(メルク社製 RMM28B)20.0重量部と、光重合開始剤としてイルガキュア907(BASF社製 Irg−907)1.0重量部とを、溶媒のプロピレングリコールモノメチルエーテルアセテート80.0重量部中に溶解させ、位相差層形成用塗工液を調整した。
先に得られた配向層上に位相差層形成用塗工液を塗布し、塗布層に温度80℃で60秒間の熱処理を施した。その後、紫外線(UVB)を220mJ/cm2照射し、位相差層形成用の組成物を重合、硬化させて、配向層上に厚さ0.7μmの位相差層1を形成した。この様にして基材フィルム上に配向層1と位相差層1からなる第1の位相差フィルム1を得た。この第1の位相差フィルム1は厚み方向に位相差を示した。また、基材フィルムから第1の位相差フィルム1が剥離可能であることを確認した。
20.0 parts by weight of a photopolymerizable nematic liquid crystal compound (RMM28B manufactured by Merck) and 1.0 part by weight of Irgacure 907 (Irg-907 manufactured by BASF) as a photopolymerization initiator as a composition for forming a retardation. , The solvent was dissolved in 80.0 parts by weight of propylene glycol monomethyl ether acetate to prepare a coating solution for forming a retardation layer.
A coating liquid for forming a retardation layer was applied onto the previously obtained alignment layer, and the coating layer was heat-treated at a temperature of 80 ° C. for 60 seconds. Then, it was irradiated with ultraviolet rays (UVB) at 220 mJ / cm 2 to polymerize and cure the composition for forming a retardation layer to form a
(偏光板の作製)
厚み20μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み8μmの吸収型偏光子フィルムを得た。得られた偏光子フィルムの両面にポリビニルアルコール系樹脂水溶液からなる水系接着剤を塗布し、偏光子フィルムの片面に保護フィルム(ゼオン製COPフィルム ゼオノアZF14)ともう一方の面に保護フィルム(富士フィルム製TACフィルム フジタックTJ25)貼り合わせて両面保護フィルム付偏光板を得た。
(Preparation of polarizing plate)
A 20 μm-thick polyvinyl alcohol film (average degree of polymerization of about 2400, saponification degree of 99.9 mol% or more) was uniaxially stretched about 4 times by dry stretching, and further uniaxially stretched to pure water at 40 ° C. while maintaining a tense state. After immersing for 40 seconds, the dyeing treatment was performed by immersing in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds and then drying at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while holding the film at a tension of 300 N, iodine is adsorbed and oriented on the polyvinyl alcohol film. An absorption type polarizer film having a thickness of 8 μm was obtained. A water-based adhesive composed of a polyvinyl alcohol-based resin aqueous solution is applied to both sides of the obtained polarizer film, and a protective film (Zeon COP film Zeonoa ZF14) is applied to one side of the polarizer film and a protective film (Fuji film) is applied to the other side. TAC film Fujitac TJ25) was laminated to obtain a polarizing plate with a double-sided protective film.
