JP2021034684A - Electrolytic capacitors and their manufacturing methods - Google Patents
Electrolytic capacitors and their manufacturing methods Download PDFInfo
- Publication number
- JP2021034684A JP2021034684A JP2019156728A JP2019156728A JP2021034684A JP 2021034684 A JP2021034684 A JP 2021034684A JP 2019156728 A JP2019156728 A JP 2019156728A JP 2019156728 A JP2019156728 A JP 2019156728A JP 2021034684 A JP2021034684 A JP 2021034684A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- edot
- alkylated
- conductive polymer
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 138
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 106
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000000178 monomer Substances 0.000 claims abstract description 75
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 62
- YMMGRPLNZPTZBS-UHFFFAOYSA-N 2,3-dihydrothieno[2,3-b][1,4]dioxine Chemical class O1CCOC2=C1C=CS2 YMMGRPLNZPTZBS-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 10
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 claims description 3
- MXLYDTCSOHXFFA-UHFFFAOYSA-N 3-methyl-2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical group O1C(C)COC2=CSC=C21 MXLYDTCSOHXFFA-UHFFFAOYSA-N 0.000 claims 2
- 150000002013 dioxins Chemical class 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000007334 copolymerization reaction Methods 0.000 abstract 1
- 238000006116 polymerization reaction Methods 0.000 description 50
- 239000000243 solution Substances 0.000 description 44
- 229910052715 tantalum Inorganic materials 0.000 description 33
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 31
- 238000009835 boiling Methods 0.000 description 17
- 239000007800 oxidant agent Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 11
- 239000008096 xylene Substances 0.000 description 11
- -1 alkylated ethylenedioxythiophene (alkylated EDOT Chemical class 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- CWPOINBYXIYTHX-UHFFFAOYSA-N ethanol;iron Chemical compound [Fe].CCO CWPOINBYXIYTHX-UHFFFAOYSA-N 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- GSSXLFACIJSBOM-UHFFFAOYSA-N 2h-pyran-2-ol Chemical compound OC1OC=CC=C1 GSSXLFACIJSBOM-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- KBTNCHYPZKQUKN-UHFFFAOYSA-N 3,4-dihydroxy-2-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1[N+]([O-])=O KBTNCHYPZKQUKN-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- KPDBKQKRDJPBRM-UHFFFAOYSA-N 602-00-6 Chemical compound OC(=O)C1=CC=CC(O)=C1[N+]([O-])=O KPDBKQKRDJPBRM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- UTCOUOISVRSLSH-UHFFFAOYSA-N 1,2-Anthracenediol Chemical compound C1=CC=CC2=CC3=C(O)C(O)=CC=C3C=C21 UTCOUOISVRSLSH-UHFFFAOYSA-N 0.000 description 1
- MUVQKFGNPGZBII-UHFFFAOYSA-N 1-anthrol Chemical compound C1=CC=C2C=C3C(O)=CC=CC3=CC2=C1 MUVQKFGNPGZBII-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical class C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- BRRSNXCXLSVPFC-UHFFFAOYSA-N 2,3,4-Trihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1O BRRSNXCXLSVPFC-UHFFFAOYSA-N 0.000 description 1
- KNBKCJFWNUOFPN-UHFFFAOYSA-N 2,3,4-trihydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(O)C(O)=C(O)C2=C1 KNBKCJFWNUOFPN-UHFFFAOYSA-N 0.000 description 1
- GLDQAMYCGOIJDV-UHFFFAOYSA-N 2,3-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 1
- WZPLEIAOQJXZJX-UHFFFAOYSA-N 2,3-dihydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(O)C(O)=CC2=C1 WZPLEIAOQJXZJX-UHFFFAOYSA-N 0.000 description 1
- KCQORPKRJCTRID-UHFFFAOYSA-N 2,3-dinitronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C([N+]([O-])=O)=CC2=C1 KCQORPKRJCTRID-UHFFFAOYSA-N 0.000 description 1
- MHKBMNACOMRIAW-UHFFFAOYSA-N 2,3-dinitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O MHKBMNACOMRIAW-UHFFFAOYSA-N 0.000 description 1
- WKFQMDFSDQFAIC-UHFFFAOYSA-N 2,4-dimethylthiolane 1,1-dioxide Chemical compound CC1CC(C)S(=O)(=O)C1 WKFQMDFSDQFAIC-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- QPKNFEVLZVJGBM-UHFFFAOYSA-N 2-aminonaphthalen-1-ol Chemical compound C1=CC=CC2=C(O)C(N)=CC=C21 QPKNFEVLZVJGBM-UHFFFAOYSA-N 0.000 description 1
- MSCMTURKIQRYPE-UHFFFAOYSA-N 2-hydroxyanthracene-1-carboxylic acid Chemical compound C1=CC=C2C=C3C(C(=O)O)=C(O)C=CC3=CC2=C1 MSCMTURKIQRYPE-UHFFFAOYSA-N 0.000 description 1
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 1
- MUCCHGOWMZTLHK-UHFFFAOYSA-N 2-nitronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=CC2=C1 MUCCHGOWMZTLHK-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- NUTMVQNCQAVSBL-UHFFFAOYSA-N 3,4-dihydroxyanthracene-1,2-dicarboxylic acid Chemical compound OC(=O)c1c(O)c(O)c2cc3ccccc3cc2c1C(O)=O NUTMVQNCQAVSBL-UHFFFAOYSA-N 0.000 description 1
- MXRIDIUPOLQTJF-UHFFFAOYSA-N 3,4-dihydroxynaphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=C(O)C(O)=C21 MXRIDIUPOLQTJF-UHFFFAOYSA-N 0.000 description 1
- QXGJCWSBOZXWOV-UHFFFAOYSA-N 3,4-dihydroxyphthalic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1C(O)=O QXGJCWSBOZXWOV-UHFFFAOYSA-N 0.000 description 1
- YAVVHVRMNIDVOQ-UHFFFAOYSA-N 3,4-dinitrobenzene-1,2-diol Chemical compound OC1=CC=C([N+]([O-])=O)C([N+]([O-])=O)=C1O YAVVHVRMNIDVOQ-UHFFFAOYSA-N 0.000 description 1
- BLCZXLGRKKRKJJ-UHFFFAOYSA-N 3-amino-2-nitrophenol Chemical compound NC1=CC=CC(O)=C1[N+]([O-])=O BLCZXLGRKKRKJJ-UHFFFAOYSA-N 0.000 description 1
- NNIKSVAOFGELNT-UHFFFAOYSA-N 3-butyl-2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1C(CCCC)COC2=CSC=C21 NNIKSVAOFGELNT-UHFFFAOYSA-N 0.000 description 1
- GHUYSXMOSDJUHI-UHFFFAOYSA-N 3-hydroxyanthracene-1,2-dicarboxylic acid Chemical compound OC(=O)c1c(O)cc2cc3ccccc3cc2c1C(O)=O GHUYSXMOSDJUHI-UHFFFAOYSA-N 0.000 description 1
- DDGYXYYFRMJSKJ-UHFFFAOYSA-N 3-hydroxynaphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=C(O)C=C21 DDGYXYYFRMJSKJ-UHFFFAOYSA-N 0.000 description 1
- MNUOZFHYBCRUOD-UHFFFAOYSA-N 3-hydroxyphthalic acid Chemical compound OC(=O)C1=CC=CC(O)=C1C(O)=O MNUOZFHYBCRUOD-UHFFFAOYSA-N 0.000 description 1
- URFJTCWCTWGRBB-UHFFFAOYSA-N 3-methoxy-2-nitrophenol Chemical compound COC1=CC=CC(O)=C1[N+]([O-])=O URFJTCWCTWGRBB-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- MPIRVKMYLJPSOH-UHFFFAOYSA-N O1C=2C(OCC1)=CSC2.O2C=COC=C2 Chemical compound O1C=2C(OCC1)=CSC2.O2C=COC=C2 MPIRVKMYLJPSOH-UHFFFAOYSA-N 0.000 description 1
- XJAKXCLSABJLDM-UHFFFAOYSA-N OC1=C(O)c2c(O)c3c(O)cccc3cc2C(=O)C1=O Chemical compound OC1=C(O)c2c(O)c3c(O)cccc3cc2C(=O)C1=O XJAKXCLSABJLDM-UHFFFAOYSA-N 0.000 description 1
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- NMKMOHFZXZFDFP-UHFFFAOYSA-N anthracene-1,2,3,4-tetrol Chemical compound C1=CC=CC2=CC3=C(O)C(O)=C(O)C(O)=C3C=C21 NMKMOHFZXZFDFP-UHFFFAOYSA-N 0.000 description 1
- SLOLMTWBBAFOKJ-UHFFFAOYSA-N anthracene-1,2,3-triol Chemical compound C1=CC=C2C=C(C(O)=C(C(O)=C3)O)C3=CC2=C1 SLOLMTWBBAFOKJ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- GGHPFIYIFKEQCM-UHFFFAOYSA-L iron(2+);naphthalene-1-sulfonate Chemical compound [Fe+2].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1.C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 GGHPFIYIFKEQCM-UHFFFAOYSA-L 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N mandelic acid Chemical compound OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical class C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 150000003481 tantalum Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229950002929 trinitrophenol Drugs 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
本発明は、生産性および耐熱性に優れ、漏れ電流を低減し得る電解コンデンサと、その製造方法に関するものである。 The present invention relates to an electrolytic capacitor which is excellent in productivity and heat resistance and can reduce a leakage current, and a method for manufacturing the electrolytic capacitor.
導電性高分子は、その高い導電性により、例えば、アルミニウム電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサなどの電解質(固体電解質)として用いられている。 Due to its high conductivity, the conductive polymer is used as an electrolyte (solid electrolyte) such as an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, and a niobium electrolytic capacitor.
この用途における導電性高分子としては、例えば、チオフェンまたはその誘導体などを化学酸化重合または電解酸化重合することによって得られたものが用いられている。また、上記チオフェンまたはその誘導体としては、エチレンジオキシチオフェンの使用例が多い。 As the conductive polymer in this application, for example, a polymer obtained by chemically oxidatively polymerizing or electrolytically oxidatively polymerizing thiophene or a derivative thereof is used. Further, as the above-mentioned thiophene or a derivative thereof, ethylenedioxythiophene is often used.
