[go: up one dir, main page]

JP2021034205A - Solid electrolyte for all-solid lithium ion battery, all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery - Google Patents

Solid electrolyte for all-solid lithium ion battery, all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery Download PDF

Info

Publication number
JP2021034205A
JP2021034205A JP2019152358A JP2019152358A JP2021034205A JP 2021034205 A JP2021034205 A JP 2021034205A JP 2019152358 A JP2019152358 A JP 2019152358A JP 2019152358 A JP2019152358 A JP 2019152358A JP 2021034205 A JP2021034205 A JP 2021034205A
Authority
JP
Japan
Prior art keywords
solid
solid electrolyte
ion battery
state lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019152358A
Other languages
Japanese (ja)
Other versions
JP7296822B2 (en
Inventor
翔一 山本
Shoichi Yamamoto
翔一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019152358A priority Critical patent/JP7296822B2/en
Publication of JP2021034205A publication Critical patent/JP2021034205A/en
Application granted granted Critical
Publication of JP7296822B2 publication Critical patent/JP7296822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】所定の正極活物質と共に焼成したときに反応物の生成が良好に抑制される全固体リチウムイオン電池用固体電解質及びそれを用いた全固体リチウムイオン電池を提供する。【解決手段】組成式:Li7-3x+αLa3Zr2AlxO12(式中、0≦x<2、1.1<(7−3x+α)/(7−3x)≦1.5である)で表される固体電解質であって、0.15gの固体電解質に、0.15gの組成式:LiaNibCocMn1-b-cO2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.036以下の全固体リチウムイオン電池用固体電解質。【選択図】なしPROBLEM TO BE SOLVED: To provide a solid electrolyte for an all-solid-state lithium-ion battery in which the formation of a reactant is satisfactorily suppressed when fired together with a predetermined positive electrode active material, and an all-solid-state lithium-ion battery using the same. SOLUTION: A solid electrolyte represented by a composition formula: Li7-3x + αLa3Zr2AlxO12 (in the formula, 0 ≦ x <2, 1.1 <(7-3x + α) / (7-3x) ≦ 1.5). Therefore, in 0.15 g of the solid electrolyte, 0.15 g of the composition formula: LiaNibCocMn1-b-cO2 (in the formula, 0.98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ When the positive electrode active material represented by (c ≦ 0.20) is added and pressure is applied at 50 MPa, and discharge plasma sintering is performed at 800 ° C. for 5 minutes, it corresponds to the solid electrolyte as the main component. All solids having a ratio Ib / Ia of 0.036 or less between the integrated intensity Ia of the XRD peak at 2θ = 16.6 ° and the integrated intensity Ib of the XRD peak at 2θ = 23.0 ° corresponding to the reactant LaMnO3. Solid electrolyte for lithium ion batteries. [Selection diagram] None

Description

本発明は、全固体リチウムイオン電池用固体電解質、全固体リチウムイオン電池及び全固体リチウムイオン電池の製造方法に関する。 The present invention relates to a solid electrolyte for an all-solid-state lithium-ion battery, an all-solid-state lithium-ion battery, and a method for producing an all-solid-state lithium-ion battery.

近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。また、車載用等の動力源やロードレべリング用といった大型用途におけるリチウム二次電池についても、高エネルギー密度、電池特性向上が求められている。 With the rapid spread of information-related devices such as personal computers, video cameras, and mobile phones and communication devices in recent years, the development of batteries used as their power sources has been emphasized. Among the batteries, lithium batteries are attracting attention from the viewpoint of high energy density. Further, high energy density and improvement of battery characteristics are also required for lithium secondary batteries in large-scale applications such as power sources for automobiles and road leveling.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池の代替候補として、電解質を固体とした全固体リチウムイオン電池が近年注目を集めている。 However, in the case of lithium-ion batteries, most of the electrolytic solution is an organic compound, and even if a flame-retardant compound is used, it cannot be said that the risk of fire is completely eliminated. As an alternative candidate for such a liquid-based lithium-ion battery, an all-solid-state lithium-ion battery having a solid electrolyte has been attracting attention in recent years.

酸化物系Liイオン伝導体は大気中での安定性に優れるため注目を集めている。特に任意でAl、Ga、Ta、Nbを含む立方晶ガーネット型結晶構造のリチウムランタンジルコニウム酸化物は、大気安定性が高く、全固体電池の固体電解質として有力視されている。 Oxide-based Li-ion conductors are attracting attention because of their excellent stability in the atmosphere. In particular, lithium lanthanum zirconium oxide having a cubic garnet-type crystal structure optionally containing Al, Ga, Ta, and Nb has high atmospheric stability and is regarded as a promising solid electrolyte for all-solid-state batteries.

ガーネットは一般的に、A32312の組成式で表され、正方晶と立方晶の構造を有している。LLZ(Li7La3Zr212)では、AサイトをLa3+、BサイトをZr4+、Cサイトと格子間位置をLi+が占有する。定比のLLZは、Liが規則配列した正方晶相と、Liが不規則配列した高温立方晶相の2相の存在が確認されている。高イオン伝導度を示すLLZは立方晶であるが、通常、立方晶は不安定であるという問題があった。現在までにLiをAlで置換することで立方晶を安定化することができるLi7-3xLa3Zr2Alx12などの報告がなされている(非特許文献1、2)。 Garnet is generally represented by the composition formula of A 3 B 2 C 3 O 12 and has a tetragonal and cubic structure. In LLZ (Li 7 La 3 Zr 2 O 12 ), the A site is occupied by La 3+ , the B site is occupied by Zr 4+ , and the C site and the interstitial position are occupied by Li +. It has been confirmed that the constant ratio LLZ has two phases, a tetragonal phase in which Li is regularly arranged and a high-temperature cubic phase in which Li is irregularly arranged. LLZ showing high ionic conductivity is a cubic crystal, but there is usually a problem that the cubic crystal is unstable. To date, there have been reports of Li 7-3 x La 3 Zr 2 Al x O 12 and the like, which can stabilize cubic crystals by substituting Li with Al (Non-Patent Documents 1 and 2).

E. Rangasamy, J. Wolfenstine, and J. Sakamoto, Solid StateIonics, 206,28 (2012)E. Rangasamy, J. Wolfenstine, and J. Sakamoto, Solid State Ionics, 206,28 (2012) M. Matsui, K. Takahashi, K. Sakamoto, A. Hirano, Y. Takeda, O. Yamamoto, and N. Imanishi, Dalton Trans. 43, 1019 (2014)M. Matsui, K. Takahashi, K. Sakamoto, A. Hirano, Y. Takeda, O. Yamamoto, and N. Imanishi, Dalton Trans. 43, 1019 (2014)

全固体リチウムイオン電池は、一般に、正極活物質の層(正極層)と固体電解質と負極層とをこの順に備える。このとき、隣接する正極活物質と固体電解質とが反応して反応物を生成すると、電池としての機能が果たせなくなるおそれがある。しかしながら、上述したLi7La3Zr212やLi7-3xLa3Zr2Alx12などに代表される酸化物系固体電解質は、全固体リチウムイオン電池の製造時に、正極活物質の層と積層した後に焼成する工程が必要であるが、その際に正極活物質と反応物を生成しやすいという問題がある。 An all-solid-state lithium-ion battery generally includes a positive electrode active material layer (positive electrode layer), a solid electrolyte, and a negative electrode layer in this order. At this time, if the adjacent positive electrode active material reacts with the solid electrolyte to generate a reactant, the function as a battery may not be fulfilled. However, the oxide-based solid electrolyte represented by the above-mentioned Li 7 La 3 Zr 2 O 12 and Li 7-3 x La 3 Zr 2 Al x O 12 is used as a positive electrode active material during the production of an all-solid-state lithium-ion battery. A step of firing after laminating with the layer is required, but there is a problem that a positive electrode active material and a reactant are easily generated at that time.

このような問題に鑑み、本発明の実施形態では、所定の正極活物質と共に焼成したときに反応物の生成が良好に抑制される全固体リチウムイオン電池用固体電解質及びそれを用いた全固体リチウムイオン電池を提供することを目的とする。 In view of these problems, in the embodiment of the present invention, a solid electrolyte for an all-solid-state lithium-ion battery in which the formation of a reactant is satisfactorily suppressed when fired together with a predetermined positive electrode active material, and an all-solid-state lithium using the same. It is an object of the present invention to provide an ion battery.

本発明は実施形態において、組成式:Li7-3x+αLa3Zr2Alx12(式中、0≦x<2、1.1<(7−3x+α)/(7−3x)≦1.5である)で表される固体電解質であって、0.15gの前記固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.036以下に制御されている全固体リチウムイオン電池用固体電解質である。 In the embodiment of the present invention, the composition formula: Li 7-3x + α La 3 Zr 2 Al x O 12 (in the formula, 0 ≦ x <2, 1.1 <(7-3x + α) / (7-3x) ≦) a solid electrolyte represented by a is) 1.5, to said solid electrolyte 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( where 0. 98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) is added, and the pressure is increased at 50 MPa at 800 ° C. when performing discharge plasma sintering for 5 minutes, 2 [Theta] = 23.0 applicable and integrated intensity I a of the XRD peaks of 2 [Theta] = 16.6 ° corresponding to the solid electrolyte of the main component, the LaMnO 3 which is a reaction product A solid electrolyte for an all-solid-state lithium-ion battery in which the ratio I b / I a of the XRD peak of ° to the integrated intensity I b is controlled to 0.036 or less.

本発明の全固体リチウムイオン電池用固体電解質は別の実施形態において、前記式中、0≦x<1である。 In another embodiment, the solid electrolyte for an all-solid-state lithium-ion battery of the present invention has 0 ≦ x <1 in the above formula.

本発明の全固体リチウムイオン電池用固体電解質は別の実施形態において、0.15gの前記固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.015以下となる。 An all-solid-state lithium-ion batteries for a solid electrolyte another embodiment of the present invention, the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein, The positive electrode active material represented by (0.98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) was added, and the pressure was increased at 50 MPa to 800. when discharge plasma sintering of 5 minutes was performed at ° C., 2 [Theta] = 23 corresponding with integrated intensity I a of the XRD peaks of 2 [Theta] = 16.6 ° corresponding to the solid electrolyte of the main component, the LaMnO 3 which is a reaction product The ratio I b / I a of the 0.0 ° XRD peak to the integrated intensity I b is 0.015 or less.

本発明の全固体リチウムイオン電池用固体電解質は更に別の実施形態において、0.15gの前記固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.011以下となる。 An all-solid-state lithium-ion batteries for a solid electrolyte still another embodiment of the present invention, the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein , 0.98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) was added, and the pressure was increased at 50 MPa. when performing discharge plasma sintering for 5 minutes at 800 ° C., 2 [Theta] corresponding with integrated intensity I a of the XRD peaks of 2 [Theta] = 16.6 ° corresponding to the solid electrolyte of the main component, the LaMnO 3 which is a reaction product = The ratio I b / I a of the 23.0 ° XRD peak to the integrated intensity I b is 0.011 or less.

本発明は別の実施形態において、正極層、負極層及び固体電解質層を備え、本発明の全固体リチウムイオン電池用固体電解質を前記固体電解質層に備えた全固体リチウムイオン電池である。 In another embodiment, the present invention is an all-solid-state lithium-ion battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, and the solid electrolyte for an all-solid-state lithium-ion battery of the present invention is provided in the solid electrolyte layer.

本発明は別の実施形態において、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質の層と、組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質の層とを積層し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行う工程を有する全固体リチウムイオン電池の製造方法である。 The present invention in another embodiment, a layer of the all-solid-state lithium-ion batteries for a solid electrolyte according to an embodiment of the present invention, the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein 0.98 The layer of the positive electrode active material represented by (≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) is laminated and pressurized at 50 MPa, and is 800. This is a method for manufacturing an all-solid-state lithium-ion battery, which comprises a step of performing discharge plasma sintering at ° C. for 5 minutes.

本発明の実施形態によれば、所定の正極活物質と共に焼成したときに反応物の生成が良好に抑制される全固体リチウムイオン電池用固体電解質及びそれを用いた全固体リチウムイオン電池を提供することができる。 According to an embodiment of the present invention, there is provided a solid electrolyte for an all-solid-state lithium-ion battery in which the formation of a reactant is satisfactorily suppressed when fired together with a predetermined positive electrode active material, and an all-solid-state lithium-ion battery using the same. be able to.

(全固体リチウムイオン電池用固体電解質)
本発明の実施形態に係る全固体リチウムイオン電池用固体電解質は、組成式:Li7-3x+αLa3Zr2Alx12(式中、0≦x<2、1.1<(7−3x+α)/(7−3x)≦1.5である)で表される。本発明の実施形態に係る全固体リチウムイオン電池用固体電解質は、組成式:Li7-3x+αLa3Zr2Alx12において、Liの定比である「Li7-3x」よりも「α」だけ過剰にLiを有しており、Li過剰となっている。そして、当該組成式:Li7-3x+αLa3Zr2Alx12で表される全固体リチウムイオン電池用固体電解質において、Li過剰の程度を、1.1<(7−3x+α)/(7−3x)≦1.5に制御することで、正極活物質と共に焼成したときに反応物の生成が良好に抑制される。また、前記式中、0≦x<1であってもよい。
(Solid electrolyte for all-solid-state lithium-ion batteries)
The solid electrolyte for an all-solid-state lithium-ion battery according to the embodiment of the present invention has a composition formula: Li 7-3x + α La 3 Zr 2 Al x O 12 (in the formula, 0 ≦ x <2, 1.1 <(7). -3x + α) / (7-3x) ≦ 1.5). The solid electrolyte for an all-solid-state lithium-ion battery according to the embodiment of the present invention has a composition formula: Li 7-3x + α La 3 Zr 2 Al x O 12 , which is higher than the constant ratio of Li “Li 7-3x”. It has an excess of Li by "α", which is an excess of Li. Then, in the solid electrolyte for all-solid-state lithium-ion batteries represented by the composition formula: Li 7-3x + α La 3 Zr 2 Al x O 12 , the degree of Li excess is set to 1.1 <(7-3x + α) /. By controlling (7-3x) ≦ 1.5, the formation of a reactant is satisfactorily suppressed when fired together with the positive electrode active material. Further, in the above formula, 0 ≦ x <1 may be satisfied.

本発明の実施形態に係る全固体リチウムイオン電池用固体電解質は、0.15gの当該固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.036以下に制御されている。ここで、放電プラズマ焼結(SPS: Spark Plasma Sintering)は、機械的な加圧とパルス通電加熱とによって、焼結を行う加工法を示す。一般的な焼結に用いられる熱的および機械的エネルギーに加えて、パルス通電による電磁的エネルギーや焼成対象物の自己発熱および粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力としている。 All-solid-state lithium-ion batteries for a solid electrolyte according to an embodiment of the present invention, in the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein 0 The positive electrode active material represented by (.98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) was added and pressurized at 50 MPa, and the temperature was 800 ° C. in when performing discharge plasma sintering for 5 minutes, 2 [Theta] = 23 corresponding with integrated intensity I a of the XRD peaks of 2 [Theta] = 16.6 ° corresponding to the solid electrolyte of the main component, the LaMnO 3 which is a reaction product. The ratio I b / I a of the 0 ° XRD peak to the integrated intensity I b is controlled to 0.036 or less. Here, discharge plasma sintering (SPS: Spark Plasma Sintering) shows a processing method in which sintering is performed by mechanical pressurization and pulse energization heating. In addition to the thermal and mechanical energy used for general sintering, the driving force for sintering is a combination of electromagnetic energy due to pulse energization, self-heating of the object to be fired, and discharge plasma energy generated between particles. It is supposed to be.

本発明の実施形態に係る全固体リチウムイオン電池用固体電解質は、上述のように所定の組成の正極活物質を所定割合で添加した後、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.036以下に制御されている。このため、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質は、全固体リチウムイオン電池の製造時に、正極活物質の層と積層した後に焼成する工程が必要であるが、その際に正極活物質と反応物を生成し難くなり、全固体リチウムイオン電池として良好な動作が可能となる。 The solid electrolyte for an all-solid-state lithium-ion battery according to the embodiment of the present invention has a positive electrode active material having a predetermined composition added at a predetermined ratio as described above, and then pressurized at 50 MPa for 5 minutes at 800 ° C. when performing discharge plasma sintering, and integrated intensity I a of the XRD peaks of 2 [Theta] = 16.6 ° corresponding to the solid electrolyte of the main component, XRD of 2 [Theta] = 23.0 ° corresponding to LaMnO 3 which is a reaction product The ratio I b / I a of the peak to the integrated intensity I b is controlled to 0.036 or less. Therefore, the solid electrolyte for an all-solid-state lithium-ion battery according to the embodiment of the present invention requires a step of laminating with a layer of a positive electrode active material and then firing at the time of manufacturing the all-solid-state lithium-ion battery. It becomes difficult to generate a positive electrode active material and a reactant, and good operation as an all-solid-state lithium-ion battery becomes possible.

本発明の実施形態に係る全固体リチウムイオン電池用固体電解質は、0.15gの当該固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.015以下に制御されているのが好ましく、0.011以下になるように制御されているのがより好ましく、0.010以下になるように制御されているのがより好ましい。 All-solid-state lithium-ion batteries for a solid electrolyte according to an embodiment of the present invention, in the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein 0 The positive electrode active material represented by (.98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) was added and pressurized at 50 MPa, and the temperature was 800 ° C. in when performing discharge plasma sintering for 5 minutes, 2 [Theta] = 23 corresponding with integrated intensity I a of the XRD peaks of 2 [Theta] = 16.6 ° corresponding to the solid electrolyte of the main component, the LaMnO 3 which is a reaction product. The ratio I b / I a of the 0 ° XRD peak to the integrated intensity I b is preferably controlled to 0.015 or less, more preferably to 0.011 or less, and 0. More preferably, it is controlled to be .010 or less.

(全固体リチウムイオン電池用固体電解質の製造方法)
次に、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質の製造方法について詳細に説明する。まず、原料となるLi塩、La塩、Zr塩及び酸化アルミニウムをLi:La:Zr:Alが化学量論比で7.1以上:3:2:0.25となるように秤量し、Liが定比組成の20mol%以上となるように仕込む。このようにLi原料を過剰に投入することで、反応物の成分であるLaの比率が相対的に減少し、不純物(LaMnO3)の生成反応が抑制される。
次に、当該Li塩、La塩、Zr塩及び酸化アルミニウムをエタノール溶媒のもとボールミルで20h湿式混合し、乾燥させて原料混合粉末を得る。
次に、得られた粉末を800℃〜1000℃で1時間〜40時間焼成することで、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質が得られる。
(Manufacturing method of solid electrolyte for all-solid-state lithium-ion battery)
Next, a method for producing a solid electrolyte for an all-solid-state lithium-ion battery according to an embodiment of the present invention will be described in detail. First, the raw materials Li salt, La salt, Zr salt and aluminum oxide are weighed so that the stoichiometric ratio of Li: La: Zr: Al is 7.1 or more: 3: 2: 0.25, and Li Is charged so as to be 20 mol% or more of the constant ratio composition. By adding the Li raw material in excess in this way, the ratio of La, which is a component of the reactant, is relatively reduced, and the reaction for producing impurities (LaMnO 3 ) is suppressed.
Next, the Li salt, La salt, Zr salt and aluminum oxide are wet-mixed with a ball mill under an ethanol solvent for 20 hours and dried to obtain a raw material mixed powder.
Next, the obtained powder is calcined at 800 ° C. to 1000 ° C. for 1 hour to 40 hours to obtain a solid electrolyte for an all-solid-state lithium-ion battery according to the embodiment of the present invention.

(全固体リチウムイオン電池)
本発明の実施形態に係る全固体リチウムイオン電池用固体電解質を用いて固体電解質層を形成し、当該固体電解質層、正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。具体的には、まず、組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質の層と、本発明の実施形態に係る全固体リチウムイオン電池用固体電解質の層と、負極層とをこの順で積層し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行う。これにより、全固体リチウムイオン電池用固体電解質は正極活物質と反応物を生成し難くなり、全固体リチウムイオン電池として良好な動作が可能となる。
(All-solid-state lithium-ion battery)
An all-solid-state lithium-ion battery can be produced by forming a solid electrolyte layer using the solid electrolyte for an all-solid-state lithium-ion battery according to the embodiment of the present invention, and having the solid electrolyte layer, a positive electrode layer, and a negative electrode layer. Specifically, first, the composition formula: Li a Ni b Co c Mn 1-bc O 2 (in the formula, 0.98 ≦ a ≦ 1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ The positive electrode active material layer represented by (0.20), the solid electrolyte layer for an all-solid-state lithium-ion battery according to the embodiment of the present invention, and the negative electrode layer are laminated in this order and pressurized at 50 MPa. In this state, discharge plasma sintering is performed at 800 ° C. for 5 minutes. As a result, the solid electrolyte for an all-solid-state lithium-ion battery is less likely to generate a positive electrode active material and a reactant, and good operation as an all-solid-state lithium-ion battery becomes possible.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 Hereinafter, examples for better understanding the present invention and its advantages will be provided, but the present invention is not limited to these examples.

(実施例1)
Li2CO3、La(OH)3、La2Zr27及びAl23をLi:La:Zr:Alが化学量論比で7.7:3:2:0.25となるように秤量した。
次に、Li2CO3、La(OH)3、La2Zr27及びAl23を、エタノール溶媒のもとボールミルで20h湿式混合し、50℃で12h乾燥させることで、白色の原料混合粉末を得た。
次に、得られた粉末を1000℃で1h焼成することで、組成式:Li7.7La3Zr2Al0.2512の固体電解質サンプルを得た。
(Example 1)
Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 so that Li: La: Zr: Al has a stoichiometric ratio of 7.7: 3: 2: 0.25. Weighed in.
Next, Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 are wet-mixed in a ball mill under an ethanol solvent for 20 hours and dried at 50 ° C. for 12 hours to obtain a white color. Raw material mixed powder was obtained.
Next, the obtained powder was calcined at 1000 ° C. for 1 h to obtain a solid electrolyte sample having a composition formula: Li 7.7 La 3 Zr 2 Al 0.25 O 12.

(実施例2)
Li2CO3、La(OH)3、La2Zr27及びAl23をLi:La:Zr:Alが化学量論比で9.38:3:2:0.25となるように秤量した。
次に、Li2CO3、La(OH)3、La2Zr27及びAl23を、エタノール溶媒のもとボールミルで20h湿式混合し、50℃で12h乾燥させることで、白色の原料混合粉末を得た。
次に、得られた粉末を1000℃で1h焼成することで、組成式:Li9.38La3Zr2Al0.2512の固体電解質サンプルを得た。
(Example 2)
Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 so that Li: La: Zr: Al has a stoichiometric ratio of 9.38: 3: 2: 0.25. Weighed in.
Next, Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 are wet-mixed in a ball mill under an ethanol solvent for 20 hours and dried at 50 ° C. for 12 hours to obtain a white color. Raw material mixed powder was obtained.
Next, the obtained powder was calcined at 1000 ° C. for 1 h to obtain a solid electrolyte sample having a composition formula: Li 9.38 La 3 Zr 2 Al 0.25 O 12.

(実施例3)
Li2CO3、La(OH)3、La2Zr27及びAl23をLi:La:Zr:Alが化学量論比で7.19:3:2:0.25となるように秤量した。
次に、Li2CO3、La(OH)3、La2Zr27及びAl23を、エタノール溶媒のもとボールミルで20h湿式混合し、50℃で12h乾燥させることで、白色の原料混合粉末を得た。
次に、得られた粉末を1000℃で1h焼成することで、組成式:Li7.19La3Zr2Al0.2512の固体電解質サンプルを得た。
(Example 3)
Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 so that Li: La: Zr: Al has a stoichiometric ratio of 7.19: 3: 2: 0.25. Weighed in.
Next, Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 are wet-mixed in a ball mill under an ethanol solvent for 20 hours and dried at 50 ° C. for 12 hours to obtain a white color. Raw material mixed powder was obtained.
Next, the obtained powder was calcined at 1000 ° C. for 1 h to obtain a solid electrolyte sample having a composition formula: Li 7.19 La 3 Zr 2 Al 0.25 O 12.

(比較例1)
Li2CO3、La(OH)3、La2Zr27及びAl23をLi:La:Zr:Alが化学量論比で6.25:3:2:0.25となるように秤量した。
次に、Li2CO3、La(OH)3、La2Zr27及びAl23を、エタノール溶媒のもとボールミルで20h湿式混合し、50℃で12h乾燥させることで、白色の原料混合粉末を得た。
次に、得られた粉末を1000℃で1h焼成することで、組成式:Li6.25La3Zr2Al0.2512の固体電解質サンプルを得た。
(Comparative Example 1)
Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 so that Li: La: Zr: Al has a stoichiometric ratio of 6.25: 3: 2: 0.25. Weighed in.
Next, Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 are wet-mixed in a ball mill under an ethanol solvent for 20 hours and dried at 50 ° C. for 12 hours to obtain a white color. Raw material mixed powder was obtained.
Next, the obtained powder was calcined at 1000 ° C. for 1 h to obtain a solid electrolyte sample having a composition formula: Li 6.25 La 3 Zr 2 Al 0.25 O 12.

(比較例2)
Li2CO3、La(OH)3、La2Zr27及びAl23をLi:La:Zr:Alが化学量論比で6.88:3:2:0.25となるように秤量した。
次に、Li2CO3、La(OH)3、La2Zr27及びAl23を、エタノール溶媒のもとボールミルで20h湿式混合し、50℃で12h乾燥させることで、白色の原料混合粉末を得た。
次に、得られた粉末を1000℃で1h焼成することで、組成式:Li6.88La3Zr2Al0.2512の固体電解質サンプルを得た。
(Comparative Example 2)
Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 so that Li: La: Zr: Al has a stoichiometric ratio of 6.88: 3: 2: 0.25. Weighed in.
Next, Li 2 CO 3 , La (OH) 3 , La 2 Zr 2 O 7 and Al 2 O 3 are wet-mixed in a ball mill under an ethanol solvent for 20 hours and dried at 50 ° C. for 12 hours to obtain a white color. Raw material mixed powder was obtained.
Next, the obtained powder was calcined at 1000 ° C. for 1 h to obtain a solid electrolyte sample having a composition formula: Li 6.88 La 3 Zr 2 Al 0.25 O 12.

(評価)
こうしてできた各実施例及び比較例の固体電解質サンプルを用いて下記の条件にて各評価を実施した。
−XRDパターンの反応物の生成ピークの評価−
各実施例及び比較例の固体電解質サンプルをそれぞれ0.15g採取し、0.15gの組成式:LiNi0.8Co0.1Mn0.12(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、乳棒と乳鉢を用いて混合した混合物を50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行った。放電プラズマ焼結装置は、住友石炭鉱業株式会社製SPS−515Sを用いた。
次に、放電プラズマ焼結後の各実施例及び比較例の固体電解質サンプルについて、XRDパターンを評価した。
(Evaluation)
Each evaluation was carried out under the following conditions using the solid electrolyte samples of each Example and Comparative Example thus prepared.
-Evaluation of the formation peak of the reactant of the XRD pattern-
0.15 g of each of the solid electrolyte samples of each Example and Comparative Example was collected, and 0.15 g of the composition formula: LiNi 0.8 Co 0.1 Mn 0.1 O 2 (in the formula, 0.98 ≤ a ≤ 1.05, 0.8). The positive electrode active material represented by (≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) was added, and the mixture mixed using a milk stick and a milk pot was pressurized at 50 MPa, and 5 at 800 ° C. Discharge plasma sintering was performed for 1 minute. As the discharge plasma sintering apparatus, SPS-515S manufactured by Sumitomo Coal Mining Co., Ltd. was used.
Next, the XRD pattern was evaluated for each of the solid electrolyte samples of Examples and Comparative Examples after discharge plasma sintering.

XRDパターンにおいて、反応物であるLaMnO3のピークは2θ=23.0°の位置に出現する。そこで検討すると、比較例1、2のXRDパターンは2θ=23.0°の位置にLaMnO3の強いピークが確認された。これに対し、実施例1のXRDパターンは2θ=23.0°の位置にLaMnO3の非常に弱いピークが確認された。
XRDパターンのピーク強度から、実施例1の固体電解質サンプルでは、固体電解質に該当する2θ=16.6°の積分強度Iaと反応物であるLaMnO3のXRDピークの積分強度Ibとの比Ib/Iaが0.015であり、比較例1の固体電解質サンプルではIb/Iaが0.240であり、比較例2の固体電解質サンプルではIb/Iaが0.079であることが確認された。
また、実施例2の固体電解質サンプルでは、固体電解質に該当する2θ=16.6°の積分強度Iaと反応物であるLaMnO3のXRDピークの積分強度Ibとの比Ib/Iaが0.011であった。
さらに、実施例3の固体電解質サンプルでは、固体電解質に該当する2θ=16.6°の積分強度Iaと反応物であるLaMnO3のXRDピークの積分強度Ibとの比Ib/Iaが0.036であった。
表1に、実施例1〜3及び比較例1、2の組成に係る(7−3x+α)/(7−3x)の数値と、積分強度比Ib/Iaとを示す。
In the XRD pattern, the peak of the reactant LaMnO 3 appears at the position of 2θ = 23.0 °. Therefore, when examined, a strong peak of LaMnO 3 was confirmed at the position of 2θ = 23.0 ° in the XRD patterns of Comparative Examples 1 and 2. On the other hand, in the XRD pattern of Example 1, a very weak peak of LaMnO 3 was confirmed at the position of 2θ = 23.0 °.
From the peak intensity of the XRD pattern, in the solid electrolyte sample of Example 1, the ratio of the integrated intensity I a of 2θ = 16.6 ° corresponding to the solid electrolyte to the integrated intensity I b of the XRD peak of the reaction product LaMnO 3. I b / I a is 0.015, I b / I a is 0.240 in the solid electrolyte sample of Comparative Example 1 , and I b / I a is 0.079 in the solid electrolyte sample of Comparative Example 2. It was confirmed that there was.
Further, in the solid electrolyte sample of Example 2, the ratio I b / I a of the integrated intensity I a of 2θ = 16.6 ° corresponding to the solid electrolyte and the integrated intensity I b of the XRD peak of the reaction product LaMnO 3 Was 0.011.
Further, in the solid electrolyte sample of Example 3, the ratio I b / I a of the integrated intensity I a of 2θ = 16.6 ° corresponding to the solid electrolyte and the integrated intensity I b of the XRD peak of the reaction product LaMnO 3 Was 0.036.
Table 1 shows the numerical values of (7-3x + α) / (7-3x) relating to the compositions of Examples 1 to 3 and Comparative Examples 1 and 2, and the integrated intensity ratio I b / I a .

Figure 2021034205
Figure 2021034205

Claims (6)

組成式:Li7-3x+αLa3Zr2Alx12
(式中、0≦x<2、1.1<(7−3x+α)/(7−3x)≦1.5である)
で表される固体電解質であって、
0.15gの前記固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.036以下の全固体リチウムイオン電池用固体電解質。
Composition formula: Li 7-3x + α La 3 Zr 2 Al x O 12
(In the formula, 0 ≦ x <2, 1.1 <(7-3x + α) / (7-3x) ≦ 1.5)
It is a solid electrolyte represented by
In the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein, 0.98 ≦ a ≦ 1.05,0.8 ≦ b ≦ 1. When the positive electrode active material represented by (0, 0 ≦ c ≦ 0.20) is added and pressure is applied at 50 MPa, discharge plasma sintering is performed at 800 ° C. for 5 minutes, the solid component of the main component is solid. Ratio I b / I of the integrated intensity I a of the XRD peak of 2θ = 16.6 ° corresponding to the electrolyte and the integrated intensity I b of the XRD peak of 2θ = 23.0 ° corresponding to the reactant LaMnO 3. A solid electrolyte for an all-solid lithium-ion battery in which a is 0.036 or less.
前記式中、0≦x<1である請求項1に記載の全固体リチウムイオン電池用固体電解質。 The solid electrolyte for an all-solid-state lithium-ion battery according to claim 1, wherein in the above formula, 0 ≦ x <1. 0.15gの前記固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.015以下となる請求項1または2に記載の全固体リチウムイオン電池用固体電解質。 In the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein, 0.98 ≦ a ≦ 1.05,0.8 ≦ b ≦ 1. When the positive electrode active material represented by (0, 0 ≦ c ≦ 0.20) is added and pressure is applied at 50 MPa, discharge plasma sintering is performed at 800 ° C. for 5 minutes, the solid component of the main component is solid. Ratio I b / I of the integrated intensity I a of the XRD peak of 2θ = 16.6 ° corresponding to the electrolyte and the integrated intensity I b of the XRD peak of 2θ = 23.0 ° corresponding to the reactant LaMnO 3. The solid electrolyte for an all-solid lithium-ion battery according to claim 1 or 2, wherein a is 0.015 or less. 0.15gの前記固体電解質に、0.15gの組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質を添加し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行ったとき、主成分の固体電解質に該当する2θ=16.6°のXRDピークの積分強度Iaと、反応物であるLaMnO3に該当する2θ=23.0°のXRDピークの積分強度Ibとの比Ib/Iaが0.011以下となる請求項3に記載の全固体リチウムイオン電池用固体電解質。 In the solid electrolyte of 0.15 g, 0.15 g of the composition formula: Li a Ni b Co c Mn 1-bc O 2 ( wherein, 0.98 ≦ a ≦ 1.05,0.8 ≦ b ≦ 1. When the positive electrode active material represented by (0, 0 ≦ c ≦ 0.20) is added and pressure is applied at 50 MPa, discharge plasma sintering is performed at 800 ° C. for 5 minutes, the solid component of the main component is solid. Ratio I b / I of the integrated intensity I a of the XRD peak of 2θ = 16.6 ° corresponding to the electrolyte and the integrated intensity I b of the XRD peak of 2θ = 23.0 ° corresponding to the reactant LaMnO 3. The solid electrolyte for an all-solid lithium-ion battery according to claim 3, wherein a is 0.011 or less. 正極層、負極層及び固体電解質層を備え、請求項1〜4のいずれか一項に記載の全固体リチウムイオン電池用固体電解質を前記固体電解質層に備えた全固体リチウムイオン電池。 An all-solid-state lithium-ion battery comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, and the solid electrolyte layer for an all-solid-state lithium-ion battery according to any one of claims 1 to 4. 請求項1〜4のいずれか一項に記載の全固体リチウムイオン電池用固体電解質の層と、組成式:LiaNibCocMn1-b-c2(式中、0.98≦a≦1.05、0.8≦b≦1.0、0≦c≦0.20である)で表される正極活物質の層とを積層し、50MPaで加圧した状態で、800℃で5分間の放電プラズマ焼結を行う工程を有する全固体リチウムイオン電池の製造方法。 A layer of the all-solid-state lithium-ion batteries for a solid electrolyte according to claim 1, the composition formula: Li a Ni b Co c Mn 1 -bc O 2 ( wherein, 0.98 ≦ a ≦ The layers of the positive electrode active material represented by (1.05, 0.8 ≦ b ≦ 1.0, 0 ≦ c ≦ 0.20) are laminated, and in a state of being pressurized at 50 MPa, 5 at 800 ° C. A method for manufacturing an all-solid-state lithium-ion battery, which comprises a step of performing discharge plasma sintering for one minute.
JP2019152358A 2019-08-22 2019-08-22 Solid electrolyte for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery Active JP7296822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019152358A JP7296822B2 (en) 2019-08-22 2019-08-22 Solid electrolyte for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019152358A JP7296822B2 (en) 2019-08-22 2019-08-22 Solid electrolyte for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2021034205A true JP2021034205A (en) 2021-03-01
JP7296822B2 JP7296822B2 (en) 2023-06-23

Family

ID=74678706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019152358A Active JP7296822B2 (en) 2019-08-22 2019-08-22 Solid electrolyte for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP7296822B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102929A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2018505521A (en) * 2014-12-23 2018-02-22 クアンタムスケイプ コーポレイション Lithium-rich nickel manganese cobalt oxide (LR-NMC)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102929A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2018505521A (en) * 2014-12-23 2018-02-22 クアンタムスケイプ コーポレイション Lithium-rich nickel manganese cobalt oxide (LR-NMC)

Also Published As

Publication number Publication date
JP7296822B2 (en) 2023-06-23

Similar Documents

Publication Publication Date Title
Chen et al. Microstructural and electrochemical properties of Al-and Ga-doped Li7La3Zr2O12 garnet solid electrolytes
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
JP6144160B2 (en) Solid electrolyte ceramic materials
JP6144159B2 (en) Solid electrolyte ceramic materials
US11011778B2 (en) Solid-state electrolyte and all-solid-state battery
JP6180852B2 (en) Method for producing solid electrolyte ceramic material
KR20160080813A (en) Garnet solid electrolyte and method for preparing the same
JP6272229B2 (en) Solid electrolyte ceramic materials
JP2014170734A (en) Material for solid electrolyte
JP6200169B2 (en) Method for producing lithium ion conductive oxide
JP7285013B2 (en) Composite oxides and electrochemical devices using them as electrolyte materials
KR102048701B1 (en) Manufacturing method of lithium lanthanum zirconium oxide-lithium boron oxide composite
KR101732003B1 (en) Method for manufacturing cubic structure llzo by low temperature calcination process
Hayashi et al. Low-temperature sintering characteristics and electrical properties of Ca-and Bi-doped Li 7 La 3 Zr 2 O 12 electrolyte containing Li 3 BO 3 additive
KR20170003877A (en) Oxide based solid electrolyte and method for forming the same
JP2018106799A (en) Lithium ion conductive ceramic material, and lithium battery
JP7296822B2 (en) Solid electrolyte for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery
JP2022115833A (en) Solid electrolyte membrane composed of lithium-containing garnet crystals, method for producing the same, and lithium ion secondary battery provided with the solid electrolyte membrane
US20190198920A1 (en) Method for preparing a multi-dopant, oxide-based solid electrolyte
KR102636657B1 (en) Electrolyte for thermal battery and method of manufacturing same
Li Gallium substitution in zirconate-based fast ionic conducting ceramics
CN114122501B (en) Solid electrolyte, method for producing solid electrolyte, and composite body
JP2020087755A (en) Solid electrolyte for all-solid lithium ion battery and all-solid lithium ion battery
WO2024047911A1 (en) All-solid lithium-ion battery
WO2023243327A1 (en) Oxide sintered body and method for producing oxide sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230613

R151 Written notification of patent or utility model registration

Ref document number: 7296822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151