(光学積層体の作製)
両面剥離フィルム付きシート状粘着剤(厚み25μm リンテック株式会社製P−3132)の一方の剥離フィルムを剥離し、得られた偏光板のTACフィルム側表面に粘着層剤を介して貼り合わせた後、シート状粘着剤の他方側の剥離フィルムを剥離し、粘着剤層を偏光板のTACフィルム側表面に積層させた。積層された粘着剤層を介して第1の位相差フィルムの位相差層1側表面と偏光板を貼り合わせた後、第1の位相差フィルム1から基材フィルムを剥離した。さらに先の両面剥離フィルム付きシート状粘着剤の一方の剥離フィルムを剥離した後、第1の位相差フィルム1の基材フィルムを剥離した面に粘着剤層を介して貼り合わせ、積層構造が、偏光板/粘着剤層/第1の位相差フィルム1/粘着剤層/剥離フィルムである光学積層体を得た。
(Preparation of optical laminate)
One of the release films of the sheet-like adhesive (thickness 25 μm, manufactured by Lintec Corporation, P-3132) with a double-sided release film is peeled off, and the obtained polarizing plate is bonded to the TAC film side surface of the obtained polarizing plate via an adhesive layering agent. The release film on the other side of the sheet-like pressure-sensitive adhesive was peeled off, and the pressure-sensitive adhesive layer was laminated on the surface of the polarizing plate on the TAC film side. The surface of the first retardation film on the
[実施例2、3、比較例1、2]
第1の位相差フィルムを構成する配向層1と位相差層1の形成用の組成物を表1の配合比、厚みを変えた以外は、実施例1と同様の方法で実施例2、3、比較例1、2の光学積層体を作製した。また、実施例2、3、比較例1、2で得られた第1の位相差フィルムは、厚み方向に位相差を示した。
[Examples 2 and 3, Comparative Examples 1 and 2]
Examples 2 and 3 were carried out in the same manner as in Example 1 except that the composition for forming the
[実施例4]
配向層形成用の組成物を表1の材料および配合比として配向層形成用塗工液を作成し、その塗工液の塗布層に温度100℃で120秒間の熱処理を施し、硬化させた。
それ以外は実施例1と同様の方法で光学積層体を作製した。また、実施例4で得られた第1の位相差フィルムは、厚み方向に位相差を示した。
[Example 4]
A coating liquid for forming an orientation layer was prepared using the composition for forming an alignment layer as the material and compounding ratio in Table 1, and the coating layer of the coating liquid was heat-treated at a temperature of 100 ° C. for 120 seconds to be cured.
An optical laminate was produced in the same manner as in Example 1 except for the above. Further, the first retardation film obtained in Example 4 showed a retardation in the thickness direction.
[実施例5]
[第1の位相差フィルム2の作製]
下記構造の光配向性材料5.0重量部(重量平均分子量:30,000)とシクロペンタノン(溶媒)95.0重量部とを混合し、得られた混合物を80℃で1時間攪拌することにより、配向膜形成用組成物を得た。
[Example 5]
[Preparation of the first retardation film 2]
5.0 parts by weight (weight average molecular weight: 30,000) of the photo-oriented material having the following structure and 95.0 parts by weight of cyclopentanone (solvent) are mixed, and the obtained mixture is stirred at 80 ° C. for 1 hour. As a result, a composition for forming an alignment film was obtained.
以下に示す重合性液晶化合物A、及び重合性液晶化合物Bを9:1の質量比で混合した混合物10重量部に対して、レベリング剤(F−556;DIC社製)を0.1重量部、及び重合開始剤である2−ジメチルアミノ−2−ベンジル−1−(4−モルホリノフェニル)ブタン−1−オン(「イルガキュア369(Irg369)」、BASFジャパン株式会社製)を0.6重量部添加した。 0.1 part by weight of the leveling agent (F-556; manufactured by DIC) with respect to 10 parts by weight of the mixture obtained by mixing the polymerizable liquid crystal compound A and the polymerizable liquid crystal compound B shown below at a mass ratio of 9: 1. , And the polymerization initiator 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one ("Irgacure 369 (Irg369)", manufactured by BASF Japan Co., Ltd.) by 0.6 parts by mass. Added.
さらに、固形分濃度が13%となるようにN−メチル−2−ピロリドン(NMP)を添加し、80℃で1時間攪拌することにより、液晶硬化膜形成用組成物を得た。 Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration was 13%, and the mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a liquid crystal cured film.
重合性液晶化合物Aは、特開2010−31223号公報に記載の方法で製造した。また、重合性液晶化合物Bは、特開2009−173893号公報に記載の方法に準じて製造した。以下にそれぞれの分子構造を示す。 The polymerizable liquid crystal compound A was produced by the method described in JP-A-2010-31223. Further, the polymerizable liquid crystal compound B was produced according to the method described in JP-A-2009-173893. The molecular structure of each is shown below.