ところで、導電性高分子を固体電解質とする電解コンデンサには、近年、漏れ電流の低減や耐熱性の向上が求められており、これに対応する技術の開発が求められる。 By the way, in recent years, electrolytic capacitors using a conductive polymer as a solid electrolyte have been required to reduce leakage current and improve heat resistance, and development of a technique corresponding to this is required.
例えば、特許文献1には、エチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの混合モノマーを重合してなり、有機スルホン酸をドーパントとして含む導電性高分子を固体電解質として使用することで、ESR(等価直列抵抗)が低く、静電容量が大きく、耐熱性に優れた電解コンデンサを得られることが開示されている。この特許文献1では、例えば巻回型アルミニウム固体電解コンデンサを作製した実施例において、上記混合モノマーの重合時にアルキル化エチレンジオキシチオフェンが重合速度を遅くさせ、アルミニウム箔のエッチング孔の内部にまで充分に染み込んだことで、上記電解コンデンサの静電容量が大きくなったと考えられることが述べられており、また、上記電解コンデンサにおいては、漏れ電流も低減し得たことが示されている。 For example, Patent Document 1 describes ESR by polymerizing a mixed monomer of ethylenedioxythiophene and alkylated ethylenedioxythiophene and using a conductive polymer containing organic sulfonic acid as a dopant as a solid electrolyte. It is disclosed that an electrolytic capacitor having a low (equivalent series resistance), a large capacitance, and excellent heat resistance can be obtained. In Patent Document 1, for example, in an example in which a wound type aluminum solid electrolytic capacitor is produced, alkylated ethylenedioxythiophene slows down the polymerization rate during the polymerization of the mixed monomer, and the inside of the etching holes of the aluminum foil is sufficient. It is stated that it is considered that the capacitance of the electrolytic capacitor has increased due to the permeation into the electrolytic capacitor, and it has been shown that the leakage current of the electrolytic capacitor could also be reduced.
なお、この特許文献1に記載されているように、エチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとを含む混合モノマーの重合に際しては、アルキル化エチレンジオキシチオフェンの作用によって重合速度が遅くなる。そのため、特に積層型や平板型の電解コンデンサを製造するに際し、いわゆるその場重合によってコンデンサ素子上でモノマーを重合して導電性高分子の層を直接形成する場合には、重合時間を長くしたり重合を多数繰り返したりしないと、例えば、電解コンデンサの静電容量が、理論容量よりも大幅に小さくなってしまう。このことが、電解コンデンサの生産性低下の一因となっており、特許文献1に記載の技術においては、この点で未だ改善の余地がある。 As described in Patent Document 1, when the mixed monomer containing ethylenedioxythiophene and alkylated ethylenedioxythiophene is polymerized, the polymerization rate is slowed down by the action of the alkylated ethylenedioxythiophene. Therefore, especially when manufacturing a laminated type or flat plate type electrolytic capacitor, when the monomer is polymerized on the capacitor element by so-called in-situ polymerization to directly form a layer of a conductive polymer, the polymerization time may be lengthened. Unless the polymerization is repeated many times, for example, the capacitance of the electrolytic capacitor becomes significantly smaller than the theoretical capacitance. This is one of the causes of the decrease in the productivity of the electrolytic capacitor, and there is still room for improvement in this respect in the technique described in Patent Document 1.
他方、特許文献2には、エチレンジオキシチオフェンなどのモノマーを化学酸化重合して固体電解質層を形成する際に、上記モノマーにピロールを0.5〜10重量%添加することで、重合反応効率を高め、また、電解コンデンサの信頼性を向上させる技術が提案されている。特許文献1では、ピロールはエチレンジオキシチオフェンよりも反応速度が大きく、エチレンジオキシチオフェンと併用して重合を行うと、エチレンジオキシチオフェン単独で重合した場合に比べて重合効率が向上することから、例えばコンデンサ素子上での導電性高分子の層形成のための重合回数を減らすことが可能であるとしている。 On the other hand, Patent Document 2 states that when a monomer such as ethylenedioxythiophene is chemically oxidatively polymerized to form a solid electrolyte layer, 0.5 to 10% by weight of pyrrole is added to the monomer to achieve polymerization reaction efficiency. And the technology to improve the reliability of the electrolytic capacitor has been proposed. In Patent Document 1, pyrrole has a higher reaction rate than ethylenedioxythiophene, and when polymerized in combination with ethylenedioxythiophene, the polymerization efficiency is improved as compared with the case where ethylenedioxythiophene is polymerized alone. For example, it is possible to reduce the number of times of polymerization for forming a layer of a conductive polymer on a condenser element.
ところが、本発明者らの検討によると、エチレンジオキシチオフェンとピロールとをモノマーとして形成した導電性高分子の層を有する電解コンデンサは、静電容量が理論容量よりも小さくなり、重合回数の低減効果が十分に確保できるわけではないことや、耐熱性に改善の余地があることが判明した。 However, according to the study by the present inventors, the capacitance of an electrolytic capacitor having a layer of a conductive polymer formed by forming ethylenedioxythiophene and pyrrole as monomers has a smaller capacitance than the theoretical capacitance, and the number of times of polymerization is reduced. It was found that the effect could not be sufficiently secured and that there was room for improvement in heat resistance.
本発明は、上記事情に鑑みてなされたものであり、その目的は、生産性および耐熱性に優れ、漏れ電流を低減し得る電解コンデンサと、その製造方法とを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrolytic capacitor having excellent productivity and heat resistance and capable of reducing leakage current, and a method for manufacturing the same.
本発明の電解コンデンサは、弁金属の多孔体と、上記弁金属の酸化被膜からなる誘電体層とを有するコンデンサ素子上に、導電性高分子を固体電解質として有してなり、上記導電性高分子は、ピロール、3,4−エチレンジオキシチオフェン、およびアルキル化エチレンジオキシチオフェンを共重合してなり、全モノマー中のピロールの割合が0.01〜0.5質量%で、3,4−エチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの合計100質量部中のアルキル化エチレンジオキシチオフェンの割合が15〜90質量部であることを特徴とするものである。 The electrolytic capacitor of the present invention has a conductive polymer as a solid electrolyte on a capacitor element having a porous body of the valve metal and a dielectric layer made of an oxide film of the valve metal, and has high conductivity. The molecule is a copolymer of pyrrole, 3,4-ethylenedioxythiophene, and alkylated ethylenedioxythiophene, with pyrrole in the total monomer ratio of 0.01-0.5% by mass, 3,4. -It is characterized in that the ratio of the alkylated ethylenedioxythiophene in a total of 100 parts by mass of the ethylenedioxythiophene and the alkylated ethylenedioxythiophene is 15 to 90 parts by mass.
また、本発明の電解コンデンサの製造方法は、弁金属の多孔体と、上記弁金属の酸化被膜からなる誘電体層とを有するコンデンサ素子上に、ピロール、3,4−エチレンジオキシチオフェン、およびアルキル化エチレンジオキシチオフェンを、化学酸化重合によって共重合して導電性高分子を形成する工程を有し、上記導電性高分子の形成に際し、ピロールを全モノマー中の割合が0.01〜0.5質量%となる量で使用し、かつ3,4−エチレンジオキシチオフェンおよびアルキル化エチレンジオキシチオフェンを、これらの合計100質量部中のアルキル化エチレンジオキシチオフェンの割合が15〜90質量部となる量で使用することを特徴とする。 Further, in the method for producing an electrolytic capacitor of the present invention, pyrrole, 3,4-ethylenedioxythiophene, and pyrrole, 3,4-ethylenedioxythiophene, and pyrrole, 3,4-ethylenedioxythiophene, and It has a step of copolymerizing alkylated ethylenedioxythiophene by chemical oxidation polymerization to form a conductive polymer, and in forming the conductive polymer, the ratio of pyrrole in the total monomer is 0.01 to 0. It is used in an amount of .5% by mass, and 3,4-ethylenedioxythiophene and alkylated ethylenedioxythiophene are used, and the ratio of alkylated ethylenedioxythiophene in 100 parts by mass of these is 15 to 90 mass by mass. It is characterized in that it is used in an amount that becomes a part.
本発明によれば、生産性および耐熱性に優れ、漏れ電流を低減し得る電解コンデンサと、その製造方法とを提供することができる。 According to the present invention, it is possible to provide an electrolytic capacitor which is excellent in productivity and heat resistance and can reduce a leakage current, and a method for manufacturing the electrolytic capacitor.
本発明の電解コンデンサにおいては、固体電解質として、ピロール、3,4−エチレンジオキシチオフェン(EDOT)およびアルキル化エチレンジオキシチオフェン(アルキル化EDOT)を含むモノマーを共重合してなり、モノマー全量中のピロールの割合が0.01〜0.5質量%であり、EDOTとアルキル化EDOTとの合計100質量部中のアルキル化EDOTの割合が15〜90質量部である導電性高分子を使用する。これにより、本発明では、漏れ電流が少なく、かつ生産性および耐熱性に優れた電解コンデンサの提供を可能としている。 In the electrolytic capacitor of the present invention, a monomer containing pyrrole, 3,4-ethylenedioxythiophene (EDOT) and an alkylated ethylenedioxythiophene (alkylated EDOT) is copolymerized as a solid electrolyte, and the total amount of the monomer is increased. Use a conductive polymer having a pyrrol ratio of 0.01 to 0.5% by mass and an alkylated EDOT ratio of 15 to 90 parts by mass in a total of 100 parts by mass of the EDOT and the alkylated EDOT. .. This makes it possible to provide an electrolytic capacitor having a small leakage current and excellent productivity and heat resistance in the present invention.
