JP2021031759A - Molten Al—Zn alloy plated steel sheet with excellent corrosion resistance in the processed part and its manufacturing method - Google Patents
Molten Al—Zn alloy plated steel sheet with excellent corrosion resistance in the processed part and its manufacturing method Download PDFInfo
- Publication number
- JP2021031759A JP2021031759A JP2019157011A JP2019157011A JP2021031759A JP 2021031759 A JP2021031759 A JP 2021031759A JP 2019157011 A JP2019157011 A JP 2019157011A JP 2019157011 A JP2019157011 A JP 2019157011A JP 2021031759 A JP2021031759 A JP 2021031759A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- plated steel
- corrosion resistance
- excellent corrosion
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
Abstract
【課題】高い加工度で曲げ加工された場合でも優れた加工部耐食性が得られる溶融Al−Zn系合金めっき鋼板およびその製造方法を提供する。
【解決手段】鋼板表面にAl:40〜70mass%、Si:0.6〜15mass%を含有し、残部がZnおよび不可避的不純物からなるめっき層を有し、特定の定義によるめっき層の伸びが15.0%以上である溶融Al−Zn系合金めっき鋼板であり、このめっき鋼板は、溶融めっき後の冷却過程において、めっき浴を出てから450℃までの温度域での平均冷却速度を12℃/s以上とした上で、所定の条件で加熱処理を行うことにより得ることができる。
【選択図】図1PROBLEM TO BE SOLVED: To provide a hot-dip Al—Zn-based alloy-plated steel sheet and a method for manufacturing the same, which can obtain excellent corrosion resistance of a processed portion even when bent with a high degree of processing.
SOLUTION: The surface of a steel plate contains a plating layer containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass%, and the balance is made of Zn and unavoidable impurities. It is a hot-dip Al—Zn-based alloy plated steel sheet having a content of 15.0% or more, and this plated steel sheet has an average cooling rate of 12 in the temperature range from the plating bath to 450 ° C. in the cooling process after hot-dip galvanizing. It can be obtained by performing a heat treatment under predetermined conditions after the temperature is set to ° C./s or higher.
[Selection diagram] Fig. 1
Description
この発明は、Zn−55%Alめっき鋼板に代表される溶融Al−Zn系合金めっき鋼板とその製造方法に関するものである。 The present invention relates to a hot-dip Al—Zn-based alloy-plated steel sheet typified by a Zn-55% Al-plated steel sheet and a method for producing the same.
Zn−55%Alめっき鋼板に代表される溶融Al−Zn系合金めっき鋼板は、耐食性に優れているが、めっき層が純亜鉛めっき層などに比較して硬質であるため、めっき鋼板が曲げ加工を受けた場合、その加工部のめっき層にクラックが入りやすいという欠点がある。このように加工時の耐クラック性が悪いと、加工部の耐食性が劣化するという問題を生じる。この曲げ加工部の耐食性の劣化は、めっき鋼板、化成処理しためっき鋼板、めっき鋼板を下地にした塗装鋼板のいずれについても生じるため、大きな問題となっている。
このような問題を解決するための技術として、特許文献1〜3には、めっき鋼板に熱処理を施し、加工性を改善する技術が開示されている。
Hot-dip Al-Zn-based alloy-plated steel sheets typified by Zn-55% Al-plated steel sheets have excellent corrosion resistance, but the plated steel sheets are bent because the plated layer is harder than pure galvanized steel sheets. When this is received, there is a drawback that cracks are likely to occur in the plating layer of the processed portion. If the crack resistance during processing is poor in this way, there arises a problem that the corrosion resistance of the processed portion deteriorates. This deterioration of the corrosion resistance of the bent portion occurs in any of the plated steel sheet, the chemical conversion-treated plated steel sheet, and the coated steel sheet on which the plated steel sheet is used as a base, which is a big problem.
As a technique for solving such a problem,
特許文献1〜3に示される技術を適用することにより、めっき鋼板の加工性を改善することができるが、その効果は必ずしも十分なものとは言えず、めっき層が軟質である純亜鉛めっき鋼板などに比較すると、めっき鋼板の加工度によっては依然としてクラックが発生し、十分な加工部耐食性が得られない場合がある。
By applying the techniques shown in
したがって本発明の目的は、以上のような従来技術の課題を解決し、高い加工度で曲げ加工された場合でも優れた加工部耐食性が得られる溶融Al−Zn系合金めっき鋼板を提供することにある。
また、本発明の他の目的は、そのような加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板を安定して製造することができる製造方法を提供することにある。
Therefore, an object of the present invention is to provide a hot-dip Al—Zn-based alloy-plated steel sheet that solves the above-mentioned problems of the prior art and can obtain excellent corrosion resistance of the processed portion even when bent with a high degree of processing. is there.
Another object of the present invention is to provide a manufacturing method capable of stably manufacturing such a molten Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in a processed portion.
本発明者らは、上記課題を解決するために検討を重ねた結果、めっき層の伸び率を所定値以上とし、さらに好ましくは、めっき層のAlデンドライト部の硬度を所定値以下に抑えることにより、高い加工度で曲げ加工された場合でもクラックの発生が抑えられ、優れた加工部耐食性が得られることを見出した。また、このような加工部耐食性に優れためっき鋼板を得るには、めっき層が凝固しためっき鋼板を加熱処理する製法において、めっき直後の所定温度域での平均冷却速度を高めることが重要であることが判った。 As a result of repeated studies to solve the above problems, the present inventors set the elongation rate of the plating layer to a predetermined value or more, and more preferably to suppress the hardness of the Al dendrite portion of the plating layer to a predetermined value or less. It was found that the occurrence of cracks is suppressed even when bending is performed with a high degree of processing, and excellent corrosion resistance of the processed portion can be obtained. Further, in order to obtain such a plated steel sheet having excellent corrosion resistance in the processed portion, it is important to increase the average cooling rate in a predetermined temperature range immediately after plating in the manufacturing method of heat-treating the plated steel sheet in which the plated layer is solidified. It turned out.
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]鋼板表面にAl:40〜70mass%、Si:0.6〜15mass%を含有し、残部がZnおよび不可避的不純物からなるめっき層を有し、
下記により定義されるめっき層の伸びが15.0%以上であることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板。
伸び: 曲げ試験において、試験片を内側間隔nt(但し、t:めっき鋼板の板厚、n:小数部を含み得る数値)で180°曲げ加工した際に、下式で規定されるEl(%)を曲げ加工部の外側表面の伸びとした場合、試験片の曲げ加工部の外側表面を10倍ルーペで観察した時にクラックが認められない最小のn値のときの伸びEl(%)。
El(%)=(πt(n+2)-πt(n+1))/(π(n+1))*100
=1/(n+1)*100
The present invention has been made based on such findings, and the gist of the present invention is as follows.
[1] The surface of the steel sheet contains a plating layer containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass%, and the balance is Zn and unavoidable impurities.
A hot-dip Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in a processed portion, characterized in that the elongation of the plating layer defined below is 15.0% or more.
Elongation: In the bending test, when the test piece is bent 180 ° with an inner spacing nt (however, t: plate thickness of plated steel sheet, n: numerical value that can include decimal parts), El (%) specified by the following formula ) Is the elongation of the outer surface of the bent portion, and the elongation El (%) at the minimum n value at which no crack is observed when the outer surface of the bent portion of the test piece is observed with a 10-fold loupe.
El (%) = (πt (n + 2) -πt (n + 1)) / (π (n + 1)) * 100
= 1 / (n + 1) * 100
[2]上記[1]の溶融Al−Zn系合金めっき鋼板において、めっき層のAlデンドライト部の硬度が150Hv以下であることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板。
[3]上記[1]または[2]の溶融Al−Zn系合金めっき鋼板において、めっき層の厚さが10〜30μmであることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板。
[2] In the molten Al—Zn alloy plated steel sheet of the above [1], the molten Al—Zn alloy plated steel sheet having excellent corrosion resistance in the processed portion, characterized in that the hardness of the Al dendrite portion of the plating layer is 150 Hv or less. ..
[3] In the molten Al—Zn based alloy plated steel sheet of the above [1] or [2], the molten Al—Zn based alloy having excellent corrosion resistance in the processed portion, characterized in that the thickness of the plating layer is 10 to 30 μm. Plated steel plate.
[4]鋼板をAl:40〜70mass%、Si:0.6〜15mass%を含有し、残部がZnおよび不可避的不純物からなるめっき浴で溶融めっきした後、めっき層が凝固しためっき鋼板を加熱処理する溶融Al−Zn系合金めっき鋼板の製造方法であって、
前記溶融めっき後のめっき鋼板の冷却過程では、めっき浴を出てから450℃までの温度域での平均冷却速度を12℃/s以上とし、
前記加熱処理では、めっき鋼板を100〜300℃の温度域の温度T(℃)まで加熱した後、この温度T(℃)から80℃までを下記(1)式で規定される冷却速度C(℃/hr)以下の平均冷却速度(℃/hr)で冷却することを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板の製造方法。
C=(T−80)/10 …(1)
[4] The steel sheet is hot-dip galvanized in a plating bath containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass%, and the balance is Zn and unavoidable impurities, and then the plated steel sheet in which the plating layer is solidified is heated. A method for manufacturing a hot-dip Al—Zn-based alloy-plated steel sheet to be treated.
In the cooling process of the plated steel sheet after hot-dip galvanizing, the average cooling rate in the temperature range up to 450 ° C. after leaving the plating bath is set to 12 ° C./s or more.
In the heat treatment, after heating the plated steel sheet to a temperature T (° C.) in a temperature range of 100 to 300 ° C., the cooling rate C (1) specified by the following equation (1) is applied from this temperature T (° C.) to 80 ° C. A method for producing a molten Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in a processed portion, which comprises cooling at an average cooling rate (° C./hr) of ° C./hr) or less.
C = (T-80) / 10 ... (1)
[5]上記[4]の製造方法において、めっき浴温が600℃以下であることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板の製造方法。
[6]上記[4]または[5]の製造方法において、めっき浴への鋼板の進入板温がめっき浴温+20℃以下であることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板の製造方法。
[7]上記[4]〜[6]のいずれかの製造方法において、めっき浴中のFe濃度が0.5mass%以下であることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板の製造方法。
[5] The method for producing a molten Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in a processed portion, which is characterized in that the plating bath temperature is 600 ° C. or lower in the production method of the above [4].
[6] In the manufacturing method of the above [4] or [5], the molten Al-Zn system having excellent corrosion resistance of the processed portion, characterized in that the temperature of the steel sheet entering the plating bath is + 20 ° C. or less. Manufacturing method of alloy plated steel sheet.
[7] In any of the above-mentioned production methods [4] to [6], a molten Al—Zn-based alloy having excellent corrosion resistance in a processed portion, characterized in that the Fe concentration in the plating bath is 0.5 mass% or less. Manufacturing method of plated steel sheet.
[8]上記[1]〜[3]のいずれかの溶融Al−Zn系合金めっき鋼板の表面に化成処理皮膜を有することを特徴とする加工部耐食性に優れた化成処理鋼板。
[9]上記[1]〜[3]のいずれかの溶融Al−Zn系合金めっき鋼板の表面に化成処理皮膜を有し、その上層に単層または複層の塗膜を有することを特徴とする加工部耐食性に優れた塗装鋼板。
[10]上記[4]〜[7]のいずれかの製造方法で得られた溶融Al−Zn系合金めっき鋼板の表面に化成処理皮膜を形成することを特徴とする加工部耐食性に優れた化成処理鋼板の製造方法。
[11]上記[4]〜[7]のいずれかの製造方法で得られた溶融Al−Zn系合金めっき鋼板の表面に化成処理皮膜を形成し、次いでその上層に単層または複層の塗膜を形成することを特徴とする加工部耐食性に優れた塗装鋼板の製造方法。
[8] A chemical conversion-treated steel sheet having an excellent corrosion resistance in a processed portion, which has a chemical conversion-treated film on the surface of the molten Al—Zn-based alloy-plated steel sheet according to any one of the above [1] to [3].
[9] The hot-dip Al—Zn-based alloy-plated steel sheet according to any one of [1] to [3] above is characterized by having a chemical conversion-treated film on the surface and a single-layer or multi-layer coating film on the upper layer. A coated steel sheet with excellent corrosion resistance.
[10] A chemical conversion having excellent corrosion resistance in a processed portion, which is characterized by forming a chemical conversion treatment film on the surface of a molten Al—Zn-based alloy-plated steel sheet obtained by any of the above-mentioned production methods [4] to [7]. Manufacturing method of treated steel sheet.
[11] A chemical conversion-treated film is formed on the surface of the molten Al—Zn-based alloy-plated steel sheet obtained by any of the above-mentioned production methods [4] to [7], and then a single layer or multiple layers are applied to the upper layer. A method for producing a coated steel sheet having excellent corrosion resistance in a processed portion, which is characterized by forming a film.
本発明の溶融Al−Zn系合金めっき鋼板は、高い加工度で曲げ加工された場合でも曲げ加工部でのクラックの発生が抑えられ、優れた加工部耐食性が得られる。
また、本発明の製造方法によれば、そのような加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板を安定して製造することができる。
The hot-dip Al—Zn-based alloy-plated steel sheet of the present invention suppresses the occurrence of cracks in the bent portion even when bent with a high degree of processing, and excellent corrosion resistance in the processed portion can be obtained.
Further, according to the manufacturing method of the present invention, it is possible to stably manufacture such a molten Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in the processed portion.
本発明の溶融Al−Zn系合金めっき鋼板は、鋼板表面にAl:40〜70mass%、Si:0.6〜15mass%を含有し、残部がZnおよび不可避的不純物からなるめっき層を有する。
めっき層中のAl含有量が40mass%未満では、Alによる耐食性の向上効果が十分に得られない。一方、Al含有量が70mass%を超えるとZnが不足するため、Znによる犠牲防食能が低下する。
また、めっき層中のSi含有量が0.6mass%未満では、Si添加による界面合金層の生成抑制効果が十分に得られないため、加工性が劣化する。一方、Si含有量が15mass%を超えた場合も耐食性が劣化する。
The hot-dip Al—Zn-based alloy-plated steel sheet of the present invention contains a plating layer containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass% on the surface of the steel sheet, and the balance is Zn and unavoidable impurities.
If the Al content in the plating layer is less than 40 mass%, the effect of improving the corrosion resistance by Al cannot be sufficiently obtained. On the other hand, if the Al content exceeds 70 mass%, Zn is insufficient, so that the sacrificial anticorrosion ability of Zn is reduced.
Further, if the Si content in the plating layer is less than 0.6 mass%, the effect of suppressing the formation of the interfacial alloy layer due to the addition of Si cannot be sufficiently obtained, so that the processability deteriorates. On the other hand, when the Si content exceeds 15 mass%, the corrosion resistance also deteriorates.
また、めっき層は、さらに、溶融Al−Zn系合金めっきにおける腐食生成物の安定元素として知られている、Cr、Ni、Co、Mn、Ca、V、Ti、B、Mo、Sn、Zr、Sr、Li、Agなどの中から選ばれる1種以上を、各元素1mass%未満の含有量で含むことができる。これら元素の各含有量が1mass%未満であれば、本発明の効果を阻害せず且つ腐食生成物安定効果によりさらなる耐食性向上が期待できる。
なお、めっき層には、めっき処理中にめっき浴と下地鋼板との反応によってめっき層中に取り込まれる下地鋼板成分や、めっき浴中の不可避的不純物(めっき浴中に溶けた下地鋼板成分や、めっき浴を建浴する際に使用するインゴット中に含有されている不可避的不純物など)が含まれる。めっき処理中に下地鋼板成分がめっき層中に取り込まれることにより、めっき層中にFeが数mass%程度含まれることがある。めっき浴中の不可避的不純物の種類は、例えば、下地鋼板成分としては、Fe、Mn、P、S、C、Nb、Ti、Bなどが挙げられる。また、インゴット中の不純物としては、Fe、Pb、Sb、Cd、As、Ga、Vなどが挙げられる。なお、めっき層中のFeについては、下地鋼板から取り込まれるものと、めっき浴中にあるものとを区別して定量することはできない。めっき層中の不可避的不純物の総含有量は特に限定はしないが、耐食性とめっきの均一な溶解性を維持するという観点から、Feを除いた不可避的不純物量が合計で1質量%以下であることが好ましい。
Further, the plating layer further comprises Cr, Ni, Co, Mn, Ca, V, Ti, B, Mo, Sn, Zr, which are known as stable elements of corrosion products in molten Al—Zn alloy plating. One or more selected from Sr, Li, Ag and the like can be contained in a content of less than 1 mass% for each element. When the content of each of these elements is less than 1 mass%, further improvement in corrosion resistance can be expected due to the effect of stabilizing the corrosion product without inhibiting the effect of the present invention.
In the plating layer, the base steel plate component taken into the plating layer by the reaction between the plating bath and the base steel plate during the plating process, and the unavoidable impurities in the plating bath (the base steel plate component dissolved in the plating bath, and the base steel plate component dissolved in the plating bath). It contains unavoidable impurities contained in the ingot used when building the plating bath). Since the base steel plate component is incorporated into the plating layer during the plating process, Fe may be contained in the plating layer by several mass%. Examples of the types of unavoidable impurities in the plating bath include Fe, Mn, P, S, C, Nb, Ti, and B as the base steel sheet components. Examples of impurities in the ingot include Fe, Pb, Sb, Cd, As, Ga, and V. The Fe in the plating layer cannot be quantified separately from the one taken in from the base steel plate and the one in the plating bath. The total content of unavoidable impurities in the plating layer is not particularly limited, but the total amount of unavoidable impurities excluding Fe is 1% by mass or less from the viewpoint of maintaining corrosion resistance and uniform solubility of the plating. Is preferable.
本発明の溶融Al−Zn系合金めっき鋼板が有するめっき層は、曲げ加工部の耐食性を確保するため、下記により定義される伸びが15.0%以上であることを条件とする。また、この伸びは20.0%以上であることがより好ましい。
ここで、めっき層の「伸び」とは、図1に示すように、曲げ試験において、試験片を内側間隔nt(但し、t:めっき鋼板の板厚、n:小数部を含み得る数値)で180°曲げ加工した際に、下式で規定されるEl(%)を曲げ加工部の外側表面(外側のめっき層)の伸びとした場合、試験片の曲げ加工部の外側表面を10倍ルーペで観察した時にクラックが認められない最小のn値のときの伸びEl(%)である。
El(%)=(πt(n+2)-πt(n+1))/(π(n+1))*100
=1/(n+1)*100
このめっき層の伸びが15.0%以上であることにより、曲げ加工部の高い耐食性を得ることができる。また、伸びが20.0%以上であれば、曲げ加工部のより高い耐食性が期待できる。
The plating layer of the molten Al—Zn-based alloy plated steel sheet of the present invention is required to have an elongation of 15.0% or more as defined below in order to ensure the corrosion resistance of the bent portion. Further, this elongation is more preferably 20.0% or more.
Here, as shown in FIG. 1, the "elongation" of the plated layer means that in the bending test, the test pieces are separated by an inner spacing nt (however, t: the thickness of the plated steel sheet, n: a numerical value that can include a decimal part). When El (%) specified by the following formula is defined as the elongation of the outer surface (outer plating layer) of the bent portion when bending 180 °, the outer surface of the bent portion of the test piece is 10 times loupe. It is the elongation El (%) at the minimum n value at which no crack is observed when observed in.
El (%) = (πt (n + 2) -πt (n + 1)) / (π (n + 1)) * 100
= 1 / (n + 1) * 100
When the elongation of the plating layer is 15.0% or more, high corrosion resistance of the bent portion can be obtained. Further, if the elongation is 20.0% or more, higher corrosion resistance of the bent portion can be expected.
さらに、本発明の溶融Al−Zn系合金めっき鋼板が有するめっき層は、Alデンドライト部の硬度が150Hv以下であることが好ましい。Alデンドライト部の硬度が150Hv以下であることにより、めっき層の伸びが向上して加工性が向上する。また、この観点から、Alデンドライト部の硬度は130Hv以下であることがより好ましい。
めっき層の断面観察により、Alデンドライトは容易に判別できる。微細な測定用圧子を用いた荷重5gf程度のマイクロビッカース測定により、Alデンドライトのみの硬度が測定可能である。本発明では、同一サンプルについて、無作為に選択された5個のAlデンドライトの硬度を測定し、それらの平均値をAlデンドライト部の硬度とする。
めっき層の厚さは10〜30μmであることが好ましい。めっき層の厚さが10μm未満では耐食性が低下するおそれがあり、一方、30μmを超えると加工性の低下に伴い加工後耐食性が低下するおそれがある。本発明では、同一サンプルについて、無作為に選択された5箇所のめっき層の厚さを測定し、それらの平均値をめっき層の厚さとする。
Further, in the plating layer of the molten Al—Zn alloy plated steel sheet of the present invention, the hardness of the Al dendrite portion is preferably 150 Hv or less. When the hardness of the Al dendrite portion is 150 Hv or less, the elongation of the plating layer is improved and the workability is improved. From this viewpoint, the hardness of the Al dendrite portion is more preferably 130 Hv or less.
Al dendrite can be easily identified by observing the cross section of the plating layer. The hardness of only Al dendrite can be measured by micro Vickers measurement with a load of about 5 gf using a fine measuring indenter. In the present invention, the hardness of five randomly selected Al dendrites is measured for the same sample, and the average value thereof is taken as the hardness of the Al dendrite portion.
The thickness of the plating layer is preferably 10 to 30 μm. If the thickness of the plating layer is less than 10 μm, the corrosion resistance may decrease, while if it exceeds 30 μm, the workability may decrease and the post-processing corrosion resistance may decrease. In the present invention, the thickness of five randomly selected plating layers is measured for the same sample, and the average value thereof is taken as the thickness of the plating layer.
次に、本発明の溶融Al−Zn系合金めっき鋼板の製造方法について説明する。
本発明の溶融Al−Zn系合金めっき鋼板の製造方法では、鋼板をAl:40〜70mass%、Si:0.6〜15mass%を含有し、残部がZnおよび不可避的不純物からなるめっき浴で溶融めっきした後、めっき層が凝固しためっき鋼板を所定の条件で加熱処理する。
ここで、めっき浴の組成の限定理由については、さきに説明しためっき層の組成の限定理由と同様である。
Next, a method for producing the hot-dip Al—Zn-based alloy-plated steel sheet of the present invention will be described.
In the method for producing a hot-dip Al—Zn alloy-plated steel sheet of the present invention, the steel sheet is melted in a plating bath containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass%, and the balance is Zn and unavoidable impurities. After plating, the galvanized steel sheet in which the plated layer is solidified is heat-treated under predetermined conditions.
Here, the reason for limiting the composition of the plating bath is the same as the reason for limiting the composition of the plating layer described above.
溶融Al−Zn系合金めっき鋼板(例えば、Zn−55%Alめっき鋼板)を熱処理し、めっき層を軟質化して加工性を改善する技術では、100〜300℃程度の比較的低い温度域での熱処理が行われる。本発明者らは、この技術による効果を格段に高めることができる条件を見出すべく詳細に調査・検討を行った結果、この技術の効果は、めっき後の冷却速度、より詳細には初晶Alが凝固しはじめてから完全に凝固するまでの浴温〜450℃の温度域での冷却速度に大きく影響されることが判明した。 A technique for improving workability by heat-treating a hot-dip Al—Zn-based alloy-plated steel sheet (for example, Zn-55% Al-plated steel sheet) to soften the plating layer is used in a relatively low temperature range of about 100 to 300 ° C. Heat treatment is performed. As a result of detailed investigation and examination to find out the conditions that can remarkably enhance the effect of this technology, the present inventors have found that the effect of this technology is the cooling rate after plating, more specifically, the primary crystal Al. It was found that the cooling rate in the temperature range of ~ 450 ° C. from the time when the plating started to solidify to the time when it completely solidified was greatly affected.
この理由としては、以下のようなことが考えられる。熱処理によるめっき層の軟質化は、Zn過飽和のAl初晶から熱処理によりZnがAl初晶内に晶出することによって起こる。この場合、めっき後の冷却速度が遅いと、Al初晶から冷却中にある程度Znが晶出してしまうので、熱処理前のAl初晶の過飽和度が低くなり、その後に施される熱処理による効果が小さくなる。
めっき後の冷却過程でのAl初晶からのZnの晶出でも若干めっき層は軟質化するが、曲げ加工性を格段に改善するまでの効果は得られない。加工性を改善するためには、100〜300℃の温度域での熱処理が有効であり、この温度域でAl初晶から効率的にZnを晶出させるために、めっき浴を出てから450℃までの温度域での急冷によりAl初晶中のZnの過飽和度を高めることが重要となる。
The possible reasons for this are as follows. The softening of the plating layer by the heat treatment occurs by crystallizing Zn into the Al primary crystals by the heat treatment from the Zn supersaturated Al primary crystals. In this case, if the cooling rate after plating is slow, Zn will crystallize from the Al primary crystals to some extent during cooling, so that the supersaturation degree of the Al primary crystals before the heat treatment will be low, and the effect of the heat treatment applied after that will be effective. It becomes smaller.
Even if Zn is crystallized from the Al primary crystal in the cooling process after plating, the plating layer is slightly softened, but the effect of significantly improving the bending workability cannot be obtained. In order to improve workability, heat treatment in a temperature range of 100 to 300 ° C. is effective, and in order to efficiently crystallize Zn from Al primary crystals in this temperature range, 450 after leaving the plating bath. It is important to increase the degree of supersaturation of Zn in Al primary crystals by quenching in a temperature range up to ° C.
また、めっき後の冷却速度が遅い場合、めっきが凝固するまでの高温に滞留する時間が長くなるため、めっきと下地鋼板の界面に生成する界面合金層の厚みが厚くなり、加工性が劣化する。
さらに、めっき後の冷却速度が遅い場合、デンドライトの密度が粗になるため、耐食性が劣化する。この理由は、鋼板の表面からインターデンドライトが腐食していった場合、デンドライトの密度が粗であると鋼板までの腐食経路が短くなり、鋼板の腐食が短時間で開始することになるためである。
Further, when the cooling rate after plating is slow, the time required for the plating to stay at a high temperature for solidification becomes long, so that the thickness of the interfacial alloy layer formed at the interface between the plating and the base steel sheet becomes thick and the workability deteriorates. ..
Further, when the cooling rate after plating is slow, the density of dendrites becomes coarse, so that the corrosion resistance deteriorates. The reason for this is that when the interdendrite corrodes from the surface of the steel sheet, if the density of the dendrite is coarse, the corrosion path to the steel sheet becomes short, and the corrosion of the steel sheet starts in a short time. ..
以上のような知見に基づき、本発明の製造方法では、溶融めっき後のめっき鋼板の冷却過程において、めっき浴を出てから450℃までの温度域での平均冷却速度を12℃/s以上とする。また、この冷却速度は30℃/s以上が望ましく、50℃/s以上がさらに望ましい。
めっき後の平均冷却速度を12℃/s以上に制御するために、例えば、めっき鋼板に空気や窒素を吹き付ける気体冷却、或いはミストを吹き付けるミスト冷却を行うとともに、それらによる冷却条件を適宜制御する。
めっき浴を出た直後の鋼板温度はめっき浴温と同等であると考えられることから、鋼板がめっき浴を出てから鋼板温度が450℃になるまでの時間を求め、[めっき浴温−450℃]の値をこの時間で除することにより、上記平均冷却速度を求めることができる。
なお、めっき浴を出てから450℃までの温度域での平均冷却速度の上限は特にないが、一般に設備や冷却媒体の冷却能の制約などから実質的な上限は100℃/s程度である。
Based on the above findings, in the manufacturing method of the present invention, in the cooling process of the plated steel sheet after hot dip galvanizing, the average cooling rate in the temperature range from the exit of the plating bath to 450 ° C. is set to 12 ° C./s or more. To do. Further, this cooling rate is preferably 30 ° C./s or higher, and more preferably 50 ° C./s or higher.
In order to control the average cooling rate after plating to 12 ° C./s or higher, for example, gas cooling by blowing air or nitrogen or mist cooling by blowing mist is performed on the plated steel sheet, and the cooling conditions by these are appropriately controlled.
Since the temperature of the steel sheet immediately after leaving the plating bath is considered to be the same as the temperature of the plating bath, the time from when the steel sheet leaves the plating bath until the temperature of the steel sheet reaches 450 ° C is calculated. The average cooling rate can be obtained by dividing the value of [° C.] by this time.
There is no particular upper limit to the average cooling rate in the temperature range up to 450 ° C after leaving the plating bath, but in general, the practical upper limit is about 100 ° C / s due to restrictions on the cooling capacity of equipment and cooling media. ..
上記のような冷却条件で冷却され、めっき層が凝固しためっき鋼板を、以下のような所定の条件で加熱処理することにより、この加熱処理による効果(めっき層の軟質化効果)を最大限に発揮させることができる。
すなわち、この加熱処理では、めっき鋼板を100〜300℃の温度域の温度T(℃)まで加熱した後、この温度T(℃)から80℃までを下記(1)式で規定される冷却速度C(℃/hr)以下の平均冷却速度(℃/hr)で冷却(徐冷)する。
C=(T−80)/10 …(1)
ここで、この(1)式は本発明者らがめっき層の加熱およびその後の冷却条件がめっき層に与える影響を実験に基づき詳細に検討し、その結果導かれた実験式である。
By heat-treating a plated steel sheet that has been cooled under the above cooling conditions and the plating layer has solidified under the following predetermined conditions, the effect of this heat treatment (softening effect of the plating layer) is maximized. It can be demonstrated.
That is, in this heat treatment, after heating the plated steel sheet to a temperature T (° C.) in the temperature range of 100 to 300 ° C., the cooling rate from this temperature T (° C.) to 80 ° C. is defined by the following equation (1). Cool (slowly cool) at an average cooling rate (° C./hr) of C (° C./hr) or lower.
C = (T-80) / 10 ... (1)
Here, this equation (1) is an empirical formula derived as a result of the present inventors examining in detail the influence of the heating of the plating layer and the subsequent cooling conditions on the plating layer based on experiments.
この加熱処理において、加熱温度Tが100℃未満では、加熱処理による効果を得ようとした場合の加熱時間が、工程上実施が困難なほど長時間となり、一方、加熱温度Tが300℃を超えると下地鋼板とめっき層間の界面合金層の生成が促進されるため、却って加工性が劣化し、加工部耐食性も低下する。
加熱温度Tから80℃までの平均冷却速度が、上記(1)式で規定される冷却速度C(℃/hr)を超えると十分な加工性が確保できない。
この平均冷却速度は、加熱温度Tから80℃になるまでの時間を求め、[加熱温度T−80℃]の値をこの時間で除することにより求めることができる。
加熱処理の方法は特に限定するものではないが、例えば、めっき鋼板をコイルに巻き取った後、オフラインにおいてバッチ式の加熱炉にて加熱処理する方法などが挙げられる。この場合、加熱温度Tおよび加熱温度Tから80℃までの平均冷却速度は、例えば、コイルに取り付けた熱電対で測定する。
In this heat treatment, when the heating temperature T is less than 100 ° C., the heating time when trying to obtain the effect of the heat treatment becomes so long that it is difficult to carry out in the process, while the heating temperature T exceeds 300 ° C. Since the formation of the interfacial alloy layer between the base steel plate and the plating layer is promoted, the workability is deteriorated and the corrosion resistance of the processed portion is also lowered.
If the average cooling rate from the heating temperature T to 80 ° C. exceeds the cooling rate C (° C./hr) defined by the above equation (1), sufficient workability cannot be ensured.
This average cooling rate can be obtained by determining the time from the heating temperature T to 80 ° C. and dividing the value of [heating temperature T-80 ° C.] by this time.
The method of heat treatment is not particularly limited, and examples thereof include a method in which a plated steel sheet is wound around a coil and then heat-treated offline in a batch-type heating furnace. In this case, the heating temperature T and the average cooling rate from the heating temperature T to 80 ° C. are measured by, for example, a thermocouple attached to the coil.
以上のような製造条件とすることにより、めっき層の伸びが15.0%以上(好ましくは20.0%以上)の溶融Al-Zn系合金めっき鋼板を得ることができる。
また、このめっき層の伸びの向上は、Alデンドライト部の軟化により実現されるものであるため、上述した製造条件を最適化し、めっき層のAlデンドライト部の硬度をできるだけ小さくする(望ましくは150Hv以下とする)ことが好ましい。
Under the above manufacturing conditions, a molten Al—Zn-based alloy plated steel sheet having a plating layer elongation of 15.0% or more (preferably 20.0% or more) can be obtained.
Further, since the improvement in the elongation of the plating layer is realized by softening the Al dendrite portion, the above-mentioned production conditions are optimized and the hardness of the Al dendrite portion of the plating layer is made as small as possible (preferably 150 Hv or less). ) Is preferable.
本発明の製造方法では、下地鋼板とめっき層間の界面合金層の生成抑制およびスパングルサイズの抑制のために、めっき浴の浴温を600℃以下、めっき浴への鋼板の進入板温を[めっき浴温+20℃以下]とすることが好ましい。ここで、スパングルサイズを抑制する必要があるのは、スパングルサイズが大きいとAl初晶の中心部のZn濃度が低くなりすぎ、その後の加熱処理によってもZnが十分に晶出せず、十分にめっき層が軟化しないためである。
また、めっき浴中のFe濃度を低く抑えることでスパングルサイズを抑制することができ、上述した理由から本発明の効果が得られやすくなるので、めっき浴中のFe濃度を0.5maaa%以下とするのが好ましい。めっき浴中のFeは主に鋼板由来の不純物であるので、例えば、低浴温、低進入板温にして、めっき浴と鋼板との反応性を低下させることにより、めっき浴中のFeを低濃度に管理することができる。
In the manufacturing method of the present invention, the bath temperature of the plating bath is set to 600 ° C. or lower, and the temperature of the steel sheet entering the plating bath is set to [plating] in order to suppress the formation of the interfacial alloy layer between the base steel plate and the plating layer and the spangle size. Bath temperature + 20 ° C or less] is preferable. Here, it is necessary to suppress the spangle size because when the spangle size is large, the Zn concentration in the central part of the Al primary crystal becomes too low, and Zn is not sufficiently crystallized even by the subsequent heat treatment, so that the plating is sufficient. This is because the layer does not soften.
Further, the spangle size can be suppressed by suppressing the Fe concentration in the plating bath to a low level, and the effect of the present invention can be easily obtained for the above-mentioned reason. Therefore, the Fe concentration in the plating bath is set to 0.5 maaa% or less. It is preferable to do so. Since Fe in the plating bath is mainly an impurity derived from the steel sheet, for example, by setting the bath temperature to a low temperature and the entry plate temperature to a low level to reduce the reactivity between the plating bath and the steel sheet, the Fe in the plating bath is lowered. The concentration can be controlled.
本発明の溶融Al−Zn系めっき鋼板は、その表面に化成処理皮膜を形成して化成処理鋼板とすることができる。この化成処理皮膜は、例えば、めっき鋼板にクロメート処理液またはクロムフリー化成処理液を塗布し、水洗することなく、80〜300℃(鋼板温度)で乾燥処理を行うクロメート処理またはクロムフリー化成処理により形成することが可能である。これら化成処理皮膜は単層でも複層でもよく、複層の場合には複数の化成処理を順次行えばよい。 The hot-dip Al—Zn-based plated steel sheet of the present invention can be obtained as a chemical conversion-treated steel sheet by forming a chemical conversion-treated film on the surface thereof. This chemical conversion treatment film is obtained by, for example, a chromate treatment or a chromium-free chemical conversion treatment in which a chromate treatment liquid or a chromium-free chemical conversion treatment liquid is applied to a plated steel sheet and dried at 80 to 300 ° C. (steel plate temperature) without washing with water. It is possible to form. These chemical conversion treatment coatings may be single-layered or multi-layered, and in the case of multiple layers, a plurality of chemical conversion treatments may be sequentially performed.
また、本発明の溶融Al−Zn系めっき鋼板は、その表面に化成処理皮膜を形成し、さらにその上層に単層または複層の塗膜を形成して塗装鋼板とすることができる。下地となる化成処理皮膜は、上述した通りである。複層の塗膜としては、例えば、主剤樹脂の成分が異なる下塗り塗膜と上塗り塗膜が形成される。塗膜の形成方法としては、ロールコーター塗装、カーテンフロー塗装、スプレー塗装などが挙げられる。有機樹脂を含有する塗料を塗装した後、熱風乾燥、赤外線加熱、誘導加熱などの手段により加熱乾燥して塗膜を形成することが可能である。 Further, the molten Al—Zn-based plated steel sheet of the present invention can be made into a coated steel sheet by forming a chemical conversion treatment film on the surface thereof and further forming a single-layer or multi-layer coating film on the upper layer thereof. The base chemical conversion coating is as described above. As the multi-layer coating film, for example, an undercoat coating film and a topcoat coating film having different components of the main resin are formed. Examples of the coating film forming method include roll coater coating, curtain flow coating, and spray coating. After applying a paint containing an organic resin, it is possible to form a coating film by heating and drying by means such as hot air drying, infrared heating, and induction heating.
溶融Al−Zn系めっき浴を備えた連続式溶融めっき設備において、冷延鋼板(板厚0.8mm)を溶融めっきし、溶融Al−Zn系めっき鋼板を製造した。この製造工程において、めっき浴から出ためっき鋼板を、ガスワイピングによるめっき付着量調整後、空気吹き付けにより冷却し、この際に吹き付ける空気圧を調整することにより450℃までの平均冷却速度を制御した。めっき鋼板をコイルに巻き取り、このコイルをオフラインのバッチ加熱装置で加熱処理した。 In a continuous hot-dip galvanizing facility equipped with a hot-dip Al-Zn-based plating bath, a cold-rolled steel sheet (plate thickness 0.8 mm) was hot-dip plated to produce a hot-dip Al-Zn-based plated steel sheet. In this manufacturing process, the plated steel sheet discharged from the plating bath was cooled by air blowing after adjusting the amount of plating adhesion by gas wiping, and the average cooling rate up to 450 ° C. was controlled by adjusting the air pressure sprayed at this time. The plated steel sheet was wound around a coil, and the coil was heat-treated by an offline batch heating device.
このようにして製造された溶融Al−Zn系めっき鋼板に、防錆剤としてZrO2、SiO2およびリン酸を含有するウレタン樹脂ベースの化成皮膜を実験室で施し、その後の試験に供した。なお、化成皮膜の付着量は1g/m2とした。
また、上記化成皮膜を施した溶融Al−Zn系めっき鋼板のサンプルについて、実験室にてエポキシ樹脂系のプライマーを塗布し、乾燥させて厚さ5μmのプライマー層を形成し、次いで、メラミン硬化ポリエステル系の上塗り塗料を塗布し、乾燥させて厚さ15μmの上塗り塗膜を形成し、塗装鋼板のサンプルを製造した。
The molten Al—Zn-based galvanized steel sheet thus produced was subjected to a urethane resin-based chemical conversion film containing ZrO 2 , SiO 2, and phosphoric acid as a rust preventive in a laboratory, and subjected to subsequent tests. The amount of the chemical conversion film adhered was 1 g / m 2 .
Further, the sample of the molten Al-Zn-based plated steel sheet to which the above-mentioned chemical conversion film was applied was coated with an epoxy resin-based primer in a laboratory and dried to form a primer layer having a thickness of 5 μm, and then a melamine-cured polyester. A topcoat coating material of the system was applied and dried to form a topcoat coating film having a thickness of 15 μm, and a sample of a coated steel sheet was produced.
製造された溶融Al−Zn系めっき鋼板について、さきに述べた方法でめっき層の構成(めっき層の伸び、Alデンドライト部の硬度、厚さ)を測定するとともに、上記化成処理材と塗装材について、曲げ加工部耐食性を以下のように評価した。その結果を、溶融Al−Zn系めっき鋼板の製造条件とともに、表1に示す。
(1)化成処理材の曲げ加工部耐食性評価
化成処理材の各サンプルについて、同板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施した後、曲げ加工部の外側表面に対して、日本自動車規格の複合サイクル試験(JASO−CCT)を実施した。JASO−CCTは、図2に示すように、特定の条件での塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
各サンプルの曲げ加工部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
◎:赤錆発生サイクル数≧400サイクル
○:300サイクル≦赤錆発生サイクル数<400サイクル
×:赤錆発生サイクル数<300サイクル
Regarding the manufactured molten Al-Zn-based plated steel sheet, the composition of the plating layer (elongation of the plating layer, hardness and thickness of the Al dendrite portion) was measured by the method described above, and the above chemical conversion treatment material and coating material were used. , The corrosion resistance of the bent part was evaluated as follows. The results are shown in Table 1 together with the manufacturing conditions for the molten Al—Zn-based plated steel sheet.
(1) Evaluation of corrosion resistance of the bent part of the chemical conversion treatment material After each sample of the chemical conversion treatment material is subjected to 180 ° bending (3T bending) by sandwiching three plates of the same thickness inside, the bending part A Japanese Automotive Standards Organization compound cycle test (JASO-CCT) was performed on the outer surface. As shown in FIG. 2, JASO-CCT is a test in which salt spraying, drying and wetting under specific conditions are one cycle.
For the bent portion of each sample, the number of cycles until red rust occurred was measured and evaluated according to the following criteria.
