[go: up one dir, main page]

JP2021012908A - Method for manufacturing piezoelectric laminate, piezoelectric element and piezoelectric laminate - Google Patents

Method for manufacturing piezoelectric laminate, piezoelectric element and piezoelectric laminate Download PDF

Info

Publication number
JP2021012908A
JP2021012908A JP2019125164A JP2019125164A JP2021012908A JP 2021012908 A JP2021012908 A JP 2021012908A JP 2019125164 A JP2019125164 A JP 2019125164A JP 2019125164 A JP2019125164 A JP 2019125164A JP 2021012908 A JP2021012908 A JP 2021012908A
Authority
JP
Japan
Prior art keywords
film
piezoelectric
layer
knn
piezoelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019125164A
Other languages
Japanese (ja)
Other versions
JP7319848B2 (en
Inventor
柴田 憲治
Kenji Shibata
憲治 柴田
渡辺 和俊
Kazutoshi Watanabe
和俊 渡辺
稔顕 黒田
Toshiaki Kuroda
稔顕 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2019125164A priority Critical patent/JP7319848B2/en
Priority to EP20835288.0A priority patent/EP3995454A4/en
Priority to US17/624,555 priority patent/US20220254988A1/en
Priority to PCT/JP2020/026022 priority patent/WO2021002434A1/en
Publication of JP2021012908A publication Critical patent/JP2021012908A/en
Application granted granted Critical
Publication of JP7319848B2 publication Critical patent/JP7319848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

To prolong the life of a piezoelectric film made of an alkaline niobium oxide.SOLUTION: A piezoelectric laminate includes a substrate, an electrode film, and a polycrystalline film that is made of an alkaline niobium oxide having a perovskite structure represented by a composition formula (K1-xNax)NbO3(0<x<1), and the piezoelectric film includes Cu, and the amount of Cu present at the grain boundaries of the crystals constituting the piezoelectric film is larger than that of Cu existing in the matrix phase of the crystal.SELECTED DRAWING: Figure 1

Description

本発明は、圧電積層体、圧電素子および圧電積層体の製造方法に関する。 The present invention relates to a piezoelectric laminate, a piezoelectric element, and a method for manufacturing a piezoelectric laminate.

圧電体は、センサ、アクチュエータ等の機能性電子部品に広く利用されている。圧電体の材料としては、鉛系材料、特に、組成式Pb(Zr1−xTi)Oで表されるPZT系の強誘電体が広く用いられている。PZT系の圧電体は鉛を含有しているため、公害防止の面等から好ましくない。そこで、鉛非含有の圧電体の材料として、ニオブ酸カリウムナトリウム(KNN)が提案されている(例えば特許文献1,2参照)。近年、KNNのように鉛非含有の材料からなる圧電体の性能をさらに高めることが強く求められている。 Piezoelectric bodies are widely used in functional electronic components such as sensors and actuators. As the material of the piezoelectric body, lead-based materials, in particular, ferroelectric PZT system represented by a composition formula Pb (Zr 1-x Ti x ) O 3 has been widely used. Since the PZT-based piezoelectric material contains lead, it is not preferable from the viewpoint of pollution prevention. Therefore, sodium potassium niobate (KNN) has been proposed as a material for lead-free piezoelectric materials (see, for example, Patent Documents 1 and 2). In recent years, there has been a strong demand for further improving the performance of piezoelectric materials made of lead-free materials such as KNN.

特開2007−184513号公報JP-A-2007-184513 特開2008−159807号公報Japanese Unexamined Patent Publication No. 2008-159807

本発明の目的は、アルカリニオブ酸化物からなる圧電膜の寿命をさらに長くすることにある。 An object of the present invention is to further extend the life of a piezoelectric film made of an alkali niobium oxide.

本発明の一態様によれば、
基板と、
電極膜と、
多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、を備え、
前記圧電膜はCuを含み、
前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い圧電積層体およびその関連技術が提供される。
According to one aspect of the invention
With the board
With the electrode film
A polycrystalline film comprising a piezoelectric film composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1).
The piezoelectric film contains Cu and contains Cu.
Provided are a piezoelectric laminate in which Cu present in the grain boundaries of crystals constituting the piezoelectric film is larger than Cu present in the matrix phase of the crystal, and related techniques thereof.

本発明によれば、アルカリニオブ酸化物からなる圧電膜の寿命をさらに長くすることが可能となる。 According to the present invention, it is possible to further extend the life of the piezoelectric film made of an alkali niobium oxide.

本発明の一実施形態にかかる圧電積層体の断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of the piezoelectric laminated body which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる圧電積層体の断面構造の変形例を示す図である。It is a figure which shows the modification of the cross-sectional structure of the piezoelectric laminated body which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる圧電デバイスの概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the piezoelectric device which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる圧電積層体を作製する際の中間体(熱処理前の積層体)の断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of the intermediate body (the laminate before heat treatment) at the time of producing the piezoelectric laminate which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる圧電デバイスの概略構成の変形例を示す図である。It is a figure which shows the modification of the schematic structure of the piezoelectric device which concerns on one Embodiment of this invention.

<本発明の一実施形態>
以下、本発明の一実施形態について図面を参照しながら説明する。
<One Embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(1)圧電積層体の構成
図1に示すように、本実施形態にかかる圧電膜を有する積層体(積層基板)10(以下、圧電積層体10とも称する)は、基板1と、基板1上に製膜された下部電極膜2と、下部電極膜2上に製膜された圧電膜(圧電薄膜)3と、圧電膜3上に製膜された上部電極膜4と、を備えている。
(1) Configuration of piezoelectric laminate As shown in FIG. 1, the laminate (laminated substrate) 10 having the piezoelectric film according to the present embodiment (hereinafter, also referred to as piezoelectric laminate 10) is on the substrate 1 and the substrate 1. The lower electrode film 2 formed on the lower electrode film 2, the piezoelectric film (piezoelectric thin film) 3 formed on the lower electrode film 2, and the upper electrode film 4 formed on the piezoelectric film 3 are provided.

基板1としては、熱酸化膜またはCVD(Chemical Vapor Deposition)酸化膜等の表面酸化膜(SiO膜)1bが形成された単結晶シリコン(Si)基板1a、すなわち、表面酸化膜を有するSi基板を好適に用いることができる。また、基板1としては、図2に示すように、その表面にSiO以外の絶縁性材料により形成された絶縁膜1dを有するSi基板1aを用いることもできる。また、基板1としては、表面にSi(100)面またはSi(111)面等が露出したSi基板1a、すなわち、表面酸化膜1bまたは絶縁膜1dを有さないSi基板を用いることもできる。また、基板1としては、SOI(Silicon On Insulator)基板、石英ガラス(SiO)基板、ガリウム砒素(GaAs)基板、サファイア(Al)基板、ステンレス(SUS)等の金属材料により形成された金属基板を用いることもできる。単結晶Si基板1aの厚さは例えば300〜1000μm、表面酸化膜1bの厚さは例えば1〜4000nmとすることができる。 The substrate 1 is a single crystal silicon (Si) substrate 1a on which a surface oxide film (SiO 2 film) 1b such as a thermal oxide film or a CVD (Chemical Vapor Deposition) oxide film is formed, that is, a Si substrate having a surface oxide film. Can be preferably used. Further, as the substrate 1, as shown in FIG. 2, a Si substrate 1a having an insulating film 1d formed of an insulating material other than SiO 2 on its surface can also be used. Further, as the substrate 1, a Si substrate 1a in which a Si (100) surface or a Si (111) surface or the like is exposed on the surface, that is, a Si substrate having no surface oxide film 1b or insulating film 1d can also be used. The substrate 1 is formed of a metal material such as an SOI (Silicon On Insulator) substrate, a quartz glass (SiO 2 ) substrate, a gallium arsenide (GaAs) substrate, a sapphire (Al 2 O 3 ) substrate, and stainless steel (SUS). It is also possible to use a metal substrate. The thickness of the single crystal Si substrate 1a can be, for example, 300 to 1000 μm, and the thickness of the surface oxide film 1b can be, for example, 1 to 4000 nm.

下部電極膜2は、例えば、白金(Pt)を用いて製膜することができる。下部電極膜2は、単結晶膜または多結晶膜(以下、これらをPt膜とも称する)となる。Pt膜を構成する結晶は、基板1の表面に対して(111)面方位に優先配向していることが好ましい。すなわち、Pt膜の表面(圧電膜3の下地となる面)は、主にPt(111)面により構成されていることが好ましい。Pt膜は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2は、Pt以外に、金(Au)、ルテニウム(Ru)、またはイリジウム(Ir)等の各種金属、これらを主成分とする合金、ルテニウム酸ストロンチウム(SrRuO、略称:SRO)またはニッケル酸ランタン(LaNiO、略称:LNO)等の金属酸化物等を用いて製膜することもできる。なお、基板1と下部電極膜2との間には、これらの密着性を高めるため、例えば、チタン(Ti)、タンタル(Ta)、酸化チタン(TiO)、ニッケル(Ni)、ルテニウム酸化物(RuO)、イリジウム酸化物(IrO)等を主成分とする密着層6が設けられていてもよい。密着層6は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2の厚さは例えば100〜400nm、密着層6の厚さは例えば1〜200nmとすることができる。 The lower electrode film 2 can be formed by using, for example, platinum (Pt). The lower electrode film 2 is a single crystal film or a polycrystalline film (hereinafter, these are also referred to as Pt films). The crystals constituting the Pt film are preferably preferentially oriented in the (111) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the Pt film (the surface serving as the base of the piezoelectric film 3) is mainly composed of the Pt (111) surface. The Pt film can be formed by using a method such as a sputtering method or a thin film deposition method. In addition to Pt, the lower electrode film 2 includes various metals such as gold (Au), ruthenium (Ru), and iridium (Ir), alloys containing these as main components, strontium ruthenate (SrRuO 3 , abbreviation: SRO), or It is also possible to form a film using a metal oxide such as lanthanum nickelate (LaNiO 3 , abbreviated as LNO). In order to improve the adhesion between the substrate 1 and the lower electrode film 2, for example, titanium (Ti), tantalum (Ta), titanium oxide (TiO 2 ), nickel (Ni), ruthenium oxide, etc. The adhesion layer 6 containing (RuO 2 ), iridium oxide (IrO 2 ), or the like as a main component may be provided. The adhesion layer 6 can be formed into a film by using a method such as a sputtering method or a thin film deposition method. The thickness of the lower electrode film 2 can be, for example, 100 to 400 nm, and the thickness of the adhesion layer 6 can be, for example, 1 to 200 nm.

圧電膜3は、例えば、カリウム(K)、ナトリウム(Na)、ニオブ(Nb)を含み、組成式(K1−xNa)NbOで表されるアルカリニオブ酸化物、すなわち、ニオブ酸カリウムナトリウム(KNN)を用いて製膜することができる。上述の組成式中の係数x[=Na/(K+Na)]は、0<x<1の範囲内の大きさとする。圧電膜3は、KNNの多結晶膜(以下、KNN膜3とも称する)となる。KNNの結晶構造は、ペロブスカイト構造となる。KNN膜3は、スパッタリング法、PLD(Pulsed Laser Deposition)法、ゾルゲル法等の手法を用いて製膜することができる。KNN膜3の厚さは例えば0.5〜5μmである。 The piezoelectric film 3 contains, for example, potassium (K), sodium (Na), and niobium (Nb), and is an alkaline niobium oxide represented by the composition formula (K 1-x Na x ) NbO 3 , that is, potassium niobate. A film can be formed using sodium (KNN). The coefficient x [= Na / (K + Na)] in the above composition formula has a magnitude within the range of 0 <x <1. The piezoelectric film 3 is a KNN polycrystalline film (hereinafter, also referred to as KNN film 3). The crystal structure of KNN is a perovskite structure. The KNN film 3 can be formed by using a method such as a sputtering method, a PLD (Pulsed Laser Deposition) method, or a sol-gel method. The thickness of the KNN film 3 is, for example, 0.5 to 5 μm.

KNN膜3を構成する結晶は、基板1(基板1が例えば表面酸化膜1bまたは絶縁膜1d等を有するSi基板1aである場合はSi基板1a)の表面に対して(001)面方位に優先配向していることが好ましい。すなわち、KNN膜3の表面(上部電極膜4の下地となる面)は、主にKNN(001)面方位により構成されていることが好ましい。基板1の表面に対して(111)面方位に優先配向させたPt膜上にKNN膜3を直接製膜することで、KNN膜3を構成する結晶を、基板1の表面に対して(001)面方位に優先配向させることが容易となる。例えば、KNN膜3を構成する結晶群のうち80%以上の結晶を基板1の表面に対して(001)面方位に配向させ、KNN膜3の表面のうち80%以上の領域をKNN(001)面とすることが容易となる。 The crystals constituting the KNN film 3 have priority in the (001) plane orientation with respect to the surface of the substrate 1 (Si substrate 1a when the substrate 1 is, for example, a Si substrate 1a having a surface oxide film 1b or an insulating film 1d). It is preferably oriented. That is, it is preferable that the surface of the KNN film 3 (the surface serving as the base of the upper electrode film 4) is mainly composed of the KNN (001) plane orientation. By directly forming the KNN film 3 on the Pt film preferentially oriented in the (111) plane direction with respect to the surface of the substrate 1, the crystals constituting the KNN film 3 are formed with respect to the surface of the substrate 1 (001). ) It becomes easy to preferentially orient the plane orientation. For example, 80% or more of the crystals constituting the KNN film 3 are oriented in the (001) plane orientation with respect to the surface of the substrate 1, and 80% or more of the surface of the KNN film 3 is KNN (001). ) It becomes easy to make a surface.

KNN膜3を構成する結晶群のうち半数以上の結晶が柱状構造を有していることが好ましい。KNN膜3を構成する結晶同士の境界、すなわちKNN膜3に存在する結晶粒界は、KNN膜3の厚さ方向に貫いていることが好ましい。例えば、KNN膜3では、その厚さ方向に貫く結晶粒界が、KNN膜3の厚さ方向に貫いていない結晶粒界(例えば基板1の平面方向に平行な結晶粒界)よりも多いことが好ましい。 It is preferable that more than half of the crystals constituting the KNN film 3 have a columnar structure. It is preferable that the boundary between the crystals constituting the KNN film 3, that is, the grain boundary existing in the KNN film 3 penetrates in the thickness direction of the KNN film 3. For example, in the KNN film 3, the number of crystal grain boundaries penetrating in the thickness direction is larger than the grain boundaries not penetrating in the thickness direction of the KNN film 3 (for example, the grain boundaries parallel to the plane direction of the substrate 1). Is preferable.

KNN膜3を構成する結晶(結晶群)の平均粒径(以下、「KNN膜3の平均結晶粒径」とも称する)は、例えば100nm以上であることが好ましい。ここでいうKNN膜3の平均結晶粒径とは、基板1の平面方向におけるKNN膜3の断面での平均結晶粒径である。KNN膜3の平均結晶粒径は、走査型電子顕微鏡で撮影した画像(例えばSEM像)や、透過電子顕微鏡で撮影した画像(例えばTEM像)の視野を画像解析することで得ることができる。画像解析ソフトとして、例えばWayne Rasband製の「ImageJ」を用いることができる。 The average particle size of the crystals (crystal group) constituting the KNN film 3 (hereinafter, also referred to as “average crystal grain size of the KNN film 3”) is preferably 100 nm or more, for example. The average crystal grain size of the KNN film 3 referred to here is the average crystal grain size of the KNN film 3 in the cross section of the substrate 1 in the plane direction. The average crystal grain size of the KNN film 3 can be obtained by image analysis of the field of view of an image taken with a scanning electron microscope (for example, SEM image) or an image taken with a transmission electron microscope (for example, TEM image). As the image analysis software, for example, "ImageJ" manufactured by Wayne Rasband can be used.

KNN膜3の平均結晶粒径を大きくすることで、KNN膜3における粒界密度を低くすることが可能となる。ここでいう粒界密度とは、基板1の平面方向におけるKNN膜3の断面内の結晶の粒界の合計長さを、断面積で割った値(=結晶粒の粒界の合計長さ/断面積)である。 By increasing the average crystal grain size of the KNN film 3, it is possible to reduce the grain boundary density of the KNN film 3. The grain boundary density here is a value obtained by dividing the total length of crystal grain boundaries in the cross section of the KNN film 3 in the plane direction of the substrate 1 by the cross-sectional area (= total grain boundary length of crystal grains /). Cross-sectional area).

KNN膜3の粒界密度を低くする観点からは、KNN膜3の平均結晶粒径は大きければ大きいほど好ましい。しかしながら、KNN膜3の平均結晶粒径がKNN膜3の厚さよりも大きくなると、圧電特性の面内均一性が低下する場合がある。したがって、圧電特性の面内均一性の低下抑制の観点から、KNN膜3の平均結晶粒径は、KNN膜3の厚さよりも小さいことが好ましい。 From the viewpoint of lowering the grain boundary density of the KNN film 3, the larger the average crystal grain size of the KNN film 3, the more preferable. However, if the average crystal grain size of the KNN film 3 is larger than the thickness of the KNN film 3, the in-plane uniformity of the piezoelectric characteristics may decrease. Therefore, from the viewpoint of suppressing the decrease in in-plane uniformity of the piezoelectric characteristics, the average crystal grain size of the KNN film 3 is preferably smaller than the thickness of the KNN film 3.

KNN膜3は銅(Cu)を含んでいる。加えて、KNN膜3では、結晶粒界にCuが存在しているとともに、結晶粒界に存在するCu(例えば結晶粒界に存在するCu粒子数)がKNN膜3を構成する結晶の母相に存在するCu(例えば母相に存在するCu粒子数)よりも多くなっている。このため、後述の圧電素子20(圧電デバイス30)に電界を印加した際、KNN膜3の結晶粒界に存在する酸素欠損の移動を抑制することが可能となる。 The KNN film 3 contains copper (Cu). In addition, in the KNN film 3, Cu is present at the crystal grain boundaries, and Cu existing at the crystal grain boundaries (for example, the number of Cu particles existing at the crystal grain boundaries) is the parent phase of the crystals constituting the KNN film 3. It is larger than the Cu present in (for example, the number of Cu particles present in the matrix). Therefore, when an electric field is applied to the piezoelectric element 20 (piezoelectric device 30) described later, it is possible to suppress the movement of oxygen deficiency existing at the crystal grain boundaries of the KNN film 3.

KNN膜3を構成する結晶(結晶粒)の内部や、結晶粒界には、所定の割合で酸素欠損(酸素空乏(Oxygen Vacancy))が存在している。これらの酸素欠損のうち、特にKNN膜3の結晶粒界に存在する酸素欠損が、圧電積層体10を加工することで作製される後述の圧電素子20(圧電デバイス30)に電界を印加した際に移動することがある。酸素欠損が移動し、電極膜(下部電極膜2または上部電極膜4)に到達すると、酸素欠損と電極膜中の金属とが反応して短絡(ショート)してしまう。そこで、本願発明者等は、KNN膜3の結晶粒界に存在する酸素欠損の移動の抑制について鋭意検討を行った。その結果、KNN膜3の結晶粒界にCuが存在していると、このCuがKNN膜3の結晶粒界に存在する酸素欠損と対になり、すなわち結晶粒界に存在するCuが酸素欠損をトラップし、結晶粒界に存在する酸素欠損の移動を抑制することができることが分かった。また、このような酸素欠損移動抑制効果は、結晶粒界に存在するCuによって得られるものの、KNN膜3を構成する結晶の母相(結晶の内部)に存在するCu(例えばKNN膜3を構成する結晶の格子中に組み込まれたCu)によっては得られにくいことも分かった。これらの知見は、本願発明者等の鋭意検討の結果、初めて見出された知見である。 Oxygen deficiency (oxygen vacancy) is present at a predetermined ratio inside the crystals (crystal grains) constituting the KNN film 3 and at the crystal grain boundaries. Among these oxygen deficiencies, especially when the oxygen deficiency existing at the crystal grain boundary of the KNN film 3 applies an electric field to the piezoelectric element 20 (piezoelectric device 30) described later, which is produced by processing the piezoelectric laminate 10. May move to. When the oxygen deficiency moves and reaches the electrode film (lower electrode film 2 or upper electrode film 4), the oxygen deficiency reacts with the metal in the electrode film to cause a short circuit. Therefore, the inventors of the present application have diligently studied the suppression of the movement of oxygen deficiency existing at the grain boundaries of the KNN film 3. As a result, when Cu is present at the grain boundaries of the KNN film 3, this Cu is paired with the oxygen deficiency existing at the grain boundaries of the KNN film 3, that is, the Cu existing at the grain boundaries is oxygen deficient. It was found that the movement of oxygen deficiency existing at the grain boundary can be suppressed by trapping. Further, although such an effect of suppressing oxygen deficiency movement is obtained by Cu existing at the crystal grain boundary, it constitutes Cu (for example, KNN film 3) existing in the parent phase (inside the crystal) of the crystal constituting the KNN film 3. It was also found that it is difficult to obtain it depending on the Cu) incorporated in the lattice of the crystal. These findings are the first findings found as a result of diligent studies by the inventors of the present application.

KNN膜3は、Cuを例えば0.2at%以上2.0at%以下の範囲内の濃度で含むことが好ましい。ここでいうCu濃度とは、結晶粒界に存在しているCuと母相に存在しているCuとの合計濃度である。 The KNN film 3 preferably contains Cu at a concentration in the range of, for example, 0.2 at% or more and 2.0 at% or less. The Cu concentration referred to here is the total concentration of Cu existing at the grain boundaries and Cu existing in the matrix phase.

KNN膜3のCu濃度が0.2at%以上であれば、KNN膜3中のCu含有量が微量であっても、結晶粒界に一定量以上のCuを存在させることできるとともに、結晶粒界に存在するCuを母相に存在するCuよりも多くすることが可能となる。その結果、上述の酸素欠損移動抑制効果を得ることができる。KNN膜3のCu濃度が2.0at%以下であることで、KNN膜3の比誘電率を、センサやアクチュエータ等の用途に好適な大きさとすることが可能となる。 When the Cu concentration of the KNN film 3 is 0.2 at% or more, even if the Cu content in the KNN film 3 is very small, a certain amount or more of Cu can be present at the grain boundaries and the grain boundaries can be present. It is possible to increase the amount of Cu present in the parent phase to that of Cu present in the parent phase. As a result, the above-mentioned effect of suppressing oxygen deficiency movement can be obtained. When the Cu concentration of the KNN film 3 is 2.0 at% or less, the relative permittivity of the KNN film 3 can be set to a size suitable for applications such as sensors and actuators.

KNN膜3は、マンガン(Mn)、リチウム(Li)、Ta、アンチモン(Sb)等のK、Na、Nb、Cu以外の元素を、Cuを上述の範囲内で添加することによる効果を損なわない範囲内、例えば5at%以下(上述の元素を複数種添加する場合は合計濃度が5at%以下)の範囲内で含んでいてもよい。 The KNN film 3 does not impair the effect of adding elements other than K, Na, Nb and Cu such as manganese (Mn), lithium (Li), Ta and antimony (Sb) within the above range. It may be contained within the range, for example, 5 at% or less (when a plurality of the above-mentioned elements are added, the total concentration is 5 at% or less).

上部電極膜4は、例えば、Pt、Au、アルミニウム(Al)、Cu等の各種金属またはこれらの合金を用いて製膜することができる。上部電極膜4は、スパッタリング法、蒸着法、メッキ法、金属ペースト法等の手法を用いて製膜することができる。上部電極膜4は、下部電極膜2のようにKNN膜3の結晶構造に大きな影響を与えるものではない。そのため、上部電極膜4の材料、結晶構造、製膜手法は特に限定されない。なお、KNN膜3と上部電極膜4との間には、これらの密着性を高めるため、例えば、Ti、Ta、TiO、Ni、RuO、IrO等を主成分とする密着層が設けられていてもよい。上部電極膜4の厚さは例えば100〜5000nm、密着層を設ける場合には密着層の厚さは例えば1〜200nmとすることができる。 The upper electrode film 4 can be formed by using various metals such as Pt, Au, aluminum (Al), and Cu, or alloys thereof. The upper electrode film 4 can be formed by using a method such as a sputtering method, a vapor deposition method, a plating method, or a metal paste method. The upper electrode film 4 does not have a great influence on the crystal structure of the KNN film 3 like the lower electrode film 2. Therefore, the material, crystal structure, and film forming method of the upper electrode film 4 are not particularly limited. In order to enhance the adhesion between the KNN film 3 and the upper electrode film 4, for example, an adhesion layer containing Ti, Ta, TiO 2 , Ni, RuO 2 , IrO 2, etc. as main components is provided. It may have been. The thickness of the upper electrode film 4 can be, for example, 100 to 5000 nm, and when the adhesion layer is provided, the thickness of the adhesion layer can be, for example, 1 to 200 nm.

(2)圧電デバイスの構成
図3に、本実施形態におけるKNN膜3を有するデバイス30(以下、圧電デバイス30とも称する)の概略構成図を示す。圧電デバイス30は、上述の圧電積層体10を所定の形状に成形することで得られる素子20(KNN膜3を有する素子20、以下、圧電素子20とも称する)と、圧電素子20に接続される電圧印加部11aまたは電圧検出部11bと、を少なくとも備えている。電圧印加部11aとは、下部電極膜2と上部電極膜4との間(電極間)に電圧を印加するための手段であり、電圧検出部11bとは、下部電極膜2と上部電極膜4との間(電極間)に発生した電圧を検出するための手段である。電圧印加部11a、電圧検出部11bとしては、公知の種々の手段を用いることができる。
(2) Configuration of Piezoelectric Device FIG. 3 shows a schematic configuration diagram of the device 30 having the KNN film 3 (hereinafter, also referred to as the piezoelectric device 30) in the present embodiment. The piezoelectric device 30 is connected to an element 20 (element 20 having a KNN film 3; hereinafter, also referred to as a piezoelectric element 20) obtained by molding the above-mentioned piezoelectric laminate 10 into a predetermined shape, and the piezoelectric element 20. It includes at least a voltage application unit 11a or a voltage detection unit 11b. The voltage application unit 11a is a means for applying a voltage between the lower electrode film 2 and the upper electrode film 4 (between the electrodes), and the voltage detection unit 11b is the lower electrode film 2 and the upper electrode film 4 It is a means for detecting the voltage generated between the electrodes (between the electrodes). As the voltage application unit 11a and the voltage detection unit 11b, various known means can be used.

電圧印加部11aを、圧電素子20の下部電極膜2と上部電極膜4との間に接続することで、圧電デバイス30をアクチュエータとして機能させることができる。電圧印加部11aにより下部電極膜2と上部電極膜4との間に電圧を印加することで、KNN膜3を変形させることができる。この変形動作により、圧電デバイス30に接続された各種部材を作動させることができる。この場合、圧電デバイス30の用途としては、例えば、インクジェットプリンタ用のヘッド、スキャナー用のMEMSミラー、超音波発生装置用の振動子等が挙げられる。 By connecting the voltage application unit 11a between the lower electrode film 2 and the upper electrode film 4 of the piezoelectric element 20, the piezoelectric device 30 can function as an actuator. The KNN film 3 can be deformed by applying a voltage between the lower electrode film 2 and the upper electrode film 4 by the voltage applying portion 11a. By this deformation operation, various members connected to the piezoelectric device 30 can be operated. In this case, examples of the use of the piezoelectric device 30 include a head for an inkjet printer, a MEMS mirror for a scanner, an oscillator for an ultrasonic generator, and the like.

電圧検出部11bを、圧電素子20の下部電極膜2と上部電極膜4との間に接続することで、圧電デバイス30をセンサとして機能させることができる。KNN膜3が何らかの物理量の変化に伴って変形すると、その変形によって下部電極膜2と上部電極膜4との間に電圧が発生する。この電圧を電圧検出部11bによって検出することで、KNN膜3に印加された物理量の大きさを測定することができる。この場合、圧電デバイス30の用途としては、例えば、角速度センサ、超音波センサ、圧カセンサ、加速度センサ等が挙げられる。 By connecting the voltage detection unit 11b between the lower electrode film 2 and the upper electrode film 4 of the piezoelectric element 20, the piezoelectric device 30 can function as a sensor. When the KNN film 3 is deformed due to some change in physical quantity, a voltage is generated between the lower electrode film 2 and the upper electrode film 4 due to the deformation. By detecting this voltage by the voltage detection unit 11b, the magnitude of the physical quantity applied to the KNN film 3 can be measured. In this case, applications of the piezoelectric device 30 include, for example, an angular velocity sensor, an ultrasonic sensor, a pressure sensor, an acceleration sensor, and the like.

(3)圧電積層体、圧電素子、圧電デバイスの製造方法
上述の圧電積層体10、圧電素子20、および圧電デバイス30の製造方法について、図4を用いて説明する。
(3) Method for Manufacturing Piezoelectric Laminate, Piezoelectric Element, and Piezoelectric Device The method for manufacturing the above-mentioned piezoelectric laminate 10, the piezoelectric element 20, and the piezoelectric device 30 will be described with reference to FIG.

図4に示すように、まず、基板1を用意し、基板1のいずれかの主面上に、例えばスパッタリング法により密着層6(Ti層)および下部電極膜2(Pt膜)をこの順に製膜する。なお、いずれかの主面上に、密着層6や下部電極膜2が予め製膜された基板1を用意してもよい。 As shown in FIG. 4, first, a substrate 1 is prepared, and an adhesion layer 6 (Ti layer) and a lower electrode film 2 (Pt film) are formed in this order on one of the main surfaces of the substrate 1 by, for example, a sputtering method. Membrane. A substrate 1 on which the adhesion layer 6 and the lower electrode film 2 are formed in advance may be prepared on any of the main surfaces.

密着層6を設ける際の条件としては、下記の条件が例示される。
温度(基板温度):100℃以上500℃以下、好ましくは200℃以上400℃以下
放電パワー:1000W以上1500W以下、好ましくは1100W以上1300W以下
雰囲気:アルゴン(Ar)ガス雰囲気
雰囲気圧力:0.1Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
形成時間:30秒以上3分以下、好ましくは45秒以上2分以下
The following conditions are exemplified as the conditions for providing the adhesion layer 6.
Temperature (Substrate temperature): 100 ° C or higher and 500 ° C or lower, preferably 200 ° C or higher and 400 ° C or lower Discharge power: 1000 W or higher and 1500 W or lower, preferably 1100 W or higher and 1300 W or lower Atmosphere: Argon (Ar) Gas atmosphere Atmospheric pressure: 0.1 Pa or higher 0.5 Pa or less, preferably 0.2 Pa or more and 0.4 Pa or less Formation time: 30 seconds or more and 3 minutes or less, preferably 45 seconds or more and 2 minutes or less

下部電極膜2を製膜する際の条件としては、下記の条件が例示される。
温度(基板温度):100℃以上500℃以下、好ましくは200℃以上400℃以下
放電パワー:1000W以上1500W以下、好ましくは1100W以上1300W以下
雰囲気:Arガス雰囲気
雰囲気圧力:0.1Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
製膜時間:3分以上10分以下、好ましくは4分以上8分以下、より好ましくは5分以上6分以下
The following conditions are exemplified as the conditions for forming the lower electrode film 2.
Temperature (Substrate temperature): 100 ° C or higher and 500 ° C or lower, preferably 200 ° C or higher and 400 ° C or lower Discharge power: 1000 W or higher and 1500 W or lower, preferably 1100 W or higher and 1300 W or lower Below, preferably 0.2 Pa or more and 0.4 Pa or less, film forming time: 3 minutes or more and 10 minutes or less, preferably 4 minutes or more and 8 minutes or less, more preferably 5 minutes or more and 6 minutes or less.

続いて、下部電極膜2上、すなわち、KNN膜3の下面と接することとなる位置に、Cuを含む層を設ける。Cuを含む層としては、例えばCuを含むKNN膜が挙げられる。以下、下部電極膜2上に設けるCuを含む層を第1Cu層7とも称する。第1Cu層7は、単結晶層または多結晶層となる。第1Cu層7は、スパッタリング法、蒸着法等の手法を用いて設けることができる。第1Cu層7の厚さは例えば1〜200nmとすることができる。第1Cu層中のCu濃度については後述する。 Subsequently, a layer containing Cu is provided on the lower electrode film 2, that is, at a position where it comes into contact with the lower surface of the KNN film 3. Examples of the layer containing Cu include a KNN film containing Cu. Hereinafter, the layer containing Cu provided on the lower electrode film 2 is also referred to as a first Cu layer 7. The first Cu layer 7 is a single crystal layer or a polycrystalline layer. The first Cu layer 7 can be provided by using a method such as a sputtering method or a vapor deposition method. The thickness of the first Cu layer 7 can be, for example, 1 to 200 nm. The Cu concentration in the first Cu layer will be described later.

第1Cu層7としてCuを含むKNN膜を例えばスパッタリング法により製膜する場合、第1Cu層7の組成比は、例えばスパッタリング製膜時に用いるターゲット材の組成を制御することで調整可能である。ターゲット材は、KCO粉末、NaCO粉末、Nb粉末、Cu粉末(又はCuO粉末、CuO粉末)等を混合させて焼成すること等により作製することができる。ターゲット材の組成は、KCO粉末、NaCO粉末、Nb粉末、Cu粉末(又はCuO粉末、CuO粉末)の混合比率を調整することで制御することができる。 When a KNN film containing Cu as the first Cu layer 7 is formed by, for example, a sputtering method, the composition ratio of the first Cu layer 7 can be adjusted, for example, by controlling the composition of the target material used during the sputtering film formation. The target material can be produced by mixing K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder, Cu powder (or Cu O powder, Cu 2 O powder) and the like and firing them. The composition of the target material can be controlled by adjusting the mixing ratio of K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder, and Cu powder (or Cu O powder, Cu 2 O powder).

第1Cu層7としてCuを含むKNN膜を例えばスパッタリング法により設ける際の条件としては、下記の条件が例示される。なお、製膜時間は、第1Cu層の厚さによって適宜設定する。
放電パワー:2000W以上2400W以下、好ましくは2100W以上2300W以下
雰囲気:Arガス+酸素(O)ガス雰囲気
雰囲気圧力:0.2Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
ガスに対するArガスの分圧(Ar/O分圧比):30/1〜20/1、好ましくは27/1〜22/1
製膜速度:0.5μm/hr以上2μm/hr以下、好ましくは0.75μm/hr以上1.5μm/hr以下
The following conditions are exemplified as conditions for providing a KNN film containing Cu as the first Cu layer 7 by, for example, a sputtering method. The film forming time is appropriately set according to the thickness of the first Cu layer.
Discharge power: 2000 W or more and 2400 W or less, preferably 2100 W or more and 2300 W or less Atmosphere: Ar gas + oxygen (O 2 ) Gas atmosphere Atmospheric pressure: 0.2 Pa or more and 0.5 Pa or less, preferably 0.2 Pa or more and 0.4 Pa or less O 2 Partial pressure of Ar gas to gas (Ar / O 2 partial pressure ratio): 30/1 to 20/1, preferably 27/1 to 22/1
Film formation rate: 0.5 μm / hr or more and 2 μm / hr or less, preferably 0.75 μm / hr or more and 1.5 μm / hr or less

第1Cu層7上にCuを含まないKNN膜(Cu非含有KNN膜)3Aを製膜する。Cu非含有KNN膜3Aを例えばスパッタリング法により製膜する場合、Cu非含有KNN膜3Aの組成比は、例えばスパッタリング製膜時に用いるターゲット材の組成を制御することで調整可能である。ターゲット材は、KCO粉末、NaCO粉末、Nb粉末等を混合させて焼成すること等により作製することができる。ターゲット材の組成は、KCO粉末、NaCO粉末、Nb粉末の混合比率を調整することで制御することができる。KNN膜3を製膜する際の条件は、上述の第1Cu層7を設ける際の条件と同様の条件とすることができる。 A Cu-free KNN film (Cu-free KNN film) 3A is formed on the first Cu layer 7. When the Cu-free KNN film 3A is formed by, for example, a sputtering method, the composition ratio of the Cu-free KNN film 3A can be adjusted by controlling the composition of the target material used during the sputtering film formation, for example. The target material can be produced by mixing K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder and the like and firing them. The composition of the target material can be controlled by adjusting the mixing ratio of K 2 CO 3 powder, Na 2 CO 3 powder, and Nb 2 O 5 powder. The conditions for forming the KNN film 3 can be the same as the conditions for providing the first Cu layer 7 described above.

Cu非含有KNN膜3A上、すなわち、Cu非含有KNN膜3Aの上面と接する位置に、Cuを含む層又はCuからなる層を設ける。以下、Cu非含有KNN膜3A上に設けるCuを含む層又はCuからなる層を第2Cu層8とも称する。第2Cu層8は、第1Cu層7とは異なり、Cu非含有KNN膜3Aの結晶構造に大きな影響を与えるものではない。そのため、第2Cu層8の材料、結晶構造、製膜手法は特に限定されない。第2Cu層8は、スパッタリング法、蒸着法、金属ペースト法等の手法を用いて設けることができる。第2Cu層8の厚さは例えば1〜200nmとすることができる。第2Cu層8がCuを含む層である場合の第2Cu層8中のCu濃度については後述する。 A layer containing Cu or a layer made of Cu is provided on the Cu-free KNN film 3A, that is, at a position in contact with the upper surface of the Cu-free KNN film 3A. Hereinafter, the layer containing Cu or the layer made of Cu provided on the Cu-free KNN film 3A is also referred to as a second Cu layer 8. Unlike the first Cu layer 7, the second Cu layer 8 does not significantly affect the crystal structure of the Cu-free KNN film 3A. Therefore, the material, crystal structure, and film forming method of the second Cu layer 8 are not particularly limited. The second Cu layer 8 can be provided by using a method such as a sputtering method, a vapor deposition method, or a metal paste method. The thickness of the second Cu layer 8 can be, for example, 1 to 200 nm. The Cu concentration in the second Cu layer 8 when the second Cu layer 8 is a layer containing Cu will be described later.

第2Cu層8としてCuを含む層を例えばスパッタリング法により設ける際の条件は、上述の第1Cu層7を設ける際の条件と同様の条件とすることができる。 The conditions for providing the layer containing Cu as the second Cu layer 8 by, for example, the sputtering method can be the same as the conditions for providing the first Cu layer 7 described above.

また、第2Cu層としてCuからなる層を形成する際の条件としては、下記の条件が例示される。
温度(基板温度):室温以上300℃以下、好ましくは室温以上100℃以下
放電パワー:100W以上500W以下、好ましくは150W以上300W以下、より好ましくは200W以上250W以下
雰囲気:Arガス雰囲気
雰囲気圧力:0.05Pa以上0.5Pa以下、好ましくは0.05Pa以上0.2Pa以下
形成時間:30秒以上3分以下、好ましくは45秒以上2分以下
In addition, the following conditions are exemplified as conditions for forming a layer made of Cu as the second Cu layer.
Temperature (board temperature): Room temperature or more and 300 ° C. or less, preferably room temperature or more and 100 ° C. or less Discharge power: 100 W or more and 500 W or less, preferably 150 W or more and 300 W or less, more preferably 200 W or more and 250 W or less Atmosphere: Ar Gas atmosphere Atmosphere pressure: 0 .05 Pa or more and 0.5 Pa or less, preferably 0.05 Pa or more and 0.2 Pa or less Formation time: 30 seconds or more and 3 minutes or less, preferably 45 seconds or more and 2 minutes or less

第1Cu層7中のCu濃度、および第2Cu層8がCuを含む層である場合の第2Cu層8中のCu濃度は、後述の熱処理を行った際の第1Cu層7および第2Cu層8からのCu拡散によって、熱処理後のKNN膜3中のCu濃度を0.2at%以上2.0at%以下の範囲内にすることができる濃度にそれぞれ調整されている。 The Cu concentration in the first Cu layer 7 and the Cu concentration in the second Cu layer 8 when the second Cu layer 8 is a layer containing Cu are the first Cu layer 7 and the second Cu layer 8 when the heat treatment described later is performed. The Cu concentration in the KNN film 3 after the heat treatment is adjusted to a concentration that can be within the range of 0.2 at% or more and 2.0 at% or less by Cu diffusion from the above.

そして、第2Cu層8上に、例えばスパッタリング法により上部電極膜4を製膜する。上部電極膜4を製膜する際の条件は、上述の下部電極膜2を製膜する際の条件と同様の条件とすることができる。これにより、図4に示すように、基板1、下部電極膜2、第1Cu層7、KNN膜3、第2Cu層8、および上部電極膜4を有する積層体12が得られる。 Then, the upper electrode film 4 is formed on the second Cu layer 8 by, for example, a sputtering method. The conditions for forming the upper electrode film 4 can be the same as the conditions for forming the lower electrode film 2 described above. As a result, as shown in FIG. 4, a laminate 12 having the substrate 1, the lower electrode film 2, the first Cu layer 7, the KNN film 3, the second Cu layer 8, and the upper electrode film 4 is obtained.

その後、積層体12に対して所定の条件下で熱処理を行う。これにより、第1Cu層7および第2Cu層8中のCuがCu非含有KNN膜3Aへと拡散する。その結果、Cu非含有KNN膜3Aが、Cuを所定濃度で含む膜であって、結晶粒界にCuが存在するとともに結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3となる。 Then, the laminated body 12 is heat-treated under predetermined conditions. As a result, Cu in the first Cu layer 7 and the second Cu layer 8 diffuses into the Cu-free KNN film 3A. As a result, the Cu-free KNN film 3A is a film containing Cu at a predetermined concentration, and is a KNN film in which Cu is present at the grain boundaries and more Cu is present at the grain boundaries than Cu is present in the parent phase. It becomes 3.

熱処理条件としては、下記の条件が例示される。
アニール温度(積層体の温度):600℃以上、好ましくは600℃以上800℃以下、より好ましくは650℃以上750℃以下
アニール時間:0.5時間以上12時間以下、好ましくは1時間以上6時間以下、より好ましくは2時間以上3時間以下
アニール雰囲気:大気又は窒素雰囲気
The following conditions are exemplified as the heat treatment conditions.
Annealing temperature (temperature of laminated body): 600 ° C. or higher, preferably 600 ° C. or higher and 800 ° C. or lower, more preferably 650 ° C. or higher and 750 ° C. or lower Annealing time: 0.5 hours or more and 12 hours or less, preferably 1 hour or more and 6 hours Below, more preferably 2 hours or more and 3 hours or less Annealing atmosphere: Atmospheric or nitrogen atmosphere

熱処理を行って、第1Cu層7および第2Cu層8中のCuがCu非含有KNN膜3Aへと拡散することで、第1Cu層7および第2Cu層8はほぼ消失する。その結果、基板1、下部電極膜2、KNN膜3、および上部電極膜4を有する圧電積層体10(図1参照)であって、Cuを含み、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3を有する圧電積層体10が得られる。なお、熱処理を行うことで、第1Cu層7および第2Cu層8は消失することが好ましいが、第1Cu層7および第2Cu層8は残っていてもよい。 By performing the heat treatment, Cu in the first Cu layer 7 and the second Cu layer 8 diffuses into the Cu-free KNN film 3A, so that the first Cu layer 7 and the second Cu layer 8 are almost eliminated. As a result, the piezoelectric laminate 10 (see FIG. 1) having the substrate 1, the lower electrode film 2, the KNN film 3, and the upper electrode film 4 contains Cu and Cu existing at the grain boundaries is used as the parent phase. A piezoelectric laminate 10 having more KNN films 3 than existing Cu can be obtained. It is preferable that the first Cu layer 7 and the second Cu layer 8 disappear by performing the heat treatment, but the first Cu layer 7 and the second Cu layer 8 may remain.

そして、この圧電積層体10をエッチング等により所定の形状に成形することで、図3に示すような圧電素子20が得られ、圧電素子20に電圧印加部11aまたは電圧検出部11bを接続することで、圧電デバイス30が得られる。 Then, by molding the piezoelectric laminate 10 into a predetermined shape by etching or the like, the piezoelectric element 20 as shown in FIG. 3 is obtained, and the voltage application unit 11a or the voltage detection unit 11b is connected to the piezoelectric element 20. Then, the piezoelectric device 30 is obtained.

(4)本実施形態により得られる効果
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(4) Effects obtained by the present embodiment According to the present embodiment, one or more of the following effects can be obtained.

(a)KNN膜3の結晶粒界にCu(例えばCuの粒子)が存在しているとともに、KNN膜3の結晶粒界に存在するCuがKNN膜3を構成する結晶の母相に存在するCuよりも多いことで、圧電積層体10を加工することで作製される圧電素子20(圧電デバイス30)に電界を印加した際、KNN膜3の結晶粒界に存在する酸素欠損の移動を抑制することが可能となる。これにより、電極膜(下部電極膜2または上部電極膜4)に到達する酸素欠損を低減したり、酸素欠損が電極膜に到達するまでの時間を長くしたりすることが可能となる。これらの結果、KNN膜3の寿命を長くすることが可能となる。例えば、圧電積層体10の温度が200℃となるように加熱した状態で、上部電極膜4に対して300kV/cmの正又は負の電界を印加する高加速寿命試験(Highly Accelerated Life Test、略称:HALT)を行った際、少なくとも一方の電界(正又は負の電界)印加条件における電界印加開始からKNN膜3が絶縁破壊に至るまでの時間を7600秒以上とすることが可能となる。なお、本実施形態では、KNN膜3に流れるリーク電流密度が30mA/cmを超えた時点でKNN膜3が絶縁破壊に至ったとみなしている。 (A) Cu (for example, Cu particles) is present at the grain boundaries of the KNN film 3, and Cu existing at the grain boundaries of the KNN film 3 is present in the matrix of the crystals constituting the KNN film 3. Since it is more than Cu, it suppresses the movement of oxygen deficiency existing at the grain boundaries of the KNN film 3 when an electric field is applied to the piezoelectric element 20 (piezoelectric device 30) produced by processing the piezoelectric laminate 10. It becomes possible to do. This makes it possible to reduce the oxygen deficiency reaching the electrode film (lower electrode film 2 or upper electrode film 4) and to lengthen the time until the oxygen deficiency reaches the electrode film. As a result, the life of the KNN film 3 can be extended. For example, a high-accelerated life test (abbreviated as Highly Accelerated Life Test) in which a positive or negative electric field of 300 kV / cm is applied to the upper electrode film 4 while the piezoelectric laminate 10 is heated to a temperature of 200 ° C. : When HALT) is performed, the time from the start of electric field application under at least one electric field (positive or negative electric field) application condition to the dielectric breakdown of the KNN film 3 can be set to 7600 seconds or more. In this embodiment, it is considered that the KNN film 3 has undergone dielectric breakdown when the leakage current density flowing through the KNN film 3 exceeds 30 mA / cm 2 .

本願発明者等は、Cu含有量が0.5at%(wt%)であって、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3のサンプル1〜5のそれぞれについて、上記条件下でHALTを行った。サンプル1〜5は上述の実施形態に記載の条件範囲内の同一の条件で作製している。HALTの測定結果は、サンプル1:7663秒、サンプル2:20057秒、サンプル3:32966秒、サンプル4:27566秒、サンプル5:31937秒であった。上記HALTの数値は、1サンプルにつき0.5mmφ内の7箇所で測定した値の平均である。サンプル1〜5のHALTの測定結果の平均は24087.8秒である。 The inventors of the present application have described each of Samples 1 to 5 of the KNN film 3 having a Cu content of 0.5 at% (wt%) and having more Cu present at the grain boundaries than Cu present at the parent phase. , HALT was performed under the above conditions. Samples 1 to 5 are prepared under the same conditions within the condition range described in the above-described embodiment. The HALT measurement results were sample 1: 7663 seconds, sample 2: 20057 seconds, sample 3: 32966 seconds, sample 4: 27566 seconds, and sample 5: 31937 seconds. The above-mentioned HALT value is the average of the values measured at 7 points within 0.5 mmφ per sample. The average HALT measurement result of Samples 1 to 5 is 240877.8 seconds.

また、本願発明者等は、Cu含有量が1.0at%であって、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3のサンプル6〜11のそれぞれについて、上記条件下でHALTを行った。サンプル6〜11は上述の実施形態に記載の条件範囲内の同一の条件で作製している。HALTの測定結果は、サンプル6:30806秒、サンプル7:45309秒、サンプル8:23811秒、サンプル9:33069秒、サンプル10:30420秒、サンプル11:35229秒であった。上記HALTの数値は、1サンプルにつき0.5mmφ内の7箇所で測定した値の平均である。サンプル6〜11のHALTの測定結果の平均は33107.33秒である。 Further, the inventors of the present application have described above for each of the samples 6 to 11 of the KNN film 3 having a Cu content of 1.0 at% and having more Cu present at the grain boundaries than Cu present at the parent phase. HALT was performed under the conditions. Samples 6 to 11 are prepared under the same conditions within the condition range described in the above-described embodiment. The HALT measurement results were sample 6: 30806 seconds, sample 7: 45309 seconds, sample 8: 23811 seconds, sample 9: 33069 seconds, sample 10: 30420 seconds, and sample 11: 35229 seconds. The above-mentioned HALT value is the average of the values measured at 7 points within 0.5 mmφ per sample. The average HALT measurement result of Samples 6 to 11 is 3310.7.33 seconds.

また、本願発明者等は、Cu含有量が1.0at%であって、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3のサンプル12〜17のそれぞれについて、上記条件下でHALTを行った。サンプル12〜17は上述の実施形態に記載の条件範囲内の同一の条件で作製している。HALTの測定結果は、サンプル12:24223秒、サンプル13:33583秒、サンプル14:49063秒、サンプル15:38160秒、サンプル16:54823秒、サンプル17:26331秒であった。上記HALTの数値は、1サンプルにつき0.5mmφ内の7箇所で測定した値の平均である。サンプル12〜17のHALTの測定結果の平均は37696.17秒である。 Further, the inventors of the present application have described above for each of the samples 12 to 17 of the KNN film 3 having a Cu content of 1.0 at% and having more Cu present at the grain boundaries than Cu present at the parent phase. HALT was performed under the conditions. Samples 12 to 17 are prepared under the same conditions within the condition range described in the above-described embodiment. The HALT measurement results were sample 12:24223 seconds, sample 13:33583 seconds, sample 14:49063 seconds, sample 15:38160 seconds, sample 16:54823 seconds, and sample 17:26331 seconds. The above-mentioned HALT value is the average of the values measured at 7 points within 0.5 mmφ per sample. The average HALT measurement result of Samples 12 to 17 is 3769.6.17 seconds.

これに対し、結晶粒界にCuが存在していないKNN膜について上記条件下でHALTを行った結果は7600秒未満となることを本願発明者は確認済みである。 On the other hand, the inventor of the present application has confirmed that the result of performing HALT under the above conditions for the KNN film in which Cu does not exist at the grain boundaries is less than 7600 seconds.

(b)KNN膜3の平均結晶粒径を従来のKNN膜の平均結晶粒径よりも大きくする、例えば100nm以上とすることで、KNN膜3の粒界密度を低くすることが可能となる。これにより、例えば、KNN膜3を構成する結晶の内部および結晶粒界に存在する酸素欠損(KNN膜3中の全酸素欠損)に対するKNN膜3の結晶粒界に存在する酸素欠損の比率(=結晶粒界に存在する酸素欠損/全酸素欠損)を低くすることが可能となる。その結果、圧電デバイス30に電界を印加した際に移動するKNN膜3中の酸素欠損を確実に減らすことができ、KNN膜3の寿命をさらに長くすることが可能となる。 (B) By making the average crystal grain size of the KNN film 3 larger than the average crystal grain size of the conventional KNN film, for example, 100 nm or more, the grain boundary density of the KNN film 3 can be lowered. As a result, for example, the ratio of oxygen deficiency existing at the grain boundary of the KNN film 3 to the oxygen deficiency existing inside the crystal constituting the KNN film 3 and at the grain boundary (total oxygen deficiency in the KNN film 3) (= It is possible to reduce the oxygen deficiency / total oxygen deficiency existing at the grain boundaries). As a result, oxygen deficiency in the KNN film 3 that moves when an electric field is applied to the piezoelectric device 30 can be reliably reduced, and the life of the KNN film 3 can be further extended.

(c)KNN膜3の結晶粒界に存在するCuが母相に存在するCuよりも多く、かつ、KNN膜3の平均結晶粒径が大きい(例えば100nm以上である)ことで、KNN膜3の寿命をさらに長くすることが可能となる。なお、KNN膜3の結晶粒界に存在するCuが母相に存在するCuよりも多いことで、KNN膜3の平均結晶粒径が大きくなくても(例えば100nm未満である場合であっても)、少なくとも上述の(a)の効果、すなわち上述の酸素欠損移動抑制効果を得ることができる。 (C) The KNN film 3 has more Cu present at the grain boundaries of the KNN film 3 than the Cu present in the parent phase, and the average crystal grain size of the KNN film 3 is large (for example, 100 nm or more). It is possible to further extend the life of the. Since the amount of Cu existing at the grain boundaries of the KNN film 3 is larger than that of Cu existing in the parent phase, even if the average crystal grain size of the KNN film 3 is not large (for example, even if it is less than 100 nm). ), At least the above-mentioned effect (a), that is, the above-mentioned oxygen deficiency movement suppressing effect can be obtained.

(d)KNN膜3がCuを例えば0.2at%以上2.0at%以下の濃度で含むことで、結晶粒界に存在するCuによる酸素欠損移動抑制効果を得ながら、KNN膜3の比誘電率をセンサやアクチュエータ等の用途に好適な大きさにすることが可能となる。 (D) When the KNN film 3 contains Cu at a concentration of, for example, 0.2 at% or more and 2.0 at% or less, the relative permittivity of the KNN film 3 is obtained while obtaining the effect of suppressing oxygen deficiency movement due to Cu existing at the grain boundaries. It is possible to make the rate suitable for applications such as sensors and actuators.

(5)変形例
本実施形態は上述の態様に限定されず、以下のように変形することもできる。また、これらの変形例は任意に組み合わせることができる。
(5) Modification Example This embodiment is not limited to the above-described embodiment, and can be modified as follows. Moreover, these modified examples can be arbitrarily combined.

(変形例1)
第1Cu層7または第2Cu層8のうちの少なくともいずれかの層を設ければよい。この場合、熱処理後のKNN膜3のCu濃度が0.2at%以上2.0at%以下となるように、第1Cu層7または第2Cu層8中のCu濃度等を調整する。本変形例においても、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3を得ることができ、上述の実施形態と同様の効果が得られる。しかしながら、KNN膜3の厚さ方向にわたって均一にCuを拡散させる観点から、第1Cu層7および第2Cu層8の両方を設けることが好ましい。
(Modification example 1)
At least one of the first Cu layer 7 and the second Cu layer 8 may be provided. In this case, the Cu concentration in the first Cu layer 7 or the second Cu layer 8 is adjusted so that the Cu concentration of the KNN film 3 after the heat treatment is 0.2 at% or more and 2.0 at% or less. Also in this modification, it is possible to obtain the KNN film 3 in which the amount of Cu existing at the grain boundaries is larger than that of Cu existing in the matrix phase, and the same effect as that of the above-described embodiment can be obtained. However, from the viewpoint of uniformly diffusing Cu over the thickness direction of the KNN film 3, it is preferable to provide both the first Cu layer 7 and the second Cu layer 8.

(変形例2)
KNN膜3と上部電極膜4との間に密着層を設ける場合は、密着層を設ける前に、第2Cu層8を設けることが好ましい。第2Cu層8は、KNN膜3(Cu非含有KNN膜3A)と密着層との間、つまりKNN膜3の上面と接するように設けることが好ましい。第2Cu層8を密着層と上部電極膜4との間に設けると、密着層によって、第2Cu層8からKNN膜3へのCuの拡散が阻害される場合があるからである。なお、KNN膜3と上部電極膜4との間に密着層を設ける際の条件は、上述の密着層6を設ける際の条件と同様の条件とすることができる。本変形例においても、上述の実施形態と同様の効果が得られる。
(Modification 2)
When the adhesion layer is provided between the KNN film 3 and the upper electrode film 4, it is preferable to provide the second Cu layer 8 before providing the adhesion layer. The second Cu layer 8 is preferably provided between the KNN film 3 (Cu-free KNN film 3A) and the adhesion layer, that is, in contact with the upper surface of the KNN film 3. This is because if the second Cu layer 8 is provided between the adhesion layer and the upper electrode film 4, the adhesion layer may inhibit the diffusion of Cu from the second Cu layer 8 to the KNN film 3. The conditions for providing the adhesion layer between the KNN film 3 and the upper electrode film 4 can be the same as the conditions for providing the adhesion layer 6 described above. In this modification as well, the same effect as that of the above-described embodiment can be obtained.

(変形例3)
KNN膜3を製膜する際、Cu粉末(又はCuO粉末、CuO粉末)を混合したターゲット材を用いてもよい。ターゲット材中におけるCu粉末(又はCuO粉末、CuO粉末)の混合比率は、第1Cu層7、第2Cu層8からKNN膜3(Cu非含有KNN膜3A)へと拡散されるCuを考慮し、熱処理後のKNN膜3中のCu濃度が0.2at%以上2.0at%以下となる比率とする。KNN膜3を製膜する際の条件は、上述の実施形態と同様の条件とすることができる。本変形例においても、上述の実施形態と同様の効果が得られる。
(Modification 3)
When forming a film of the KNN layer 3 may be made of Cu powder (or CuO powder, Cu 2 O powder) target material obtained by mixing. Cu powder (or CuO powder, Cu 2 O powder) in the target material during the mixing ratio of the first 1Cu layer 7, taking into account the Cu diffused from the 2Cu layer 8 to KNN layer 3 (Cu-free KNN film 3A) The Cu concentration in the KNN film 3 after the heat treatment is set to 0.2 at% or more and 2.0 at% or less. The conditions for forming the KNN film 3 can be the same as those in the above-described embodiment. In this modification as well, the same effect as that of the above-described embodiment can be obtained.

(変形例4)
圧電積層体10は、下部電極膜2を備えていなくてもよい。すなわち、圧電積層体10は、基板1と、基板1上に製膜され、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜(圧電膜)3と、KNN膜3上に製膜された上部電極膜4(電極膜4)と、を備えて構成されていてもよい。
(Modification example 4)
The piezoelectric laminate 10 does not have to include the lower electrode film 2. That is, the piezoelectric laminate 10 is formed on the substrate 1 and the substrate 1, and the Cu present at the crystal grain boundary is larger than the Cu present in the parent phase on the KNN film (piezoelectric film) 3 and the KNN film 3. The upper electrode film 4 (electrode film 4) formed in the film may be provided.

本変形例にかかる圧電積層体10は、基板1上にCu非含有KNN膜3Aを製膜し、Cu非含有KNN膜3A上にCuを含む層又はCuからなる層、すなわち第2Cu層8を設け、第2Cu層8上に電極膜4を製膜して積層体12を作製し、この積層体12に対して熱処理を行うことで得ることができる。各膜(層)を製膜する(設ける)際の条件は、上述の実施形態で示した各膜(層)の条件と同様の条件とすることができる。第2Cu層8に加えて、あるいは第2Cu層8に代えて、基板1とKNN膜3(Cu非含有KNN膜3A)との間にCuを含む層(すなわち第1Cu層7)を設けてもよい。 In the piezoelectric laminate 10 according to this modification, a Cu-free KNN film 3A is formed on the substrate 1, and a layer containing Cu or a layer made of Cu, that is, a second Cu layer 8 is formed on the Cu-free KNN film 3A. It can be obtained by forming an electrode film 4 on the second Cu layer 8 to prepare a laminated body 12 and heat-treating the laminated body 12. The conditions for forming (providing) each film (layer) can be the same as the conditions for each film (layer) shown in the above-described embodiment. A layer containing Cu (that is, a first Cu layer 7) may be provided between the substrate 1 and the KNN film 3 (Cu-free KNN film 3A) in addition to or in place of the second Cu layer 8. Good.

図5に、本変形例にかかる圧電積層体10を用いて作製した圧電デバイス30の概略構成図を示す。圧電デバイス30は、圧電積層体10を所定の形状に成形して得られる圧電素子20と、圧電素子20に接続される電圧印加部11aおよび電圧検出部11bと、を少なくとも備えて構成されている。本変形例では、圧電素子20は、電極膜4を所定のパターンに成形することで形成されたパターン電極を有している。例えば、圧電素子20は、入力側の正負一対のパターン電極4pと、出力側の正負一対のパターン電極4pと、を有している。パターン電極4p,4pとしては、くし型電極(Inter Digital Transducer、略称:IDT)が例示される。 FIG. 5 shows a schematic configuration diagram of a piezoelectric device 30 manufactured by using the piezoelectric laminate 10 according to this modification. The piezoelectric device 30 is configured to include at least a piezoelectric element 20 obtained by molding the piezoelectric laminate 10 into a predetermined shape, and a voltage applying unit 11a and a voltage detecting unit 11b connected to the piezoelectric element 20. .. In this modification, the piezoelectric element 20 has a pattern electrode formed by molding the electrode film 4 into a predetermined pattern. For example, the piezoelectric element 20 has a pair of positive and negative pattern electrodes 4p 1 on the input side and a pair of positive and negative pattern electrodes 4p 2 on the output side. Examples of the pattern electrodes 4p 1 and 4p 2 include comb-shaped electrodes (Inter Digital Transducer, abbreviation: IDT).

電圧印加部11aをパターン電極4p間に接続し、電圧検出部11bをパターン電極4p間に接続することで、圧電デバイス30を表面弾性波(Surface Acoustic Wave、略称:SAW)フィルタ等のフィルタデバイスとして機能させることができる。電圧印加部11aによりパターン電極4p間に電圧を印加することで、KNN膜3の表面にSAWを励起させることができる。励起させるSAWの周波数の調整は、例えばパターン電極4pのピッチを調整することで行うことができる。例えば、パターン電極4pとしてのIDTのピッチが短くなるほど、SAWの周波数は高くなり、上記ピッチが長くなるほど、SAWの周波数は低くなる。電圧印加部11aにより励起され、KNN膜3を伝搬してパターン電極4pに到達したSAWのうち、パターン電極4pとしてのIDTのピッチ等に応じて定まる所定の周波数(周波数成分)を有するSAWにより、パターン電極4p間に電圧が発生する。この電圧を電圧検出部11bによって検出することで、励起させたSAWのうち所定の周波数を有するSAWを抽出することができる。なお、ここでいう「所定の周波数」という用語は、所定の周波数だけでなく、中心周波数が所定の周波数である所定の周波数帯域を含み得る。 By connecting the voltage application unit 11a between the pattern electrodes 4p 1 and the voltage detection unit 11b between the pattern electrodes 4p 2 , the piezoelectric device 30 is connected to a filter such as a surface acoustic wave (SAW) filter. It can function as a device. By applying a voltage between the pattern electrode 4p 1 by the voltage application section 11a, it is possible to excite the SAW in the surface of the KNN layer 3. Adjustment of SAW frequencies excite can be carried out by adjusting, for example, the pitch of the pattern electrodes 4p 1. For example, the shorter the pitch of the IDT as the pattern electrode 4p 1 , the higher the SAW frequency, and the longer the pitch, the lower the SAW frequency. Of the SAWs that are excited by the voltage application unit 11a and propagate through the KNN film 3 to reach the pattern electrode 4p 2 , the SAW has a predetermined frequency (frequency component) determined according to the pitch of the IDT as the pattern electrode 4p 2. As a result, a voltage is generated between the pattern electrodes 4p 2 . By detecting this voltage by the voltage detection unit 11b, it is possible to extract the SAW having a predetermined frequency from the excited SAWs. The term "predetermined frequency" here may include not only a predetermined frequency but also a predetermined frequency band in which the center frequency is a predetermined frequency.

本変形例においても、KNN膜3において、その結晶粒界に存在するCuが母相に存在するCuよりも多いことから、上述の実施形態と同様の効果が得られる。 Also in this modification, since the amount of Cu present at the grain boundaries of the KNN film 3 is larger than that of Cu present at the parent phase, the same effect as that of the above-described embodiment can be obtained.

(変形例5)
下部電極膜2とKNN膜3との間に、KNN膜3を構成する結晶の配向を制御する配向制御層を設けてもよい。第1Cu層7を設ける場合は、下部電極膜2と第1Cu層7との間に配向制御層を設けることが好ましい。また、変形例4に記載のように下部電極膜2を設けない場合は、基板1とKNN膜3との間(第1Cu層7を設ける場合は基板1と第1Cu層7との間)に配向制御層を設けることが好ましい。配向制御層は、例えば、SRO、LNO、チタン酸ストロンチウム(SrTiO、略称:STO)等の金属酸化物であって、下部電極膜2を構成する材料とは異なる材料を用いて形成することができる。配向制御層を構成する結晶は、基板1の表面に対して(100)面に優先配向していることが好ましい。
(Modification 5)
An orientation control layer that controls the orientation of the crystals constituting the KNN film 3 may be provided between the lower electrode film 2 and the KNN film 3. When the first Cu layer 7 is provided, it is preferable to provide an orientation control layer between the lower electrode film 2 and the first Cu layer 7. Further, when the lower electrode film 2 is not provided as described in the modified example 4, between the substrate 1 and the KNN film 3 (when the first Cu layer 7 is provided, between the substrate 1 and the first Cu layer 7). It is preferable to provide an orientation control layer. The orientation control layer may be formed by using a metal oxide such as SRO, LNO, strontium titanate (SrTiO 3 , abbreviation: STO), which is different from the material constituting the lower electrode film 2. it can. It is preferable that the crystals constituting the orientation control layer are preferentially oriented toward the (100) plane with respect to the surface of the substrate 1.

(変形例6)
上述の実施形態や変形例では、第1Cu層7、第2Cu層8を設け、熱処理を行うことで、KNN膜3へCuを拡散させる場合を例に説明した。しかしながら、本発明は、上述の実施形態や変形例に限定されない。例えば、第1Cu層7および第2Cu層8を設ける代わりに、あるいは、第1Cu層7および第2Cu層8のうち少なくともいずれかの層を設けることに加え、下部電極膜2および上部電極膜4(電極膜4)のうち少なくともいずれかの膜にCuを含ませてもよい。このとき、下部電極膜2の上面(KNN膜3と接する面)に近い側、好ましくは下部電極膜2の最上面にCuを含ませ、また上部電極膜4の下面(KNN膜3と接する面)に近い側、好ましくは上部電極膜4の最下面にCuを含ませることが好ましい。下部電極膜2および上部電極膜4に含ませるCu濃度は、熱処理後のKNN膜3のCu濃度を例えば0.2at%以上2.0at%以下とすることができる濃度とする。なお、本変形例において上部電極膜4にCuを含ませる場合、KNN膜3と上部電極膜4との間に密着層を設けないことが好ましい。上述したように、密着層によってKNN膜3へのCuの拡散が阻害される場合があるからである。その他の構成は、上述の実施形態や変形例と同様である。
(Modification 6)
In the above-described embodiment and modification, a case where the first Cu layer 7 and the second Cu layer 8 are provided and heat treatment is performed to diffuse Cu into the KNN film 3 has been described as an example. However, the present invention is not limited to the above-described embodiments and modifications. For example, instead of providing the first Cu layer 7 and the second Cu layer 8, or in addition to providing at least one of the first Cu layer 7 and the second Cu layer 8, the lower electrode film 2 and the upper electrode film 4 ( Cu may be contained in at least one of the electrode films 4). At this time, Cu is contained in the side close to the upper surface of the lower electrode film 2 (the surface in contact with the KNN film 3), preferably the uppermost surface of the lower electrode film 2, and the lower surface of the upper electrode film 4 (the surface in contact with the KNN film 3). ), It is preferable that Cu is contained in the lowermost surface of the upper electrode film 4. The Cu concentration contained in the lower electrode film 2 and the upper electrode film 4 is such that the Cu concentration of the KNN film 3 after the heat treatment can be, for example, 0.2 at% or more and 2.0 at% or less. When Cu is contained in the upper electrode film 4 in this modification, it is preferable not to provide an adhesion layer between the KNN film 3 and the upper electrode film 4. This is because, as described above, the adhesion layer may inhibit the diffusion of Cu into the KNN film 3. Other configurations are the same as those of the above-described embodiments and modifications.

本変形例においても、上述の実施形態と同様の熱処理を行うことで、下部電極膜2、上部電極膜4(電極膜4)中のCuをKNN膜3へと拡散させることができる。その結果、結晶粒界にCuが存在するKNN膜3を有する圧電積層体10を得ることができ、上述の実施形態および変形例と同様の効果が得られる。 Also in this modified example, Cu in the lower electrode film 2 and the upper electrode film 4 (electrode film 4) can be diffused into the KNN film 3 by performing the same heat treatment as in the above-described embodiment. As a result, the piezoelectric laminate 10 having the KNN film 3 in which Cu is present at the crystal grain boundaries can be obtained, and the same effects as those of the above-described embodiments and modifications can be obtained.

(変形例7)
上述の実施形態や変形例では、第1Cu層7または第2Cu層8のうちの少なくともいずれかの層を設け、熱処理を行うことで、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3を作製する場合を例に説明した。しかしながら、本発明は、上述の実施形態や変形例に限定されない。例えば、上述の第1Cu層7および第2Cu層8のいずれの層も設けることなく、以下に説明する製法で上述の圧電積層体10を作製することもできる。
(Modification 7)
In the above-described embodiment and modification, by providing at least one layer of the first Cu layer 7 or the second Cu layer 8 and performing heat treatment, Cu existing at the grain boundaries is more than Cu existing in the matrix phase. The case where a large number of KNN films 3 are produced has been described as an example. However, the present invention is not limited to the above-described embodiments and modifications. For example, the above-mentioned piezoelectric laminate 10 can be produced by the production method described below without providing any of the above-mentioned first Cu layer 7 and second Cu layer 8.

まず、基板1が有する下部電極膜2上にCuが添加(ドープ)されたKNN膜3を製膜する。CuがドープされたKNN膜3を製膜する手法、条件は、上述の実施形態や変形例3に記載の手法、条件と同様とすることができる。その後、KNN膜3上に上部電極膜4を製膜する。密着層6、下部電極膜2、上部電極膜4を製膜する(設ける)際の条件は、上述の実施形態と同様の条件とすることができる。これにより、積層体12が得られる。その後、積層体12に対して所定の条件下で熱処理を行う。熱処理条件は、上述の実施形態と同様の条件とすることができる。熱処理を行った後、積層体12の温度が400℃になるまで20分以上かけて積層体12を冷却する。その後、積層体12の温度が室温(25℃)程度となるまで積層体12を冷却する。このように積層体12を冷却することで、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3を有する圧電積層体10が得られる。本変形例にかかる方法で作製した圧電積層体10も、上述の実施形態等と同様の効果が得られる。 First, a KNN film 3 to which Cu is added (doped) is formed on the lower electrode film 2 of the substrate 1. The method and conditions for forming the Cu-doped KNN film 3 can be the same as the methods and conditions described in the above-described embodiment and modification 3. Then, the upper electrode film 4 is formed on the KNN film 3. The conditions for forming (providing) the adhesion layer 6, the lower electrode film 2, and the upper electrode film 4 can be the same as those in the above-described embodiment. As a result, the laminated body 12 is obtained. Then, the laminated body 12 is heat-treated under predetermined conditions. The heat treatment conditions can be the same as those in the above-described embodiment. After the heat treatment, the laminate 12 is cooled over 20 minutes or more until the temperature of the laminate 12 reaches 400 ° C. Then, the laminate 12 is cooled until the temperature of the laminate 12 reaches about room temperature (25 ° C.). By cooling the laminate 12 in this way, a piezoelectric laminate 10 having a KNN film 3 having more Cu present at the grain boundaries than Cu present at the matrix can be obtained. The piezoelectric laminate 10 produced by the method according to this modification also has the same effect as that of the above-described embodiment.

<他の実施形態>
以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiments of the present invention have been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

例えば、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3を、Cuデコレーション法のような手法を用いて作製してもよい。具体的には、まず、基板1として、例えば表面酸化膜1bが形成された単結晶Si基板1aを用いて、少なくとも下部電極膜2とKNN膜3と上部電極膜4とを有する積層体を作製する。または、上記単結晶Si基板1aを用いて、少なくともKNN膜3と電極膜4とを有する積層体を作製する。その後、この積層体と白金板とを硫酸銅(II)(CuSO)水溶液中に浸漬させ、Si基板1aの表面酸化膜1bを陰極とし、白金板を陽極として用いて、各電極に電界を印加する。これにより、KNN膜3の結晶粒界にCuが析出し、結晶粒界に存在するCuが母相に存在するCuよりも多いKNN膜3を有する圧電積層体10を得ることができる。この場合であっても、上述の実施形態および変形例と同様の効果が得られる。 For example, the KNN film 3 in which the amount of Cu present at the grain boundaries is larger than that of Cu present in the parent phase may be produced by using a method such as the Cu decoration method. Specifically, first, as the substrate 1, for example, a single crystal Si substrate 1a on which the surface oxide film 1b is formed is used to prepare a laminate having at least a lower electrode film 2, a KNN film 3, and an upper electrode film 4. To do. Alternatively, the single crystal Si substrate 1a is used to prepare a laminate having at least the KNN film 3 and the electrode film 4. Then, the laminate and the platinum plate are immersed in an aqueous solution of copper (II) sulfate (CuSO 4 ), the surface oxide film 1b of the Si substrate 1a is used as a cathode, and the platinum plate is used as an anode to apply an electric field to each electrode. Apply. As a result, Cu is precipitated at the crystal grain boundaries of the KNN film 3, and a piezoelectric laminate 10 having a KNN film 3 having more Cu present at the crystal grain boundaries than Cu existing at the matrix can be obtained. Even in this case, the same effect as that of the above-described embodiment and modification can be obtained.

また例えば、KNN膜3は、Cuに加えて、あるいはCuに変えて、Cuと同等の効果を奏する他の金属元素を、上述の酸素欠損移動抑制効果を得つつ、KNN膜3の比誘電率を適正な大きさとすることができる濃度で含んでいてもよい。この場合であっても、上述の実施形態および変形例と同様の効果が得られる。 Further, for example, the KNN film 3 has a relative permittivity of the KNN film 3 while obtaining the above-mentioned oxygen deficiency movement suppressing effect by adding another metal element having the same effect as Cu in addition to or changing to Cu. May be contained in a concentration capable of making an appropriate size. Even in this case, the same effect as that of the above-described embodiment and modification can be obtained.

また例えば、上述の圧電積層体10を圧電素子20に成形する際、圧電積層体10(圧電素子20)を用いて作製した圧電デバイス30をセンサまたはアクチュエータ等の所望の用途に適用することができる限り、圧電積層体10から基板1を除去してもよい。 Further, for example, when the above-mentioned piezoelectric laminate 10 is molded into the piezoelectric element 20, the piezoelectric device 30 manufactured by using the piezoelectric laminate 10 (piezoelectric element 20) can be applied to a desired application such as a sensor or an actuator. As long as the substrate 1 may be removed from the piezoelectric laminate 10.

<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
<Preferable Aspect of the Present Invention>
Hereinafter, preferred embodiments of the present invention will be added.

(付記1)
本発明の一態様によれば、
基板と、
電極膜と、
多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、を備え、
前記圧電膜は銅(Cu)を含み、
前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い圧電積層体が提供される。
(Appendix 1)
According to one aspect of the invention
With the board
With the electrode film
A polycrystalline film comprising a piezoelectric film composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1).
The piezoelectric film contains copper (Cu) and contains
Provided is a piezoelectric laminate in which Cu present at the grain boundaries of the crystals constituting the piezoelectric film is larger than Cu present in the matrix phase of the crystals.

(付記2)
本発明の他の態様によれば、
基板と、
電極膜と、
多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、を備え、
前記圧電膜を構成する結晶の粒界に銅(Cu)がデコレーションされている圧電積層体が提供される。
(Appendix 2)
According to another aspect of the invention
With the board
With the electrode film
A polycrystalline film comprising a piezoelectric film composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1).
Provided is a piezoelectric laminate in which copper (Cu) is decorated at the grain boundaries of the crystals constituting the piezoelectric film.

(付記3)
付記1または2の圧電積層体であって、好ましくは、
200℃の温度下で前記圧電膜上に設けられた前記電極膜に対して300kV/cmの正又は負の電界を印加した際、少なくとも一方の電界印加条件における電界印加開始から前記圧電膜に流れるリーク電流密度が30mA/cmを超えるまでの時間が7600秒以上である。
(Appendix 3)
The piezoelectric laminate of Appendix 1 or 2, preferably.
When a positive or negative electric field of 300 kV / cm is applied to the electrode film provided on the piezoelectric film at a temperature of 200 ° C., the current flows to the piezoelectric film from the start of electric field application under at least one electric field application condition. It takes 7600 seconds or more for the leakage current density to exceed 30 mA / cm 2 .

(付記4)
付記1〜3のいずれかの圧電積層体であって、好ましくは、
前記圧電膜は、平均粒径が100nm以上である結晶粒で構成されている。
(Appendix 4)
It is a piezoelectric laminate according to any one of Appendix 1 to 3, preferably.
The piezoelectric film is composed of crystal grains having an average particle size of 100 nm or more.

(付記5)
付記1〜4のいずれかの積層体であって、好ましくは、
前記圧電膜は、Cuを0.2at%以上2.0at%以下の濃度で含む。
(Appendix 5)
It is a laminated body according to any one of Appendix 1 to 4, and is preferable.
The piezoelectric film contains Cu at a concentration of 0.2 at% or more and 2.0 at% or less.

(付記6)
本発明のさらに他の態様によれば、
基板と、
前記基板上に製膜され、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、
前記圧電膜上に製膜された電極膜と、を備え、
前記圧電膜はCuを含み、
前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い圧電素子または圧電デバイスが提供される。
(Appendix 6)
According to yet another aspect of the invention.
With the board
A piezoelectric film formed on the substrate, which is a polycrystalline film and is composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1). ,
An electrode film formed on the piezoelectric film and
The piezoelectric film contains Cu and contains Cu.
Provided is a piezoelectric element or piezoelectric device in which the amount of Cu present at the grain boundaries of the crystals constituting the piezoelectric film is larger than that of Cu present in the matrix phase of the crystals.

(付記7)
本発明のさらに他の態様によれば、
基板と、
前記基板上に製膜された下部電極膜と、
前記下部電極膜上に製膜され、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、
前記圧電膜上に製膜された上部電極膜と、を備え、
前記圧電膜はCuを含み、
前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い圧電素子または圧電デバイスが提供される。
(Appendix 7)
According to yet another aspect of the invention.
With the board
The lower electrode film formed on the substrate and
A piezoelectric film formed on the lower electrode film, which is a polycrystalline film and is composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1). Membrane and
An upper electrode film formed on the piezoelectric film is provided.
The piezoelectric film contains Cu and contains Cu.
Provided is a piezoelectric element or piezoelectric device in which the amount of Cu present at the grain boundaries of the crystals constituting the piezoelectric film is larger than that of Cu present in the matrix phase of the crystals.

(付記8)
本発明のさらに他の態様によれば、
基板上に、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜を製膜する工程と、
前記圧電膜上にCuを含む層又はCuからなる層を設ける工程と、
前記Cuを含む層又は前記Cuからなる層上に電極膜を製膜する工程と、
前記基板と前記圧電膜と前記Cuを含む層又は前記Cuからなる層と前記電極膜とを備える積層体に対して熱処理を行う工程と、を有し、
前記熱処理を行う工程を実施することで、前記Cuを含む層又は前記Cuからなる層中のCuを前記圧電膜へと拡散させ、前記圧電膜を、Cuを含むとともに前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い膜とする圧電積層体の製造方法が提供される。
(Appendix 8)
According to yet another aspect of the invention.
A step of forming a piezoelectric film which is a polycrystalline film and is made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) on the substrate. When,
A step of providing a layer containing Cu or a layer made of Cu on the piezoelectric film, and
The step of forming an electrode film on the layer containing Cu or the layer made of Cu, and
A step of heat-treating a laminate including the substrate, the piezoelectric film, a layer containing the Cu, or a layer made of the Cu, and the electrode film.
By carrying out the step of performing the heat treatment, Cu in the layer containing Cu or the layer composed of Cu is diffused into the piezoelectric film, and the piezoelectric film is made into a crystal containing Cu and constituting the piezoelectric film. Provided is a method for producing a piezoelectric laminate in which the amount of Cu present in the grain boundary of the crystal is larger than that of Cu present in the matrix of the crystal.

(付記9)
本発明のさらに他の態様によれば、
基板上に下部電極膜を製膜する工程と、
前記下部電極膜上に、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜を製膜する工程と、
前記圧電膜上に上部電極膜を製膜する工程と、
前記基板と前記下部電極膜と前記圧電膜と前記上部電極膜とを備える積層体に対して熱処理を行う工程と、を有し、
前記圧電膜を製膜する工程を行う前に、前記圧電膜の下面と接するようにCuを含む層を設ける工程か、又は、前記圧電膜を製膜する工程を行った後に、前記圧電膜の上面と接するようにCuを含む層又はCuからなる層を設ける工程の少なくともいずれかを行い、
前記熱処理を行う工程を実施することで、前記Cuを含む層又は前記Cuからなる層中のCuを前記圧電膜へと拡散させ、前記圧電膜を、Cuを含むとともに前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い膜とする圧電積層体の製造方法が提供される。
(Appendix 9)
According to yet another aspect of the invention.
The process of forming the lower electrode film on the substrate and
On the lower electrode film, a piezoelectric film which is a polycrystalline film and is made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) is produced. The process of filming and
The process of forming an upper electrode film on the piezoelectric film and
It has a step of performing a heat treatment on a laminate including the substrate, the lower electrode film, the piezoelectric film, and the upper electrode film.
Before the step of forming the piezoelectric film, a step of providing a layer containing Cu so as to be in contact with the lower surface of the piezoelectric film, or after performing a step of forming the piezoelectric film, the piezoelectric film of the piezoelectric film is formed. At least one of the steps of providing a layer containing Cu or a layer made of Cu so as to be in contact with the upper surface is performed.
By carrying out the step of performing the heat treatment, Cu in the layer containing Cu or the layer composed of Cu is diffused into the piezoelectric film, and the piezoelectric film is made into a crystal containing Cu and constituting the piezoelectric film. Provided is a method for producing a piezoelectric laminate in which the amount of Cu present in the grain boundary of the crystal is larger than that of Cu present in the matrix of the crystal.

(付記10)
本発明のさらに他の態様によれば、
基板上に、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜を製膜する工程と、
前記圧電膜上に、Cuを含む電極膜を製膜する工程と、
前記基板と前記圧電膜と前記電極膜とを備える積層体に対して熱処理を行う工程と、を有し、
前記熱処理を行う工程を実施することで、前記電極膜中のCuを前記圧電膜へと拡散させ、前記圧電膜を、Cuを含むとともに前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い膜とする圧電積層体の製造方法が提供される。
(Appendix 10)
According to yet another aspect of the invention.
A step of forming a piezoelectric film which is a polycrystalline film and is made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) on the substrate. When,
A step of forming an electrode film containing Cu on the piezoelectric film and
It has a step of performing a heat treatment on a laminate having the substrate, the piezoelectric film, and the electrode film.
By carrying out the step of performing the heat treatment, Cu in the electrode film is diffused into the piezoelectric film, and the piezoelectric film contains Cu and Cu present in the grain boundary of the crystal constituting the piezoelectric film. Provided is a method for producing a piezoelectric laminate having a film having more film than Cu present in the matrix of the crystal.

(付記11)
本発明のさらに他の態様によれば、
基板上に下部電極膜を製膜する工程と、
前記下部電極膜上に、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜を製膜する工程と、
前記圧電膜上に上部電極膜を製膜する工程と、
前記基板と前記下部電極膜と前記圧電膜と前記上部電極膜とを備える積層体に対して熱処理を行う工程と、を有し、
前記下部電極膜を製膜する工程で前記下部電極膜にCuを含ませるか、又は、前記上部電極膜を製膜する工程で前記上部電極膜にCuを含ませ、
前記熱処理を行う工程を実施することで、前記下部電極膜または前記上部電極膜中のCuを前記圧電膜へと拡散させ、前記圧電膜を、Cuを含むとともに前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い膜とする圧電積層体の製造方法が提供される。
(Appendix 11)
According to yet another aspect of the invention.
The process of forming the lower electrode film on the substrate and
On the lower electrode film, a piezoelectric film which is a polycrystalline film and is made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) is produced. The process of filming and
The process of forming an upper electrode film on the piezoelectric film and
It has a step of performing a heat treatment on a laminate including the substrate, the lower electrode film, the piezoelectric film, and the upper electrode film.
Cu is contained in the lower electrode film in the step of forming the lower electrode film, or Cu is contained in the upper electrode film in the step of forming the upper electrode film.
By carrying out the step of performing the heat treatment, Cu in the lower electrode film or the upper electrode film is diffused into the piezoelectric film, and the piezoelectric film contains Cu and crystal grains constituting the piezoelectric film. Provided is a method for producing a piezoelectric laminate in which the amount of Cu present in the field is larger than that of Cu present in the matrix of the crystal.

(付記12)
付記11の方法であって、好ましくは、
前記下部電極膜を製膜する工程では、前記下部電極膜の上面に近い側にCuを含ませ、かつ、前記上部電極膜を製膜する工程では、前記上部電極膜の下面に近い側にCuを含ませる。
(Appendix 12)
The method of Appendix 11, preferably
In the step of forming the lower electrode film, Cu is contained on the side close to the upper surface of the lower electrode film, and in the step of forming the upper electrode film, Cu is contained on the side close to the lower surface of the upper electrode film. To include.

1 基板
3 圧電膜
10 圧電積層体
1 Substrate 3 Piezoelectric film 10 Piezoelectric laminate

Claims (6)

基板と、
電極膜と、
多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、を備え、
前記圧電膜はCuを含み、
前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い圧電積層体。
With the board
With the electrode film
A polycrystalline film comprising a piezoelectric film composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1).
The piezoelectric film contains Cu and contains Cu.
A piezoelectric laminate in which the amount of Cu present at the grain boundaries of the crystals constituting the piezoelectric film is larger than that of Cu present in the matrix phase of the crystals.
200℃の温度下で、前記圧電膜上に設けられた前記電極膜に対して300kV/cmの正又は負の電界を印加した際、少なくとも一方の電界印加条件における電界印加開始から前記圧電膜に流れるリーク電流密度が30mA/cmを超えるまでの時間が7600秒以上である請求項1に記載の圧電積層体。 When a positive or negative electric field of 300 kV / cm is applied to the electrode film provided on the piezoelectric film at a temperature of 200 ° C., the piezoelectric film is subjected to an electric field application start under at least one electric field application condition. The piezoelectric laminate according to claim 1, wherein it takes 7600 seconds or more for the flowing leakage current density to exceed 30 mA / cm 2 . 前記圧電膜は、平均粒径が100nm以上である結晶粒で構成されている請求項1または2に記載の圧電積層体。 The piezoelectric laminate according to claim 1 or 2, wherein the piezoelectric film is composed of crystal grains having an average particle size of 100 nm or more. 前記圧電膜は、Cuを0.2at%以上2.0at%以下の濃度で含む請求項1〜3のいずれか1項に記載の圧電積層体。 The piezoelectric laminate according to any one of claims 1 to 3, wherein the piezoelectric film contains Cu at a concentration of 0.2 at% or more and 2.0 at% or less. 基板と、
前記基板上に製膜され、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜と、
前記圧電膜上に製膜された電極膜と、を備え、
前記圧電膜はCuを含み、
前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い圧電素子。
With the board
A piezoelectric film formed on the substrate, which is a polycrystalline film and is composed of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1). ,
An electrode film formed on the piezoelectric film and
The piezoelectric film contains Cu and contains Cu.
A piezoelectric element in which the amount of Cu present at the grain boundaries of the crystals constituting the piezoelectric film is larger than that of Cu present in the matrix phase of the crystals.
基板上に、多結晶膜であって、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜を製膜する工程と、
前記圧電膜上にCuを含む層又はCuからなる層を設ける工程と、
前記Cuを含む層又は前記Cuからなる層上に電極膜を製膜する工程と、
前記基板と前記圧電膜と前記Cuを含む層又は前記Cuからなる層と前記電極膜とを備える積層体に対して熱処理を行う工程と、を有し、
前記熱処理を行う工程を実施することで、前記Cuを含む層又は前記Cuからなる層中のCuを前記圧電膜へと拡散させ、前記圧電膜を、Cuを含むとともに前記圧電膜を構成する結晶の粒界に存在するCuが前記結晶の母相に存在するCuよりも多い膜とする圧電積層体の製造方法。
A step of forming a piezoelectric film which is a polycrystalline film and is made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) on the substrate. When,
A step of providing a layer containing Cu or a layer made of Cu on the piezoelectric film, and
The step of forming an electrode film on the layer containing Cu or the layer made of Cu, and
A step of heat-treating a laminate including the substrate, the piezoelectric film, a layer containing the Cu, or a layer made of the Cu, and the electrode film.
By carrying out the step of performing the heat treatment, Cu in the layer containing Cu or the layer composed of Cu is diffused into the piezoelectric film, and the piezoelectric film is made into a crystal containing Cu and constituting the piezoelectric film. A method for producing a piezoelectric laminate in which the amount of Cu present in the grain boundary of the crystal is larger than that of Cu present in the matrix of the crystal.
JP2019125164A 2019-07-04 2019-07-04 Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate Active JP7319848B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019125164A JP7319848B2 (en) 2019-07-04 2019-07-04 Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
EP20835288.0A EP3995454A4 (en) 2019-07-04 2020-07-02 PIEZOELECTRIC FILM, PIEZOELECTRIC LAMINATE BODY, PIEZOELECTRIC ELEMENT AND METHOD FOR MAKING PIEZOELECTRIC LAMINATE BODY
US17/624,555 US20220254988A1 (en) 2019-07-04 2020-07-02 Piezoelectric film, piezoelectric layered body, piezoelectric element, and method for manufacturing piezoelectric layered body
PCT/JP2020/026022 WO2021002434A1 (en) 2019-07-04 2020-07-02 Piezoelectric film, piezoelectric layered body, piezoelectric element, and method for manufacturing piezoelectric layered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125164A JP7319848B2 (en) 2019-07-04 2019-07-04 Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate

Publications (2)

Publication Number Publication Date
JP2021012908A true JP2021012908A (en) 2021-02-04
JP7319848B2 JP7319848B2 (en) 2023-08-02

Family

ID=74227770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125164A Active JP7319848B2 (en) 2019-07-04 2019-07-04 Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate

Country Status (1)

Country Link
JP (1) JP7319848B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (en) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc Alkali metal-containing niobium oxide-based piezoelectric material composition
JP2009120443A (en) * 2007-11-14 2009-06-04 Ngk Insulators Ltd (Li, Na, K) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
JP2015534257A (en) * 2012-09-21 2015-11-26 Tdk株式会社 Thin film piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
WO2018180770A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 Piezoelectric composition and piezoelectric element
JP2018207055A (en) * 2017-06-09 2018-12-27 株式会社サイオクス Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (en) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc Alkali metal-containing niobium oxide-based piezoelectric material composition
JP2009120443A (en) * 2007-11-14 2009-06-04 Ngk Insulators Ltd (Li, Na, K) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
JP2015534257A (en) * 2012-09-21 2015-11-26 Tdk株式会社 Thin film piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
WO2018180770A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 Piezoelectric composition and piezoelectric element
US20200243748A1 (en) * 2017-03-28 2020-07-30 Tdk Corporation Piezoelectric composition and piezoelectric element
JP2018207055A (en) * 2017-06-09 2018-12-27 株式会社サイオクス Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film

Also Published As

Publication number Publication date
JP7319848B2 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
JP6239566B2 (en) Multilayer substrate with piezoelectric thin film, piezoelectric thin film element, and manufacturing method thereof
JP6342040B1 (en) Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film
JP7362339B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
US11744159B2 (en) Piezoelectric laminate, method of manufacturing piezoelectric laminate and piezoelectric element
TWI870582B (en) Piezoelectric stack up, piezoelectric device, and method of producing piezoelectric stack up
JP7464360B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
JP6502460B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
WO2021177091A1 (en) Piezoelectric film, piezoelectric multilayer body, piezoelectric element and method for producing piezoelectric multilayer body
JP7319848B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
WO2021002434A1 (en) Piezoelectric film, piezoelectric layered body, piezoelectric element, and method for manufacturing piezoelectric layered body
JP7399752B2 (en) Piezoelectric film, piezoelectric laminate, piezoelectric element, and piezoelectric laminate manufacturing method
JP6607993B2 (en) Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film
JP7626383B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
JP2021088773A (en) Sputtering target material, method for producing sputtering target material, and method for producing multilayer substrate with piezoelectric thin film
TWI888493B (en) Piezoelectric film, piezoelectric stack up, piezoelectric device, and method of producing piezoelectric stack up
JP6804615B2 (en) A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.
JP7701778B2 (en) Piezoelectric laminate and piezoelectric element
JP6961770B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP6758444B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230721

R150 Certificate of patent or registration of utility model

Ref document number: 7319848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150