上記の通り、特に積層型や平板型の電解コンデンサを製造するに際し、いわゆるその場重合によってコンデンサ素子上でモノマーを重合して導電性高分子の層を直接形成する場合、重合速度を遅くして、多孔体であるコンデンサ素子の孔の内部にまで導電性高分子を形成することで、コンデンサ素子の静電容量を大きくして、例えば理論容量(設計容量)に近づけることが可能となる。その一方で、重合速度が遅くなるため、十分に導電性高分子を生成させて良好な層を形成するには、例えば重合を多数繰り返す必要がある。 As described above, especially when manufacturing a laminated type or flat plate type electrolytic capacitor, when the monomer is polymerized on the capacitor element by so-called in-situ polymerization to directly form a layer of a conductive polymer, the polymerization rate is slowed down. By forming the conductive polymer even inside the pores of the capacitor element, which is a porous body, it is possible to increase the capacitance of the capacitor element and bring it closer to, for example, the theoretical capacity (design capacity). On the other hand, since the polymerization rate becomes slow, in order to sufficiently generate a conductive polymer and form a good layer, for example, it is necessary to repeat a large number of polymerizations.
一方、上記の通り、特許文献2では、EDOTよりも反応速度が大きいピロールをEDOTと併用して重合を行うと、EDOT単独で重合した場合に比べて重合効率が向上し、例えばコンデンサ素子上での導電性高分子の層形成のための重合回数を減らすことが可能であるとしているが、本発明者らの検討によると、電解コンデンサの静電容量が理論容量よりも小さくなる。これは、特許文献1の記載に基づけば、ピロールの作用によって、EDOTとの混合モノマーの重合速度が速くなるため、コンデンサの孔の内部まで導電性高分子を良好に形成し得ないことが理由である可能性が考えられる。すなわち、特許文献1および特許文献2の記載によれば、その場重合で導電性高分子の層を形成したコンデンサ素子を用いた電解コンデンサにおいては、静電容量を大きくして理論容量に近づけるためには、モノマーの反応速度を大きくし過ぎないことが好ましいと推測される。 On the other hand, as described above, in Patent Document 2, when pyrol having a reaction rate higher than that of EDOT is polymerized in combination with EDOT, the polymerization efficiency is improved as compared with the case where EDOT is polymerized alone, for example, on a capacitor element. Although it is possible to reduce the number of times of polymerization for layer formation of the conductive polymer, according to the study by the present inventors, the capacitance of the electrolytic capacitor becomes smaller than the theoretical capacitance. This is because, based on the description in Patent Document 1, the polymerization rate of the mixed monomer with EDOT is increased by the action of pyrrole, so that the conductive polymer cannot be satisfactorily formed even inside the hole of the capacitor. It is possible that That is, according to the descriptions of Patent Document 1 and Patent Document 2, in an electrolytic capacitor using a capacitor element in which a layer of a conductive polymer is formed by in-situ polymerization, the capacitance is increased to approach the theoretical capacitance. It is presumed that it is preferable not to increase the reaction rate of the monomer too much.
ところが、EDOTとアルキル化EDOTとを特定の比率でモノマーとして使用し、これに特定量のピロールを添加して重合した導電性高分子を固体電解質として電解コンデンサを構成した場合、上記の予想に反して重合回数を少なくしても大きな静電容量を確保でき、高い生産性で製造することが可能であり、さらには、漏れ電流を大幅に低減でき、かつ耐熱性を向上させ得ることを見出し、本発明を完成させるに至った。 However, when EDOT and alkylated EDOT are used as a monomer in a specific ratio and a conductive polymer polymerized by adding a specific amount of pyrrole to the monomer is used as a solid electrolyte to form an electrolytic capacitor, contrary to the above expectation. We have found that a large capacitance can be secured even if the number of times of polymerization is reduced, production can be performed with high productivity, leakage current can be significantly reduced, and heat resistance can be improved. The present invention has been completed.
本発明の電解コンデンサにおいて、漏れ電流が低減できる理由は定かではないが、耐熱性が向上する理由については、本発明者らは以下のように推測している。ピロールとEDOTとアルキル化EDOTとをモノマーとして導電性高分子を重合した場合、重合効率が向上することから、形成される導電性高分子の量が多くなったり、分子量が増大したりすると考えられる。コンデンサ素子上に形成される導電性高分子の量が多くなると、高温下での導電性高分子の層全体の劣化に時間がかかるようになると考えられ、また、導電性高分子の分子量が増大すると、熱分解し難くなる。本発明の電解コンデンサでは、これらの理由によって良好な耐熱性を確保できていると考えられる。 Although the reason why the leakage current can be reduced in the electrolytic capacitor of the present invention is not clear, the present inventors speculate the reason why the heat resistance is improved as follows. When a conductive polymer is polymerized using pyrrole, EDOT, and an alkylated EDOT as monomers, it is considered that the amount of the conductive polymer formed increases or the molecular weight increases because the polymerization efficiency is improved. .. As the amount of the conductive polymer formed on the capacitor element increases, it is considered that it takes time to deteriorate the entire layer of the conductive polymer at a high temperature, and the molecular weight of the conductive polymer increases. Then, it becomes difficult to thermally decompose. It is considered that the electrolytic capacitor of the present invention can secure good heat resistance for these reasons.
なお、本発明の電解コンデンサの耐熱性は、後述する実施例において示す通り、本来、電解コンデンサの耐熱性を低下させる成分といえるピロールを使用しているにも関わらず、特許文献1に開示されているEDOTとアルキル化EDOTとをモノマーとして得られた導電性高分子を有する電解コンデンサよりも向上している。 The heat resistance of the electrolytic capacitor of the present invention is disclosed in Patent Document 1 even though pyrrole, which can be said to be a component that originally lowers the heat resistance of the electrolytic capacitor, is used as shown in Examples described later. It is improved as compared with the electrolytic capacitor having a conductive polymer obtained by using the EDOT and the alkylated EDOT as monomers.
電解コンデンサを構成する導電性高分子のモノマーとして使用するアルキル化EDOTは、EDOTをアルキル基で修飾したものであり、そのアルキル基の炭素数としては、1以上であることが好ましく、また、16以下であることが好ましく、10以下であることがより好ましく、4以下であることがさらに好ましい。 The alkylated EDOT used as a monomer of the conductive polymer constituting the electrolytic capacitor is an EDOT modified with an alkyl group, and the number of carbon atoms of the alkyl group is preferably 1 or more, and 16 It is preferably less than or equal to, more preferably 10 or less, and even more preferably 4 or less.
EDOTおよびアルキル化EDOTは、下記の一般式(1)で表される化合物に該当する。 EDOT and alkylated EDOT correspond to the compound represented by the following general formula (1).
一般式(1):
一般式(1)中、R1は水素または炭素数1〜10のアルキル基である。 In the general formula (1), R 1 is hydrogen or an alkyl group having 1 to 10 carbon atoms.
そして、上記一般式(1)中のR1が水素の化合物がEDOTであり、これをIUPAC名称で表示すると、「2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン(2,3−Dihydro−thieno〔3,4−b〕〔1,4〕dioxine)」であるが、この化合物は、IUPAC名称で表示されるよりも、一般名称の「3,4−エチレンジオキシチオフェン」で表示されることが多いので、本明細書では、この「2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン」を「3,4−エチレンジオキシチオフェン」(EDOT)と表示している。そして、上記一般式(1)中のR1がアルキル基の場合(アルキル化EDOT)、このアルキル基としては、炭素数が1〜10のものが好ましく、特に炭素数が1〜4のものが好ましい。つまり、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基が特に好ましく、それらを具体的に例示すると、一般式(1)中のR1がメチル基の化合物は、IUPAC名称で表示すると、「2−メチル−2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン(2−Methyl−2,3−dihydro−thieno〔3,4−b〕〔1,4〕dioxine)」であるが、本明細書では、以下、これを簡略化して「メチル化エチレンジオキシチオフェン(メチル化EDOT)」と表示する。一般式(1)の中のR1がエチル基の化合物は、IUPAC名称で表示すると、「2−エチル−2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン(2−Ethyl−2,3−dihydro−thieno〔3,4−b〕〔1,4〕dioxine)」であるが、本明細書では、これを簡略化して「エチル化エチレンジオキシチオフェン(エチル化EDOT)」と表示する。 Then, the compound in which R 1 is hydrogen in the above general formula (1) is EDOT, and when this is represented by the IUPAC name, "2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2,3-Dihydro-thieno [3,4-b] [1,4] dioxin) ”, but this compound has a more general name of“ 3,4-ethylenedioxy ”than indicated by the IUPAC name. Since it is often referred to as "oxythiophene", in the present specification, this "2,3-dihydro-thieno [3,4-b] [1,4] dioxin" is referred to as "3,4-ethylenedioxythiophene". "(EDOT) is displayed. When R 1 in the general formula (1) is an alkyl group (alkylated EDOT), the alkyl group preferably has 1 to 10 carbon atoms, and particularly preferably has 1 to 4 carbon atoms. preferable. That is, as the alkyl group, a methyl group, an ethyl group, a propyl group, and a butyl group are particularly preferable, and when they are specifically exemplified, the compound in which R 1 is a methyl group in the general formula (1) is represented by the IUPAC name. Then, "2-methyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2-Methyl-2,3-dihydro-thieno [3,4-b] [1,4] ] Dioxine) ”, but in the present specification, this is abbreviated as“ methylated ethylenedioxythiophene (methylated EDOT) ”. The compound in which R 1 is an ethyl group in the general formula (1) is represented by the IUPAC name as "2-ethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2). -Ethyl-2,3-dihydro-thiono [3,4-b] [1,4] dioxin) ”, but in the present specification, this is abbreviated as“ ethylated ethylenedioxythiophene (ethylated EDOT). ) ”Is displayed.