(重合性液晶化合物A)
(Polymerizable liquid crystal compound A)
(重合性液晶化合物B)
(Polymerizable liquid crystal compound B)
〔基材、配向膜、重合性液晶化合物が硬化した層からなる積層体の製造〕
基材として50μm厚のシクロオレフィン系フィルム〔日本ゼオン株式会社製の商品名「ZF−14−50」〕上にコロナ処理を実施した。コロナ処理が施された面に、配向膜形成用組成物をバーコーターで塗布した。塗布膜を80℃で1分間乾燥した。乾燥した塗布膜に、偏光UV照射装置〔ウシオ電機株式会社の商品名「SPOT CURE SP−9」〕を用いて、軸角度45゜にて偏光UVを照射し、配向膜を得た。偏光UVの照射は、波長313nmにおける積算光量が100mJ/cm2となるように行われた。
[Manufacture of a laminate consisting of a base material, an alignment film, and a layer obtained by curing a polymerizable liquid crystal compound]
Corona treatment was carried out on a 50 μm-thick cycloolefin-based film [trade name “ZF-14-50” manufactured by Nippon Zeon Corporation] as a base material. The composition for forming an alignment film was applied to the surface treated with corona with a bar coater. The coating film was dried at 80 ° C. for 1 minute. The dried coating film was irradiated with polarized UV at an axial angle of 45 ° using a polarized UV irradiation device [trade name “SPOT CURE SP-9” of Ushio Electric Co., Ltd.] to obtain an alignment film. The irradiation of polarized UV was performed so that the integrated light intensity at a wavelength of 313 nm was 100 mJ / cm 2.
続いて、配向膜上に、液晶硬化膜形成用組成物を、バーコーターを用いて塗布した。塗布膜を120℃で1分間乾燥した。乾燥した塗布膜に、高圧水銀ランプ〔ウシオ電機株式会社の商品名:「ユニキュアVB−15201BY−A」〕を用いて、紫外線を照射した。紫外線の照射工程は、波長365nmにおける積算光量が250mJ/cm2となるように、窒素雰囲気下で行われた。照射直後に冷却工程として、硬化膜を5℃に設定したオーブンに20秒間投入した。オーブン取り出し後、すぐに再度前記紫外線照射工程および冷却工程を実施し、基材上に配向膜、および重合性液晶化合物が硬化した層からなる第1の位相差フィルム2を得た。この第1の位相差フィルム2は面内方向に位相差を示した。得られた第1の位相差フィルム2を第1の位相差フィルム1の代わりに用いて、実施例1と同様にして光学積層体を得た。
Subsequently, the composition for forming a liquid crystal cured film was applied onto the alignment film using a bar coater. The coating film was dried at 120 ° C. for 1 minute. The dried coating film was irradiated with ultraviolet rays using a high-pressure mercury lamp [trade name of Ushio, Inc.: "Unicure VB-15201BY-A"]. The ultraviolet irradiation step was performed in a nitrogen atmosphere so that the integrated light intensity at a wavelength of 365 nm was 250 mJ / cm 2. Immediately after the irradiation, as a cooling step, the cured film was placed in an oven set at 5 ° C. for 20 seconds. Immediately after taking out the oven, the ultraviolet irradiation step and the cooling step were carried out again to obtain a
[実施例6]
比較例1と同じ方法で第1の位相差フィルムを作成し、光学積層体を作製する際に配向層1と位相差層1の間で剥離し、第1の位相差フィルムを位相差層1のみとした以外は実施例1と同じ方法で実施例6の光学積層体を作製した。
[Example 6]
A first retardation film is produced by the same method as in Comparative Example 1, and when the optical laminate is produced, the first retardation film is peeled off between the
実施例1〜6、比較例1、2にて得られた光学積層体について剥離フィルムを剥離し、露出した粘着剤層を介してそれぞれガラス板に貼合し、図3で示す状態とした上で、次に示す方法で耐熱衝撃性試験を行った。
荷重 10Nに設定したエリクセンペン(エリクセン社製 型番318)のペン先を光学積層体中の偏光板におけるガラス板側とは反対側の面に押し当て起点とした。同様の起点を他2カ所(計3カ所)等間隔で設けた。その後、−20℃ 30分と60℃ 30分を1サイクルとする熱衝撃性試験(ESPEC CORP.製 品名:TSA−303EL−W)を数サイクル実施した。熱衝撃性試験前に光学積層体中の偏光板表面にエリクセンペンを押し当てた各起点から生じたクラックの長さを測定し、3か所の起点のクラック測定結果の平均値をクラック長さ(mm)とした。
The release films of the optical laminates obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were peeled off and bonded to a glass plate via an exposed adhesive layer to obtain the state shown in FIG. Then, the thermal shock resistance test was carried out by the following method.
The pen tip of the Eriksen pen (model number 318 manufactured by Eriksen Co., Ltd.) set to a load of 10 N was pressed against the surface of the polarizing plate in the optical laminate opposite to the glass plate side as the starting point. Similar starting points were provided at equal intervals at two other locations (three locations in total). Then, several cycles of a thermal shock resistance test (ESPEC CORP. Product name: TSA-303EL-W) were carried out with one cycle of -20 ° C for 30 minutes and 60 ° C for 30 minutes. Before the thermal shock resistance test, the length of cracks generated from each starting point where the Elixen pen was pressed against the surface of the polarizing plate in the optical laminate was measured, and the average value of the crack measurement results at the three starting points was calculated as the crack length. It was set to (mm).
実施例1〜6、比較例1、2で得られた第1の位相差フィルムの突刺し弾性率、膜厚、耐摩耗性評価(スチールウール、鉛筆硬度)及び光学積層体の熱衝撃試験の結果について、表2に示す。実施例1〜5、比較例1、2の第1の位相差フィルムの突刺し弾性率は、第1の位相差フィルムと基材フィルムの積層体より、基材フィルムを剥離した後、第1の位相差フィルム(位相差層1+配向層1)に対して、突刺し冶具を位相差層1側から押圧することにより測定した。実施例6の第1の位相差フィルムは、基材フィルムと配向層1を位相差層1より剥離し、第1の位相差フィルム(位相差層1のみ)に対し測定した結果を示した。また、耐摩耗性評価については、実施例1、2、比較例1の配向層について実施した。
The puncture elastic modulus, film thickness, abrasion resistance evaluation (steel wool, pencil hardness) of the first retardation film obtained in Examples 1 to 6 and Comparative Examples 1 and 2 and the thermal impact test of the optical laminate were performed. The results are shown in Table 2. The puncture elastic modulus of the first retardation films of Examples 1 to 5 and Comparative Examples 1 and 2 was determined by first peeling the base film from the laminate of the first retardation film and the base film. The measurement was performed by pressing the piercing jig from the
表3に、各実施例および各比較例で得た位相差フィルムにおける
配向層の厚さLALと、配向層を構成する樹脂における重合性化合物iに由来する単位の含有量Cwi、当該重合性化合物iの分子量Miおよび官能基数Niを示す。配向層の重合性基量は、計算式(A−1)
により算出された値N1である。
Table 3, the examples and the thickness L AL alignment layer in the phase difference film obtained in Comparative Example, the content of units derived from the polymerizable compound i in the resin constituting the orientation layer Cwi, the polymerizable The molecular weight Mi and the number of functional groups Ni of the compound i are shown. The amount of polymerizable groups in the oriented layer is calculated by the calculation formula (A-1).
It is a value N1 calculated by.
また、表3に、各実施例および各比較例で得た位相差フィルムにおける位相差層の厚さLLCと、位相差層を構成する重合性液晶化合物jに由来する単位の含有量Cwjと、当該重合性液晶化合物jの分子量Mjおよび官能基数Njとを示す。位相差層の重合性基量は、計算式(A−2)
により算出される値N2である。
そして表3に、前記の計算式(A)により算出された重合性基量Nを併せて示す。
Further, in Table 3, and the thickness L LC of the retardation layer in the phase difference film obtained in each of Examples and Comparative Examples, the content Cwj of units derived from the polymerizable liquid crystal compound j constituting the retardation layer , The molecular weight Mj and the number of functional groups Nj of the polymerizable liquid crystal compound j are shown. The amount of polymerizable groups in the retardation layer is calculated by the calculation formula (A-2).
It is a value N2 calculated by.
Table 3 also shows the amount of polymerizable groups N calculated by the above formula (A).
本発明によれば、位相差フィルムを備える光学積層体であって、急激な温度変化を受ける環境下でも、クラックの発生を抑制できる光学積層体を提供することができるので有用である。 According to the present invention, it is useful because it is possible to provide an optical laminate provided with a retardation film, which can suppress the occurrence of cracks even in an environment subject to a sudden temperature change.
1 第1の位相差フィルム(位相差フィルム)
2 第2の位相差フィルム
3 偏光板
4 有機EL表示素子
5 前面板
6 遮光パターン
10 位相差層
11 配向層
12 粘着剤層
13 接着剤層
14 ガラス板
100,101,102,104 光学積層体
103 有機EL表示装置
1 First retardation film (phase difference film)
2
Claims (6)
前記位相差フィルムは、
フィルム面に対し突刺し冶具の先端を垂直に押圧し、破断が生じたときの、
前記突刺し冶具の先端から前記位相差フィルムへ加えられた応力F(g)と前記位相差フィルムのひずみ量S(mm)を用いて下記式(1)にて算出される突刺し弾性率が50g/mm以下であることを特徴とする光学積層体。
(1)突刺し弾性率(g/mm)=F(g)/S(mm)
An optical laminate having a retardation film
The retardation film is
When the tip of the piercing jig is pressed perpendicularly to the film surface and breakage occurs,
The puncture elastic modulus calculated by the following equation (1) using the stress F (g) applied to the retardation film from the tip of the puncture jig and the strain amount S (mm) of the retardation film. An optical laminate characterized by being 50 g / mm or less.
(1) Puncture elastic modulus (g / mm) = F (g) / S (mm)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022186280A JP2023029876A (en) | 2018-06-11 | 2022-11-22 | optical laminate |
JP2024001699A JP2024029208A (en) | 2018-06-11 | 2024-01-10 | optical laminate |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018110920 | 2018-06-11 | ||
JP2018110920 | 2018-06-11 | ||
JP2018130491 | 2018-07-10 | ||
JP2018130491 | 2018-07-10 | ||
JP2018143524 | 2018-07-31 | ||
JP2018143524 | 2018-07-31 | ||
JP2019034019A JP2020024364A (en) | 2018-06-11 | 2019-02-27 | Optical laminate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019034019A Division JP2020024364A (en) | 2018-06-11 | 2019-02-27 | Optical laminate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022186280A Division JP2023029876A (en) | 2018-06-11 | 2022-11-22 | optical laminate |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021036325A true JP2021036325A (en) | 2021-03-04 |
JP2021036325A5 JP2021036325A5 (en) | 2021-04-22 |
JP7422048B2 JP7422048B2 (en) | 2024-01-25 |
Family
ID=68810498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020177425A Active JP7422048B2 (en) | 2018-06-11 | 2020-10-22 | optical laminate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7422048B2 (en) |
KR (1) | KR102823672B1 (en) |
CN (1) | CN110579830B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023073124A (en) * | 2021-11-15 | 2023-05-25 | 日東電工株式会社 | Polarizer with phase difference layer and image display device with the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7399756B2 (en) * | 2020-03-09 | 2023-12-18 | 住友化学株式会社 | Optical laminate and its manufacturing method |
JP7534158B2 (en) * | 2020-09-01 | 2024-08-14 | 日東電工株式会社 | Optical films and polarizing plates |
KR102765311B1 (en) * | 2021-02-25 | 2025-02-07 | 삼성에스디아이 주식회사 | Optical laminate, optical member comprising the same and optical display apparatus comprising the same |
JP2023049680A (en) * | 2021-09-29 | 2023-04-10 | 富士フイルム株式会社 | OPTICAL FILM MANUFACTURING METHOD, OPTICAL FILM, OPTICAL LAMINATED PRODUCT |
CN116107011B (en) * | 2023-04-13 | 2023-07-25 | Tcl华星光电技术有限公司 | Polarizer and display device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002294240A (en) * | 2001-03-30 | 2002-10-09 | Fuji Photo Film Co Ltd | Aligning method of rod-like liquid crystalline molecule and optically anisotropic element |
JP2004139084A (en) * | 2002-10-17 | 2004-05-13 | Eastman Kodak Co | Optical compensator |
JP2004251691A (en) * | 2003-02-19 | 2004-09-09 | Nitto Denko Corp | Method for estimating optical compensation layer, method of manufacturing polarizer with optical compensation layer, optical film and image displaying device |
JP2005128315A (en) * | 2003-10-24 | 2005-05-19 | Nitto Denko Corp | Vertical alignment membrane and its manufacturing method, liquid crystal alignment membrane, optical film and image display device |
JP2010224377A (en) * | 2009-03-25 | 2010-10-07 | Sumitomo Chemical Co Ltd | Composite polarizing plate and liquid crystal display device |
JP2014186248A (en) * | 2013-03-25 | 2014-10-02 | Dainippon Printing Co Ltd | Production method of retardation film |
JP2016099389A (en) * | 2014-11-18 | 2016-05-30 | 大日本印刷株式会社 | Transfer laminate, optical element, and manufacturing method for optical element |
JP2016105127A (en) * | 2014-12-01 | 2016-06-09 | 富士フイルム株式会社 | Alignment layer, laminate, optical film, method for producing optical film, polarizing plate, liquid crystal display device and alignment layer forming composition |
JP2018009150A (en) * | 2016-06-28 | 2018-01-18 | 大日本印刷株式会社 | Side-chain liquid crystal polymer, liquid crystal composition, retardation film, method for manufacturing retardation film, laminate for transfer, optical member, method for manufacturing optical member, and display device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326439A (en) * | 2004-05-12 | 2005-11-24 | Fuji Photo Film Co Ltd | Retardation plate material, polymer, retardation plate, and image display apparatus |
JP2013222006A (en) * | 2012-04-13 | 2013-10-28 | Fujifilm Corp | Optical film and method for producing the same |
KR101767854B1 (en) * | 2013-07-23 | 2017-08-11 | 제이엑스티지 에네루기 가부시키가이샤 | Phase Difference Plate, Elliptically Polarizing Plate and Display Device Using the Same |
CN104339796B (en) * | 2013-08-09 | 2018-03-02 | 住友化学株式会社 | Layered product |
KR102368381B1 (en) * | 2013-08-09 | 2022-02-28 | 스미또모 가가꾸 가부시키가이샤 | Optical film |
TWI637197B (en) * | 2013-08-09 | 2018-10-01 | 住友化學股份有限公司 | Optical film |
WO2016158300A1 (en) * | 2015-03-31 | 2016-10-06 | 富士フイルム株式会社 | Circular polarizing plate and bendable display device |
JP6453746B2 (en) | 2015-12-02 | 2019-01-16 | 日東電工株式会社 | Elongated optical laminate and image display device |
WO2018074524A1 (en) * | 2016-10-19 | 2018-04-26 | 凸版印刷株式会社 | Gas barrier optical film and organic el display |
CN110361805B (en) * | 2018-04-11 | 2022-11-18 | 住友化学株式会社 | Polarizing plate and display device |
-
2019
- 2019-06-05 KR KR1020190066542A patent/KR102823672B1/en active Active
- 2019-06-06 CN CN201910495662.3A patent/CN110579830B/en active Active
-
2020
- 2020-10-22 JP JP2020177425A patent/JP7422048B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002294240A (en) * | 2001-03-30 | 2002-10-09 | Fuji Photo Film Co Ltd | Aligning method of rod-like liquid crystalline molecule and optically anisotropic element |
JP2004139084A (en) * | 2002-10-17 | 2004-05-13 | Eastman Kodak Co | Optical compensator |
JP2004251691A (en) * | 2003-02-19 | 2004-09-09 | Nitto Denko Corp | Method for estimating optical compensation layer, method of manufacturing polarizer with optical compensation layer, optical film and image displaying device |
JP2005128315A (en) * | 2003-10-24 | 2005-05-19 | Nitto Denko Corp | Vertical alignment membrane and its manufacturing method, liquid crystal alignment membrane, optical film and image display device |
JP2010224377A (en) * | 2009-03-25 | 2010-10-07 | Sumitomo Chemical Co Ltd | Composite polarizing plate and liquid crystal display device |
JP2014186248A (en) * | 2013-03-25 | 2014-10-02 | Dainippon Printing Co Ltd | Production method of retardation film |
JP2016099389A (en) * | 2014-11-18 | 2016-05-30 | 大日本印刷株式会社 | Transfer laminate, optical element, and manufacturing method for optical element |
JP2016105127A (en) * | 2014-12-01 | 2016-06-09 | 富士フイルム株式会社 | Alignment layer, laminate, optical film, method for producing optical film, polarizing plate, liquid crystal display device and alignment layer forming composition |
JP2018009150A (en) * | 2016-06-28 | 2018-01-18 | 大日本印刷株式会社 | Side-chain liquid crystal polymer, liquid crystal composition, retardation film, method for manufacturing retardation film, laminate for transfer, optical member, method for manufacturing optical member, and display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023073124A (en) * | 2021-11-15 | 2023-05-25 | 日東電工株式会社 | Polarizer with phase difference layer and image display device with the same |
Also Published As
Publication number | Publication date |
---|---|
JP7422048B2 (en) | 2024-01-25 |
KR102823672B1 (en) | 2025-06-20 |
KR20190140404A (en) | 2019-12-19 |
CN110579830B (en) | 2023-03-28 |
CN110579830A (en) | 2019-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7243658B2 (en) | Polarizing plate and display device | |
JP7422048B2 (en) | optical laminate | |
JP2021121862A (en) | Polarizing plate and display device | |
TWI807029B (en) | Optical laminate | |
TWI793310B (en) | Polarizing plate and display device | |
JP2019148734A (en) | Circularly polarizing plate | |
JP7181260B2 (en) | circular polarizer | |
JP2020024421A (en) | Circularly polarizing plate and display device | |
JP2020024422A (en) | Circularly polarizing plate and display device | |
JP2021071713A (en) | Optical laminate and display device | |
CN110361805B (en) | Polarizing plate and display device | |
JP2022102603A (en) | Manufacturing method of laminate with surface protection film and laminate | |
JP2021047229A (en) | Laminated retardation film | |
CN111522089A (en) | Polarizing plate and display device | |
JP7345330B2 (en) | Optical laminate and display device using the same | |
JP2021015294A (en) | Circularly polarizing plate | |
JP2021092687A (en) | Circular polarization plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210310 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220428 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221122 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20221122 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20221206 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230111 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230117 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20230324 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7422048 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |