[go: up one dir, main page]

JP2021001750A - Production method of helium-3 - Google Patents

Production method of helium-3 Download PDF

Info

Publication number
JP2021001750A
JP2021001750A JP2019114408A JP2019114408A JP2021001750A JP 2021001750 A JP2021001750 A JP 2021001750A JP 2019114408 A JP2019114408 A JP 2019114408A JP 2019114408 A JP2019114408 A JP 2019114408A JP 2021001750 A JP2021001750 A JP 2021001750A
Authority
JP
Japan
Prior art keywords
helium
reaction
electromagnetic wave
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019114408A
Other languages
Japanese (ja)
Inventor
泰男 石川
Yasuo Ishikawa
泰男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019114408A priority Critical patent/JP2021001750A/en
Publication of JP2021001750A publication Critical patent/JP2021001750A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】ヘリウム4から簡単、安価にヘリウム3を採集する。【解決手段】ステンレスの反応炉70の底部を500℃以上に加熱し、この炉の底部内にLi、Na、K等のアルカリ金属を入れて溶融させ熱振動により微粒子をその上部の反応空間74に充填せしめてレーザ媒質とし、容器壁から第1電磁波を放射せしめ、この第1電磁波を反応空間のレーザ媒質に放射して増幅された第2電磁波を放射せしめ、この第2電磁波と炉内に供給されたヘリウム4からヘリウム3を分離する。【選択図】図1PROBLEM TO BE SOLVED: To collect helium-3 from helium-4 easily and inexpensively. SOLUTION: A bottom of a stainless steel reaction furnace 70 is heated to 500 ° C. or higher, and an alkali metal such as Li, Na, K is put in the bottom of the furnace and melted, and fine particles are formed into a reaction space 74 above the bottom by thermal vibration. The first electromagnetic wave is radiated from the container wall, and the first electromagnetic wave is radiated to the laser medium in the reaction space to radiate the amplified second electromagnetic wave. The helium 3 is separated from the supplied helium 4. [Selection diagram] Fig. 1

Description

本発明は、素粒子反応を利用して、ヘリウム4から中性子を1個分離してヘリウム3を製造するためのヘリウム3の製造方法に関する。 The present invention relates to a method for producing helium-3 for producing helium-3 by separating one neutron from helium-4 by utilizing an elementary particle reaction.

本件、発明者は、水から水素を採集するために、反応炉としてのステンレス炉内にカセイソーダを入れ、500℃以上に加熱してカセイソーダの溶融塩とし、この溶融塩の表面から微細粒子を発生せしめ、この微細粒子と反応炉内に供給された水粒子とを反応させて水素を採集していた。ところが、この反応においては、供給した水の中の水素成分とカセイソーダの水素成分の合計の1.5倍の水素が採集されており、既存の物理反応では説明できない現象であり、種々の実験の結果から本発明に至ることとなった。 In this case, the inventor puts caustic soda in a stainless steel furnace as a reactor in order to collect hydrogen from water, heats it to 500 ° C. or higher to make a molten salt of caustic soda, and generates fine particles from the surface of the molten salt. At the same time, hydrogen was collected by reacting the fine particles with the water particles supplied into the reactor. However, in this reaction, 1.5 times as much hydrogen as the total of the hydrogen component in the supplied water and the hydrogen component of caustic soda is collected, which is a phenomenon that cannot be explained by the existing physical reaction, and various experiments have been conducted. The result led to the present invention.

特許第6034550号Patent No. 6034550 特許第6005331号Patent No. 6005331

簡単にヘリウム3を製造することを課題とする。 An object of the present invention is to easily produce helium-3.

本発明の素粒子反応方法は、密閉された鉄又はステンレスからなる反応筒体内に電磁波エネルギー増幅材としてのリチウム(Li)、ナトリウム(Na)、カリウム(K)、ベリリム(B)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF),フッ化カリウム(KF),フッ化ベリリウム(BeF)のうち、少なくとも一種からなる金属またはフッ化金属物を収納し、前記反応筒体を電磁波エネルギー増幅材の融点以上に加熱してその壁面から、第1の複数種類の電磁波を発生せしめるとともに前記電磁波エネルギー増幅材を微粒子として反応筒体内に飛散せしめ、第1電磁波を電磁波エネルギー増幅材の微粒子に照射してエネルギーが増幅された第2電磁波を放出せしめ、この第2電磁波を反応筒体内に供給されたヘリウム4のガスに照射して、ヘリウム4の原子核から核子を所定の確率で瞬間的に分離してヘリウム3、ヘリウム4、水素Hの混合ガスを得て、この混合ガスからヘリウム3を分離する。 In the elementary particle reaction method of the present invention, lithium (Li), sodium (Na), potassium (K), verilim (B), lithium fluoride as electromagnetic wave energy amplifying materials are contained in a sealed reaction cylinder made of iron or stainless steel. A metal or metal fluoride consisting of at least one of (LiF), sodium fluoride (NaF), potassium fluoride (KF), and beryllium fluoride (BeF) is stored, and the reaction cylinder is used as an electromagnetic wave energy amplification material. The first plurality of types of electromagnetic waves are generated from the wall surface by heating to a temperature higher than the melting point of No. The second electromagnetic wave whose energy is amplified is emitted, and this second electromagnetic wave is irradiated to the gas of helium 4 supplied into the reaction cylinder, and nucleons are instantaneously separated from the nuclei of helium 4 with a predetermined probability. A mixed gas of helium 3, helium 4, and hydrogen H 2 is obtained, and helium 3 is separated from the mixed gas.

空気(酸素)が侵入しない密閉反応筒体内(反応炉)を鉄又はステンレス材(Niを含んだオーステナイト系が好ましい)で構成し、反応炉の内部に炉壁から放出される電磁波のエネルギーを増幅するエネルギー増幅材を供給し、この増幅材をアルカリ金属又はアルカリフッ化物で構成し、増幅材の融点以上に反応炉を加熱すると、炉壁の金属組織の結晶格子が格子振動を起こし、金属特有の波長を有する電磁波を発生し、このとき、前記増幅材は液化溶融して、軽い元素のために微粒子として反応炉内に飛散する。この微粒子はレーザ光を発生するレーザ媒質をなし、炉壁から発生した電磁波と相互作用をして増幅された第2電磁波を誘導放出する。反応炉内にヘリウム4ガスを供給すると、ガス分子と前記微粒子が近接して第2電磁波が気体原子内の原子核内に入り込んで核力の源であるゲージ粒子としてのグルーオンと(双方波動であるため)干渉して色荷の交換を瞬間的に妨害したり、その作用を復帰させたりする。このようにして陽子−陽子、陽子−中性子、中性子−中性子間の核力が遮断されることが確率的に生起し、特に、陽子−陽子間の核力が切れた場合には、電磁力による反発力で陽子が勢いよく核外に飛び出して電子と結合して水素ガスとなり、中性子は反発力は受けないので運動量が小さく炉壁に捕捉される。 The sealed reaction cylinder (reactor) that does not allow air (oxygen) to enter is composed of iron or stainless steel (preferably an austenite system containing Ni), and the energy of the electromagnetic waves emitted from the furnace wall is amplified inside the reactor. When the reactor is heated above the melting point of the amplification material by supplying the energy amplification material to be used, the amplification material is composed of alkali metal or alkali fluoride, the crystal lattice of the metal structure of the furnace wall causes lattice vibration, which is peculiar to metal. An electromagnetic wave having a wavelength of is generated, and at this time, the amplification material is liquefied and melted and scattered in the reaction furnace as fine particles due to light elements. These fine particles form a laser medium that generates laser light, and induce and emit a second electromagnetic wave that is amplified by interacting with the electromagnetic wave generated from the furnace wall. When helium 4 gas is supplied into the reaction furnace, the gas molecule and the fine particles are close to each other, and the second electromagnetic wave enters the nucleus in the gas atom to form a gluon as a gauge particle which is a source of nuclear force (both waves). (Because) It interferes and momentarily interferes with the exchange of color charges, or restores its action. In this way, it is probable that the nuclear force between protons-protons, protons-neutrons, and neutrons-neutrons is blocked, and especially when the nuclear force between protons and protons is cut off, it is caused by electromagnetic force. Due to the repulsive force, protons vigorously jump out of the nuclear force and combine with electrons to form hydrogen gas, and neutrons do not receive repulsive force, so their momentum is small and they are captured by the furnace wall.

反応炉の準備段階において、炉内には酸素成分が一切ないので、炉壁に格子熱振動により発生する第1電磁波を吸収する酸化膜が生じることがなく、素粒子の不確定性原理に基づいて、第1電磁波のエネルギーについて、瞬間的には熱振動の理論的エネルギーは保存されず、それ以上に高まることがあり、また第2電磁波も瞬間的に増幅材の持つエネルギーとこれと相互作用をする第1電磁波のエネルギーより高いエネルギーを発生させることが確率的に存在し、瞬間的(たとえば10−10秒間)に核力を遮断し、核子を原子核から放出する。 Since there is no oxygen component in the reactor during the preparation stage of the reactor, no oxide film that absorbs the first electromagnetic wave generated by lattice thermal vibration is formed on the furnace wall, which is based on the uncertainty principle of elementary particles. Therefore, regarding the energy of the first electromagnetic wave, the theoretical energy of thermal vibration is not momentarily conserved and may increase further, and the second electromagnetic wave also momentarily interacts with the energy of the amplification material. It is probable that an energy higher than the energy of the first electromagnetic wave is generated, which momentarily (for example, 10 to 10 seconds) shuts off the nuclear force and emits nuclei from the nucleus.

本発明の原理を示すための反応炉の縦断面図である。It is a vertical sectional view of the reactor for showing the principle of this invention. 金属の結晶格子を示す斜視図である。It is a perspective view which shows the crystal lattice of a metal. 発生電磁波の振動数とエネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the frequency and energy of the generated electromagnetic wave. 反応炉の底部の拡大断面図である。It is an enlarged sectional view of the bottom of a reactor. 反応炉内の反応空間の作用説明図である。It is an operation explanatory drawing of the reaction space in a reaction furnace. 核子間に作用する電磁力と核力との関係説明図である。It is an explanatory diagram of the relationship between the electromagnetic force acting between nucleons and the nuclear force. 反応空間内の窒素ガスの分離作用説明図である。It is explanatory drawing of the separation action of nitrogen gas in a reaction space. 反応炉の他の実施例を示す横形反応炉の断面図である。It is sectional drawing of the horizontal reactor which shows the other Example of the reactor.

以下、図面を参照して本発明の実施態様について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、本発明のヘリウム3生成装置Mは、円筒体をなす反応炉本体70を有し、この本体70は、鉄又はステンレス製であり、特にステンレスでは、オーステナイト系のSUS304、310、316が好ましく、耐蝕性と耐熱性が良いものが適する。また、酸素を炉内に入れるのを完全に防止できれば鉄製のものでもよい。前記反応炉70の内壁には、ステンの酸化防止と電磁波放射(空洞放射)のために、黒鉛膜71が塗装されている。前記反応炉70の下半部外周には、面状加熱装置(ヒータ)72が係合し、この加熱装置72は、反応炉70内を400〜700℃程度に加熱する能力を有している。前記反応炉70の上面には、ヘリウム4供給のための供給管73が設けられ、この供給管73は、反応炉70の反応空間74内で開口するようにその内部に伸びている。また、反応炉70の上面には、反応空間74内で反応生成されたガス体を排出するための排出管75が設けられている。前記反応炉70の底部には、電磁波放射面積を増加させるための複数の放射板75、75…75からなる放射補助体76が載置され、これとともに電磁波増幅材77が収納されている。前記放射補助体76は反応炉70の同一の材質からなり、この代わりに同質材料の粉体でもよく、例えば、70μ程度の鉄、ステンレス粉末が使用される。 In FIG. 1, the helium-3 generator M of the present invention has a reaction furnace main body 70 forming a cylindrical body, and the main body 70 is made of iron or stainless steel, and particularly in stainless steel, austenitic SUS304, 310, 316. Is preferable, and those having good corrosion resistance and heat resistance are suitable. Further, if oxygen can be completely prevented from entering the furnace, it may be made of iron. The inner wall of the reactor 70 is coated with a graphite film 71 for the purpose of preventing the oxidation of stainless steel and radiating electromagnetic waves (cavity radiation). A planar heating device (heater) 72 is engaged with the outer periphery of the lower half of the reactor 70, and the heating device 72 has an ability to heat the inside of the reactor 70 to about 400 to 700 ° C. .. A supply pipe 73 for supplying helium-4 is provided on the upper surface of the reaction furnace 70, and the supply pipe 73 extends inward so as to open in the reaction space 74 of the reaction furnace 70. Further, on the upper surface of the reaction furnace 70, a discharge pipe 75 for discharging the gas body generated by the reaction in the reaction space 74 is provided. At the bottom of the reactor 70, a radiation auxiliary body 76 composed of a plurality of radiation plates 75, 75 ... 75 for increasing the electromagnetic wave radiation area is placed, and an electromagnetic wave amplification material 77 is housed together with the radiation auxiliary body 76. The radiation auxiliary body 76 is made of the same material of the reaction furnace 70, and instead of this, powder of a homogeneous material may be used, for example, iron or stainless steel powder of about 70 μm is used.

前記電磁波増幅材77としては、アルカリ金属単体(リチウム(7Li リチウム7)、ナトリウム(Na)、カリウム(K)のうち少なくとも一種か、この代わりにアルカリ金属単体のフッ化物(LiF、NaF、KF)が用いられる。この電磁波増幅材77は、その単体は最外殻電子が一つで、化学的に活性の強い金属であり、熱により内殻電子が外殻軌道に飛び移り易い。また、これら金属単体、そのフッ化物は、融点が比較的低く(Li:180℃、Na:98℃、K:64℃、LiF:460℃)加熱すると容易に溶融して液体となり、例えば、500℃以上に加熱すると、分子の熱振動により微粒子となって飛び出し前記反応空間に充満する。 The electromagnetic wave amplifying material 77 is at least one of a simple substance of alkali metal (lithium (7Li lithium 7), sodium (Na), potassium (K), or a fluoride of elemental alkali metal (LiF, NaF, KF) instead. The electromagnetic wave amplifying material 77 is a metal having one outermost shell electron and is chemically active, and the inner shell electron easily jumps to the outer shell orbital due to heat. Elemental metals and their fluorides have relatively low melting points (Li: 180 ° C., Na: 98 ° C., K: 64 ° C., LiF: 460 ° C.) and easily melt into liquids when heated to, for example, 500 ° C. or higher. When heated, it becomes fine particles due to the thermal vibration of the molecules and pops out to fill the reaction space.

一方、前記反応炉70を500℃以上に加熱すると、反応炉壁をなす金属は、図2のような結晶格子80をなし、各元素81からなる格子構造は、その格子特有の振動数を有する電磁波を放射する。この電磁波は、反応炉内での空洞放射であり、図3に示すように、温度に応じて強度の異なる電磁波が放射される。すなわち、温度が高くなる程電磁波の強度(光子数)は大きくなり、そのピークは振動数の大きい方法(右)にずれて行き、ある温度における電磁波の振動数は小さいものから大きいものまで無数にあり、そのエネルギーhν(h:ブランク定数;ν:振動数)は、連続的でなく、量子化されて飛び飛びに変化する。 On the other hand, when the reactor 70 is heated to 500 ° C. or higher, the metal forming the reactor wall forms a crystal lattice 80 as shown in FIG. 2, and the lattice structure composed of each element 81 has a frequency peculiar to the lattice. It emits electromagnetic waves. This electromagnetic wave is cavity radiation in the reactor, and as shown in FIG. 3, electromagnetic waves having different intensities depending on the temperature are emitted. That is, the higher the temperature, the higher the intensity of the electromagnetic wave (photon number), the peak shifts to the method with the higher frequency (right), and the frequency of the electromagnetic wave at a certain temperature is innumerable from low to high. Yes, its energy hν (h: blank constant; ν: frequency) is not continuous, but is quantized and changes in a discrete manner.

増幅材としてナトリウム(Na)を使用した場合、Naは100℃以下で溶融液化し、図4に示すように、その表面張力により放射板75の表面に沿って、やや上昇し、300〜400℃になると、熱振動が激しくなり微粒子として反応空間74内に飛び出す。この微粒子は、炉壁からの電磁波により図5に示すように外殻電子eがその軌道から弾き出されて、いわゆる電離作用が起こり、Na+イオンと電子eが混在したプラズマ雰囲気ができる。この現象はLi又はKでも起こる。これと同時にプラズマ雰囲気中の金属ナトリウムイオンは励起されて第2電磁波を放射し、この第2電磁波は、図5に示すように、炉壁の炭素膜で反射してレーザ生成作用により増幅される(エネルギーと光子数が増加している。)。この増幅された第2電磁波が、反応炉内に供給されるヘリウム4に素粒子作用を行って、核子を原子核から分離させる。なお、前記反応炉70の上半部が大気に開放され空冷状態を作っているのは、反応空間74の素粒子反応としてレーザ媒質の相転移を起こすためである。例えば、300〜400℃に保持する必要があり、反応炉下部で増幅材の微粒子を多数発生させるためには、その部分は500℃以上に維持するのが好ましく、増幅材の微粒子発生部(炉底部)の温度と反応空間の温度に差を設ける必要がある。 When sodium (Na) is used as the amplifying material, Na melts and liquefies at 100 ° C. or lower, and as shown in FIG. 4, it rises slightly along the surface of the radiation plate 75 due to its surface tension, and reaches 300 to 400 ° C. When it becomes, the thermal vibration becomes violent and it jumps out into the reaction space 74 as fine particles. As shown in FIG. 5, the outer shell electrons e are ejected from the orbits of these fine particles by electromagnetic waves from the furnace wall, so-called ionization action occurs, and a plasma atmosphere in which Na + ions and electrons e are mixed is formed. This phenomenon also occurs in Li or K. At the same time, the metallic sodium ions in the plasma atmosphere are excited to emit a second electromagnetic wave, and this second electromagnetic wave is reflected by the carbon film on the furnace wall and amplified by the laser generation action, as shown in FIG. (Energy and photon count are increasing.). This amplified second electromagnetic wave acts as an elementary particle on helium-4 supplied into the reactor to separate the nucleon from the atomic nucleus. The reason why the upper half of the reaction furnace 70 is opened to the atmosphere to create an air-cooled state is that a phase transition of the laser medium occurs as an elementary particle reaction in the reaction space 74. For example, it is necessary to keep the temperature at 300 to 400 ° C., and in order to generate a large number of fine particles of the amplifying material in the lower part of the reactor, it is preferable to maintain that part at 500 ° C. It is necessary to make a difference between the temperature of the bottom) and the temperature of the reaction space.

前述したように、素粒子反応により原子核から陽子又は中性子(核子)を分離させるためには、原子核内の核力以上(結合エネルギーに対応)のエネルギーを核子に作用させる必要があるが、第1電磁波の発生及び第2電磁波の発生において、図3に示すように、空洞放射において周波数(振動)の高い電磁波は存在し、しかもエネルギーと時間間隔の積はブランク定数以上である(△E△t≧h)という不確定性原理に基づけば、瞬間的、例えば10億分の1秒の時間間隔においては、エネルギー保存の原則は破られ極端に大きなエネルギーがある確率で生じている。例えば、ヘリウム4の原子核の核子間の核力は6〜7MeVであるが、このエネルギーは振動数1020以上のガンマー(γ)線であれば確保でき、第2増幅電磁波が瞬間的にこの電磁エネルギーを核力の源である素粒子のグルーオンの波動に作用せしめ、瞬間的に核力を遮断し、陽子又は中性子を原子核から分離する。原子核内の陽子、中性子はそれぞれの軌道上を振動しながら移動しており、それら相互の離間距離は増減しており、特に、熱エネルギーが加えられたときには振動が激しくなり、それぞれ質量X速度(mv)の運動エネルギーが与えられる。2つの陽子間の核力が遮断されたときは、図6に示すようにそれらの間に電磁反発力により陽子Pが勢いよく飛び出すが、飛び出た陽子は、反応空間内の電子と結合して水素原子となって一定の直径を持つ。これに対し、核力(陽子と中性子間、中性子と中性子間)の遮断により中性子が原子核から分離した時には、熱振動による運動エネルギーは持っているが、電磁力は作用しないので、陽子が分離する場合に比較して分離力が小さく、殆どの場合に、電磁力が作用しないので反応炉の炉壁に捕捉されてしまう。すなわち、反応空間内では、ある確率で生じるエネルギー保存の法則に従わない増大エネルギーの発生により核子の分離が起こり、これにより瞬間的に吸熱が生じ、これとともに大エネルギー発生に伴って瞬間的に発熱が生じている。温度低下は温度計で数回確認されており(2〜3秒間に加熱中であっても250℃以下に下降する)、温度上昇は、増幅材としての径1mmのステンレス粉が完全に昇華してしまって全く残っていない状態が観察されており、このことから、3000℃以上の温度上昇が存在したと思われ、また、炉壁のアルモファス組織が観察されることからすると極端に高い温度から極端に低い温度に短時間で急降下しているものと思われる。 As mentioned above, in order to separate protons or neutrons (nucleons) from the nucleus by the elementary particle reaction, it is necessary to apply energy equal to or greater than the nuclear force in the nucleus (corresponding to the binding energy) to the nucleons. In the generation of the electromagnetic wave and the generation of the second electromagnetic wave, as shown in FIG. 3, an electromagnetic wave having a high frequency (vibration) exists in the cavity radiation, and the product of energy and time interval is equal to or more than the blank constant (ΔE Δt). Based on the uncertainty principle of ≧ h), the principle of energy conservation is violated and an extremely large amount of energy is generated with a probability of being generated instantaneously, for example, at a time interval of one billionth of a second. For example, the nuclear force between the nucleons of the atomic nucleus of helium 4 is 6 to 7 MeV, but this energy can be secured if it is a gamma (γ) ray with a frequency of 10 20 or more, and the second amplified electromagnetic wave momentarily becomes this electromagnetic force. It acts energy on the wave motion of the glueon of elementary particles, which is the source of nuclear force, momentarily shuts off the nuclear force, and separates protons or neutrons from the nucleus. Protons and neutrons in the nucleus are moving while vibrating in their respective orbits, and the distance between them is increasing or decreasing. In particular, when thermal energy is applied, the vibration becomes intense, and each mass X velocity ( The kinetic energy of mv) is given. When the nuclear force between two protons is cut off, the proton P pops out vigorously due to the electromagnetic repulsive force between them as shown in FIG. 6, but the popped out protons combine with the electrons in the reaction space. It becomes a hydrogen atom and has a certain diameter. On the other hand, when neutrons are separated from the atomic nucleus by blocking nuclear forces (between protons and neutrons, between neutrons and neutrons), they have kinetic energy due to thermal vibration, but electromagnetic force does not act, so protons separate. The separation force is smaller than in the case, and in most cases, the electromagnetic force does not act, so that the separation force is trapped in the furnace wall of the reactor. That is, in the reaction space, nucleons are separated due to the generation of increased energy that does not obey the law of energy conservation that occurs with a certain probability, which causes endothermic heat, and at the same time, heat is generated instantaneously with the generation of large energy. Is occurring. The temperature drop has been confirmed several times with a thermometer (it drops to 250 ° C or less even during heating for 2 to 3 seconds), and the temperature rise completely sublimates the stainless steel powder with a diameter of 1 mm as an amplification material. It has been observed that there is no residue left at all, which suggests that there was a temperature rise of 3000 ° C or higher, and that the almofus structure of the furnace wall was observed from an extremely high temperature. It seems that it has plummeted to an extremely low temperature in a short time.

具体的に、図7を参照して反応炉70内に供給されたヘリウム原子核90について説明する。原子核90には、2個の陽子Pと2個の中性子nが存在し、第2電磁波の増幅エネルギーにより高エネルギー(6〜7Mev以上)が生じ、これにより1個の陽子Pが反応空間74に飛び出し1個の電子と結合して水素原子となるが、この陽子Pは他の陽子Pからの電磁力による反発力で大きな運動エネルギーを有して飛び出しても電子との結合により一定の体積を有してエネルギーは小さくなるし、例え炉壁70aに衝突しても、壁内のステン原子の電磁力により反発され捕捉されることがない。しかしながら、1つの中性子nが核力を遮断された時の運動エネルギー(mv)は、電磁場の反発力がないので陽子より小さく、空間に飛散している微粒子(Na、e等)と衝突してエネルギーを失ってβ崩壊により陽子となるか、炉壁70a内に捕捉されるかである。このように、陽子の原子核からの分離と高エネルギーの発生により瞬間的な放熱と吸熱が繰り返される。このように陽子と中性子が飛び出した場合には、水素ガス(H),重水ガス(D)が生じるが、中性子1個が飛び出す確率もあり、この場合には、ヘリウム4ガス、ヘリウム3ガスの混合ガスとなり、実験によれば、Hガス、ヘリウム3ガス、ヘリウム4ガスの均等の混合ガスとなる場合が多かった。この混合ガスを遠心分離によって分離してヘリウム3を得る。 Specifically, the helium nucleus 90 supplied into the reactor 70 will be described with reference to FIG. 7. Two protons P and two neutrons n exist in the nucleus 90, and high energy (6 to 7 Mev or more) is generated by the amplification energy of the second electromagnetic force, so that one proton P enters the reaction space 74. It combines with one electron to become a hydrogen atom, but this proton P has a large kinetic energy due to the repulsive force due to the electromagnetic force from other protons P, and even if it jumps out, it has a certain volume due to the bond with the electron. The energy is reduced, and even if it collides with the furnace wall 70a, it is repelled by the electromagnetic force of the stainless atoms in the wall and is not captured. However, the kinetic energy (mv) when one neutron n is blocked from nuclear force is smaller than the proton because there is no repulsive force of the electromagnetic field, and collides with fine particles (Na + , e −, etc.) scattered in the space. Then, it loses energy and becomes a proton by β decay, or it is trapped in the furnace wall 70a. In this way, instantaneous heat dissipation and endotherm are repeated due to the separation of protons from the atomic nucleus and the generation of high energy. When protons and neutrons fly out in this way, hydrogen gas (H 2 ) and deuterium gas (D 2 ) are generated, but there is also a possibility that one neutron will fly out. In this case, helium-4 gas and helium-3 becomes a mixed gas of a gas, according to the experiment, in many cases as the H 2 gas, helium 3 gas, a mixed gas of equivalency of helium 4 gas. This mixed gas is separated by centrifugation to obtain helium-3.

本発明においては、発熱と吸熱とのバランスを取りつつ反応を継続させているので、安全に反応を継続できる。すなわち、陽子の分離作用のみであれば、著しい吸熱反応になり、直ちに絶対零度まで炉温が下降して反応が継続しないし、発熱反応のみでは、炉壁が直ちに溶融してしまい反応を継続させることが出来ない。本発明では吸熱作用の確率と発熱作用の確率がほぼバランスし、僅かに吸熱作用が上回るように調整されており、これにより安全に反応が続けられ、炉外に中性子が飛び出していく危険性も少なく、反応炉70の近傍に常時中性子測定器を設置して測定したが、測定器が顕著に中性子を検出することはなかった。 In the present invention, since the reaction is continued while balancing heat generation and endothermic, the reaction can be safely continued. That is, if only the proton separation action is performed, a remarkable endothermic reaction occurs, the furnace temperature immediately drops to absolute zero and the reaction does not continue, and if only the exothermic reaction is performed, the furnace wall immediately melts and the reaction continues. I can't. In the present invention, the probability of endothermic action and the probability of exothermic action are almost balanced and adjusted so that the endothermic action is slightly exceeded, so that the reaction can be continued safely and there is a risk that neutrons will fly out of the furnace. There were few, and a neutron measuring instrument was always installed in the vicinity of the reactor 70 for measurement, but the measuring instrument did not detect neutrons remarkably.

以上は縦形の炉について説明したが、図8に示すように、横形の反応炉100についても同様の反応を起こすことが出来る。前記反応炉100は、横形のステンレス又は鉄からなる円筒体をなす本体101を有し、この本体101の内壁には黒鉛膜102が塗布されている。本体101の左端部には、気体供給管103が、その右端部には水素排出管104が形成されている。前記本体101の中心軸方向に左側から加熱管105が本体101の中央近傍まで伸びており、この加熱管105はステンレス製(SUS304)である。この加熱管105内には内部加熱装置としての電熱ヒータ106が収納され、本体101の内部を加熱するようになっている。一方、本体101の左半分外側壁は外部加熱ヒータとしての面状ヒータ107で被覆され、本体101の右半分は外気に露出され、空冷されるようになっており、反応空間107を形成している。前記本体101の右半分の下面には増幅材収納体108が収納され、この中に増幅材である金属リチウム、ナトリウム等が収納されている。このように、内外部の両方のヒータ106、107によって加熱すれば、増幅材の微粒子が十分に飛び出して反応空間108を満たし、空冷されている反応空間で確実に相転移を起こすことが可能となる。 Although the vertical type furnace has been described above, as shown in FIG. 8, the same reaction can be caused in the horizontal type reactor 100. The reactor 100 has a main body 101 formed of a horizontal stainless steel or iron cylindrical body, and a graphite film 102 is coated on the inner wall of the main body 101. A gas supply pipe 103 is formed at the left end of the main body 101, and a hydrogen discharge pipe 104 is formed at the right end thereof. A heating tube 105 extends from the left side in the central axis direction of the main body 101 to the vicinity of the center of the main body 101, and the heating tube 105 is made of stainless steel (SUS304). An electric heater 106 as an internal heating device is housed in the heating tube 105 to heat the inside of the main body 101. On the other hand, the outer wall of the left half of the main body 101 is covered with a planar heater 107 as an external heater, and the right half of the main body 101 is exposed to the outside air and air-cooled to form a reaction space 107. There is. An amplification material storage body 108 is housed on the lower surface of the right half of the main body 101, and metallic lithium, sodium, and the like, which are amplification materials, are housed therein. In this way, if heated by both the internal and external heaters 106 and 107, the fine particles of the amplifying material sufficiently pop out to fill the reaction space 108, and it is possible to reliably cause a phase transition in the air-cooled reaction space. Become.

本発明によれば、核融合燃料のヘリウム3が簡単で安価に手に入るので、新エネルギーの普及に寄与できる。 According to the present invention, the fusion fuel helium-3 can be easily and inexpensively obtained, which can contribute to the spread of new energy.

1、70…反応炉
71…黒鉛膜
72…ヒータ
74…反応空間
76…放射補助体
77…電磁波増幅材
1, 70 ... Reaction furnace 71 ... Graphite film 72 ... Heater 74 ... Reaction space 76 ... Radiation aid 77 ... Electromagnetic wave amplifier

Claims (2)

密閉された鉄又はステンレスからなる反応筒炉内に、この反応炉壁から放射される振動数の異なる複数の第1電磁波による電磁波エネルギーを増幅させるための増幅材としてアルカリ金属のリチウム(Li)、ナトリウム(Na)、カリウム(K)及びこれらのフッ化物であるフッ化リチウム(LiF)、フッ化ナトリウム(NaF),フッ化カリウム(KF)のうち、少なくとも一種を収納し、前記反応炉を前記増幅材の融点以上に加熱してそれを溶融微粒子化して反応炉内に反応空間を形成し、前記第1電磁波を反応空間の微粒子に照射してエネルギーが増幅された第2電磁波を放射せしめ、この第2電磁波と炉内に供給されるヘリウム4ガスと相互作用させて、水素ガス(H)、ヘリウム3ガス及びヘリウム4ガスからなる混合ガスを採集し、この混合ガスからヘリウム3ガスを分離させるようにしたヘリウム3の製造方法。 Lithium (Li), an alkali metal, is used as an amplifying material for amplifying electromagnetic energy generated by a plurality of first electromagnetic waves having different frequencies radiated from the reactor wall in a sealed iron or stainless steel reaction cylinder furnace. At least one of sodium (Na), potassium (K), lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF), which are fluorides thereof, is stored, and the reaction furnace is charged. The particles are heated to a temperature higher than the melting point of the amplifying material and melted into fine particles to form a reaction space in the reaction furnace, and the fine particles in the reaction space are irradiated with the first electromagnetic wave to emit a second electromagnetic wave whose energy is amplified. By interacting with this second electromagnetic wave and the helium 4 gas supplied into the furnace, a mixed gas consisting of hydrogen gas (H 2 ), helium 3 gas and helium 4 gas is collected, and helium 3 gas is extracted from this mixed gas. A method for producing helium 3 to be separated. 前記反応空間を300〜400℃に維持して反応空間内の微粒子を相転移させるようにした請求項1記載のヘリウム3の製造方法。

The method for producing helium-3 according to claim 1, wherein the reaction space is maintained at 300 to 400 ° C. to cause a phase transition of fine particles in the reaction space.

JP2019114408A 2019-06-20 2019-06-20 Production method of helium-3 Pending JP2021001750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114408A JP2021001750A (en) 2019-06-20 2019-06-20 Production method of helium-3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114408A JP2021001750A (en) 2019-06-20 2019-06-20 Production method of helium-3

Publications (1)

Publication Number Publication Date
JP2021001750A true JP2021001750A (en) 2021-01-07

Family

ID=73994969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114408A Pending JP2021001750A (en) 2019-06-20 2019-06-20 Production method of helium-3

Country Status (1)

Country Link
JP (1) JP2021001750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219977A1 (en) * 2019-03-26 2022-07-14 Yasuo Ishikawa Method of and apparatus for plasma reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219977A1 (en) * 2019-03-26 2022-07-14 Yasuo Ishikawa Method of and apparatus for plasma reaction

Similar Documents

Publication Publication Date Title
US11495362B2 (en) Methods, devices and systems for fusion reactions
JP2020163377A (en) Plasma reaction method and plasma reactor
US20240308846A1 (en) Method of and apparatus for plasma reaction
US20230352196A1 (en) Method of and apparatus for plasma reaction
Andersson et al. Superfluid ultra-dense deuterium D (− 1) at room temperature
WO2012011499A1 (en) Nuclear transformation method and nuclear transformation device
JP2013206726A (en) Composite target, neutron generation method using composite target, and neutron generator using composite target
Nedorezov et al. Nuclear photonics: results and prospects
JP6218174B2 (en) Composite type target, neutron generation method using composite type target, and neutron generator using composite type target
JP2021001750A (en) Production method of helium-3
McCrory et al. Inertially confined fusion
US20210225531A1 (en) Method and apparatus for initiating and maintaining nuclear reactions
WO2001039197A2 (en) Cavitation nuclear reactor
Gorlova et al. On the possibility of generating low-energy positrons on accelerators of electrons with a beam energy of a few MeV and on terawatt lasers
Chintalwad et al. Simulation studies of γ-ray radiation in laser-plasma interactions with structured targets
JP2022168898A (en) Plasma reaction method and plasma reaction apparatus
Doeppner et al. Demonstration of improved performance of fully-integrated deuterium-tritium capsule implosion in depleted uranium hohlraum on the NIF
JP2006244863A (en) High-efficiency high-speed ion / electron generator
Stringham Helium Measurements From Target Foils, LANL and PNNL, 1994
CN222636864U (en) Laser fusion system
Kawamura et al. Potential of Kα radiation by energetic ionic particles for high energy density plasma diagnostics
SU743464A1 (en) Impulsed neutron source
Chutko et al. Observation of thermonuclear neutrons emitted from dense femtosecond plasma at moderate intensities
JP2018036275A (en) Fusion reaction method and fusion reaction apparatus
Heeter et al. FY14 LLNL OMEGA Experimental Programs