一般式(1)の中のR1がプロピル基の化合物は、IUPAC名称で表示すると、「2−プロピル−2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン(2−Propyl−2,3−dihydro−thieno〔3,4−b〕〔1,4〕dioxine)」であるが、本明細書では、これを簡略化して「プロピル化エチレンジオキシチオフェン(プロピル化EDOT)」と表示する。そして、一般式(1)の中のR1がブチル基の化合物は、IUPAC名称で表示すると、「2−ブチル−2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン(2−Butyl−2,3−dihydro−thieno〔3,4−b〕〔1,4〕dioxine)」であるが、本明細書では、これを簡略化して「ブチル化エチレンジオキシチオフェン(ブチル化EDOT)」と表示する。そして、「2−アルキル−2,3−ジヒドロ−チエノ〔3,4−b〕〔1,4〕ジオキシン」を、本明細書では、簡略化して「アルキル化エチレンジオキシチオフェン(アルキル化EDOT)」と表示する。 The compound in which R 1 is a propyl group in the general formula (1) is represented by the IUPAC name as "2-propyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin (2). -Propyl-2,3-dihydro-thiono [3,4-b] [1,4] dioxin) ", but in the present specification, this is abbreviated as" propylated ethylenedioxythiophene (propylated EDOT). ) ”Is displayed. The compound in which R 1 is a butyl group in the general formula (1) is represented by the IUPAC name as "2-butyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin. (2-Butyl-2,3-dihydro-thiono [3,4-b] [1,4] dioxin) ”, but in the present specification, this is abbreviated as“ butylated ethylenedioxythiophene (butyl). EDOT) ”is displayed. Then, "2-alkyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine" is abbreviated in the present specification as "alkylated ethylenedioxythiophene (alkylated EDOT)". Is displayed.
導電性高分子の合成には、上記一般式(1)で表され、R1がアルキル基であるアルキル化EDOTのうちの1種または2種以上を使用することができるが、これらの中でも、メチル化EDOT、エチル化EDOT、プロピル化EDOT、ブチル化EDOTが好ましい。 For the synthesis of the conductive polymer, one or more of the alkylated EDOTs represented by the above general formula (1) and in which R 1 is an alkyl group can be used, and among these, one or more of them can be used. Methylated EDOT, ethylated EDOT, propylated EDOT, and butylated EDOT are preferable.
電解コンデンサの固体電解質となる導電性高分子は、ピロール、EDOTおよびアルキル化EDOTを含むモノマーを共重合してなり、モノマー全量中のピロールの割合が0.01〜0.5質量%であり、EDOTとアルキル化EDOTとの合計100質量部中のアルキル化EDOTの割合が15〜90質量部である共重合体であるが、モノマーであるピロール、EDOTおよびアルキル化EDOTは、いずれもほぼ仕込み量の比率のままで導電性高分子を形成する。よって、上記導電性高分子は、ピロール由来の構造単位(繰り返し単位)、EDOT由来の構造単位、およびアルキル化EDOT由来の構造単位を分子内に有し、全構造単位中のピロール由来の構造単位の割合が0.01〜0.5質量%であり、EDOT由来の構造単位とアルキル化EDOT由来の構造単位との合計100質量部中のアルキル化EDOT由来の構造単位の割合が15〜90質量部である。 The conductive polymer that becomes the solid electrolyte of the electrolytic capacitor is made by copolymerizing a monomer containing pyrol, EDOT and an alkylated EDOT, and the proportion of pyrrole in the total amount of the monomer is 0.01 to 0.5% by mass. Although the copolymer has an alkylated EDOT ratio of 15 to 90 parts by mass in a total of 100 parts by mass of the EDOT and the alkylated EDOT, the monomers pyrol, EDOT and the alkylated EDOT are all charged in almost the same amount. Conductive polymer is formed with the ratio of. Therefore, the conductive polymer has a pyrrole-derived structural unit (repetition unit), an EDOT-derived structural unit, and an alkylated EDOT-derived structural unit in the molecule, and the pyrrol-derived structural unit among all the structural units. The ratio of the structural unit derived from EDOT is 0.01 to 0.5% by mass, and the ratio of the structural unit derived from alkylated EDOT to 100 parts by mass in total of the structural unit derived from EDOT and the structural unit derived from alkylated EDOT is 15 to 90% by mass. It is a department.
導電性高分子を形成するモノマー全量中のピロールの割合は、ピロールの使用によって重合反応速度を高め、重合回数を減らして電解コンデンサの生産性を高める効果をより良好に確保する観点から、0.01質量%以上であり、0.05質量%以上であることが好ましい。ただし、導電性高分子を形成するモノマー中のピロールの割合が多すぎると、電解コンデンサの静電容量や耐熱性が低下する。よって、電解コンデンサの静電容量や耐熱性を高める観点から、導電性高分子を形成するモノマー全量中のピロールの割合は、0.5質量%以下であり、0.3質量%以下であることが好ましい。 The ratio of pyrrole to the total amount of monomers forming the conductive polymer is set to 0. From the viewpoint of increasing the polymerization reaction rate by using pyrrole, reducing the number of polymerizations, and better ensuring the effect of increasing the productivity of the electrolytic capacitor. It is 01% by mass or more, and preferably 0.05% by mass or more. However, if the proportion of pyrrole in the monomer forming the conductive polymer is too large, the capacitance and heat resistance of the electrolytic capacitor will decrease. Therefore, from the viewpoint of increasing the capacitance and heat resistance of the electrolytic capacitor, the ratio of pyrrole in the total amount of the monomers forming the conductive polymer should be 0.5% by mass or less and 0.3% by mass or less. Is preferable.
また、導電性高分子を形成するモノマーにおいて、EDOTとアルキル化EDOTとの合計中のアルキル化EDOTの割合が少なすぎると、電解コンデンサの漏れ電流を低減できなくなり、また、ピロール(ピロール由来の構造単位)の作用によって電解コンデンサの耐熱性が低下する虞もある。よって、電解コンデンサの漏れ電流を低減し、かつ耐熱性を高める観点から、EDOTとアルキル化EDOTとの合計100質量部中のアルキル化EDOTの割合は、15質量部以上であり、30質量部以上であることが好ましい。 Further, if the ratio of the alkylated EDOT in the total of the EDOT and the alkylated EDOT is too small in the monomer forming the conductive polymer, the leakage current of the electrolytic capacitor cannot be reduced, and pyrrole (a structure derived from pyrrole) The heat resistance of the electrolytic capacitor may decrease due to the action of the unit). Therefore, from the viewpoint of reducing the leakage current of the electrolytic capacitor and increasing the heat resistance, the ratio of the alkylated EDOT in the total of 100 parts by mass of the EDOT and the alkylated EDOT is 15 parts by mass or more, and 30 parts by mass or more. Is preferable.
また、導電性高分子を形成するモノマーにおいて、EDOTとアルキル化EDOTとの合計中のアルキル化EDOTの割合が多すぎると、電解コンデンサの静電容量が低下する傾向にある。よって、電解コンデンサの静電容量を高める観点から、EDOTとアルキル化EDOTとの合計100質量部中のアルキル化EDOTの割合は、90質量部以下であり、75質量部以下であることが好ましい。 Further, if the ratio of the alkylated EDOT in the total of the EDOT and the alkylated EDOT is too large in the monomer forming the conductive polymer, the capacitance of the electrolytic capacitor tends to decrease. Therefore, from the viewpoint of increasing the capacitance of the electrolytic capacitor, the ratio of the alkylated EDOT in the total of 100 parts by mass of the EDOT and the alkylated EDOT is 90 parts by mass or less, preferably 75 parts by mass or less.
導電性高分子の形成には、ピロール、EDOTおよびアルキル化EDOTと共に、特性に影響の無い範囲で3−アルキルチオフェン、3−アルコキシチオフェン、3−アルキル−4−アルコキシチオフェン、3,4−アルキルチオフェン、3,4−アルコキシチオフェンなどをモノマーとして使用してもよい。 For the formation of conductive polymers, along with pyrrole, EDOT and alkylated EDOT, 3-alkylthiophene, 3-alkoxythiophene, 3-alkyl-4-alkoxythiophene, 3,4-alkylthiophene are used as long as the properties are not affected. , 3,4-alkoxythiophene and the like may be used as the monomer.
電解コンデンサを構成するコンデンサ素子は、弁金属の多孔体からなる陽極と、上記弁金属の酸化被膜からなる誘電体層とを有するものである。コンデンサ素子を構成する弁金属としては、アルミニウム、タンタル、ニオブなどが挙げられる。すなわち、本発明の電解コンデンサは、例えば積層型もしくは平板型の、アルミニウム電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサなどを含む。 The capacitor element constituting the electrolytic capacitor has an anode made of a porous body of the valve metal and a dielectric layer made of an oxide film of the valve metal. Examples of the valve metal constituting the capacitor element include aluminum, tantalum, niobium and the like. That is, the electrolytic capacitor of the present invention includes, for example, a laminated type or flat plate type aluminum electrolytic capacitor, tantalum electrolytic capacitor, niobium electrolytic capacitor and the like.
電解コンデンサの製造に際しては、化学酸化重合により、上記のようなコンデンサ素子上で導電性高分子を直接合成することで、導電性高分子の層を形成する。 In the production of an electrolytic capacitor, a layer of the conductive polymer is formed by directly synthesizing the conductive polymer on the capacitor element as described above by chemical oxidation polymerization.
コンデンサ素子上での導電性高分子の合成は、例えば以下の方法によって実施することができる。 The synthesis of the conductive polymer on the capacitor element can be carried out by, for example, the following method.
(1) まず、コンデンサ素子を酸化剤を含む溶液(酸化剤溶液)中に浸漬して引き上げた後に乾燥させたり、酸化剤を含む溶液をコンデンサ素子にスプレー塗布して乾燥させたりして、コンデンサ素子に酸化剤を付着させる。 (1) First, the capacitor element is dipped in a solution containing an oxidant (oxidizer solution) and pulled up and then dried, or a solution containing an oxidant is spray-applied to the capacitor element and dried. An oxidizer is attached to the element.