⊚: Number of red rust occurrence cycles ≥ 400 cycles ○: 300 cycles ≤ Number of red rust occurrence cycles <400 cycles ×: Number of red rust occurrence cycles <300 cycles
(2)塗装材の曲げ加工部耐食性評価
塗装材の各サンプルについて、同板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施した後、曲げ加工部の外側表面に対して、上記(1)と同様の日本自動車規格の複合サイクル試験(JASO−CCT)を実施した。
各サンプルの曲げ加工部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
◎:赤錆発生サイクル数≧300サイクル
○:200サイクル≦赤錆発生サイクル数<300サイクル
×:赤錆発生サイクル数<200サイクル
(2) Evaluation of corrosion resistance of the bent part of the coating material After each sample of the coating material is subjected to 180 ° bending (3T bending) by sandwiching three plates of the same thickness inside, the outer surface of the bending part The same Japanese Automotive Standards Organization compound cycle test (JASO-CCT) as in (1) above was carried out.
For the bent portion of each sample, the number of cycles until red rust occurred was measured and evaluated according to the following criteria.
⊚: Number of red rust occurrence cycles ≧ 300 cycles ○: 200 cycles ≤ Number of red rust occurrence cycles <300 cycles ×: Number of red rust occurrence cycles <200 cycles
Claims (11)
下記により定義されるめっき層の伸びが15.0%以上であることを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板。
伸び: 曲げ試験において、試験片を内側間隔nt(但し、t:めっき鋼板の板厚、n:小数部を含み得る数値)で180°曲げ加工した際に、下式で規定されるEl(%)を曲げ加工部の外側表面の伸びとした場合、試験片の曲げ加工部の外側表面を10倍ルーペで観察した時にクラックが認められない最小のn値のときの伸びEl(%)。
El(%)=(πt(n+2)-πt(n+1))/(π(n+1))*100
=1/(n+1)*100 The surface of the steel sheet contains a plating layer containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass%, and the balance is Zn and unavoidable impurities.
A hot-dip Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in a processed portion, characterized in that the elongation of the plating layer defined below is 15.0% or more.
Elongation: In the bending test, when the test piece is bent 180 ° with an inner spacing nt (however, t: plate thickness of plated steel sheet, n: numerical value that can include decimal parts), El (%) specified by the following formula ) Is the elongation of the outer surface of the bent portion, and the elongation El (%) at the minimum n value at which no crack is observed when the outer surface of the bent portion of the test piece is observed with a 10-fold loupe.
El (%) = (πt (n + 2) -πt (n + 1)) / (π (n + 1)) * 100
= 1 / (n + 1) * 100
前記溶融めっき後のめっき鋼板の冷却過程では、めっき浴を出てから450℃までの温度域での平均冷却速度を12℃/s以上とし、
前記加熱処理では、めっき鋼板を100〜300℃の温度域の温度T(℃)まで加熱した後、この温度T(℃)から80℃までを下記(1)式で規定される冷却速度C(℃/hr)以下の平均冷却速度(℃/hr)で冷却することを特徴とする加工部耐食性に優れた溶融Al−Zn系合金めっき鋼板の製造方法。
C=(T−80)/10 …(1) The steel sheet is hot-dip galvanized in a plating bath containing Al: 40 to 70 mass% and Si: 0.6 to 15 mass%, and the balance is Zn and unavoidable impurities, and then the plated steel sheet in which the plating layer is solidified is heat-treated. A method for manufacturing Al-Zn alloy plated steel sheets.
In the cooling process of the plated steel sheet after hot-dip galvanizing, the average cooling rate in the temperature range up to 450 ° C. after leaving the plating bath is set to 12 ° C./s or more.
In the heat treatment, the plated steel sheet is heated to a temperature T (° C.) in a temperature range of 100 to 300 ° C., and then the cooling rate C (1) specified by the following equation (1) is applied from this temperature T (° C.) to 80 ° C. A method for producing a molten Al—Zn-based alloy-plated steel sheet having excellent corrosion resistance in a processed portion, which comprises cooling at an average cooling rate (° C./hr) of ° C./hr) or less.
C = (T-80) / 10 ... (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019157011A JP6704669B1 (en) | 2019-08-29 | 2019-08-29 | Hot-dip Al-Zn alloy plated steel sheet having excellent corrosion resistance in worked part and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019157011A JP6704669B1 (en) | 2019-08-29 | 2019-08-29 | Hot-dip Al-Zn alloy plated steel sheet having excellent corrosion resistance in worked part and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6704669B1 JP6704669B1 (en) | 2020-06-03 |
JP2021031759A true JP2021031759A (en) | 2021-03-01 |
Family
ID=70858162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019157011A Active JP6704669B1 (en) | 2019-08-29 | 2019-08-29 | Hot-dip Al-Zn alloy plated steel sheet having excellent corrosion resistance in worked part and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6704669B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023181428A1 (en) * | 2022-03-24 | 2023-09-28 | Jfe鋼板株式会社 | Molten al-zn-based plated steel sheet and method for manufacturing same |
WO2023181429A1 (en) * | 2022-03-24 | 2023-09-28 | Jfe鋼板株式会社 | Molten al-zn-based plated steel sheet and method for manufacturing same |
JP7577817B1 (en) | 2023-11-06 | 2024-11-05 | Jfe鋼板株式会社 | Hot-dip Al-Zn-plated steel sheet, surface-treated steel sheet, painted steel sheet, and method for manufacturing hot-dip Al-Zn-plated steel sheet |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116987997B (en) * | 2023-07-25 | 2024-11-29 | 鞍钢股份有限公司 | A surface blackened high-aluminum hot-dip coated steel plate and a manufacturing method thereof |
CN117626153B (en) * | 2023-10-23 | 2024-06-04 | 致邦控股(广东)有限公司 | Corrosion-resistant zinc-aluminum-magnesium composite coating, coated steel plate and preparation method thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5687655A (en) * | 1979-11-08 | 1981-07-16 | Bethlehem Steel Corp | Heat treated metal coated iron base product having improved corrosion resistance and method |
JPS5687654A (en) * | 1979-11-08 | 1981-07-16 | Bethlehem Steel Corp | Heat treated metal coated iron base product having improved ductility and method |
JPH0813110A (en) * | 1994-07-01 | 1996-01-16 | Sumitomo Metal Ind Ltd | Bottom dross removal method |
JPH10176238A (en) * | 1996-12-18 | 1998-06-30 | Sumitomo Metal Ind Ltd | Zn-Al alloy plated steel sheet with excellent workability |
JP2002194519A (en) * | 2000-12-22 | 2002-07-10 | Nkk Corp | Method for producing hot-dip Al-Zn plated steel sheet |
JP2002249862A (en) * | 2000-12-22 | 2002-09-06 | Nkk Corp | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same |
JP2002302751A (en) * | 2001-01-31 | 2002-10-18 | Nkk Corp | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same |
JP2003268518A (en) * | 2002-03-18 | 2003-09-25 | Nisshin Steel Co Ltd | Original sheet for coating having excellent workability |
JP2004323932A (en) * | 2003-04-25 | 2004-11-18 | Sumitomo Metal Ind Ltd | Painted steel sheet, base material-plated steel sheet thereof, and method for producing them |
JP2005163138A (en) * | 2003-12-04 | 2005-06-23 | Nisshin Steel Co Ltd | METHOD OF PRODUCING Al-Zn ALLOY PLATED STEEL STRIP |
JP2005264188A (en) * | 2004-03-16 | 2005-09-29 | Nippon Steel Corp | Hot-dip Zn-Al alloy-plated steel with excellent bending workability and method for producing the same |
JP2007284718A (en) * | 2006-04-13 | 2007-11-01 | Jfe Galvanizing & Coating Co Ltd | Zn-Al ALLOY HOT-DIP PLATED STEEL SHEET SUPERIOR IN CORROSION RESISTANCE AND WORKABILITY, AND PRODUCTION METHOD THEREFOR |
EP1930463A1 (en) * | 2005-09-01 | 2008-06-11 | Nippon Steel Corporation | HOT DIP Zn-Al BASED ALLOY PLATED STEEL PRODUCT EXCELLENT IN BENDING WORKABILITY AND METHOD FOR PRODUCTION THEREOF |
JP2011511162A (en) * | 2008-02-07 | 2011-04-07 | ブルースコープ・スティール・リミテッド | Metal coated steel strip |
JP2018532043A (en) * | 2015-08-28 | 2018-11-01 | 宝山鋼鉄股▲分▼有限公司 | Yield strength 500 MPa class high elongation aluminum zinc hot-dip / color-plated steel sheet and method for producing the same |
-
2019
- 2019-08-29 JP JP2019157011A patent/JP6704669B1/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5687655A (en) * | 1979-11-08 | 1981-07-16 | Bethlehem Steel Corp | Heat treated metal coated iron base product having improved corrosion resistance and method |
JPS5687654A (en) * | 1979-11-08 | 1981-07-16 | Bethlehem Steel Corp | Heat treated metal coated iron base product having improved ductility and method |
JPH0813110A (en) * | 1994-07-01 | 1996-01-16 | Sumitomo Metal Ind Ltd | Bottom dross removal method |
JPH10176238A (en) * | 1996-12-18 | 1998-06-30 | Sumitomo Metal Ind Ltd | Zn-Al alloy plated steel sheet with excellent workability |
JP2002194519A (en) * | 2000-12-22 | 2002-07-10 | Nkk Corp | Method for producing hot-dip Al-Zn plated steel sheet |
JP2002249862A (en) * | 2000-12-22 | 2002-09-06 | Nkk Corp | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same |
JP2002302751A (en) * | 2001-01-31 | 2002-10-18 | Nkk Corp | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same |
JP2003268518A (en) * | 2002-03-18 | 2003-09-25 | Nisshin Steel Co Ltd | Original sheet for coating having excellent workability |
JP2004323932A (en) * | 2003-04-25 | 2004-11-18 | Sumitomo Metal Ind Ltd | Painted steel sheet, base material-plated steel sheet thereof, and method for producing them |
JP2005163138A (en) * | 2003-12-04 | 2005-06-23 | Nisshin Steel Co Ltd | METHOD OF PRODUCING Al-Zn ALLOY PLATED STEEL STRIP |
JP2005264188A (en) * | 2004-03-16 | 2005-09-29 | Nippon Steel Corp | Hot-dip Zn-Al alloy-plated steel with excellent bending workability and method for producing the same |
EP1930463A1 (en) * | 2005-09-01 | 2008-06-11 | Nippon Steel Corporation | HOT DIP Zn-Al BASED ALLOY PLATED STEEL PRODUCT EXCELLENT IN BENDING WORKABILITY AND METHOD FOR PRODUCTION THEREOF |
JP2007284718A (en) * | 2006-04-13 | 2007-11-01 | Jfe Galvanizing & Coating Co Ltd | Zn-Al ALLOY HOT-DIP PLATED STEEL SHEET SUPERIOR IN CORROSION RESISTANCE AND WORKABILITY, AND PRODUCTION METHOD THEREFOR |
JP2011511162A (en) * | 2008-02-07 | 2011-04-07 | ブルースコープ・スティール・リミテッド | Metal coated steel strip |
JP2018532043A (en) * | 2015-08-28 | 2018-11-01 | 宝山鋼鉄股▲分▼有限公司 | Yield strength 500 MPa class high elongation aluminum zinc hot-dip / color-plated steel sheet and method for producing the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023181428A1 (en) * | 2022-03-24 | 2023-09-28 | Jfe鋼板株式会社 | Molten al-zn-based plated steel sheet and method for manufacturing same |
WO2023181429A1 (en) * | 2022-03-24 | 2023-09-28 | Jfe鋼板株式会社 | Molten al-zn-based plated steel sheet and method for manufacturing same |
JP2023143590A (en) * | 2022-03-24 | 2023-10-06 | Jfe鋼板株式会社 | HOT-DIP Al-Zn ALLOY-PLATED STEEL SHEET AND MANUFACTURING METHOD FOR THE SAME |
JP2023143589A (en) * | 2022-03-24 | 2023-10-06 | Jfe鋼板株式会社 | HOT-DIP Al-Zn ALLOY-PLATED STEEL SHEET AND MANUFACTURING METHOD FOR THE SAME |
JP7577817B1 (en) | 2023-11-06 | 2024-11-05 | Jfe鋼板株式会社 | Hot-dip Al-Zn-plated steel sheet, surface-treated steel sheet, painted steel sheet, and method for manufacturing hot-dip Al-Zn-plated steel sheet |
JP2025077450A (en) * | 2023-11-06 | 2025-05-19 | Jfe鋼板株式会社 | Hot-dip Al-Zn-plated steel sheet, surface-treated steel sheet, painted steel sheet, and method for manufacturing hot-dip Al-Zn-plated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP6704669B1 (en) | 2020-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6704669B1 (en) | Hot-dip Al-Zn alloy plated steel sheet having excellent corrosion resistance in worked part and method for producing the same | |
TWI498455B (en) | A molten Al-Zn plated steel sheet and a method for producing the same | |
TWI521092B (en) | Hot dip a1-zn plated steel sheet and method of manufacturing the same | |
WO2019124485A1 (en) | Hot-dip plated steel wire and manufacturing method therefor | |
JP6509160B2 (en) | Molten Al-Zn based plated steel sheet and manufacturing method thereof | |
JP3580541B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same | |
JP2003213396A (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same | |
JP3749487B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of machined part | |
JP3654520B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same | |
JP7137731B1 (en) | Hot-dip Al-Zn-based plated steel sheet and manufacturing method thereof | |
JP7137730B1 (en) | Hot-dip Al-Zn-based plated steel sheet and manufacturing method thereof | |
JP3643559B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same | |
JP2006207033A (en) | Surface-treated steel sheet with excellent workability and corrosion resistance | |
JP3643544B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same | |
JP2022077158A (en) | Manufacturing method of hot dip galvanized steel sheet excellent in stability of material quality | |
JP3811363B2 (en) | Manufacturing method of surface-treated steel sheet with excellent workability and corrosion resistance of processed parts | |
JP3652996B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same | |
JP3811364B2 (en) | Manufacturing method of surface-treated steel sheet with excellent workability and corrosion resistance of processed parts | |
JP6242576B6 (en) | Fused Al-Zn plated steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190930 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191224 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200512 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6704669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |