[go: up one dir, main page]

JP2021018965A - 発光装置、発光装置の製造方法、および電子機器 - Google Patents

発光装置、発光装置の製造方法、および電子機器 Download PDF

Info

Publication number
JP2021018965A
JP2021018965A JP2019135921A JP2019135921A JP2021018965A JP 2021018965 A JP2021018965 A JP 2021018965A JP 2019135921 A JP2019135921 A JP 2019135921A JP 2019135921 A JP2019135921 A JP 2019135921A JP 2021018965 A JP2021018965 A JP 2021018965A
Authority
JP
Japan
Prior art keywords
layer
light emitting
pixel
sub
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135921A
Other languages
English (en)
Other versions
JP2021018965A5 (ja
JP6911890B2 (ja
Inventor
潤 色部
Jun Irobe
潤 色部
健 腰原
Takeshi Koshihara
健 腰原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019135921A priority Critical patent/JP6911890B2/ja
Priority to CN202010709074.8A priority patent/CN112289943B/zh
Priority to US16/936,775 priority patent/US20210028239A1/en
Publication of JP2021018965A publication Critical patent/JP2021018965A/ja
Publication of JP2021018965A5 publication Critical patent/JP2021018965A5/ja
Application granted granted Critical
Publication of JP6911890B2 publication Critical patent/JP6911890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】表示領域の周縁部においても色度変移の発生を抑制でき、十分な視野角特性を確保した発光装置を提供すること。【解決手段】表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、反射層と、半透過反射層と、反射層と半透過反射層との間に設けられた発光機能層と、を有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備え、共振構造から、第1サブ画素、および第2サブ画素が出射する光の波長域は、第1波長域であり、第2サブ画素における反射層および半透過反射層の間の距離は、第1サブ画素における反射層および半透過反射層の間の距離よりも長い。これにより、表示領域の周縁の第2サブ画素P22における光共振構造の光路長D22は、表示領域の基準エリアの第1サブ画素P1における光路長D1よりも長くなる。【選択図】図6B

Description

本発明は、発光装置、発光装置の製造方法、および当該発光装置を備えた電子機器に関する。
有機EL(Electro Luminescence)素子と、所定の波長領域の光を透過させるカラーフィルターなどを備える表示装置が知られていた。例えば、特許文献1の表示装置は、有機EL素子と、反射層と、半透過反射層として機能する共通電極とを有し、有機EL素子からの光を共振させる共振構造を備えていた。詳しくは、R,G,Bの色光ごとに、反射層と共通電極との間の光路長を最適化することで、各色波長の光を干渉により強めて、光取り出し効率を向上させていた。なお、共振構造は、色光ごとに表示面内で共通に設定されていた。
また、当該文献では、この表示装置をHMD(Head Mounted Display)に用いている。HMDは、投射レンズを含む光学系を有しており、表示装置の画像を拡大した虚像をユーザーに視認させる。このようなHMDでは、装着感を向上させるために小型化が求められており、表示装置も高精細化、小型化が進んでいる。他方、小型化された表示装置で大きな虚像を得るためには、画角を大きくする必要があった。
特開2017−146372号公報
しかしながら、特許文献1の従来の表示装置では、主光線が傾くにつれ、取り出し効率が低下し、色度が変化してしまう虞があった(特許文献1の図15参照)。これは、主光線が傾くと光路長と反射の位相条件が変わり、共振波長がズレて色度変移してしまうからである。色度変移は、画角を大きくした際、表示装置の表示エリア周縁部で顕著であった。このように、従来の表示装置では、視野角特性が不足しているという課題があった。
本願の発光装置は、表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、反射層と、半透過反射層と、反射層と半透過反射層との間に設けられた発光機能層と、を有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備え、共振構造から、第1サブ画素、および第2サブ画素が出射する光の波長域は、第1波長域であり、第2サブ画素における反射層および半透過反射層の間の距離は、第1サブ画素における反射層および半透過反射層の間の距離よりも長い。
また、発光装置は、表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、反射層と、半透過反射層と、反射層と半透過反射層との間に設けられた発光機能層と、を有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備え、共振構造から、第1サブ画素、および第2サブ画素が出射する光の波長域は、第1波長域であり、第2サブ画素から所定の傾斜した角度に出射される光の波長域は、第1サブ画素から垂直方向に出射される光の波長域と一致する。
また、反射層と発光機能層との間に設けられた画素電極と、反射層と画素電極との間に設けられた絶縁層とを、さらに備え、絶縁層は、第1材料からなる第1層と、第1材料とは異なる第2材料からなる第2層と、を含み、第2サブ画素における第2層の厚さは、第1サブ画素における第2層の厚さより厚いことが好ましい。
また、第1サブ画素は、表示領域において基準となる基準エリアに配置されており、第2サブ画素は、基準エリアとは異なるエリアに配置されることが好ましい。
また、電子機器は、上記記載の発光装置を備えることが好ましい。
本願の発光装置の製造方法は、反射層と、絶縁層と、発光機能層と、半透過反射層とを有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備えた発光装置の製造方法であって、第1材料からなる絶縁層の第1層を形成する工程と、第1層の上に、第1材料とは異なる第2材料を用いて第1材料層を形成する工程と、材料層上にレジストマスクを形成し、第1層をエッチングストッパーとして第1材料層をパターニングすることで、絶縁層の第2層を形成する工程と、第2層の上に、第2材料を用いて第2材料層を形成する工程と、第2材料層上にレジストマスクを形成し、第2材料層をパターニングすることで、絶縁層の第2層を厚くする工程と、を含み、表示領域において基準となる基準エリアに配置される第1サブ画素の第2層の厚さよりも、基準エリアとは異なるエリアに配置される第2サブ画素における第2層の厚さを厚くする。
また、発光装置の製造方法は、反射層と、絶縁層と、発光機能層と、半透過反射層とを有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備えた発光装置の製造方法であって、絶縁層の第1層を形成する工程と、第1層の上に、第1材料とは異なる第2材料を用いて材料層を形成する工程と、材料層上にレジストを形成し、多階調の露光マスクを用いて階調露光を行う工程と、階調露光によって形成されたレジストマスクを用いて、材料層をパターニングすることで、材料層にレジストマスクの形状を転写して、絶縁層の第2層を形成する工程と、を含み、表示領域において基準となる基準エリアに配置される第1サブ画素の第2層の厚さよりも、基準エリアとは異なるエリアに配置される第2サブ画素における第2層の厚さを厚くする。
実施形態1に係る有機EL装置の構成を示す概略平面図。 有機EL装置の発光画素の電気的な構成を示す等価回路図。 発光画素の構成を示す概略平面図。 発光画素をX方向に沿って切ったときの概略断面図。 発光画素における光共振構造を示す模式断面図。 調整層、および関連層の厚さの事例の一覧表を示す図。 虚像を表示する装置の光学系を示す模式図。 サブ画素における模式断面図。 主光線角度と調整層厚さの相関性を示すグラフ図。 基準エリアにおける各色サブ画素の調整層数を示す図。 周縁エリアにおける各色サブ画素の調整層数を示す図。 調整層の製造の流れを示す工程フローチャート図。 各工程における製造過程を示す断面図。 各工程における製造過程を示す断面図。 各工程における製造過程を示す断面図。 各工程における製造過程を示す断面図。 各工程における製造過程を示す断面図。 エリアごとの波長成分の強さの分布を示すグラフ図。 エリアごとの代表サブ画素の色度を示したXY色度図。 表示エリアの分割態様を示す図。 表示エリアの分割態様を示す図。 表示エリアの分割態様を示す図。 表示エリアの分割態様を示す図。 調整層の製造の流れを示す工程フローチャート図。 各工程における製造過程を示す断面図。 各工程における製造過程を示す断面図。 各工程における製造過程を示す断面図。 電子機器としてのヘッドマウントディスプレイを示す模式図。
1.実施形態1
**発光装置の概要**
まず、本実施形態の発光装置として有機EL装置を例に挙げて、図1〜図3を参照して説明する。図1は有機EL装置の構成を示す概略平面図、図2は有機EL装置の発光画素の電気的な構成を示す等価回路図、図3は有機EL装置の発光画素の構成を示す概略平面図である。
図1に示すように、発光装置としての有機EL装置100は、素子基板10と、素子基板10の表示領域Eにマトリックス状に配置された複数の発光画素20と、複数の発光画素20を駆動制御する周辺回路であるデータ線駆動回路101及び走査線駆動回路102と、外部回路との電気的な接続を図るための複数の外部接続用端子103とを備えている。本実施形態の有機EL装置100は、アクティブ駆動型、且つトップエミッション型の発光装置である。なお、表示領域Eのことを表示面Eともいう。
表示領域Eには、青色(B)の発光が得られる発光画素20Bと、緑色(G)の発光が得られる発光画素20Gと、赤色(R)の発光が得られる発光画素20Rとが配置されている。また、同色の発光が得られる発光画素20が図面上において縦方向に配列し、異なる色の発光が得られる発光画素20が、図面上において横方向にB,G,Rの順に繰り返して配置されている。このような発光画素20の配置は、ストライプ方式と呼ばれるものであるが、これに限定されるものではない。例えば、異なる色の発光が得られる発光画素20の横方向における配置は、B,G,Rの順でなくてもよく、例えば、R,G,Bの順としてもよい。以降、同色の発光が得られる発光画素20が配列した縦方向をY方向とし、Y方向に直交する方向をX方向として説明する。また、発光画素20の光の取り出し方向から素子基板10を見ることを平面視として説明する。なお、隣り合うB,G,Rの3つのサブ画素により、表示単位における1つの画素が構成される。
発光画素20の詳しい構成については後述するが、本実施形態における発光画素20B,20G,20Rのそれぞれは、発光素子として有機エレクトロルミネッセンス素子と、B,G,Rの各色に対応するカラーフィルターとを備え、有機EL素子からの発光をB,G,Rの各色に変換してフルカラー表示を可能とするものである。なお、有機エレクトロルミネッセンス素子のことを、有機EL素子と呼ぶ。また、有機EL素子からの発光波長範囲のうち特定の波長の輝度を向上させる光共振構造が発光画素20B,20G,20Rごとに構築されている。
有機EL装置100において、発光画素20B,20G,20Rは、サブ画素として機能するものであり、B,G,Rに対応する発光が得られる3つの発光画素20B,20G,20Rにより、画像表示における1つの画素単位が構成されている。なお、画素単位の構成はこれに限定されず、B,G,R以外の発光色(白色を含む)が得られる発光画素20が画素単位に含まれていても良い。
表示領域Eは、2つの領域に区分けされる。詳しくは、表示領域Eの中央がエリアA1、エリアA1のX方向における両横がエリアA2となっている。換言すれば、表示領域Eは、X方向に沿ってエリアA2、エリアA1、エリアA2の順で縦のストライプ状の表示エリアに区分けされる。なお、基準エリアであるエリアA1に配置されたサブ画素が第1サブ画素に相当する。エリアA1とは異なる、周縁のエリアA2に配置されたサブ画素が第2サブ画素に相当する。第1サブ画素と第2サブ画素との発光色は同じである。また、エリアA1と、エリアA2とでは、サブ画素の構成が異なっているが、詳しくは、後述する。
素子基板10の第1辺部に沿って、複数の外部接続用端子103がX方向に配列して設けられている。また、Y方向において外部接続用端子103と表示領域Eとの間にデータ線駆動回路101が配置され、X方向に延在している。また、X方向において表示領域Eを挟んで一対の走査線駆動回路102が設けられている。
前述したように表示領域Eには、複数の発光画素20がマトリックス状に設けられており、素子基板10には、図2に示すように、発光画素20に対応する信号線として、走査線11、データ線12、点灯制御線13、電源線14が設けられている。
本実施形態では、走査線11と点灯制御線13とがX方向に並行して延びており、データ線12と電源線14とがY方向に並行して延びている。
表示領域Eには、マトリックス状に配置された複数の発光画素20におけるm行に対応して複数の走査線11と複数の点灯制御線13とが設けられ、それぞれ図1に示した一対の走査線駆動回路102に接続されている。また、マトリックス状に配置された複数の発光画素20におけるn列に対応して複数のデータ線12と複数の電源線14とが設けられ、複数のデータ線12は、それぞれ図1に示したデータ線駆動回路101に接続され、複数の電源線14は複数の外部接続用端子103のうちいずれかと接続されている。
走査線11とデータ線12との交差部付近に、発光画素20の画素回路を構成する第1トランジスター21、第2トランジスター22、第3トランジスター23、蓄積容量24、そして発光素子である有機EL素子30が設けられている。
有機EL素子30は、陽極である画素電極31と、陰極である陰極36と、これらの電極間に挟まれた、発光層を含む機能層35とを有している。陰極36は、複数の発光画素20に跨って共通に設けられた電極であり、例えば、電源線14に与えられる電源電圧Vddに対して、低位の基準電位VssやGNDの電位が与えられる。
第1トランジスター21、および第3トランジスター23は、例えばnチャネル型のトランジスターである。第2トランジスター22は、例えば、pチャネル型のトランジスターである。
第1トランジスター21のゲート電極は走査線11に接続され、一方の電流端はデータ線12に接続され、他方の電流端は第2トランジスター22のゲート電極と、蓄積容量24の一方の電極とに接続されている。
第2トランジスター22の一方の電流端は、電源線14に接続されると共に蓄積容量24の他方の電極に接続されている。第2トランジスター22の他方の電流端は、第3トランジスター23の一方の電流端に接続されている。言い換えれば、第2トランジスター22と第3トランジスター23とは一対の電流端のうち1つの電流端を共有している。
第3トランジスター23のゲート電極は点灯制御線13に接続され、他方の電流端は有機EL素子30の画素電極31に接続されている。第1トランジスター21、第2トランジスター22及び第3トランジスター23のそれぞれにおける一対の電流端は、一方がソースであり、他方がドレインである。
このような画素回路において、走査線駆動回路102から走査線11に供給される走査信号Yiの電圧水準がHiレベルになると、nチャネル型の第1トランジスター21がオン状態(ON)となる。オン状態(ON)の第1トランジスター21を介してデータ線12と蓄積容量24とが電気的に接続される。そして、データ線駆動回路101からデータ線12にデータ信号が供給されると、データ信号の電圧水準Vdataと電源線14に与えられた電源電圧Vddとの電位差が蓄積容量24に蓄積される。
走査線駆動回路102から走査線11に供給される走査信号Yiの電圧水準がLowレベルになると、nチャネル型の第1トランジスター21がオフ状態(OFF)となり、第2トランジスター22のゲート・ソース間電圧Vgsは、電圧水準Vdataが与えられたときの電圧に保持される。また、走査信号YiがLowレベルになった後に、点灯制御線13に供給される点灯制御信号Vgiの電圧水準がHiレベルとなり、第3トランジスター23がオン状態(ON)となる。そうすると、第2トランジスター22のソース・ドレイン間には、第2トランジスター22のゲート・ソース間電圧Vgsに応じた電流が流れる。この電流は、具体的には、電源線14から第2トランジスター22及び第3トランジスター23を経由して、有機EL素子30に至る経路で流れる。
有機EL素子30は、有機EL素子30を流れる電流の大きさに応じて発光する。有機EL素子30を流れる電流は、第2トランジスター22のゲート・ソース間の電圧Vgsで設定される第2トランジスター22と有機EL素子30の動作点によって定まる。第2トランジスター22のゲート・ソース間の電圧Vgsは、走査信号YiがHiレベルのときに、データ線12の電圧水準Vdataと電源電圧Vddとの電位差によって蓄積容量24に保持された電圧である。このように、発光画素20は、データ信号における電圧水準Vdata及び第3トランジスター23がオン状態になる期間の長さによって発光輝度が規定される。つまり、データ信号における電圧水準Vdataの値により、発光画素20において画像情報に応じた輝度の階調性を与えることができ、フルカラー表示を可能としている。
なお、本実施形態において、発光画素20の画素回路は、3つのトランジスター21,22,23を有することに限定されず、発光画素を表示駆動可能な画素回路であれば良く、例えば、2つのトランジスターを用いる回路構成であっても良い。また画素回路を構成するトランジスターは、nチャネル型のトランジスターでも良いし、pチャネル型のトランジスターでも良いし、nチャネル型のトランジスター及びpチャネル型のトランジスターの双方を備えるものであっても良い。また、発光画素20の画素回路を構成するトランジスターは、半導体基板にアクティブ層を有するMOS型トランジスターであっても良いし、薄膜トランジスターであってもよいし、電界効果トランジスターであっても良い。
図3に示すように、発光画素20B,20G,20Rのそれぞれは、平面視で矩形状となっており、長手方向がY方向に沿って配置されている。発光画素20B,20G,20Rのそれぞれには、図2に示した等価回路の有機EL素子30が設けられている。発光画素20B,20G,20Rごとに設けられた有機EL素子30を区別するため、有機EL素子30B,30G,30Rとして説明することもある。また、有機EL素子30の画素電極31を発光画素20B,20G,20Rごとに区別するため、画素電極31B,31G,31Rとして説明することもある。
発光画素20Bには画素電極31B、および画素電極31Bと第3トランジスター23とを電気的に接続させるコンタクト部31Bcが設けられている。同様に、発光画素20Gには画素電極31G、および画素電極31Gと第3トランジスター23とを電気的に接続させるコンタクト部31Gcが設けられている。発光画素20Rには画素電極31R、および画素電極31Rと第3トランジスター23とを電気的に接続させるコンタクト部31Rcが設けられている。画素電極31B,31G,31Rは、共に平面視で略矩形状であり、長手方向の上方側に各コンタクト部31Bc,31Gc,31Rcがそれぞれ配置されている。
発光画素20B,20G,20Rのそれぞれは、隣り合う画素電極31同士を電気的に絶縁すると共に、画素電極31B,31G,31R上に機能層と接する領域を規定する開口29B,29G,29Rが形成された絶縁構造を有している。なお、本実施形態では、開口29B,29G,29Rの形状や大きさは同一としている。
**画素の構造**
図4は発光画素をX方向に沿って切ったときの概略断面図である。
次に、発光画素20の構造について、図4を参照して説明する。なお、図4では、図3のトランジスターなどを含む画素回路の図示を省略している。
図4に示すように、有機EL装置100は、発光画素20B,20G,20R、カラーフィルター50などが形成された素子基板10と、透光性の封止基板70とを備えている。素子基板10と封止基板70とは、接着性と透明性とを兼ね備えた樹脂層60によって貼り合わされている。
カラーフィルター50は、B,G,Rの各色に対応したフィルター層50B,50G,50Rを有している。各フィルター層50B,50G,50Rは、素子基板10において、発光画素20B,20G,20Rのそれぞれに対応して配置されている。
有機EL装置100は、封止基板70側から発光が取り出されるトップエミッション構造であり、機能層35から発せられた光は、対応するフィルター層50B,50G,50Rのいずれかを透過して封止基板70側から射出される。
本実施形態では、素子基板10の基材10sは、シリコン基板を用いている。なお、トップエミッション構造を採用しているので、不透明なセラミック基板や半導体基板を用いても良い。
基材10s上には、前述したトランジスターや、コンタクト部などの接続配線を含む画素回路層、反射電極16、増反射層17、第1保護層18、埋め込み絶縁層19、第2保護層26、調整層27、有機EL素子30、画素分離層29、封止層40、カラーフィルター50などが形成されている。なお、図4では、画素回路層の図示を省略している。
反射電極16は、共振構造における反射層としても機能し、光反射性と導電性とを有する材料から形成されている。例えば、Al(アルミニウム)や、Ag(銀)などの金属、これらの金属の合金を用いることができる。本実施形態では、Ti/Al-Cu合金を用いており、光を反射する反射面には、Al-Cu合金を用いている。反射電極16は、平坦で、各画素の開口29B,29G,29Rよりも広く形成されている。
増反射層17は、反射電極16の上に形成された酸化珪素層であり、光反射性を向上させる増反射層として機能する。また、増反射層17は、反射電極16の形成工程において、パターニングのハードマスクとして用いられる。この工程において、反射電極16を画素ごとに区画する際、画素の周縁に溝が形成される。すなわち、図4のように、ある発光画素20の反射電極16と、これと隣り合う発光画素20の反射電極16との間に溝を有する。
第1保護層18は、増反射層17上に形成された窒化珪素層であり、当該層は画素を区画する溝の内面にも形成される。増反射層17の形成には、例えば、プラズマCVD法を用いる。
埋め込み絶縁層19は、画素を区画する溝を埋めて平坦化するための酸化珪素層である。埋め込み絶縁層19の形成には、例えば、高密度プラズマCVD法を用いる。酸化珪素層は、増反射層17の上、および画素を区画する溝を埋めて形成された後、溝の上部に選択的にレジストを形成し、全面エッチバックすることで形成する。この際、第1保護層18がエッチングストッパーとなることで第1保護層18が露出し、かつ、溝は埋め込み絶縁層19で充填され、平坦化される。
第2保護層26は、第1保護層18、および埋め込み絶縁層19の上に形成された平坦な窒化珪素層である。第2保護層26は絶縁層の第1層に相当し、窒化珪素は第1材料に相当する。第2保護層26の形成には、例えば、プラズマCVD法を用いる。
調整層27は、共振構造における光路の長さを調整するための光路長の調整層である。調整層27は絶縁層の第2層に相当し、第1材料とは異なる第2材料としての酸化珪素から構成される。調整層27は、表示領域Eのエリアごとで積層数が異なっており、図4は、基準のエリアA1の態様を示している。詳しくは、発光画素20Gでは、第2保護層26の上に、調整層27が2層形成されている。発光画素20Rでは、第2保護層26の上に、調整層27が4層形成されている。発光画素20Bでは、第2保護層26の上に調整層は形成されておらず、画素電極31Bが第2保護層26の上に直接形成されている。なお、調整層27の詳細は、後述する。
画素分離層29は、隣り合う画素電極31間に形成されるとともに、各画素の開口29B,29G,29Rを区画する。画素分離層29は、酸化珪素を用いている。
有機EL素子30は、画素電極31と、陰極36との間に、機能層35を挟持した構成となっている。
画素電極31は、透光性の陽極であり、光透過性と導電性とを有する透明導電膜から形成されている。好適例としてITO(Indium Tin Oxide)を用いている。画素電極31は、例えば、スパッタ法を用いて成膜した後、パターニングにより、サブ画素ごとに区画される。なお、機能層35については、後述する。
陰極36は、共振構造における半透過反射層を兼ねた陰極であり、本実施形態では、MgとAgとを共蒸着したMgAg合金の半透過反射性の薄膜を採用している。
封止層40は、第1無機封止層96、有機中間層97、第2無機封止層98から構成されている。
第1無機封止層96は、ガスバリア性、および透明性に優れた材料で、陰極36を覆って形成される。例えば、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化チタンなどの 金属酸化物などの無機化合物を用いて形成される。第1無機封止層96は、好適例として酸窒化珪素を用いている。
有機中間層97は、第1無機封止層96を覆って形成される透明性を有する有機樹脂層である。有機中間層97の材料は、好適例としてエポキシ樹脂を用いている。当該材料を印刷法や、スピンコート法で塗布して硬化することにより、第1無機封止層96の表面における凹凸形状や、異物を覆って平坦化する。
第2無機封止層98は、有機中間層97を覆って形成される無機化合物層である。第2無機封止層98は、第1無機封止層96と同様に、透明性とガスバリア性とを兼ね備え、かつ、耐水性、耐熱性に優れた無機化合物を用いて形成される。第2無機封止層98は、好適例として酸窒化珪素を用いている。
カラーフィルター50は、表面が平坦化された第2無機封止層98の上に形成される。カラーフィルター50の各フィルター層50B,50G,50Rは、各色に対応した顔料を含む感光性樹脂を塗布して露光、および現像することにより形成される。
**光共振構造**
図5Aは発光画素における光共振構造を示す模式断面図であり、図4に対応している。
次に、有機EL装置100における光共振構造及び有機EL素子30の構成について、図5Aを参照して説明する。
前述の通り、有機EL素子30は、画素電極31と、陰極36との間に、機能層35を挟持した構成となっている。
機能層35は、画素電極31側から順に積層された、正孔注入層(HIL)32、有機発光層(EML)33、電子輸送層(ETL)34を含む有機発光層である。これらの各層は、例えば、蒸着法を用いて形成される。
画素電極31と陰極36との間に駆動電位を印加することにより、画素電極31から機能層35に正孔が注入され、陰極36から機能層35に電子が注入される。機能層35に含まれる有機発光層33では、注入された正孔と電子が励起子(エキシトン)を形成し、励起子(エキシトン)が消滅する際にエネルギーの一部が蛍光や燐光となって放出される。なお、機能層35は、正孔注入層32、有機発光層33、電子輸送層34以外に、正孔や電子の有機発光層33への注入性や輸送性を改善あるいは制御する、例えば、正孔輸送層や電子注入層あるいは中間層を含んでいても良い。
有機EL素子30に駆動電圧が印可されると、有機発光層33は白色光を放射する。好適例として、青(B)、緑(G)、赤(R)の発光が得られる有機発光層を組み合わせることで白色光を得ている。また、青(B)と黄(Y)の発光が得られる有機発光層を組み合わせても擬似白色光を得ることができる。機能層35は、発光画素20B,20G,20Rに跨って共通に形成されている。
ここで、有機EL素子30では、反射層としての反射電極16と半透過反射層としての陰極36との間において光共振構造を採用することにより、B,G,Rの各発光色に対応した共振波長において輝度が強調された発光を得ている。
光共振構造における、発光画素20B,20G,20Rごとの共振波長は、反射電極16と陰極36との間の光学的な距離によって決まり、具体的には、下記の数式(1)を満たすように設定される。以降、光学的な距離のことを光路長Dという。
光路長D={(2πm+φL+φU)/4π}λ・・・(1)
mは正の整数、φLは反射電極16での反射における位相シフト、φUは陰極36での反射における位相シフト、λは定在波のピーク波長である。
また、光共振構造における各層の光学的な距離は、光が透過する各層の膜厚と、屈折率との積で表わされる。
数式(1)は、主光線が表示面に対して垂直な方向の場合における基本式であり、主光線が傾いた場合については想定されていない。特に、小型化された表示装置において画角を大きくした際に、表示エリアの周縁部では主光線の角度が大きくなり光路長が長くなって色度ズレが発生してしまう。この点に鑑み、発明者等は、数式(1)を踏まえた上で、画角を考慮した光路長の調整方法を考案した。具体的な調整方法の説明に先立ち、従来技術の課題から詳しく説明する。
**画角と調整層**
図6Aは、虚像を表示する装置の光学系を示す模式図である。図6Aは、光学系90を映像光の進行方向に沿って側面から見た図である。図6Bは、サブ画素における模式断面図である。
光学系90は、カメラのビューファインダーや、HMDに搭載可能な光学系である。本実施形態では、HMDの光学系として説明する。
光学系90は、表示装置92と、接眼レンズ95とを備えている。表示装置92は、有機ELパネルであり、平面的なサイズは接眼レンズ95の平面積より小さい。これは、頭部に装着されるHMDには装着性を良くするために、小型で、軽量であることが求められていることなどの理由による。接眼レンズ95は、凸レンズである。
表示装置92に表示される画像は、接眼レンズ95で拡大されて、映像光として眼EYに入射する。映像光は、表示装置92の表示面Eの中央から垂直に延在する光軸Kを中心とした光束であり、図6Aのように、表示面Eから広角で広がり、接眼レンズ95で収束して眼EYに入射する。光軸Kは、表示面Eの中央から接眼レンズ95の中央を通り眼EYの中心を結ぶ直線である。
眼EYでは、接眼レンズ95で拡大された映像光により形成される虚像が視認される。なお、接眼レンズ95と眼EYの間には、他の各種レンズや、導光板等が設けられても良い。
この光学系において、大きな虚像を得るためには、画角Fを大きくする必要がある。接眼レンズ95よりも平面積が小さな表示装置92を用いて、画角Fを大きくするためには、主光線の角度を大きくする必要がある。
ここで、主光線について説明する。主光線とは、画素から出射される光束のうち、適用される光学系において、主に用いられる光束の中心軸のことである。例えば、表示面Eの略中央に位置するサブ画素P1では、主光線は光軸Kに沿った光であり、主光線の傾きである角度θ1は、略0°である。同様に、表示面Eの+Y方向の端部に位置するサブ画素P2では、主光線の傾きは光軸Kに対して外側に広がる角度θ2となる。同様に、表示面Eの−Y方向の端部に位置するサブ画素P3では、主光線の傾きは光軸Kに対して、サブ画素P2とは反対側の外側に広がる角度θ2となる。なお、角度θ2は、用途にも拠るが概ね10°から25°程度である。
このように、サイズが小さな表示装置92を用いて、画角Fを大きくするためには、表示面の端部側に位置するサブ画素の主光線の角度を大きくする必要がある。主光線の角度を大きくした場合、表示装置92を従来の表示装置と見做した場合には、色度変移が発生してしまうという課題があった。
図6Bの断面図P1aは、表示面Eの略中央のサブ画素P1の模式断面図である。サブ画素P1では、主光線の角度θ1は、略0°であるため、共振構造の光路長D1は基本式に基づき、光路長の調整層87を1層備えた長さに設定されていた。サブ画素P1では、色度変移は発生しない。なお、サブ画素P1,P2,P3は、緑色画素であるものとして説明する。
他方、図6Bの断面図P2aのように、表示面Eの端部に位置するサブ画素P2では、主光線の角度θ2は、角度θ1よりも大きいが、光路長の設定はサブ画素P1と同一であったため、光路長が光路長D1よりも長い光路長D2となっていた。このため、光路長D1で光共振条件を満たす光路長設定において、主光線が傾いて光路長D2となることにより、狙いと異なる波長で共振することで色度変移が発生していた。
この点に鑑み、本実施形態の有機EL装置100では、画角を考慮した光路長の調整方法を採用している。
図6Bの断面図P22aは、有機EL装置100における表示面Eの端部に位置するサブ画素P22の模式断面図である。なお、有機EL装置100のサイズは表示装置92と同一とし、サブ画素P22はサブ画素P2に対応している。
サブ画素P22の主光線の角度θ2は、サブ画素P2と同じであるが、光路長の調整層27を3層設けることで、光共振条件を満たすように光路長を長くして、色度変移を抑制している。詳しくは、調整層27の層数を増やして、光路長を光路長D2よりも長い光路長D22とすることで、表示面Eの周縁部でも光共振条件を満たすことを可能としている。
これにより、第2サブ画素としてのサブ画素P22から所定の傾斜した角度θ2で出射される光は、光路長調整が行われた光路長D22となっていることにより、光共振条件を満たした緑色光となる。なお、赤色光、青色光においても同様である。そして、図6Aの光学系90において、表示装置92として本実施形態の有機EL装置100を採用した場合には、画角Fの拡大や光学系90の小型化などの効果を奏する。また、光路長の調整方法の詳細については、後述する。
**主光線角度と調整層厚さの相関性**
図7は、主光線角度と調整層厚さの相関性を示すグラフ図である。グラフ93において、横軸は主光線の角度(°)、縦軸は調整層の厚さ(nm)を示している。
グラフ93は、主光線角度と調整層厚さの相関性について、数式(1)を踏まえ、各層の材質、厚さなどに基づいて、シミュレーションしたものである。
線分61は、青色のサブ画素における主光線の角度と、当該角度において適切な光共振を行うための光路長とするために必要な調整層の厚さとの相関性を示している。線分61に示すように、主光線角度が大きくなるに連れて調整層厚さは二次関数的に増加することが解る。
同様に、線分62は、緑色のサブ画素における相関性を示しており、青色と同様に、主光線角度が大きくなると調整層厚さは二次関数的に増加するが、青色よりも傾きが大きくなっている。つまり、緑色のサブ画素の方が、青色のサブ画素よりも、調整層をより厚くする必要があることが解る。
同様に、線分63は、赤色のサブ画素における相関性を示しており、緑色と同様に、主光線角度が大きくなると調整層厚さは二次関数的に増加するが、緑色よりも傾きが大きくなっている。つまり、赤色のサブ画素の方が、緑色のサブ画素よりも、調整層をより厚くする必要があることが解る。
つまり、各色のサブ画素共に、主光線角度に応じて、調整層厚さを調整することにより、表示面Eの周縁部でも光共振条件を満たすことが可能であることが解る。
本実施形態における光路長の調整方法は、グラフ93の主光線角度と調整層厚さの相関性に基づいている。
**光路長の調整方法**
本実施形態おける光路長の調整方法は、表示領域Eを複数エリアに分割し、エリアごとの光路長を調整層の積層数によって調整するものである。複数エリアは、主光線の傾き度合いや、表示サイズ、用途などに応じてエリア分けする。
表示領域Eが複数エリアに分割されている際における総エリア数をn、調整対象のエリアをmとしたときに、対象エリアmにおけるサブ画素の色光ごとの調整層の数は、下記の数式(2)〜(4)によって求められる。
青色サブ画素の調整層数:B(n,m)= m−1 ・・・(2)
緑色サブ画素の調整層数:G(n,m)= n+m−1・・・(3)
赤色サブ画素の調整層数:R(n,m)=2n+m−1・・・(4)
但し、n≧m。
図8Aは、基準エリアにおける各色サブ画素の調整層数を示す図である。図8Bは、周縁エリアにおける各色サブ画素の調整層数を示す図である。
ここでは、図1を交えて、具体的な光路長の調整方法の事例を説明する。
図1に示すように、有機EL装置100の表示領域Eは、2つのエリアに区分けされている。表示領域Eの中央がエリアA1、エリアA1のX方向における両横がエリアA2となっている。よって、総エリア数nは2となる。
まず、基準となるエリアA1における対象エリアmは1となるので、調整層の数を数式(2)〜(4)によって計算する。
青色サブ画素の調整層数:B(2,1)= 1−1=0層
緑色サブ画素の調整層数:G(2,1)= 2+1−1=2層
赤色サブ画素の調整層数:R(2,1)=2×2+1−1=4層
図8Aは、エリアA1において、上記計算結果に基づく各色サブ画素における調整層の形成態様を示す要部の断面図である。
青色の発光画素20Bでは、第2保護層26と画素電極31Bとの間に、調整層は設けられず、第2保護層26の上に画素電極31Bが形成される。
緑色の発光画素20Gでは、第2保護層26と画素電極31Gとの間に、2層の調整層27が形成される。
赤色の発光画素20Rでは、第2保護層26と画素電極31Rとの間に、4層の調整層27が形成される。
図5Bは、調整層、および関連層の厚さの事例の一覧表を示す図である。図5Bの表39は、エリアA1における調整層27、および共振構造に係る関連層の厚さの事例を示しており、図5Aに対応している。
ここでは、好適例における調整層27、および関連層の厚さについて説明する。表39では、好適例における各部位の材質、屈折率、および厚さの一例を示している。なお、これらの材質、数値に限定するものではなく、有機EL装置100の用途、サイズを含む仕様などに応じて、適宜、設定することで良い。
表39に示すように、好適例における調整層27の厚さは、50nmとしている。
青色の発光画素20Bでは、数式(2)の計算結果に基づき、調整層は設けられない。
緑色の発光画素20Gでは、数式(3)の計算結果に基づき、調整層27が2層形成され、総厚は100nmとなる。
赤色の発光画素20Rでは、数式(4)の計算結果に基づき、調整層27が4層形成され、総厚は200nmとなる。なお、エリアA2においても、調整層27の層数が変わること以外は、同様である。
図8Bを用いて説明する。
エリアA1と同様に、エリアA2における対象エリアmは2となるので、調整層の数を数式(2)〜(4)によって計算する。
青色サブ画素の調整層数:B(2,2)= 2−1=1層
緑色サブ画素の調整層数:G(2,2)= 2+2−1=3層
赤色サブ画素の調整層数:R(2,2)=2×2+2−1=5層
図8Bは、エリアA2において、上記計算結果に基づく各色サブ画素における調整層の形成態様を示す要部の断面図である。
青色の発光画素20Bでは、第2保護層26と画素電極31Bとの間に、1層の調整層27が形成される。
緑色の発光画素20Gでは、第2保護層26と画素電極31Gとの間に、3層の調整層27が形成される。
赤色の発光画素20Rでは、第2保護層26と画素電極31Rとの間に、5層の調整層27が形成される。
上述した通り、総エリア数nが2エリアの場合、調整層27の数は、2つのエリアに跨って0層から5層までに区分けされる。換言すれば、エリアごと、サブ画素ごとに、適切な数の調整層を作り分けする必要がある。次に、調整層の製造方法について説明する。
**調整層の製造方法**
図9は、調整層の製造の流れを示す工程フローチャートである。図10A〜図10Eは、各工程における製造過程を示す断面図である。
ここでは、調整層を0層から5層までの6段階に作り分け製造方法について、図9、および、図10A〜図10Eを用いて説明する。なお、工程説明用の図であるため、完成状態は、図10Eの過程図85に示すように、調整層が0層から5層まで順番に階段状に形成された状態としているが、実際は、エリアごと、サブ画素ごとに算出された層数となるように、レジスト開口を設定して調整層を形成する。
まず、図10Aの過程図71において、基材10s上には、調整層の下地となる第2保護層26までの各層が形成されているものとして説明する。第2保護層26は、第1保護層18の上に形成された平坦な窒化珪素層である。
工程S1では、1層目の調整層27aを形成する。まず、第2保護層26の上に、材料層41を全面ベタに形成する。材料層41は、酸化珪素層であり、エッチング加工される前の準備工程で形成される層である。材料層41は、例えば、CVD法を用いて成膜する。過程図71は、材料層41が形成された状態を示している。
次に、材料層41の上に感光性レジスト層を全面ベタに形成する。そして、過程図72のように、レジスト層を露光・現像して、所定の開口部を有するレジストパターンを形成する。この所定の開口部を有するレジストパターンがレジストマスク42となる。
次に、レジストマスク42、および材料層41に対して、ドライエッチング処理を施す。詳しくは、レジストマスク42を介して、開口部から露出した材料層41に対して、例えば、フッ素系の処理ガスを用いてドライエッチングする。この際、窒化珪素からなる第2保護層26は、材料層41の酸化珪素に比べてドライエッチングにおけるエッチングレートが遅いため、第2保護層26がエッチングストッパーとして機能する。換言すれば、エッチング選択比の違いを利用して、第2保護層26をドライエッチングにおけるエッチングストップ膜としている。これにより、過程図73に示すように、第2保護層26の上に調整層27aが形成される。
工程S2では、2層目の調整層27bを形成する。調整層27a、および第2保護層26の上に、材料層43を全面ベタに形成する。材料層43は酸化珪素層であり、形成方法は材料層41と同じである。図10Bの過程図74は、材料層43が形成された状態を示している。
次に、材料層43の上に感光性レジスト層を全面ベタに形成する。そして、過程図75のように、レジスト層を露光・現像して、所定の開口部を有するレジストマスク44を形成する。
次に、レジストマスク44、および材料層43に対して、ドライエッチング処理を施す。詳しくは、レジストマスク44を介して、開口部から露出した材料層43に対して、工程S1と同様に、第2保護層26をエッチングストップ膜としてドライエッチングする。これにより、過程図76に示すように、第2保護層26上の一部、および調整層27aの上に、調整層27bが形成される。
工程S3では、3層目の調整層27cを形成する。調整層27b、および第2保護層26の上に、材料層45を全面ベタに形成する。材料層45は酸化珪素層であり、形成方法は材料層41と同じである。図10Cの過程図77は、材料層45が形成された状態を示している。
次に、材料層45の上に感光性レジスト層を全面ベタに形成する。そして、過程図78のように、レジスト層を露光・現像して、所定の開口部を有するレジストマスク46を形成する。
次に、レジストマスク46、および材料層45に対して、ドライエッチング処理を施す。詳しくは、レジストマスク46を介して、開口部から露出した材料層45に対して、工程S1と同様に、第2保護層26をエッチングストップ膜としてドライエッチングする。これにより、過程図79に示すように、第2保護層26上の一部、および調整層27bの上に、調整層27cが形成される。
工程S4では、4層目の調整層27dを形成する。調整層27c、および第2保護層26の上に、材料層47を全面ベタに形成する。材料層47は酸化珪素層であり、形成方法は材料層41と同じである。図10Dの過程図80は、材料層47が形成された状態を示している。
次に、材料層47の上に感光性レジスト層を全面ベタに形成する。そして、過程図81のように、レジスト層を露光・現像して、所定の開口部を有するレジストマスク48を形成する。
次に、レジストマスク48、および材料層47に対して、ドライエッチング処理を施す。詳しくは、レジストマスク48を介して、開口部から露出した材料層47に対して、工程S1と同様に、第2保護層26をエッチングストップ膜としてドライエッチングする。これにより、過程図82に示すように、第2保護層26上の一部、および調整層27cの上に、調整層27dが形成される。
工程S5では、5層目の調整層27eを形成する。調整層27d、および第2保護層26の上に、材料層49を全面ベタに形成する。材料層49は酸化珪素層であり、形成方法は材料層41と同じである。図10Eの過程図83は、材料層49が形成された状態を示している。
次に、材料層49の上に感光性レジスト層を全面ベタに形成する。そして、過程図84のように、レジスト層を露光・現像して、所定の開口部を有するレジストマスク51を形成する。
次に、レジストマスク51、および材料層49に対して、ドライエッチング処理を施す。詳しくは、レジストマスク51を介して、開口部から露出した材料層49に対して、工程S1と同様に、第2保護層26をエッチングストップ膜としてドライエッチングする。これにより、過程図85に示すように、第2保護層26上の一部、および調整層27dの上に、調整層27eが形成される。ここまでの工程で、第2保護層26が露出した0層部分、および1層から5層の調整層が選択的に作り分けされる。
工程S6では、画素電極31を形成する。調整層27e、および第2保護層26の上に、スパッタ法で透明電極膜を形成し、パターニングすることにより、過程図86に示すように、第2保護層26の露出部分、および調整層27の1層から5層部分に、画素電極31が形成される。画素電極31の材料は、ITOを用いている。
なお、説明を解り易くするために、調整層が0層から5層まで順番に階段状に形成される形態を用いて説明したが、実際は、エリアごと、サブ画素ごとに算出された層数となるように、レジスト開口を設定して調整層を形成する。例えば、図8Aの事例では、隣り合う青、緑、赤色のサブ画素において、調整層が0層、2層、4層の順に形成される。同様に、図8Bの事例では、隣り合う青、緑、赤色のサブ画素において、調整層が1層、3層、5層の順に形成される。
**光路長設定のエリア分けによる効果**
図11は、エリアごとの波長成分の強さの分布を示すグラフであり、グラフ105は従来の表示装置の光スペクトル、グラフ106は本実施形態の光路長設定による光スペクトルを示しており、両者とも発明者等によるシミュレーション結果である。グラフ105,106において、横軸は光の波長(nm)、縦軸は光の強度(a.u.)を示している。シミュレーション条件として、総エリア数nは3エリアとしている。表示エリアの基準のエリアA1における主光線の角度は0°、エリアA1の外側のエリアA2における主光線の角度は15°、エリアA2の外側のエリアA3における主光線の角度は25°とした。なお、これらスペクトルは、各エリアにおける代表サブ画素の光共振構造から出射される白色光のスペクトルを示している。
グラフ105のように、従来の表示装置では、主光線の角度が大きいエリアでスペクトルのズレがあり、色ズレが発生している。詳しくは、青色光のピークとなる470nm付近において、基準のエリアA1のスペクトルを示す線分111を基準として、外側のエリアA2のスペクトルを示す線分112の方が、ピーク値が短波長側へシフトしている。同様に、エリアA3のスペクトルを示す線分113のピーク値は、エリアA2の線分112よりも、短波長側へシフトしている。これは、緑色光、赤色光においても同様である。
つまり、従来の表示装置では、主光線の角度が大きいエリアほど、色光が短波長側へシフトして色度変移が生じることが解る。
これに対して、本実施形態の光路長の調整方法に基づく設定の場合、グラフ106のように、3エリアのスペクトルが略重なっており、色ズレの発生は認められない。詳しくは、青色光のピークとなる470nm付近において、基準のエリアA1のスペクトルを示す線分121と、外側のエリアA2のスペクトルを示す線分122とが、略重なっており、ピーク値のズレは認められない。同様に、エリアA3のスペクトルを示す線分123も、エリアA1の線分121と略重なっている。換言すれば、エリアA3の青色のサブ画素から所定の傾斜した角度25°に出射される光の波長域は、エリアA1の青色のサブ画素から垂直方向に出射される光の波長域と略一致しているといえる。エリアA2の青色のサブ画素から主光線の角度15°に出射される光の波長域も、エリアA1の青色のサブ画素から主光線の角度0°に出射される光の波長域と略一致する。
同様に、緑色光のピークとなる540nm付近において、基準のエリアA1のスペクトルを示す線分121と、外側のエリアA2のスペクトルを示す線分122とが、略重なっており、ピーク値のズレは認められない。同様に、エリアA3のスペクトルを示す線分123も、エリアA1の線分121と略重なっている。換言すれば、エリアA3の緑色のサブ画素から所定の傾斜した角度25°に出射される光の波長域は、エリアA1の緑色のサブ画素から垂直方向に出射される光の波長域と略一致している。エリアA2の緑色のサブ画素から主光線の角度15°に出射される光の波長域も、エリアA1の緑色のサブ画素から主光線の角度0°に出射される光の波長域と略一致する。
同様に、赤色光のピークとなる620nm付近において、基準のエリアA1のスペクトルを示す線分121と、外側のエリアA2のスペクトルを示す線分122とが、略重なっており、ピーク値のズレは認められない。同様に、エリアA3のスペクトルを示す線分123も、エリアA1の線分121と略重なっている。換言すれば、エリアA3の赤色のサブ画素から所定の傾斜した角度25°に出射される光の波長域は、エリアA1の赤色のサブ画素から垂直方向に出射される光の波長域と略一致している。エリアA2の赤色のサブ画素から主光線の角度15°に出射される光の波長域も、エリアA1の赤色のサブ画素から主光線の角度0°に出射される光の波長域と略一致する。
つまり、本実施形態の光路長の調整方法に基づく設定によれば、主光線の角度が大きいエリアにおいても、色度変移は発生しないことが解る。
なお、本実施形態では、第1サブ画素、および第2サブ画素を緑色のサブ画素としている。このとき、第1波長域は、概ね緑色光の波長域である495nmから570nmの範囲となる。また、緑色のサブ画素に限定するものではなく、青色、または赤色のサブ画素であっても良い。青色のサブ画素の場合には、第1波長域は、概ね青色光の波長域である430nmから495nmの範囲となる。赤色のサブ画素の場合には、概ね赤色光の波長域である580nmから750nmの範囲となる。
図12は、エリアごとの代表サブ画素の色度を示したXY色度図であり、グラフ107は従来の表示装置における色度、グラフ108は本実施形態の光路長設定における色度を示しており、両者とも発明者等によるシミュレーション結果である。図12は図11と対応しており、グラフ107はグラフ105と、グラフ108はグラフ106と、それぞれ対応している。シミュレーション条件も図11における条件と同一である。
グラフ107のように、従来の表示装置では、主光線の角度が大きいエリアで色度ズレが発生している。詳しくは、基準のエリアA1の色度を示す点111aを基準として、外側のエリアA2の色度を示す点112aの方が、XY座標ともにプラス側にシフトしている。同様に、エリアA3の色度を示す点113aのピーク値は、エリアA2の点112aよりも、XY座標ともにプラス側にシフトしている。
つまり、従来の表示装置では、主光線の角度が大きいエリアほど、色光が短波長側へシフトして色度変移が生じることが解る。
これに対して、本実施形態の光路長の調整方法に基づく設定の場合、グラフ108のように、3エリアの色度が略重なっており、色ズレの発生は認められない。詳しくは、基準のエリアA1の色度を示す点121aと、外側のエリアA2の色度を示す点122aと、さらに外側のエリアA3の色度を示す点123aとが略重なっている。
つまり、本実施形態の光路長の調整方法に基づく設定によれば、主光線の角度が大きいエリアにおいても、色度変移は発生しないことが解る。これらのシミュレーション結果に基づき、発明者等が検証した結果、本実施形態の光路長の調整方法を採用することで、従来の表示装置と比べて、色度変移を約8割改善することができる。
**実施形態1の効果**
上述の説明の通り、有機EL装置100、およびその製造方法によれば、以下の効果を得ることができる。
共振構造における光路長の調整方法では、主光線の傾き度合いや、表示サイズ、用途などに応じて表示領域を複数の表示エリアに区分けする。そして、複数の表示エリアにおける、エリアごとの光路長を数式(2)〜(4)に基づき、調整層の積層数によって調整する。これにより、主光線が傾きをもつエリアにおいても、所望波長の光共振条件を満たすように、光路長を調整することができる。詳しくは、基準の表示エリアにおける光路長よりも、基準エリアとは異なる表示エリアにおける光路長が長くなるように調整する。
従って、主光線が傾くと光路長が長くなり、共振波長がズレて色度変移が発生していた従来の表示装置と異なり、有機EL装置100によれば、調整層の積層数により光路長が最適化されているため、主光線の角度が大きいサブ画素においても、色度変移が抑制された鮮明な画像を得ることができる。
従来の表示装置では、平面的に、接眼レンズのサイズよりも、小さなサイズの表示装置を用いる際に、画角が大きくなり、特に、表示エリアの端部で色度変移が発生していた。これに対して、有機EL装置100によれば、表示エリアの端部においても、光路長を最適化できるため、色度変移の発生を抑制でき、十分な視野角特性を確保することができる。詳しくは、主線光の角度が大きい周縁側の表示エリアにおける光路長が長くなるように調整する。
さらに、有機EL装置100のサイズを接眼レンズのサイズよりも小さくして、大きな画角設定とした場合であっても、表示エリア全体において光路長を最適化できるため、小型化のニーズに応えることができる。つまり、小型で、かつ、視野角特性に優れた有機EL装置100を提供することができる。
2.実施形態2
**表示エリアの分割態様**
図13A〜図13Dは、表示エリアの分割態様を示す図である。
実施形態1では、表示領域を2つにエリア分けした事例を説明したが、この構成に限定するものではなく、表示領域を複数にエリア分けすることであれば良い。以下、実施形態1と同一の構成部位については、同一の符号を使用し、重複する説明は省略する。なお、以下説明において、X方向を横、Y方向を縦、+X方向を右、−X方向を左、+Y方向を上、−Y方向を下ともいう。
図13Aでは、有機EL装置100の表示領域Eを縦のストライプ状にnエリアに分割している。詳しくは、表示領域EのX方向における中央のエリアをエリアA1として、+X方向にエリアA2、エリアA3の順に、エリアAnまで区分けされている。各エリアのX方向における幅は同一である。同様に、−X方向には、基準エリアとなるエリアA1から、エリアA2、エリアA3の順に、エリアAnまで区分けされている。
つまり、エリアA1を基準にして、左右にエリアが、それぞれエリアnまで縦ストライプ状に形成されている。
このようなエリア分けとした場合であっても、実施形態1の数式(2)〜(4)を用いて、対象エリアmにおけるサブ画素の色光ごとの調整層の数を求めることができる。
図13Bでは、図13Aと同様に、表示領域Eを縦のストライプ状にnエリアに分割しているが、エリアA1の位置が右側にシフトしている。詳しくは、エリアA1が表示領域Eの略中央から+X方向に若干シフトしている。基準エリアとしてのエリアA1から、−X方向には、エリアA2、エリアA3の順に、エリアAnまで区分けされている。+X方向には、エリアA1から、エリアAn−αまで区分けされている。
このようなエリア分けとした場合であっても、実施形態1の数式(2)〜(4)を用いて、対象エリアmにおけるサブ画素の色光ごとの調整層の数を求めることができる。
なお、図13A、図13Bでは、表示領域Eを縦のストライプ状に複数エリアに分割した事例を説明したが、横のストライプ状に分割しても良い。また、同様に、主線光の傾きが小さいエリアA1の位置が表示領域Eの中心からシフトしていても良い。
このようなエリア分けとした場合であっても、実施形態1の数式(2)〜(4)を用いて、対象エリアmにおけるサブ画素の色光ごとの調整層の数を求めることができる。
図13Cでは、表示領域Eを四角環状にnエリアに分割している。詳しくは、表示領域Eの略中央の横長の長方形のエリアをエリアA1として、基準エリアとしてのエリアA1を囲う相似形の長方形からなるエリアA2、エリアA2を囲う相似形の長方形からなるエリアA3の順に、同心円的に、エリアAnまで区分けされている。各エリア間の長さは、均等としているが、均等でなくても良い。なお、エリアの形状は、楕円や、円であっても良い。楕円や、円の場合、同心円状に複数エリアに分割すれば良い。
このようなエリア分けとした場合であっても、実施形態1の数式(2)〜(4)を用いて、対象エリアmにおけるサブ画素の色光ごとの調整層の数を求めることができる。
図13Dでは、図13Cと同様に、表示領域Eを四角環状にnエリアに分割しているが、エリアA1の位置が右上にシフトしている。詳しくは、エリアA1が表示領域Eの略中央から+X方向、かつ、+Y方向にシフトしている。このため、エリアA1を基準として、エリアA3までは、図13Cと同様、同心円的に長方形の全周が大きくなるが、エリアA4以降は下辺と左辺のみが大きくなる。エリアA4以降は、上辺と右辺は固定で、下辺と左辺のみが大きくなる区分けとしている。なお、エリアの形状は、楕円や、円であっても良い。楕円や、円の場合、同心円状に複数エリアに分割すれば良い。
このようなエリア分けとした場合であっても、実施形態1の数式(2)〜(4)を用いて、対象エリアmにおけるサブ画素の色光ごとの調整層の数を求めることができる。
**効果**
これらの表示エリアの分割態様であっても、実施形態1と同様に、エリアごとの光路長を数式(2)〜(4)に基づき、調整層の積層数によって調整することができる。
従って、色度変移が低減され、視野角特性に優れた有機EL装置100を提供することができる。
また、表示エリアの分割は、主光線の傾き度合いや、表示サイズ、用途などに応じて表示領域を複数の表示エリアに区分けできる。詳しくは、主光線が略垂直となる領域を基準エリアA1として区画し、エリアA1とは異なるエリアを主光線の角度に応じて複数の表示エリアに区分けすれば良い。図13C、図13Dで説明したように、エリアA1は表示領域Eの中央に配置されることに限定されず、表示領域Eのどこにでも設定することができる。特に、用途においては、シースルー型、没入型などのHMDの形式や、男性、女性、大人、子供などの利用者の違い、ゲーム、地図の案内表示などアプリケーションの違いなどに合せて、表示領域を決めることが望ましい。
3.実施形態3
**第2の調整層の製造方法**
図14は、調整層の製造の流れを示す工程フローチャートである。図15A〜図15Cは、各工程における製造過程を示す断面図である。
ここでは、実施形態1の製造方法とは異なる調整層の製造方法について、図14、および、図15A〜図15Cを用いて説明する。なお、上記実施形態と同一の構成部位については、同一の符号を使用し、重複する説明は省略する。
まず、図15Aの過程図131において、基材10s上には、調整層の下地となる第2保護層26までの各層が形成されているものとして説明する。第2保護層26は、第1保護層18の上に形成された平坦な窒化珪素層である。
工程S11では、材料層52を形成する。第2保護層26の上に、材料層52を全面ベタに形成する。材料層52は酸化珪素層であり、形成方法は実施形態1と同じであるが、厚く形成する必要がある。詳しくは、調整層5層分の厚さが必要となるため、複数回に分けて成膜しても良い。また、適宜、CMP(Chemical Mechanical Polishing)法を用いて平坦化処理を行っても良い。過程図131は、材料層52が形成された状態を示している。
工程S12では、レジストマスク54を形成する。まず、材料層52の上に感光性のレジスト層53を全面ベタに形成する。次に、レジスト層53に対して、多階調の露光マスクを用いて、領域毎に異なる露光量で露光する階調露光を行う。過程図132では、調整層数が0層に相当する部分の露光量が最も多く、調整層数が5層に相当する部分の露光量が最も少なくなるように、段階的に露光量が調整される。なお、多階調露光を行うフォトマスクとしてはグレイトーンマスクを用いる。グレイトーンマスクでは、露光機の解像度以下のスリットが形成されており、そのスリット部が光の一部を遮ることで、中間露光を行うことができる。または、半透過の膜を利用して中間露光を行う、ハーフトーンマスクを用いても良い。
グレイトーンマスクを用いた階調露光を行うことで、過程図133に示す、レジストマスク54が形成される。レジストマスク54には、露光量の違いにより、6段階の厚さの異なる領域が形成されている。まず、調整層数が0層となる部分は開口部となっている。そして、調整層数が1層に相当する部分から、層数が増えるに連れて段階的に厚くなり、調整層数が5層に相当する部分が最も厚くなっている。
工程S13では、光路長の調整層を形成する。レジストマスク54、および材料層52に対して、ドライエッチング処理を施す。詳しくは、レジストマスク54、および開口部から露出した材料層52に対して、ドライエッチングを行う。
これにより、過程図134に示すように、開口部から露出した材料層52部分は、調整層1層分浸食される。また、レジストマスク54も表面が調整層1層分浸食されて、材料層52の露出部分が増えている。なお、説明を解り易くするために、過程図134では、調整層を1層分浸食した状態を図示しているが、実際は、レジストマスク54が無くなるまで連続してドライエッチングを行う。換言すれば、レジストマスク54の形状が、材料層52に転写されるまで、ドライエッチングが行われる。
図15Bの過程図135のように、レジストマスク54、および開口部から露出した材料層52に対して、継続してドライエッチングが行われる。
これにより、過程図136に示すように、材料層52は調整層2層分まで浸食される。レジストマスク54も表面が調整層1層分浸食されて、材料層52の露出部分が増える。
さらに、継続してドライエッチングが行われることで、過程図137に示すように、材料層52は調整層3層分まで浸食される。レジストマスク54も表面が調整層1層分浸食されて、材料層52の露出部分が増える。
図15Cの過程図138のように、レジストマスク54、および開口部から露出した材料層52に対して、継続してドライエッチングが行われる。
これにより、過程図139に示すように、材料層52は調整層4層分まで浸食される。レジストマスク54も表面が調整層1層分浸食されて、材料層52の露出部分が増える。
さらに、継続してドライエッチングが行われることで、過程図140に示すように、レジストマスク54が転写されて、調整層27が形成される。この際、第2保護層26がエッチングストッパーとして機能する。ここまでの工程で、第2保護層26が露出した0層部分、および1層から5層の厚さを有する調整層27が選択的に作り分けされる。
工程S14では、画素電極31を形成する。調整層27、および第2保護層26の上に、スパッタ法で透明電極膜を形成し、パターニングすることにより、過程図141に示すように、第2保護層26の露出部分、および調整層27の1層から5層の厚さを有する部分に、画素電極31が形成される。画素電極31の材料は、ITOを用いている。
なお、この製造方法で形成される調整層27は、製造方法は異なるが、同じ材料、かつ、同じ形状であることから、実施形態1の図10Eの過程図86の調整層27と同等と見做すことができる。
**効果**
この製造方法を用いても、実施形態1の製造方法と同様に、第2保護層26が露出した0層部分、および1層から5層の厚さを有する調整層27が選択的に作り分けすることができる。
4.実施形態4
図16は、電子機器としてのヘッドマウントディスプレイを示す模式図である。
HMD1000は、左右の眼に対応して情報を表示するための一対の光学ユニット1001L,1001R、眼鏡のつるに相当する装着部、電源部、および制御部などから構成されている。なお、装着部、電源部、および制御部の図示は省略している。ここで、一対の光学ユニット1001L,1001Rは左右対称の構成であるため、右眼用の光学ユニット1001Rを例として説明する。
光学ユニット1001Rは、上記実施形態の有機EL装置100が適用された表示部100Rと、集光光学系1002と、L字状に折れ曲がった導光体1003とを備えている。導光体1003にはハーフミラー層1004が設けられている。光学ユニット1001Rにおいて、表示部100Rから射出された表示光は、凸レンズからなる集光光学系1002で集光された後、導光体1003に入射し、ハーフミラー層1004で反射して右眼Reyに導かれる。表示光は、ハーフミラー層1004おいて虚像を表示する。
このような構成により、HMD1000の装着者は、透明な導光体1003を介して観察される景色と、ハーフミラー層1004に表示される虚像とを重ねて観察することになる。つまり、HMD1000は、シースルー型のHMDである。
導光体1003は、ロッドレンズを組み合わせたものであって、ロッドインテグレーターを形成している。導光体1003の光の入射側に、集光光学系1002と表示部100Rとが配置され、集光光学系1002により集光された表示光を、上記ロッドレンズが受光する構成となっている。また、導光体1003のハーフミラー層1004は、集光光学系1002で集光され、ロッドレンズ内で全反射して伝達される光束を、右眼Reyに向って反射する角度を有している。
ここで、表示部100Rの平面的なサイズは、集光光学系1002の平面的なサイズよりも小さく設定されている。小さな表示部100Rで大きな虚像を得るためには、画角を大きくする必要がある。そのため、表示部100Rでは、表示領域を複数エリアに分けて、上述の数式(2)〜(4)に基づき、エリアごとに光路長を調整している。
なお、左眼用の光学ユニット1001Lについても、上記実施形態の有機EL装置100が適用された表示部100Lを有しており、左右反転して設置されていること以外は、右眼用の光学ユニット1001Rと同じである。
**効果**
上述の通り、HMD1000は、小型で、視野角特性に優れた有機EL装置100を備えている。従って、小型で、大きな虚像が得られ、視野角特性に優れたHMD1000を提供することができる。
なお、上記実施形態の有機EL装置100が適用されるHMD1000は、両眼に対応した一対の光学ユニット1001L,1001Rを備える構成に限定されず、例えば、片方の光学ユニット1001Rを備える構成であってもよい。また、シースルー型に限定されず、外光を遮光した状態で表示を視認する没入型であってもよい。
5.変形例1
**その他の調整層の製造方法−1**
図15Aを主体に、適宜、図14、図15Cを交えて説明する。
上記実施形態においては、過程図133のレジストマスク54の形状が、材料層52に転写されるまでエッチングを継続するものとして説明したが、これに限定するものではなく、例えば、レジストマスク54を調整層として利用することであっても良い。詳しくは、レジストマスク54の形状は、調整層27(図15Cの過程図140)の形状と同じであるため、調整層としても利用可能である。この場合、図14の工程S12でレジストマスク54を形成した後、工程S13の調整層の形成工程は行わずに、工程S14の画素電極の形成工程を行えば良い。つまり、工程S13におけるレジストマスク54をエッチングして材料層52に転写する工程は行わない。
この方法によれば、レジストマスク54を調整層として利用することができる。さらに、工程S13の調整層の形成工程が不要となるため、工程数を減らすことができる。さらに、製造コストを抑制することができる。
6.変形例2
**その他の調整層の製造方法−2**
図10Eを用いて説明する。
他の調整層の製造方法について説明する。
図10Eの過程図85における調整層は、1層から5層までの領域が作り分けられている。この作り分けは、インクジェット法を用いることでも対応可能である。
詳しくは、インクジェットヘッドからUV硬化性インクを1層目となる領域に選択的に吐出する。次に、紫外線照射して1層目の調整層を硬化する。
続いて、インクジェットヘッドからUV硬化性インクを2層目となる領域に選択的に吐出する。次に、紫外線照射して2層目の調整層を硬化する。これを5層目まで繰り返すことで、過程図85の調整層と同様な調整層を形成することができる。
この方法によれば、レジストマスクなどが不要となるため、工程数、および製造コストを抑制することができる。
以下に、実施形態から導き出される内容を記載する。
表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、反射層と、半透過反射層と、反射層と半透過反射層との間に設けられた発光機能層と、を有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備え、共振構造から、第1サブ画素、および第2サブ画素が出射する光の波長域は、第1波長域であり、第2サブ画素における反射層および半透過反射層の間の距離は、第1サブ画素における反射層および半透過反射層の間の距離よりも長い、発光装置。
この構成によれば、第2サブ画素における光共振構造の光路長は、第1サブ画素における光路長よりも長くなっている。ここで、表示領域において、第2サブ画素は、第1サブ画素よりも周縁側に位置している。つまり、周縁側の第2サブ画素の光路長を、基準エリアに近い第1サブ画素の光路長よりも長くすることで、第1波長域において光共振を満たす適切な光路長に設定している。
よって、表示領域の周縁部においても、光路長が最適化されているため、色度変移の発生を抑制でき、十分な視野角特性を確保した発光装置を提供することができる。
表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、反射層と、半透過反射層と、反射層と半透過反射層との間に設けられた発光機能層と、を有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備え、共振構造から、第1サブ画素、および第2サブ画素が出射する光の波長域は、第1波長域であり、第2サブ画素から所定の傾斜した角度に出射される光の波長域は、第1サブ画素から垂直方向に出射される光の波長域と一致する、発光装置。
この構成によれば、第2サブ画素における共振構造の光路長は、第1波長域において適切な光路長に調整されている。ここで、表示領域において、第2サブ画素は、第1サブ画素よりも周縁側に位置している。つまり、周縁側において主線光の角度が大きい第2サブ画素の光路長を、主線光の角度が小さい第2サブ画素の光路長よりも長くすることで、第1波長域において光共振を満たす適切な光路長に設定している。
よって、表示領域の周縁部においても、光路長が最適化されているため、色度変移の発生を抑制でき、十分な視野角特性を確保した発光装置を提供することができる。
反射層と発光機能層との間に設けられた画素電極と、反射層と画素電極との間に設けられた絶縁層とを、さらに備え、絶縁層は、第1材料からなる第1層と、第1材料とは異なる第2材料からなる第2層と、を含み、第2サブ画素における第2層の厚さは、第1サブ画素における第2層の厚さより厚い、発光装置。
この構成によれば、第2サブ画素における絶縁層の第2層の厚さを調整することで、第2サブ画素の光路長を第1サブ画素の光路長よりも、長くすることができる。
第1サブ画素は、表示領域において基準となる基準エリアに配置されており、第2サブ画素は、基準エリアとは異なるエリアに配置される、発光装置。
この構成によれば、表示領域において、基準エリアとは異なる周縁側の表示エリアに配置された第2サブ画素も光路長が最適化されているため、色度変移の発生を抑制できる。
電子機器は、上記記載の発光装置を備えている。
この構成によれば、色度変移の発生を抑制でき、十分な視野角特性を確保した電子機器を提供することができる。
反射層と、絶縁層と、発光機能層と、半透過反射層とを有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備えた発光装置の製造方法であって、第1材料からなる絶縁層の第1層を形成する工程と、第1層の上に、第1材料とは異なる第2材料を用いて第1材料層を形成する工程と、材料層上にレジストマスクを形成し、第1層をエッチングストッパーとして第1材料層をパターニングすることで、絶縁層の第2層を形成する工程と、第2層の上に、第2材料を用いて第2材料層を形成する工程と、第2材料層上にレジストマスクを形成し、第2材料層をパターニングすることで、絶縁層の第2層を厚くする工程と、を含み、表示領域において基準となる基準エリアに配置される第1サブ画素の第2層の厚さよりも、基準エリアとは異なるエリアに配置される第2サブ画素における第2層の厚さを厚くする、発光装置の製造方法。
この製造方法によれば、第1層をエッチングストッパーとしてパターニングすることで、絶縁層の第2層を形成した後、絶縁層の第2層を厚くする工程を複数回繰り返すことで、光路長の調整層となる第2層の厚さを、基準エリアと、基準エリアとは異なる表示エリアとで選択的に作り分けることができる。よって、基準エリアに配置される第1サブ画素の第2層の厚さよりも、周縁のエリアに配置される第2サブ画素における第2層の厚さを厚くすることができる。
従って、表示領域の基準エリア、および周縁部においても、光路長を最適化することが可能な発光装置の製造方法を提供することができる。
反射層と、絶縁層と、発光機能層と、半透過反射層とを有し、発光機能層が放射する光を、反射層と半透過反射層との間で共振させる共振構造を備えた発光装置の製造方法であって、絶縁層の第1層を形成する工程と、第1層の上に、第1材料とは異なる第2材料を用いて材料層を形成する工程と、材料層上にレジストを形成し、多階調の露光マスクを用いて階調露光を行う工程と、階調露光によって形成されたレジストマスクを用いて、材料層をパターニングすることで、材料層にレジストマスクの形状を転写して、絶縁層の第2層を形成する工程と、を含み、表示領域において基準となる基準エリアに配置される第1サブ画素の第2層の厚さよりも、基準エリアとは異なるエリアに配置される第2サブ画素における第2層の厚さを厚くする、発光装置の製造方法。
この製造方法によれば、階調露光によって形成されたレジストマスクを用いて、材料層をパターニングし、材料層にレジストマスクの形状を転写して、絶縁層の第2層を形成することで、光路長の調整層となる第2層の厚さを、基準エリアと、基準エリアとは異なる表示エリアとで選択的に作り分けることができる。よって、基準エリアに配置される第1サブ画素の第2層の厚さよりも、周縁のエリアに配置される第2サブ画素における第2層の厚さを厚くすることができる。
従って、表示領域の基準エリア、および周縁部においても、光路長を最適化することが可能な発光装置の製造方法を提供することができる。
16…反射電極、18…第1保護層、20B…青色の発光画素、20G…緑色の発光画素、20R…赤色の発光画素、26…第2保護層、27…調整層、27a〜27e…調整層、30…有機EL素子、30B,30G,30R…有機EL素子、31…画素電極、31B,31G,31R…画素電極、33…有機発光層、35…機能層、41,43,45,47,49,52…材料層、90…光学系、92…表示装置、93…グラフ、95…接眼レンズ、100…有機EL装置、1000…HMD、1001L…左眼用の光学ユニット、1001R…右眼用の光学ユニット、1002…集光光学系、1003…導光体、1004…ハーフミラー層、A1〜An…表示エリア、D1,D2,D22…光路長、P1,P2,P22…サブ画素。

Claims (7)

  1. 表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、
    反射層と、半透過反射層と、前記反射層と前記半透過反射層との間に設けられた発光機能層と、を有し、
    前記発光機能層が放射する光を、前記反射層と前記半透過反射層との間で共振させる共振構造を備え、
    前記共振構造から、前記第1サブ画素、および前記第2サブ画素が出射する光の波長域は、第1波長域であり、
    前記第2サブ画素における前記反射層および前記半透過反射層の間の距離は、前記第1サブ画素における前記反射層および前記半透過反射層の間の距離よりも長い、発光装置。
  2. 表示領域に第1サブ画素、第2サブ画素を備える発光装置であって、
    反射層と、半透過反射層と、前記反射層と前記半透過反射層との間に設けられた発光機能層と、を有し、
    前記発光機能層が放射する光を、前記反射層と前記半透過反射層との間で共振させる共振構造を備え、
    前記共振構造から、前記第1サブ画素、および前記第2サブ画素が出射する光の波長域は、第1波長域であり、
    前記第2サブ画素から所定の傾斜した角度に出射される光の波長域は、前記第1サブ画素から垂直方向に出射される光の波長域と一致する、発光装置。
  3. 前記反射層と前記発光機能層との間に設けられた画素電極と、前記反射層と前記画素電極との間に設けられた絶縁層とを、さらに備え、
    前記絶縁層は、第1材料からなる第1層と、
    前記第1材料とは異なる第2材料からなる第2層と、を含み、
    前記第2サブ画素における前記第2層の厚さは、前記第1サブ画素における前記第2層の厚さより厚い、請求項1または2に記載の発光装置。
  4. 前記第1サブ画素は、前記表示領域において基準となる基準エリアに配置されており、
    前記第2サブ画素は、前記基準エリアとは異なるエリアに配置される、請求項1〜3のいずれか一項に記載の発光装置。
  5. 請求項1〜請求項4のいずれか1項に記載の発光装置を備えた電子機器。
  6. 反射層と、絶縁層と、発光機能層と、半透過反射層とを有し、前記発光機能層が放射する光を、前記反射層と前記半透過反射層との間で共振させる共振構造を備えた発光装置の製造方法であって、
    第1材料からなる前記絶縁層の第1層を形成する工程と、
    前記第1層の上に、前記第1材料とは異なる第2材料を用いて第1材料層を形成する工程と、
    前記材料層上にレジストマスクを形成し、前記第1層をエッチングストッパーとして第1材料層をパターニングすることで、前記絶縁層の第2層を形成する工程と、
    前記第2層の上に、前記第2材料を用いて第2材料層を形成する工程と、
    前記第2材料層上にレジストマスクを形成し、前記第2材料層をパターニングすることで、前記絶縁層の第2層を厚くする工程と、を含み、
    前記表示領域において基準となる基準エリアに配置される第1サブ画素の前記第2層の厚さよりも、基準エリアとは異なるエリアに配置される第2サブ画素における前記第2層の厚さを厚くする、発光装置の製造方法。
  7. 反射層と、絶縁層と、発光機能層と、半透過反射層とを有し、前記発光機能層が放射する光を、前記反射層と前記半透過反射層との間で共振させる共振構造を備えた発光装置の製造方法であって、
    前記絶縁層の第1層を形成する工程と、
    前記第1層の上に、前記第1材料とは異なる第2材料を用いて材料層を形成する工程と、
    前記材料層上にレジストを形成し、多階調の露光マスクを用いて階調露光を行う工程と、
    前記階調露光によって形成されたレジストマスクを用いて、前記材料層をパターニングすることで、前記材料層に前記レジストマスクの形状を転写して、前記絶縁層の第2層を形成する工程と、を含み、
    前記表示領域において基準となる基準エリアに配置される第1サブ画素の前記第2層の厚さよりも、基準エリアとは異なるエリアに配置される第2サブ画素における前記第2層の厚さを厚くする、発光装置の製造方法。
JP2019135921A 2019-07-24 2019-07-24 発光装置、発光装置の製造方法、および電子機器 Active JP6911890B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019135921A JP6911890B2 (ja) 2019-07-24 2019-07-24 発光装置、発光装置の製造方法、および電子機器
CN202010709074.8A CN112289943B (zh) 2019-07-24 2020-07-22 发光装置和电子设备
US16/936,775 US20210028239A1 (en) 2019-07-24 2020-07-23 Light-emitting device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135921A JP6911890B2 (ja) 2019-07-24 2019-07-24 発光装置、発光装置の製造方法、および電子機器

Publications (3)

Publication Number Publication Date
JP2021018965A true JP2021018965A (ja) 2021-02-15
JP2021018965A5 JP2021018965A5 (ja) 2021-03-25
JP6911890B2 JP6911890B2 (ja) 2021-07-28

Family

ID=74189189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135921A Active JP6911890B2 (ja) 2019-07-24 2019-07-24 発光装置、発光装置の製造方法、および電子機器

Country Status (3)

Country Link
US (1) US20210028239A1 (ja)
JP (1) JP6911890B2 (ja)
CN (1) CN112289943B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155801A1 (zh) * 2021-01-20 2022-07-28 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN115079454B (zh) * 2022-07-08 2023-10-20 京东方科技集团股份有限公司 显示模组及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234581A (ja) * 2006-02-03 2007-09-13 Sony Corp 表示素子および表示装置
JP2009134067A (ja) * 2007-11-30 2009-06-18 Seiko Epson Corp 電気光学装置の製造方法、および電気光学装置
JP2010140787A (ja) * 2008-12-12 2010-06-24 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
US20130134450A1 (en) * 2011-11-29 2013-05-30 Yeoung-Jin CHANG Organic light emitting display apparatus
US20140319483A1 (en) * 2013-04-26 2014-10-30 Samsung Display Co., Ltd. Organic light emitting diode display
US20160240591A1 (en) * 2015-02-17 2016-08-18 Samsung Display Co., Ltd. Display device and electrical device using the same
CN108448007A (zh) * 2018-03-30 2018-08-24 上海天马有机发光显示技术有限公司 有机发光显示面板及其显示装置
CN108695359A (zh) * 2017-04-11 2018-10-23 京东方科技集团股份有限公司 一种显示基板和显示装置
JP2019054006A (ja) * 2018-12-19 2019-04-04 セイコーエプソン株式会社 発光装置及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211984A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 有機el装置および有機el装置の製造方法、ならびに電子機器
US8883531B2 (en) * 2012-08-28 2014-11-11 Lg Display Co., Ltd. Organic light emitting diode display device and method of manufacturing the same
JP2013012493A (ja) * 2012-09-10 2013-01-17 Fujifilm Corp カラー表示装置及びその製造方法
JP6221418B2 (ja) * 2013-07-01 2017-11-01 セイコーエプソン株式会社 発光装置および電子機器
JP2015026560A (ja) * 2013-07-29 2015-02-05 セイコーエプソン株式会社 発光装置および電子機器
JP6186993B2 (ja) * 2013-07-29 2017-08-30 セイコーエプソン株式会社 発光装置および電子機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234581A (ja) * 2006-02-03 2007-09-13 Sony Corp 表示素子および表示装置
JP2009134067A (ja) * 2007-11-30 2009-06-18 Seiko Epson Corp 電気光学装置の製造方法、および電気光学装置
JP2010140787A (ja) * 2008-12-12 2010-06-24 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
US20130134450A1 (en) * 2011-11-29 2013-05-30 Yeoung-Jin CHANG Organic light emitting display apparatus
US20140319483A1 (en) * 2013-04-26 2014-10-30 Samsung Display Co., Ltd. Organic light emitting diode display
US20160240591A1 (en) * 2015-02-17 2016-08-18 Samsung Display Co., Ltd. Display device and electrical device using the same
CN108695359A (zh) * 2017-04-11 2018-10-23 京东方科技集团股份有限公司 一种显示基板和显示装置
CN108448007A (zh) * 2018-03-30 2018-08-24 上海天马有机发光显示技术有限公司 有机发光显示面板及其显示装置
JP2019054006A (ja) * 2018-12-19 2019-04-04 セイコーエプソン株式会社 発光装置及び電子機器

Also Published As

Publication number Publication date
CN112289943B (zh) 2023-07-07
CN112289943A (zh) 2021-01-29
US20210028239A1 (en) 2021-01-28
JP6911890B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
CN104244485B (zh) 电光装置、电光装置的制造方法以及电子设备
CN107068898B (zh) 电光学装置以及电子设备
JP7212036B2 (ja) 表示装置及び表示装置の製造方法、並びに、電子機器
JP6696193B2 (ja) 電気光学装置、および電子機器
JP7047811B2 (ja) 表示装置、および電子機器
JP2022046696A (ja) 表示装置、および電子機器
JP6525081B2 (ja) 電気光学装置及び電子機器
JP6702366B2 (ja) 発光装置、電子機器
JP6911890B2 (ja) 発光装置、発光装置の製造方法、および電子機器
JP6721083B2 (ja) 電気光学装置及び電子機器
JP6201442B2 (ja) 電気光学装置、電気光学装置の製造方法、電子機器
JP6428822B2 (ja) 電気光学装置及び電子機器
JP6933231B2 (ja) 発光装置、発光装置の製造方法、および電子機器
CN111916575A (zh) 有机el显示装置和电子设备
JP6911891B2 (ja) 発光装置、発光装置の製造方法および電子機器
JP6904386B2 (ja) 発光装置、発光装置の製造方法および電子機器
JP6620860B2 (ja) 電気光学装置、電気光学装置の製造方法、電子機器
JP2021064520A (ja) 発光装置および電子機器

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150