酸化剤としては、芳香族スルホン酸第二鉄を使用することが好ましい。芳香族スルホン酸第二鉄は、導電性高分子の化学酸化重合時の酸化剤として機能するだけでなく、合成された導電性高分子内に取り込まれてドーパントとしても機能する(以下、芳香族スルホン酸第二鉄を「酸化剤兼ドーパント」といい、これを含む溶液を「酸化剤兼ドーパント溶液」という場合がある)。 As the oxidizing agent, it is preferable to use ferric aromatic sulfonate. The ferrous sulfonic acid ferrous sulfonate not only functions as an oxidizing agent during chemical oxidative polymerization of the conductive polymer, but also functions as a dopant by being incorporated into the synthesized conductive polymer (hereinafter, aromatic). The ferric sulfonate is called an "oxidizing agent and dopant", and the solution containing this is sometimes called an "oxidizing agent and dopant solution").
芳香族スルホン酸第二鉄としては、例えば、ベンゼンスルホン酸またはその誘導体、ナフタレンスルホン酸またはその誘導体、アントラキノンスルホン酸またはその誘導体などの芳香族スルホン酸の第二鉄塩が挙げられ、これらのうちの1種または2種以上を使用することができる。これらの芳香族スルホン酸第二鉄のなかでも、パラトルエンスルホン酸鉄またはナフタレンスルホン酸鉄を使用することが好ましい。 Examples of the ferric aromatic sulfonic acid include ferric salts of aromatic sulfonic acids such as benzenesulfonic acid or a derivative thereof, naphthalenesulfonic acid or a derivative thereof, and anthraquinonesulfonic acid or a derivative thereof. One or more of the above can be used. Among these ferric aromatic sulfonates, it is preferable to use iron paratoluenesulfonate or iron naphthalene sulfonate.
酸化剤兼ドーパント溶液の溶媒には、通常、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、ヘキサノール、オクタノール、デカノールなどの、炭素数が1〜10の炭化水素基を有する1価のアルコール;エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールなどの多価アルコール;などの有機溶媒を使用する。これらの中でも、メタノール、エタノール、プロパノール、ブタノール、ヘプタノール、ヘキサノール、オクタノール、デカノールなどの、炭素数が1〜10の炭化水素基を有する1価のアルコールなどの1価のアルコールがより好ましい。 Solvents for oxidizing and dopant solutions are usually monohydric alcohols with 1-10 carbon hydrocarbon groups, such as methanol, ethanol, propanol, butanol, heptanol, hexanol, octanol, and decanol; ethylene glycol, Use organic solvents such as polyhydric alcohols such as propylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol; Among these, monohydric alcohols such as methanol, ethanol, propanol, butanol, heptanol, hexanol, octanol, and decanol, which have a hydrocarbon group having 1 to 10 carbon atoms, are more preferable.
芳香族スルホン酸第二鉄を使用する場合の酸化剤溶液(酸化剤兼ドーパント溶液)の、芳香族スルホン酸第二鉄の濃度は、通常、30〜70質量%である。 When ferric aromatic sulfonate is used, the concentration of ferric aromatic sulfonate in the oxidizing agent solution (oxidizing agent and dopant solution) is usually 30 to 70% by mass.
(2) 次に、酸化剤兼ドーパントを付着させたコンデンサ素子をモノマーを含む液(以下、「モノマー液」という)に浸漬して引き上げたり、酸化剤兼ドーパントを付着させたコンデンサ素子にモノマー液をスプレー塗布したりした後に、室温または加熱下でモノマーを重合(化学酸化重合)させる。そして、導電性高分子の形成後には、通常、洗浄および乾燥を行う。 (2) Next, the condenser element to which the oxidant / dopant is attached is immersed in a liquid containing a monomer (hereinafter referred to as "monomer liquid") and pulled up, or the monomer liquid is attached to the condenser element to which the oxidant / dopant is attached. Is spray-coated, and then the monomer is polymerized (chemical oxidative polymerization) at room temperature or at heating. Then, after the formation of the conductive polymer, washing and drying are usually performed.
モノマーとなるピロール、EDOTおよびアルキル化EDOTは常温で液状なので、重合にあたって、そのままモノマー液として用いることができる。また、重合反応をよりスムーズに進行させるために、例えばメタノール、エタノール、プロパノール、ブタノール、アセトン、アセトニトリルなどの有機溶剤でモノマーを希釈した有機溶剤溶液をモノマー液として用いてもよい。モノマーの有機溶剤溶液をモノマー液として使用する場合、モノマー溶液中のモノマーの濃度は、通常、15〜50質量%である。 Since pyrrole, EDOT and alkylated EDOT as monomers are liquid at room temperature, they can be used as they are as a monomer solution for polymerization. Further, in order to allow the polymerization reaction to proceed more smoothly, an organic solvent solution obtained by diluting the monomer with an organic solvent such as methanol, ethanol, propanol, butanol, acetone or acetonitrile may be used as the monomer solution. When an organic solvent solution of the monomer is used as the monomer solution, the concentration of the monomer in the monomer solution is usually 15 to 50% by mass.
モノマーの化学酸化重合は、例えば、10〜300℃で、1〜180分間で行われる。 The chemical oxidative polymerization of the monomer is carried out, for example, at 10 to 300 ° C. for 1 to 180 minutes.
そして、上記の(1)および(2)の操作を複数回繰り返し、コンデンサ素子(その誘電体層)上に導電性高分子の層を形成する。このようにして形成する導電性高分子の層は、厚みが、例えば1〜20μmである。 Then, the above operations (1) and (2) are repeated a plurality of times to form a layer of the conductive polymer on the capacitor element (the dielectric layer thereof). The layer of the conductive polymer thus formed has a thickness of, for example, 1 to 20 μm.
詳細は後記の実施例において示すが、ピロールを使用せずに導電性高分子の層を形成する場合、例えば理論容量の8割以上の静電容量を有する電解コンデンサを得るためには、6回以上重合を繰り返す必要があるが、本発明の電解コンデンサにおいては、重合の繰り返し数を4回以下(好ましくは2回以上)であっても、上記程度の静電容量を確保することができる。 Details will be shown in the examples below, but when forming a layer of conductive polymer without using pyrrole, for example, in order to obtain an electrolytic capacitor having a capacitance of 80% or more of the theoretical capacitance, 6 times. Although it is necessary to repeat the polymerization as described above, in the electrolytic capacitor of the present invention, even if the number of repetitions of the polymerization is 4 times or less (preferably 2 times or more), the above-mentioned capacitance can be secured.
また、コンデンサ素子上に化学酸化重合によって導電性高分子を形成した後、その導電性高分子上にπ共役系導電性高分子の分散液を用いて層を形成して、その両者で導電性高分子の層を構成してもよい。 Further, after forming a conductive polymer on the condenser element by chemical oxidation polymerization, a layer is formed on the conductive polymer using a dispersion liquid of the π-conjugated conductive polymer, and both of them are conductive. It may form a layer of polymer.
上記のπ共役系導電性高分子としては、ポリマーアニオンをドーパントとして用いたπ共役系導電性高分子が用いられる。このポリマーアニオンは、主として高分子スルホン酸で構成されるが、その具体例としては、例えば、ポリスチレンスルホン酸、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂、スチレンスルホン酸と非スルホン酸系モノマー(メタクリル酸エステル、アクリル酸エステルおよび不飽和炭化水素含有アルコキシシラン化合物またはその加水分解物など)との共重合体などが挙げられる。 As the above-mentioned π-conjugated conductive polymer, a π-conjugated conductive polymer using a polymer anion as a dopant is used. This polymer anion is mainly composed of high molecular weight sulfonic acid, and specific examples thereof include polystyrene sulfonic acid, sulfonated polyester, phenol sulfonic acid novolak resin, styrene sulfonic acid and non-sulfonic acid-based monomer (methacrylic acid). Examples thereof include polymers of esters, acrylic acid esters and unsaturated hydrocarbon-containing alkoxysilane compounds or their hydrolyzates).
上記のようにしてコンデンサ素子上に導電性高分子の層を形成した後に、例えば、カーボンペースト、銀ペーストを付け、乾燥してから外装を施して電解コンデンサとする。 After forming a layer of a conductive polymer on the capacitor element as described above, for example, a carbon paste or a silver paste is applied, dried, and then an exterior is applied to obtain an electrolytic capacitor.
また、コンデンサ素子上に形成した導電性高分子の層には、沸点が150℃以上の高沸点有機溶剤または沸点が150℃以上の高沸点有機溶剤とヒドロキシル基またはカルボキシル基を少なくとも1つ有する芳香族系化合物とを含む導電性補助液を含ませてもよい。 Further, the layer of the conductive polymer formed on the capacitor element has an aromatic having a high boiling point organic solvent having a boiling point of 150 ° C. or higher, a high boiling point organic solvent having a boiling point of 150 ° C. or higher, and at least one hydroxyl group or carboxyl group. A conductive auxiliary liquid containing a group compound may be included.
上記導電性補助液に使用可能な沸点が150℃以上の高沸点有機溶剤としては、例えば、γ−ブチロラクトン(沸点:203℃)、ブタンジオール(沸点:230℃)、ジメチルスルホキシド(沸点:189℃)、スルホラン(沸点:285℃)、N−メチルピロリドン(沸点:202℃)、ジメチルスルホラン(沸点:233℃)、エチレングリコール(沸点:198℃)、ジエチレングリコール(沸点:244℃)、リン酸トリエチル(沸点:215℃)、リン酸トリブチル(289℃)、リン酸トリエチルヘキシル〔215℃(4 mmHg)〕、ポリエチレングリコールなどが挙げられる。 Examples of the high boiling point organic solvent having a boiling point of 150 ° C. or higher that can be used in the conductive auxiliary liquid include γ-butyrolactone (boiling point: 203 ° C.), butanediol (boiling point: 230 ° C.), and dimethyl sulfoxide (boiling point: 189 ° C.). ), Sulfolane (boiling point: 285 ° C.), N-methylpyrrolidone (boiling point: 202 ° C.), dimethylsulfolane (boiling point: 233 ° C.), ethylene glycol (boiling point: 198 ° C.), diethylene glycol (boiling point: 244 ° C.), triethyl phosphate (Boiling point: 215 ° C.), tributyl phosphate (289 ° C.), triethylhexyl phosphate [215 ° C. (4 mmHg)], polyethylene glycol and the like.
また、上記の、ヒドロキシル基(芳香環の構成炭素に結合するヒドロキシル基をいい、カルボキシル基中などの−OH部分を意味するものではない)またはカルボキシル基を少なくとも1つ有する芳香族系化合物としては、ベンゼン系のもの、ナフタレン系のもの、アントラセン系のもののいずれも用いることができ、その具体例としては、例えば、ヒドロキシベンゼンカルボン酸、ニトロフェノール、ジニトロフェノール、トリニトロフェノール、アミノニトロフェノール、ヒドロキシアニソール、ヒドロキシジニトロベンゼン、ジヒドロキシジニトロベンゼン、アルキルヒドロキシアニソール、ヒドロキシニトロアニソール、ヒドロキシニトロベンゼンカルボン酸(つまり、ヒドロキシニトロ安息香酸)、ジヒドロキシニトロベンゼンカルボン酸(つまり、ジヒドロキシニトロ安息香酸)、フェノール、ジヒドロキシベンゼン、トリヒドロキシベンゼン、ジヒドロキシベンゼンカルボン酸、トリヒドロキシベンゼンカルボン酸、ヒドロキシベンゼンジカルボン酸、ジヒドロキシベンゼンジカルボン酸、ヒドロキシトルエンカルボン酸、ニトロナフトール、アミノナフトール、ジニトロナフトール、ヒドロキシナフタレンカルボン酸、ジヒドロキシナフタレンカルボン酸、トリヒドロキシナフタレンカルボン酸、ヒドロキシナフタレンジカルボン酸、ジヒドロキシナフタレンジカルボン酸、ヒドロキシアントラセン、ジヒドロキシアントラセン、トリヒドロキシアントラセン、テトラヒドロキシアントラセン、ヒドロキシアントラセンカルボン酸、ヒドロキシアントラセンジカルボン酸、ジヒドロキシアントラセンジカルボン酸、テトラヒドロキシアントラセンジオン、ベンゼンカルボン酸、ベンゼンジカルボン酸、ナフタレンカルボン酸、ナフタレンジカルボン酸などが挙げられる。 Further, as the above-mentioned aromatic compound having at least one hydroxyl group (referring to a hydroxyl group bonded to a constituent carbon of an aromatic ring and not meaning a −OH portion such as in a carboxyl group) or a carboxyl group. , Benzene-based, naphthalene-based, and anthracene-based ones can be used, and specific examples thereof include hydroxybenzenecarboxylic acid, nitrophenol, dinitrophenol, trinitrophenol, aminonitrophenol, and hydroxy. Anisol, hydroxydinitrobenzene, dihydroxydinitrobenzene, alkylhydroxyanisole, hydroxynitroanisole, hydroxynitrobenzenecarboxylic acid (ie, hydroxynitrobenzoic acid), dihydroxynitrobenzenecarboxylic acid (ie, dihydroxynitrobenzoic acid), phenol, dihydroxybenzene, tri Hydroxybenzene, dihydroxybenzenecarboxylic acid, trihydroxybenzenecarboxylic acid, hydroxybenzenedicarboxylic acid, dihydroxybenzenedicarboxylic acid, hydroxytoluenecarboxylic acid, nitronaphthol, aminonaphthol, dinitronaphthol, hydroxynaphthalenecarboxylic acid, dihydroxynaphthalenecarboxylic acid, trihydroxy Naphthalene carboxylic acid, hydroxynaphthalenedicarboxylic acid, dihydroxynaphthalenedicarboxylic acid, hydroxyanthracene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, hydroxyanthracene carboxylic acid, hydroxyanthracen dicarboxylic acid, dihydroxyanthracene dicarboxylic acid, tetrahydroxyanthracendione, benzenecarboxylic Examples thereof include acids, benzenedicarboxylic acids, naphthalenecarboxylic acids and naphthalenedicarboxylic acids.
また、上記沸点が150℃以上の高沸点有機溶剤または導電性補助液にエポキシ化合物またはその加水分解物、シラン化合物またはその加水分解物およびポリアルコールよりなる群から選ばれる少なくとも1種の結合剤を含有させることもできる。 Further, at least one binder selected from the group consisting of an epoxy compound or its hydrolyzate, a silane compound or its hydrolyzate, and polyalcohol is added to the high boiling point organic solvent or conductive auxiliary liquid having a boiling point of 150 ° C. or higher. It can also be contained.
本発明の電解コンデンサは、耐熱性に優れていることから、このような特性が要求される用途(例えば、車載用途)に好適に用い得るほか、従来から電解コンデンサが用いられている用途と同じ用途にも適用することができる。 Since the electrolytic capacitor of the present invention has excellent heat resistance, it can be suitably used for applications requiring such characteristics (for example, in-vehicle applications), and is the same as the applications in which electrolytic capacitors have been conventionally used. It can also be applied to applications.
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on Examples. However, the following examples do not limit the present invention.
実施例1
(モノマー液の調製)
EDOTとエチル化EDOTとを、85:15の質量比で混合した(以下、この混合物を「XA15」という)。XA15:49.85gに、ピロール:0.15gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。
Example 1
(Preparation of monomer solution)
The EDOT and the ethylened EDOT were mixed at a mass ratio of 85:15 (hereinafter, this mixture is referred to as "XA15"). To XA15: 49.85 g, pyrrole: 0.15 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution.
(タンタル電解コンデンサの作製)
タンタル焼結体を2質量%濃度のリン酸水溶液中に浸漬し、10Vの電圧を印加することで、タンタル焼結体の表面に誘電体層(誘電体酸化皮膜)を形成した。
(Manufacturing of tantalum electrolytic capacitors)
A dielectric layer (dielectric oxide film) was formed on the surface of the tantalum sintered body by immersing the tantalum sintered body in a phosphoric acid aqueous solution having a concentration of 2% by mass and applying a voltage of 10 V.
上記のタンタル焼結体を30質量%濃度のパラトルエンスルホン酸鉄エタノール溶液(酸化剤兼ドーパント溶液)中に浸漬してから取り出し、105℃で30分間乾燥させた。乾燥後の上記タンタル焼結体を上記モノマー液中に浸漬し、温度25℃、相対湿度60%の雰囲気中で2時間化学酸化重合を行ってタンタル焼結体の誘電体層上に導電性高分子の層を形成した。続いて、このタンタル焼結体を純水中に浸漬し、30分間放置した後に引き上げて、105℃で60分間乾燥させた。タンタル焼結体のパラトルエンスルホン酸鉄エタノール溶液への浸漬から重合後の洗浄および乾燥までの工程を3回繰り返して、厚みが10μmの導電性高分子の層を誘電体層上に有するコンデンサ素子を得た。 The above tantalum sintered body was immersed in an ethanol solution of iron paratoluenesulfonate (oxidizer and dopant solution) having a concentration of 30% by mass, then taken out, and dried at 105 ° C. for 30 minutes. The dried tantalum sintered body is immersed in the monomer solution and chemically oxidatively polymerized for 2 hours in an atmosphere at a temperature of 25 ° C. and a relative humidity of 60% to have high conductivity on the dielectric layer of the tantalum sintered body. A layer of molecules was formed. Subsequently, this tantalum sintered body was immersed in pure water, left for 30 minutes, pulled up, and dried at 105 ° C. for 60 minutes. A capacitor element having a conductive polymer layer with a thickness of 10 μm on the dielectric layer by repeating the steps from dipping the tantalum sintered body in an iron-ethanol solution of paratoluenesulfonate to cleaning and drying after polymerization three times. Got
そして、上記コンデンサ素子の導電性高分子の層をカーボンペーストおよび銀ペーストで覆った後に外装材で外装して、タンタル電解コンデンサを得た。なお、実施例1のタンタル電解コンデンサの設計静電容量は、350μFである(後記の各実施例および比較例のタンタル電解コンデンサも同様である)。 Then, after covering the conductive polymer layer of the capacitor element with carbon paste and silver paste, the capacitor element was covered with an exterior material to obtain a tantalum electrolytic capacitor. The design capacitance of the tantalum electrolytic capacitor of Example 1 is 350 μF (the same applies to the tantalum electrolytic capacitors of each of the examples and comparative examples described later).
実施例2
EDOTとプロピル化EDOTとを、50:50の質量比で混合した(以下、この混合物を「XB50」という)。XB50:49.99gに、ピロール:0.01gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Example 2
EDOT and propylated EDOT were mixed at a mass ratio of 50:50 (hereinafter, this mixture is referred to as "XB50"). To XB50: 49.99 g, pyrrole: 0.01 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
実施例3
XB50:49.95gに、ピロール:0.05gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Example 3
To XB50: 49.95 g, pyrrole: 0.05 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
実施例4
XB50:49.85gに、ピロール:0.15gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Example 4
To XB50: 49.85 g, pyrrole: 0.15 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
実施例5
XB50:49.75gに、ピロール:0.25gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Example 5
To XB50: 49.75 g, pyrrole: 0.25 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
実施例6
EDOTとブチル化EDOTとを、10:90の質量比で混合した(以下、この混合物を「XC90」という)。XC90:49.95gに、ピロール:0.05gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Example 6
The EDOT and the butylated EDOT were mixed at a mass ratio of 10:90 (hereinafter, this mixture is referred to as "XC90"). To XC90: 49.95 g, pyrrole: 0.05 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
比較例1
XB50:50.00gに、ピロールを添加せずに溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 1
A solvent (xylene): 50.00 g was added to XB50: 50.00 g without adding pyrrole, and the mixture was mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
比較例2
タンタル焼結体のパラトルエンスルホン酸鉄エタノール溶液への浸漬から重合後の洗浄および乾燥までの工程を6回繰り返した以外は、比較例1と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 2
A tantalum electrolytic capacitor was produced in the same manner as in Comparative Example 1 except that the steps from immersion of the tantalum sintered body in the iron ethanol solution of paratoluenesulfonate to cleaning and drying after polymerization were repeated 6 times.
比較例3
XB50:49.50gに、ピロール:0.50gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 3
To XB50: 49.50 g, pyrrole: 0.50 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
比較例4
タンタル焼結体のパラトルエンスルホン酸鉄エタノール溶液への浸漬から重合後の洗浄および乾燥までの工程を6回繰り返した以外は、比較例3と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 4
A tantalum electrolytic capacitor was produced in the same manner as in Comparative Example 3 except that the steps from immersion of the tantalum sintered body in the iron ethanol solution of paratoluenesulfonate to cleaning and drying after polymerization were repeated 6 times.
比較例5
EDOT:50.00gに溶媒(キシレン):50.00gを添加し、混合してモノマー溶液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 5
A solvent (xylene): 50.00 g was added to EDOT: 50.00 g and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
比較例6
EDOT:49.85gに、ピロール:0.15gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 6
To EDOT: 49.85 g, pyrrole: 0.15 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
比較例7
EDOT:49.00gに、ピロール:1.00gおよび溶媒(キシレン):50.00gを添加し、混合してモノマー液を調製した。そして、このモノマー液を用いた以外は、実施例1と同様にしてタンタル電解コンデンサを作製した。
Comparative Example 7
To EDOT: 49.00 g, pyrrole: 1.00 g and solvent (xylene): 50.00 g were added and mixed to prepare a monomer solution. Then, a tantalum electrolytic capacitor was produced in the same manner as in Example 1 except that this monomer solution was used.
実施例および比較例のタンタル電解コンデンサについて、初期および耐熱性試験での、静電容量および漏れ電流を下記の方法で測定した。 For the tantalum electrolytic capacitors of Examples and Comparative Examples, the capacitance and leakage current in the initial and heat resistance tests were measured by the following methods.
(静電容量)
HEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃の条件下で、120Hzで測定した。また、求めた静電容量を設計静電容量(350μF)で除し、これを百分率で表して容量出現率(%)を算出した。
(Capacitance)
It was measured at 120 Hz under the condition of 25 ° C. using an LCR meter (4284A) manufactured by Hewlett-Packard. Further, the obtained capacitance was divided by the design capacitance (350 μF), and this was expressed as a percentage to calculate the capacitance appearance rate (%).
(漏れ電流)
各コンデンサに25℃で10Vの電圧を60秒間印加した後、デジタルオシロスコープを用いて漏れ電流を測定した。
(Leak current)
After applying a voltage of 10 V at 25 ° C. to each capacitor for 60 seconds, the leakage current was measured using a digital oscilloscope.
(タンタル電解コンデンサの耐熱性評価)
実施例および比較例のタンタル電解コンデンサ各10個を、150℃で250時間貯蔵した後、上記と同じ方法で、静電容量を測定し、下記式によって静電容量の初期特性評価時の測定値からの変化率(%)を求めた。
静電容量の耐熱性評価測定値の初期特性評価測定値からの変化率(%):
変化率(%) = 100 × (耐熱性評価測定値−初期特性評価測定値)
÷ 初期特性評価測定値
(Evaluation of heat resistance of tantalum electrolytic capacitors)
After storing 10 tantalum electrolytic capacitors of Examples and Comparative Examples at 150 ° C. for 250 hours, the capacitance was measured by the same method as above, and the measured value at the time of initial characteristic evaluation of the capacitance was measured by the following formula. The rate of change (%) from was calculated.
Rate of change (%) from the initial characteristic evaluation measurement value of the heat resistance evaluation measurement value of capacitance:
Rate of change (%) = 100 x (heat resistance evaluation measurement value-initial characteristic evaluation measurement value)
÷ Initial characteristic evaluation measurement value
実施例および比較例のタンタル電解コンデンサに使用したモノマー液中のモノマーの組成を表1に示し、重合回数(タンタル焼結体のパラトルエンスルホン酸鉄エタノール溶液への浸漬から重合後の洗浄および乾燥までの一連の工程を1回とする回数)および上記の各評価結果を表2に示す。表1において、EDOTおよびアルキル化EDOTの欄の数値は、EDOTとアルキル化EDOTとの合計100質量部中の割合(質量部)であり、ピロールの欄の数値は、モノマー全量(EDOT、アルキル化EDOTおよびピロールの合計量)中の割合(質量%)である。 The composition of the monomer in the monomer solution used for the tantalum electrolytic capacitors of Examples and Comparative Examples is shown in Table 1, and the number of times of polymerization (immersion of tantalum sintered body in iron ethanol solution of paratoluenesulfonate to washing and drying after polymerization) is shown. Table 2 shows the number of times the series of steps up to (1) and each of the above evaluation results are performed. In Table 1, the numerical values in the columns of EDOT and alkylated EDOT are the ratio (parts by mass) of the total of EDOT and alkylated EDOT in 100 parts by mass, and the numerical values in the column of pyrrole are the total amount of monomers (EDOT, alkylation). Percentage (% by mass) in (total amount of EDOT and pyrrole).
表1および表2に示す通り、モノマー全量中のピロールの割合、およびEDOTとアルキル化EDOTとの合計量中のアルキル化EDOTの割合が適正なモノマーで形成した導電性高分子を有する実施例1〜6の電解コンデンサは、重合回数を3回と少なくしても容量出現率が80%を超えており、大きな静電容量が確保できていた。すなわち、実施例1〜6の電解コンデンサは、少ない重合回数で十分な静電容量が確保できており、生産性に優れているといえる。 As shown in Tables 1 and 2, Example 1 having a conductive polymer in which the ratio of pyrrol in the total amount of the monomer and the ratio of the alkylated EDOT in the total amount of the EDOT and the alkylated EDOT are formed by an appropriate monomer. Even if the number of times of polymerization was reduced to 3 times, the capacitance appearance rate of the electrolytic capacitors of to 6 exceeded 80%, and a large capacitance could be secured. That is, it can be said that the electrolytic capacitors of Examples 1 to 6 are excellent in productivity because a sufficient capacitance can be secured with a small number of polymerizations.
さらに、実施例1〜6の電解コンデンサは、高温貯蔵後の静電容量の変化率が小さく、優れた耐熱性を有していた。 Further, the electrolytic capacitors of Examples 1 to 6 had a small rate of change in capacitance after high-temperature storage and had excellent heat resistance.
なお、EDOTのみを重合して導電性高分子の層を形成した比較例5の電解コンデンサは従来品に相当し、漏れ電流が500μAであった。このような従来品相当の漏れ電流に対し、100μA以下を電解コンデンサの漏れ電流改善を一応の目安としているが、実施例1〜6の電解コンデンサは、いずれも漏れ電流が100μAを下回っており、良好に低減できていた。 The electrolytic capacitor of Comparative Example 5 in which only EDOT was polymerized to form a layer of a conductive polymer corresponded to a conventional product and had a leakage current of 500 μA. For the leakage current equivalent to that of the conventional product, 100 μA or less is used as a tentative guideline for improving the leakage current of the electrolytic capacitor. However, the leakage current of all the electrolytic capacitors of Examples 1 to 6 is less than 100 μA. It was able to be reduced satisfactorily.
これに対し、ピロールを使用しなかった電解コンデンサのうち、重合回数を実施例の電解コンデンサと同じにした比較例1の電解コンデンサは、容量出現率が低く静電容量が小さくなった。また、比較例1の電解コンデンサは、高温貯蔵後の静電容量変化率が大きく耐熱性が劣っており、漏れ電流も大きかった。一方、重合回数を6回と多くした以外は比較例1の電解コンデンサと同じ構成とした比較例2の電解コンデンサは、静電容量および漏れ電流は実施例の電解コンデンサと同等であったものの、重合回数が多い点で生産性が劣っており、また、高温貯蔵後の静電容量変化率が実施例の電解コンデンサよりも大きく耐熱性が劣っていた。 On the other hand, among the electrolytic capacitors that did not use pyrrole, the electrolytic capacitor of Comparative Example 1 in which the number of times of polymerization was the same as that of the electrolytic capacitor of Example had a low capacitance appearance rate and a small capacitance. Further, the electrolytic capacitor of Comparative Example 1 had a large rate of change in capacitance after high-temperature storage, was inferior in heat resistance, and had a large leakage current. On the other hand, the electrolytic capacitor of Comparative Example 2 having the same configuration as the electrolytic capacitor of Comparative Example 1 except that the number of polymerizations was increased to 6 times had the same capacitance and leakage current as the electrolytic capacitor of the example. The productivity was inferior in that the number of times of polymerization was large, and the rate of change in capacitance after high-temperature storage was larger than that of the electrolytic capacitor of the example, and the heat resistance was inferior.
さらに、ピロールの割合を多くした電解コンデンサのうち、重合回数を実施例の電解コンデンサと同じにした比較例3の電解コンデンサは、容量出現率が低く静電容量が小さくなった。また、比較例3の電解コンデンサは、高温貯蔵後の静電容量変化率が大きく耐熱性が劣っていた。そして、比較例4の電解コンデンサでは、重合回数を6回と多くした以外は比較例3の電解コンデンサと同じ構成としたが、静電容量が小さい点、および耐熱性が劣っている点が、比較例2の電解コンデンサから改善することはなかった。 Further, among the electrolytic capacitors having a large proportion of pyrrole, the electrolytic capacitor of Comparative Example 3 in which the number of times of polymerization was the same as that of the electrolytic capacitor of Example had a low capacitance appearance rate and a small capacitance. Further, the electrolytic capacitor of Comparative Example 3 had a large rate of change in capacitance after high-temperature storage and was inferior in heat resistance. The electrolytic capacitor of Comparative Example 4 had the same configuration as the electrolytic capacitor of Comparative Example 3 except that the number of polymerizations was increased to 6 times, but the capacitance was small and the heat resistance was inferior. There was no improvement from the electrolytic capacitor of Comparative Example 2.
他方、アルキル化EDOTを使用しなかった電解コンデンサのうち、ピロールも使用しなかった比較例5の電解コンデンサは、上記の通り、従来品相当のものであるが、重合回数が3回でも大きな静電容量が確保できており、耐熱性も良好であるものの、実施例の電解コンデンサに比べて漏れ電流が大きかった。さらに、EDOTと共にピロールも使用した比較例6の電解コンデンサは、貯蔵後の静電容量変化率が大きく耐熱性が劣っており、また、漏れ電流も比較例5の電解コンデンサよりも劣っていた。 On the other hand, among the electrolytic capacitors that did not use the alkylated EDOT, the electrolytic capacitor of Comparative Example 5 that did not use pyrrole is equivalent to the conventional product as described above, but the number of polymerizations is 3 even if the number of times of polymerization is 3 times. Although the electric capacity was secured and the heat resistance was good, the leakage current was larger than that of the electrolytic capacitor of the example. Further, the electrolytic capacitor of Comparative Example 6 in which pyrrole was also used together with EDOT had a large rate of change in capacitance after storage and was inferior in heat resistance, and the leakage current was also inferior to that of the electrolytic capacitor of Comparative Example 5.
また、比較例7の電解コンデンサは、アルキル化EDOTを使用せず、モノマー全量中のピロールの割合を多くしており、特許文献2の実施例相当品に該当するが、容量出現率が低く静電容量が劣っており、高温貯蔵後の静電容量変化率が大きく耐熱性が劣っており、さらに漏れ電流も比較例5の電解コンデンサよりも劣っていた。特許文献2には、上記の通り、ピロールの使用によってEDOTをモノマーとする導電性高分子の重合効率を高め得ることが示されているものの、比較例7の結果によれば、特許文献2の実施例と同様の重合回数3回では、EDOTのみを使用した比較例5の電解コンデンサと比較しても静電容量が小さく、その重合効率の向上効果は限定的であると推測される。一方、このような比較例7の電解コンデンサに対し、ピロールおよびEDOTと共にアルキル化EDOTを使用した実施例1〜6の電解コンデンサは、同じ重合回数3回でも非常に大きな静電容量が確保できていることから、その生産性向上効果は極めて顕著といえる。 Further, the electrolytic capacitor of Comparative Example 7 does not use an alkylated EDOT and has a large proportion of pyrrol in the total amount of the monomer, which corresponds to the product equivalent to the example of Patent Document 2, but has a low capacitance appearance rate and is static. The capacitance was inferior, the rate of change in capacitance after high-temperature storage was large, the heat resistance was inferior, and the leakage current was also inferior to that of the electrolytic capacitor of Comparative Example 5. As described above, Patent Document 2 shows that the use of pyrrole can increase the polymerization efficiency of the conductive polymer using EDOT as a monomer, but according to the result of Comparative Example 7, Patent Document 2 When the number of times of polymerization is 3 as in the example, the capacitance is smaller than that of the electrolytic capacitor of Comparative Example 5 using only EDOT, and it is presumed that the effect of improving the polymerization efficiency is limited. On the other hand, with respect to the electrolytic capacitor of Comparative Example 7, the electrolytic capacitors of Examples 1 to 6 using the alkylated EDOT together with pyrrole and EDOT can secure a very large capacitance even if the same number of polymerizations is 3 times. Therefore, it can be said that the productivity improving effect is extremely remarkable.
Claims (4)
上記導電性高分子は、ピロール、3,4−エチレンジオキシチオフェン、およびアルキル化エチレンジオキシチオフェンを共重合してなり、全モノマー中のピロールの割合が0.01〜0.5質量%で、3,4−エチレンジオキシチオフェンとアルキル化エチレンジオキシチオフェンとの合計100質量部中のアルキル化エチレンジオキシチオフェンの割合が15〜90質量部であることを特徴とする電解コンデンサ。 An electrolytic capacitor having a conductive polymer as a solid electrolyte on a capacitor element having a porous body of a valve metal and a dielectric layer made of an oxide film of the valve metal.
The conductive polymer is obtained by copolymerizing pyrrole, 3,4-ethylenedioxythiophene, and alkylated ethylenedioxythiophene, and the proportion of pyrrole in the total monomer is 0.01 to 0.5% by mass. , 3,4-An electrolytic capacitor characterized in that the ratio of alkylated ethylenedioxythiophene in a total of 100 parts by mass of ethylenedioxythiophene and alkylated ethylenedioxythiophene is 15 to 90 parts by mass.
上記導電性高分子の形成に際し、ピロールを全モノマー中の割合が0.01〜0.5質量%となる量で使用し、かつ3,4−エチレンジオキシチオフェンおよびアルキル化エチレンジオキシチオフェンを、これらの合計100質量部中のアルキル化エチレンジオキシチオフェンの割合が15〜90質量部となる量で使用することを特徴とする電解コンデンサの製造方法。 Pyrrole, 3,4-ethylenedioxythiophene, and alkylated ethylenedioxythiophene are chemically oxidized and polymerized on a capacitor element having a porous body of the valve metal and a dielectric layer composed of an oxide film of the valve metal. It has a step of copolymerizing to form a conductive polymer.
In forming the above conductive polymer, pyrrole is used in an amount of 0.01 to 0.5% by mass in the total monomer, and 3,4-ethylenedioxythiophene and alkylated ethylenedioxythiophene are used. A method for producing an electrolytic capacitor, which comprises using an alkylated ethylenedioxythiophene in an amount of 15 to 90 parts by mass in a total of 100 parts by mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156728A JP7357487B2 (en) | 2019-08-29 | 2019-08-29 | Electrolytic capacitor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156728A JP7357487B2 (en) | 2019-08-29 | 2019-08-29 | Electrolytic capacitor and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021034684A true JP2021034684A (en) | 2021-03-01 |
JP7357487B2 JP7357487B2 (en) | 2023-10-06 |
Family
ID=74677724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019156728A Active JP7357487B2 (en) | 2019-08-29 | 2019-08-29 | Electrolytic capacitor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7357487B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11283876A (en) * | 1998-03-30 | 1999-10-15 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacture thereof |
JP2010189644A (en) * | 2003-09-25 | 2010-09-02 | Showa Denko Kk | Pi-CONJUGATED COPOLYMER, PRODUCTION METHOD THEREOF AND CAPACITOR USING THE COPOLYMER |
JP2010278360A (en) * | 2009-05-29 | 2010-12-09 | Elna Co Ltd | Solid electrolytic capacitor and method of manufacturing the same |
JP2012169682A (en) * | 2009-12-04 | 2012-09-06 | Tayca Corp | Method for manufacturing wound type solid electrolytic capacitor |
WO2015037481A1 (en) * | 2013-09-11 | 2015-03-19 | テイカ株式会社 | Monomer liquid for production of conductive polymer and method for manufacturing electrolytic capacitor using same |
-
2019
- 2019-08-29 JP JP2019156728A patent/JP7357487B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11283876A (en) * | 1998-03-30 | 1999-10-15 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacture thereof |
JP2010189644A (en) * | 2003-09-25 | 2010-09-02 | Showa Denko Kk | Pi-CONJUGATED COPOLYMER, PRODUCTION METHOD THEREOF AND CAPACITOR USING THE COPOLYMER |
JP2010278360A (en) * | 2009-05-29 | 2010-12-09 | Elna Co Ltd | Solid electrolytic capacitor and method of manufacturing the same |
JP2012169682A (en) * | 2009-12-04 | 2012-09-06 | Tayca Corp | Method for manufacturing wound type solid electrolytic capacitor |
WO2015037481A1 (en) * | 2013-09-11 | 2015-03-19 | テイカ株式会社 | Monomer liquid for production of conductive polymer and method for manufacturing electrolytic capacitor using same |
Also Published As
Publication number | Publication date |
---|---|
JP7357487B2 (en) | 2023-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2622616B1 (en) | A method for improving electrical parameters in capacitors comprising pedot/pss as a solid electrolyte through a polyalkylene glycol | |
JP5911136B2 (en) | Manufacturing method of solid electrolytic capacitor | |
TWI607033B (en) | Monomer liquid for manufacturing conductive polymer and method for manufacturing electrolytic capacitor using the same | |
JP5807997B2 (en) | Manufacturing method of solid electrolytic capacitor | |
TW200523961A (en) | Electrolytic capacitors with a polymeric outer layer | |
JP5892535B2 (en) | Oxidizing agent / dopant for producing conductive polymer, oxidizing agent / dopant solution for producing conducting polymer, conducting polymer and solid electrolytic capacitor | |
JP2013171956A (en) | Solid electrolytic capacitor, method for manufacturing the same, and conductive polymer composition | |
TW200425190A (en) | Solid electrolytic capacitor and method for manufacturing same | |
JP6129569B6 (en) | Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor | |
JP2012169393A (en) | Solid electrolytic capacitor | |
JP7064807B2 (en) | Oxidizing agent and dopant solution for manufacturing conductive polymers, manufacturing methods for conductive polymers, and manufacturing methods for electrolytic capacitors | |
JP5348796B2 (en) | Oxidizing agent / dopant solution for conductive polymer production, conductive polymer, solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same | |
CN102612722A (en) | Solid electrolytic capacitor and method for producing same | |
JP7357487B2 (en) | Electrolytic capacitor and its manufacturing method | |
JP7692301B2 (en) | Method for producing conductive polymer, monomer composition for producing conductive polymer, and method for producing electrolytic capacitor | |
JP7065683B2 (en) | Oxidizing agent and dopant for manufacturing conductive polymers and their solutions, conductive polymers and their manufacturing methods, and electrolytic capacitors and their manufacturing methods. | |
JP2008288342A (en) | Method for forming electrolyte for electrolytic capacitor | |
JP2014192183A (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP5501079B2 (en) | Oxidizing agent / dopant solution for conductive polymer production, conductive polymer, solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same | |
JP7449717B2 (en) | Oxidizing agent/dopant solution for manufacturing conductive polymer, conductive polymer and method for manufacturing the same, electrolytic capacitor and method for manufacturing the same | |
JP7282583B2 (en) | Manufacturing method of electrolytic capacitor | |
JP2013214674A (en) | Manufacturing method for winding type solid electrolytic capacitor | |
JP2025007944A (en) | Manufacturing method of electrolytic capacitor | |
JP5522674B2 (en) | Monomer composition for producing conductive polymer, conductive polymer, solid electrolytic capacitor using the same as solid electrolyte, and method for producing the same | |
JP2013157591A (en) | Polyaniline solution for manufacturing solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7357487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |