[go: up one dir, main page]

JP2020183814A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2020183814A
JP2020183814A JP2019086509A JP2019086509A JP2020183814A JP 2020183814 A JP2020183814 A JP 2020183814A JP 2019086509 A JP2019086509 A JP 2019086509A JP 2019086509 A JP2019086509 A JP 2019086509A JP 2020183814 A JP2020183814 A JP 2020183814A
Authority
JP
Japan
Prior art keywords
passage portion
vehicle
cooling device
gas phase
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019086509A
Other languages
Japanese (ja)
Inventor
正人 河内
Masato Kawachi
正人 河内
慎太郎 内海
Shintaro Utsumi
慎太郎 内海
鈴木 雄介
Yusuke Suzuki
雄介 鈴木
功嗣 三浦
Koji Miura
功嗣 三浦
義則 毅
Takeshi Yoshinori
毅 義則
康光 大見
Yasumitsu Omi
康光 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2019086509A priority Critical patent/JP2020183814A/en
Priority to PCT/JP2020/015944 priority patent/WO2020218007A1/en
Publication of JP2020183814A publication Critical patent/JP2020183814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

To provide a cooling device capable of suppressing the residence of liquid-phase heat medium in a gas-phase passage part.SOLUTION: A cooling device includes a vaporization part for vaporizing a heat medium with heat exchange between a cooled object and the heat medium to cool the cooled object, a condensation part arranged above the vaporization part for condensing the heat medium with heat exchange between the heat medium and external fluid to release the heat of the heat medium to the external fluid, a gas-phase passage part for guiding the gas-phase heat medium from the vaporization part to the condensation part, and a liquid-phase passage part for guiding the liquid-phase heat medium from the condensation part to the vaporization part, the gas-phase passage part being provided with an on-off valve.SELECTED DRAWING: Figure 2

Description

本発明は、冷却装置に関する。 The present invention relates to a cooling device.

特許文献1には、作動流体である熱媒体の沸騰及び凝縮作用によって、冷却対象物である電池を冷却する冷却装置としての電池温度調節装置が開示されている。この電池温度調節装置は、凝縮部としての熱媒体冷却部と、蒸発部としての温度調節部とを備えている。熱媒体冷却部は、温度調節部よりも高い位置に配置されており、温度調節部の下部に液相の熱媒体が滞留される。そして、熱媒体冷却部と温度調節部とが配管部材からなる液相通路部と気相通路部とによって環状に接続されており、電池温度調節装置は、熱媒体冷却部と温度調節部との間で作動流体である熱媒体が循環するように構成されている。また、温度調節部は、組電池を構成する複数の電池セルの側面に接するように配置されており、熱媒体の蒸発によって組電池を冷却する。また、温度調節部は、複数の電池セルの配列方向に延びるように形成されている。熱媒体冷却部からの液相の熱媒体は、液相通路部を通って温度調節部のうち電池セルの配列方向の一端から温度調節部内へ流入する。そして、温度調節部内の液相の熱媒体は、電池セルの配列方向の一端から他端へ流れる間に蒸発し、その他端から気相の熱媒体が気相通路部に流出し、気相通路部を通って熱媒体冷却部へと移動する。 Patent Document 1 discloses a battery temperature control device as a cooling device for cooling a battery, which is a cooling object, by boiling and condensing a heat medium as a working fluid. This battery temperature control device includes a heat medium cooling unit as a condensing unit and a temperature control unit as an evaporation unit. The heat medium cooling unit is arranged at a position higher than the temperature control unit, and the liquid phase heat medium is retained in the lower part of the temperature control unit. The heat medium cooling unit and the temperature control unit are cyclically connected by a liquid phase passage unit and a gas phase passage unit made of a piping member, and the battery temperature control device is formed by connecting the heat medium cooling unit and the temperature control unit. The heat medium, which is the working fluid, circulates between them. Further, the temperature control unit is arranged so as to be in contact with the side surfaces of a plurality of battery cells constituting the assembled battery, and cools the assembled battery by evaporation of the heat medium. Further, the temperature control unit is formed so as to extend in the arrangement direction of the plurality of battery cells. The liquid phase heat medium from the heat medium cooling unit flows into the temperature control unit from one end of the temperature control unit in the arrangement direction of the battery cells through the liquid phase passage unit. Then, the liquid phase heat medium in the temperature control unit evaporates while flowing from one end to the other end in the arrangement direction of the battery cell, and the gas phase heat medium flows out from the other end to the gas phase passage portion, and the gas phase passage. It moves to the heat medium cooling part through the part.

特許第5942943号公報Japanese Patent No. 5942943

特許文献1に開示された電池温度調節装置では、気相通路部が液相通路部よりも高い位置を通っているが、電池温度調節装置が搭載された車両に、登坂から降坂、または、降坂から登坂、が連続して起きると、電池温度調節装置の搭載向きによっては、液相の熱媒体が気相通路部に流れ込み、気相通路部内に液相の熱媒体が溜まってしまう可能性がある。このように、気相通路部内に液相の熱媒体が溜まってしまうと、温度調節部から気相通路部を通って熱媒体冷却部に気相の熱媒体が移動し難くなるおそれがある。 In the battery temperature control device disclosed in Patent Document 1, the gas phase passage portion passes through a position higher than the liquid phase passage portion, but the vehicle equipped with the battery temperature control device is subjected to climbing to descending or descending. When descending and climbing occur continuously, the liquid phase heat medium may flow into the gas phase passage and the liquid phase heat medium may accumulate in the gas phase passage depending on the mounting orientation of the battery temperature controller. There is sex. If the liquid phase heat medium is accumulated in the gas phase passage portion in this way, it may be difficult for the gas phase heat medium to move from the temperature control portion to the heat medium cooling portion through the gas phase passage portion.

本発明は、上記課題に鑑みてなされたものであって、その目的は、気相通路部内に液相の熱媒体が溜まってしまうのを抑制することができる冷却装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a cooling device capable of suppressing accumulation of a liquid phase heat medium in a gas phase passage portion.

上述した課題を解決し、目的を達成するために、本発明に係る冷却装置は、冷却対象物と熱媒体との熱交換により前記熱媒体を蒸発させることによって、前記冷却対象物を冷却する蒸発部と、前記蒸発部よりも上方に配置されており、前記熱媒体と外部流体との熱交換により前記熱媒体を凝縮させることによって、前記熱媒体の熱を前記外部流体に放熱する凝縮部と、前記蒸発部から前記凝縮部に気相の前記熱媒体を導くための気相通路部と、前記凝縮部から前記蒸発部に液相の前記熱媒体を導くための液相通路部と、を備えた冷却装置であって、前記気相通路部に開閉弁を設けたことを特徴とするものである。 In order to solve the above-mentioned problems and achieve the object, the cooling device according to the present invention cools the cooling object by evaporating the heat medium by heat exchange between the cooling object and the heat medium. A condensing section that is arranged above the evaporation section and that dissipates the heat of the heat medium to the external fluid by condensing the heat medium by heat exchange between the heat medium and the external fluid. A gas phase passage portion for guiding the heat medium of the gas phase from the evaporation portion to the condensing portion, and a liquid phase passage portion for guiding the heat medium of the liquid phase from the condensing portion to the evaporation portion. It is a cooling device provided, and is characterized in that an on-off valve is provided in the gas phase passage portion.

また、上記において、前記開閉弁は、所定方向の一方側である前記凝縮部側が、前記所定方向の他方側に対して高い位置となるように、前記凝縮部側と前記他方側とが上下方向に相対移動したときに、開度を下げるようにしてもよい。 Further, in the above, in the on-off valve, the condensing portion side and the other side are in the vertical direction so that the condensing portion side, which is one side in the predetermined direction, is at a higher position with respect to the other side in the predetermined direction. The opening degree may be lowered when the relative movement is made to.

これにより、凝縮部側が他方側に対して高い位置となるように、凝縮部側と他方側とが上下方向に相対移動したときに、開閉弁によって気相通路部に液相の熱媒体を浸入し難くすることができる。 As a result, when the condensing portion side and the other side move relative to each other in the vertical direction so that the condensing portion side is higher than the other side, the on-off valve allows the liquid phase heat medium to enter the gas phase passage portion. It can be difficult to do.

また、上記において、前記気相通路部として、第1気相通路部と、前記第1気相通路部よりも少なくとも一部が上方に位置するように配置された第2気相通路部と、を備えており、前記開閉弁は前記第2気相通路部に設けられていてもよい。 Further, in the above, as the gas phase passage portion, the first gas phase passage portion and the second gas phase passage portion arranged so that at least a part thereof is located above the first gas phase passage portion. The on-off valve may be provided in the second gas phase passage portion.

これにより、第2気相通路は、少なくとも一部が第1気相通路よりも上方に位置するように配置されているため、液相の熱媒体が浸入し難く、さらに、開閉弁を設けることによって、液相の熱媒体が浸入し難くなる。よって、第2気相通路を利用して気相の熱媒体を凝縮部に移動させ易くすることができる。 As a result, since at least a part of the second gas phase passage is arranged above the first gas phase passage, it is difficult for the heat medium of the liquid phase to enter, and an on-off valve is provided. This makes it difficult for the heat medium of the liquid phase to penetrate. Therefore, it is possible to easily move the heat medium of the gas phase to the condensing portion by using the second gas phase passage.

また、上記において、前記開閉弁は、前記凝縮部側と前記蒸発部側とが上下方向に相対移動するときに、前記第2気相通路部を移動する移動体と、前記移動体の移動を一定範囲内に規制する規制部と、を有してもよい。 Further, in the above, the on-off valve moves a moving body that moves in the second vapor phase passage portion and the moving body when the condensing portion side and the evaporating portion side move relative to each other in the vertical direction. It may have a regulatory unit that regulates within a certain range.

これにより、簡易な構成によって開閉弁を設けることができる。 As a result, the on-off valve can be provided with a simple configuration.

また、上記において、前記凝縮部側と前記蒸発部側との相対移動を判定する判定手段を有しており、前記凝縮部側が前記蒸発部側に対して高い位置となるように、前記凝縮部側と前記蒸発部側とが上下方向に相対移動したと、前記判定手段によって判定されたときに、前記開閉弁の開度を下げるようにしてもよい。 Further, in the above, the condensing portion has a determination means for determining the relative movement between the condensing portion side and the evaporating portion side, and the condensing portion is located at a higher position with respect to the evaporating portion side. When it is determined by the determination means that the side and the evaporation portion side have moved relative to each other in the vertical direction, the opening degree of the on-off valve may be lowered.

これにより、開閉弁の開度の操作を容易に行うことができる。 Thereby, the opening degree of the on-off valve can be easily operated.

また、上記において、前記気相通路部として、第1気相通路部と、前記第1気相通路部よりも少なくとも一部が上方に位置するように配置された第2気相通路部と、前記第1気相通路部と前記第2気相通路部とを上下方向に接続するバイパス通路部と、を備えており、前記開閉弁は前記バイパス通路部に設けられており、前記凝縮部側と前記蒸発部側との相対移動を判定する判定手段を有しており、前記凝縮部側が前記蒸発部側に対して高い位置となるように、前記凝縮部側と前記蒸発部側とが上下方向に相対移動した後、前記凝縮部側が前記蒸発部側に対して低い位置となるように、前記凝縮部側と前記蒸発部側とが上下方向に相対移動したと、前記判定手段によって判定されたときに、前記開閉弁の開度を上げるようにしてもよい。 Further, in the above, as the vapor phase passage portion, the first vapor phase passage portion and the second vapor phase passage portion arranged so that at least a part thereof is located above the first vapor phase passage portion. A bypass passage portion for connecting the first vapor phase passage portion and the second vapor phase passage portion in the vertical direction is provided, and the on-off valve is provided in the bypass passage portion and is provided on the condensing portion side. The condensing portion side and the evaporating portion side are moved up and down so that the condensing portion side is at a higher position with respect to the evaporating portion side. After the relative movement in the direction, it is determined by the determination means that the condensing portion side and the evaporating portion side have moved relative to each other in the vertical direction so that the condensing portion side is at a lower position than the evaporating portion side. At that time, the opening degree of the on-off valve may be increased.

これにより、第2気相通路に浸入した液相の熱媒体を、バイパス通路部を通して第1気相通路に流出させることができる。よって、第2気相通路を利用して、気相の熱媒体を凝縮部に移動させ易くすることができる。 As a result, the heat medium of the liquid phase that has entered the second gas phase passage can flow out to the first gas phase passage through the bypass passage portion. Therefore, it is possible to easily move the heat medium of the gas phase to the condensing portion by using the second gas phase passage.

本発明に係る冷却装置は、登坂から降坂、または、降坂から登坂へ切り替わったときに、開閉弁によって気相通路部の開度を下げることによって、気相通路部に液相の熱媒体が浸入し難くすることができ、気相通路部内に液相の熱媒体が溜まってしまうのを抑制することができるという効果を奏する。 The cooling device according to the present invention uses an on-off valve to reduce the opening degree of the gas phase passage portion when switching from climbing to descending or descending to climbing, thereby causing a liquid phase heat medium in the gas phase passage portion. It is possible to prevent the infiltration of the liquid phase, and it is possible to suppress the accumulation of the heat medium of the liquid phase in the gas phase passage portion.

図1は、実施形態に係る冷却装置の概略構成を示した模式図である。FIG. 1 is a schematic view showing a schematic configuration of a cooling device according to an embodiment. 図2は、実施形態1に係る冷却装置の概略構成を示した斜視図である。FIG. 2 is a perspective view showing a schematic configuration of the cooling device according to the first embodiment. 図3は、蒸発器と熱伝導材と組電池との位置関係を示した図である。FIG. 3 is a diagram showing the positional relationship between the evaporator, the heat conductive material, and the assembled battery. 図4は、蒸発器の概略構成を示した分解斜視図である。FIG. 4 is an exploded perspective view showing a schematic configuration of the evaporator. 図5は、蒸発器内の作動流体流れと組電池との位置関係を模式的に示した斜視図である。FIG. 5 is a perspective view schematically showing the positional relationship between the working fluid flow in the evaporator and the assembled battery. 図6は、登坂時における冷却装置の姿勢を示した図である。FIG. 6 is a diagram showing the posture of the cooling device when climbing a slope. 図7は、降坂時における冷却装置の姿勢を示した図である。FIG. 7 is a diagram showing the posture of the cooling device when descending a slope. 図8は、実施形態2に係る冷却装置の概略構成を示した斜視図である。FIG. 8 is a perspective view showing a schematic configuration of the cooling device according to the second embodiment. 図9は、登坂時における冷却装置の姿勢を示した図である。FIG. 9 is a diagram showing the posture of the cooling device when climbing a slope. 図10は、降坂時における冷却装置の姿勢を示した図である。FIG. 10 is a diagram showing the posture of the cooling device when descending a slope. 図11は、所定の傾斜角度を超えた降坂時における冷却装置の姿勢を示した図である。FIG. 11 is a diagram showing the posture of the cooling device when descending a slope exceeding a predetermined inclination angle. 図12は、実施形態3に係る冷却装置の概略構成を示した斜視図である。FIG. 12 is a perspective view showing a schematic configuration of the cooling device according to the third embodiment. 図13は、登坂時におけるボール開閉弁の状態を示した図である。FIG. 13 is a diagram showing a state of the ball on-off valve when climbing a slope. 図14は、降坂時におけるボール開閉弁の状態を示した図である。FIG. 14 is a diagram showing a state of the ball on-off valve when descending a slope. 図15は、変形例に係る降坂時におけるボール開閉弁の状態を示した図である。FIG. 15 is a diagram showing a state of the ball on-off valve at the time of descending a slope according to a modified example. 図16は、図15のA−A断面図である。FIG. 16 is a cross-sectional view taken along the line AA of FIG.

(実施形態1)
以下に、本発明に係る冷却装置の実施形態1について説明する。なお、本実施形態により本発明が限定されるものではない。
(Embodiment 1)
The first embodiment of the cooling device according to the present invention will be described below. The present invention is not limited to the present embodiment.

図1は、実施形態1に係る冷却装置1の概略構成を示した模式図である。図1に示した実施形態1に係る冷却装置1は、車両に搭載された組電池5を冷却対象物として冷却することによって、組電池5の電池温度を調節する。冷却装置1を搭載する車両としては、組電池5を電源とする図示しない走行用電動モータによって走行可能な電気自動車、または、ハイブリッド自動車などが想定される。 FIG. 1 is a schematic view showing a schematic configuration of the cooling device 1 according to the first embodiment. The cooling device 1 according to the first embodiment shown in FIG. 1 adjusts the battery temperature of the assembled battery 5 by cooling the assembled battery 5 mounted on the vehicle as a cooling object. As the vehicle equipped with the cooling device 1, an electric vehicle or a hybrid vehicle that can be driven by a traveling electric motor (not shown) that uses the assembled battery 5 as a power source is assumed.

組電池5は、直方体形状の複数の電池セル51を有している。複数の電池セル51は、所定の配列方向A1に配列されている。したがって、組電池5全体もほぼ直方体形状を成している。そして、組電池5は、その組電池5の表面の一部分として、下方を向いた電池底面である電池下面5a(図3参照)と、車両上下方向A2に沿って拡がる電池側面5b(図3参照)とを有している。なお、本実施形態において、電池セル51の配列方向A1は、車両上下方向A2に交差する方向、厳密に言えば、車両上下方向A2に直交する方向になっている。 The assembled battery 5 has a plurality of battery cells 51 having a rectangular parallelepiped shape. The plurality of battery cells 51 are arranged in a predetermined arrangement direction A1. Therefore, the entire assembled battery 5 also has a substantially rectangular parallelepiped shape. Then, as a part of the surface of the assembled battery 5, the assembled battery 5 has a battery lower surface 5a (see FIG. 3) which is a downward-facing battery bottom surface and a battery side surface 5b (see FIG. 3) which extends along the vehicle vertical direction A2. ) And. In the present embodiment, the arrangement direction A1 of the battery cells 51 is a direction intersecting the vehicle vertical direction A2, strictly speaking, a direction orthogonal to the vehicle vertical direction A2.

冷却装置1は、作動流体が循環する作動流体回路10を備えている。作動流体回路10を循環する作動流体としては、蒸気圧縮式の冷凍サイクルで利用される冷媒(例えば、R134a、R1234yf)が採用される。図1に示すように、作動流体回路10は、蒸発器12と凝縮器14と第1ガス通路部16と第2ガス通路部17と液通路部18とを含んで構成されている。すなわち、作動流体回路10は、閉じられた環状の流体回路である。作動流体回路10の内部には、所定量の作動流体が封入され、その作動流体回路10の内部は、その作動流体で満たされている。 The cooling device 1 includes a working fluid circuit 10 in which a working fluid circulates. As the working fluid circulating in the working fluid circuit 10, a refrigerant (for example, R134a, R1234yf) used in a vapor compression refrigeration cycle is adopted. As shown in FIG. 1, the working fluid circuit 10 includes an evaporator 12, a condenser 14, a first gas passage portion 16, a second gas passage portion 17, and a liquid passage portion 18. That is, the working fluid circuit 10 is a closed annular fluid circuit. A predetermined amount of working fluid is sealed inside the working fluid circuit 10, and the inside of the working fluid circuit 10 is filled with the working fluid.

蒸発部である蒸発器12は、蒸発器12内を流通する作動流体と組電池5とを熱交換させる熱交換器である。すなわち、蒸発器12は、作動流体回路10での作動流体の循環に伴い、組電池5から液相の作動流体へ吸熱させ、それによって液相の作動流体を蒸発させる(沸騰させ気化させる)。本実施形態の蒸発器12は、組電池5の側方に熱伝導可能に連結されている。また、蒸発器12は、凝縮器14よりも下方に配置されている。これにより、液相の作動流体が、重力によって、蒸発器12を含む作動流体回路10の下部に溜まるようになっている。 The evaporator 12, which is an evaporation unit, is a heat exchanger that exchanges heat between the working fluid flowing in the evaporator 12 and the assembled battery 5. That is, the evaporator 12 absorbs heat from the assembled battery 5 to the working fluid of the liquid phase as the working fluid circulates in the working fluid circuit 10, thereby evaporating (boiling and vaporizing) the working fluid of the liquid phase. The evaporator 12 of the present embodiment is electrically conductively connected to the side of the assembled battery 5. Further, the evaporator 12 is arranged below the condenser 14. As a result, the working fluid of the liquid phase is accumulated in the lower part of the working fluid circuit 10 including the evaporator 12 by gravity.

凝縮部である凝縮器14は、蒸発器12にて蒸発した気相の作動流体を凝縮させる熱交換器である。凝縮器14は、車両に搭載された空調用の冷凍サイクル装置21の外部流体である冷媒との熱交換によって気相の作動流体から放熱させることにより、作動流体を凝縮させる。冷凍サイクル装置21は、車両用空調装置の一部を構成している。冷凍サイクル装置21は、冷媒が循環して流れる冷媒回路22を備えている。 The condenser 14, which is a condensing unit, is a heat exchanger that condenses the working fluid of the gas phase evaporated by the evaporator 12. The condenser 14 condenses the working fluid by dissipating heat from the working fluid of the gas phase by heat exchange with the refrigerant which is the external fluid of the refrigerating cycle device 21 for air conditioning mounted on the vehicle. The refrigeration cycle device 21 constitutes a part of the vehicle air conditioner. The refrigeration cycle device 21 includes a refrigerant circuit 22 in which the refrigerant circulates and flows.

凝縮器14は、冷媒回路22の冷媒が流れる冷媒側熱交換器36と、凝縮器14を流れる作動流体との熱交換が可能なように、冷媒側熱交換器36と熱的に接続されている。 The condenser 14 is thermally connected to the refrigerant side heat exchanger 36 so that heat exchange between the refrigerant side heat exchanger 36 through which the refrigerant of the refrigerant circuit 22 flows and the working fluid flowing through the condenser 14 is possible. There is.

冷媒回路22は、蒸気圧縮式の冷凍サイクルを構成している。具体的には、冷媒回路22は、圧縮機24、空調用凝縮器26、第1膨張弁28、及び、空調用蒸発器30などが、配管によって接続されることにより形成されている。冷凍サイクル装置21は、空調用凝縮器26に空気を送る送風機27と、車室内空間に向かう空気流れを形成する送風機31とを備えている。例えば、空調用凝縮器26及び送風機27は、車室外に設けられており、送風機27は空調用凝縮器26へ車室外の空気である外気を送る。 The refrigerant circuit 22 constitutes a vapor compression refrigeration cycle. Specifically, the refrigerant circuit 22 is formed by connecting a compressor 24, an air conditioning condenser 26, a first expansion valve 28, an air conditioning evaporator 30, and the like by piping. The refrigeration cycle device 21 includes a blower 27 that sends air to the air conditioning condenser 26, and a blower 31 that forms an air flow toward the vehicle interior space. For example, the air-conditioning condenser 26 and the blower 27 are provided outside the vehicle interior, and the blower 27 sends the outside air, which is the air outside the vehicle interior, to the air-conditioning condenser 26.

圧縮機24は、冷媒を圧縮して吐出する。空調用凝縮器26は、空気との熱交換によって圧縮機24から流出の冷媒を放熱させて凝縮させる放熱器である。第1膨張弁28は、空調用凝縮器26から流出の冷媒を減圧させる。空調用蒸発器30は、車室内空間に向かう空気との熱交換によって、第1膨張弁28から流出の冷媒を蒸発させるとともに、車室内空間に向かう空気を冷却する。 The compressor 24 compresses and discharges the refrigerant. The air-conditioning condenser 26 is a radiator that dissipates and condenses the refrigerant flowing out from the compressor 24 by heat exchange with air. The first expansion valve 28 depressurizes the refrigerant flowing out from the air conditioning condenser 26. The air-conditioning evaporator 30 evaporates the refrigerant flowing out from the first expansion valve 28 by exchanging heat with the air toward the vehicle interior space, and cools the air toward the vehicle interior space.

さらに、冷媒回路22は、第1膨張弁28及び空調用蒸発器30に対して、冷媒流れで並列に接続された第2膨張弁32及び冷媒側熱交換器36を有している。第2膨張弁32は、空調用凝縮器26から流出の冷媒を減圧させる。冷媒側熱交換器36は、凝縮器14を流れる作動流体との熱交換によって、冷媒を蒸発させる冷媒蒸発部である。 Further, the refrigerant circuit 22 has a second expansion valve 32 and a refrigerant side heat exchanger 36 connected in parallel to the first expansion valve 28 and the air conditioning evaporator 30 by a refrigerant flow. The second expansion valve 32 depressurizes the refrigerant flowing out from the air conditioning condenser 26. The refrigerant side heat exchanger 36 is a refrigerant evaporation unit that evaporates the refrigerant by heat exchange with the working fluid flowing through the condenser 14.

また、冷媒回路22は、冷媒側熱交換器36に向かって冷媒が流れる冷媒流路を開閉する開閉弁34を有している。開閉弁34が閉じられることによって、圧縮機24、空調用凝縮器26、第1膨張弁28、空調用蒸発器30の順に冷媒が流れる第1冷媒回路が形成される。開閉弁34を開くことによって、第1冷媒回路に加えて、圧縮機24、空調用凝縮器26、第2膨張弁32、冷媒側熱交換器36の順に冷媒が流れる第2冷媒回路が形成される。 Further, the refrigerant circuit 22 has an on-off valve 34 that opens and closes the refrigerant flow path through which the refrigerant flows toward the refrigerant side heat exchanger 36. By closing the on-off valve 34, a first refrigerant circuit is formed in which the refrigerant flows in the order of the compressor 24, the air conditioning condenser 26, the first expansion valve 28, and the air conditioning evaporator 30. By opening the on-off valve 34, in addition to the first refrigerant circuit, a second refrigerant circuit is formed in which the refrigerant flows in the order of the compressor 24, the air conditioning condenser 26, the second expansion valve 32, and the refrigerant side heat exchanger 36. To.

開閉弁34は、例えば、組電池5を冷却する必要性に応じて予め定められた条件にしたがって適宜開閉される。開閉弁34が開かれた場合には、少なくとも圧縮機24と送風機27とが作動する。これにより、凝縮器14で、冷媒側熱交換器36を流れる冷媒との熱交換によって、気相の作動流体が冷却されて凝縮する。 The on-off valve 34 is appropriately opened and closed according to predetermined conditions according to, for example, the need to cool the assembled battery 5. When the on-off valve 34 is opened, at least the compressor 24 and the blower 27 operate. As a result, in the condenser 14, the working fluid of the gas phase is cooled and condensed by heat exchange with the refrigerant flowing through the refrigerant side heat exchanger 36.

図2は、実施形態1に係る冷却装置1の概略構成を示した斜視図である。実施形態1に係る冷却装置1は、水平な路面上に車両が位置するときに、図2の車両前後方向A3が水平方向と平行になる。冷却装置1には、3つの蒸発器12が所定間隔をあけて車両前後方向A3に配列されている。なお、図2においては、組電池5の図示を省略しているが、1つの蒸発器12に対して車両前後方向A3の車両前側と車両後ろ側との少なくとも一方に組電池5が隣接して配置される。この際、電池セル51の配列方向A1は、車両前後方向A3と直交する。 FIG. 2 is a perspective view showing a schematic configuration of the cooling device 1 according to the first embodiment. In the cooling device 1 according to the first embodiment, when the vehicle is located on a horizontal road surface, the vehicle front-rear direction A3 in FIG. 2 is parallel to the horizontal direction. In the cooling device 1, three evaporators 12 are arranged in the vehicle front-rear direction A3 at predetermined intervals. Although the assembly battery 5 is not shown in FIG. 2, the assembly battery 5 is adjacent to at least one of the front side and the rear side of the vehicle in the vehicle front-rear direction A3 with respect to one evaporator 12. Be placed. At this time, the arrangement direction A1 of the battery cells 51 is orthogonal to the vehicle front-rear direction A3.

第1気相通路部である第1ガス通路部16は、蒸発器12にて蒸発した気相の作動流体を凝縮器14に導くものである。第1ガス通路部16は、例えば、配管部材などによって、車両前後方向A3に延在する第1管部161と、車両前後方向A3で車両後ろ側から車両前側に傾いて車両上下方向A2に延在する第2管部162とによって構成されている。図2に示すように、第1管部161には、3つの蒸発器12のそれぞれの流体出口部442が接続されている。なお、第1管部161の車両前後方向A3で車両後ろ側の端部は、車両前後方向A3で最も車両後ろ側に位置する蒸発器12の流体出口部442と接続されている。第1管部161の車両前後方向A3で車両前側の端部は、第2管部162の車両上下方向A2で下側の端部と接続されている。第2管部162の車両上下方向A2で上側の端部は、凝縮器14に接続されている。これにより、第1ガス通路部16の内部には、蒸発器12から凝縮器14へ向かって気相の作動流体を流すためのガス通路が形成されている。 The first gas passage portion 16, which is the first gas phase passage portion, guides the working fluid of the gas phase evaporated by the evaporator 12 to the condenser 14. The first gas passage portion 16 is inclined from the rear side of the vehicle to the front side of the vehicle in the front-rear direction A3 of the vehicle and extends in the vertical direction A2 of the vehicle with the first pipe portion 161 extending in the front-rear direction A3 of the vehicle by, for example, a piping member. It is composed of the existing second pipe portion 162. As shown in FIG. 2, the fluid outlet portion 442 of each of the three evaporators 12 is connected to the first pipe portion 161. The end of the first pipe portion 161 in the vehicle front-rear direction A3 on the vehicle rear side is connected to the fluid outlet portion 442 of the evaporator 12 located on the vehicle rearmost side in the vehicle front-rear direction A3. The front end of the vehicle in the vehicle front-rear direction A3 of the first pipe portion 161 is connected to the lower end of the second pipe portion 162 in the vehicle vertical direction A2. The upper end of the second pipe portion 162 in the vehicle vertical direction A2 is connected to the condenser 14. As a result, a gas passage for flowing the working fluid of the gas phase from the evaporator 12 to the condenser 14 is formed inside the first gas passage portion 16.

第2気相通路部である第2ガス通路部17は、少なくとも一部が第1ガス通路部16よりも上方に位置しており、蒸発器12にて蒸発した気相の作動流体を凝縮器14に導くものである。第2ガス通路部17は、例えば、配管部材などによって、車両上下方向A2に延在する第1管部171と、車両前後方向A3に延在する第2管部172と、車両前後方向A3で車両後ろ側から車両前側に傾いて車両上下方向A2に延在する第3管部173とによって構成されている。図2に示すように、第1管部171の車両上下方向A2で下側の端部は、車両前後方向A3で最も車両後ろ側に位置する蒸発器12の流体出口部442と接続されている。第1管部171の車両上下方向A2で上側の端部は、第2管部172の車両前後方向A3で車両後ろ側の端部と接続されている。第2管部172の車両前後方向A3で車両前側の端部は、第3管部173の車両上下方向A2で下側の端部と接続されている。第3管部173の車両上下方向A2で上側の端部は、第1ガス通路部16における第2管部162の車両上下方向A2で上側の端部と接続されている。これにより、第2ガス通路部17の内部には、蒸発器12から凝縮器14へ向かって気相の作動流体を流すためのガス通路が形成されている。 At least a part of the second gas passage portion 17, which is the second gas phase passage portion, is located above the first gas passage portion 16, and the working fluid of the gas phase evaporated by the evaporator 12 is condensed. It leads to 14. The second gas passage portion 17 includes a first pipe portion 171 extending in the vehicle vertical direction A2, a second pipe portion 172 extending in the vehicle front-rear direction A3, and a vehicle front-rear direction A3, for example, by means of piping members or the like. It is composed of a third pipe portion 173 that is inclined from the rear side of the vehicle to the front side of the vehicle and extends in the vertical direction A2 of the vehicle. As shown in FIG. 2, the lower end of the first pipe portion 171 in the vehicle vertical direction A2 is connected to the fluid outlet portion 442 of the evaporator 12 located at the rearmost side of the vehicle in the vehicle front-rear direction A3. .. The upper end of the first pipe 171 in the vehicle vertical direction A2 is connected to the rear end of the second pipe 172 in the vehicle front-rear direction A3. The front end of the vehicle in the vehicle front-rear direction A3 of the second pipe portion 172 is connected to the lower end of the third pipe portion 173 in the vehicle vertical direction A2. The upper end of the third pipe portion 173 in the vehicle vertical direction A2 is connected to the upper end portion of the second pipe portion 162 in the first gas passage portion 16 in the vehicle vertical direction A2. As a result, a gas passage for flowing the working fluid of the gas phase from the evaporator 12 to the condenser 14 is formed inside the second gas passage portion 17.

また、第2ガス通路部17における第2管部172の車両前後方向A3で車両後ろ側の端部近傍には、第2管部172の内部に形成されたガス通路部を開閉するための電磁開閉弁61が設けられている。電磁開閉弁61は、通常、全閉状態に保たれている。 Further, an electromagnetic wave for opening and closing the gas passage portion formed inside the second pipe portion 172 near the end portion on the rear side of the vehicle in the vehicle front-rear direction A3 of the second pipe portion 172 in the second gas passage portion 17. An on-off valve 61 is provided. The electromagnetic on-off valve 61 is normally kept in a fully closed state.

液相通路部である液通路部18は、凝縮器14にて凝縮した液相の作動流体を蒸発器12に導くものである。液通路部18は、例えば、配管部材などによって、車両上下方向A2に延在する第1管部181と、車両前後方向A3に延在する第2管部182とによって構成されている。図2に示すように、第1管部181の車両上下方向A2で上側の端部は、凝縮器14に接続されている。第1管部181の車両上下方向A2で下側の端部は、第2管部182の車両前後方向A3で車両前側の端部と接続されている。第2管部182には、3つの蒸発器12のそれぞれの流体入口部422が接続されている。なお、第2管部182の車両前後方向A3で車両後ろ側の端部は、車両前後方向A3で最も車両後ろ側に位置する蒸発器12の流体入口部422と接続されている。これにより、液通路部18の内部には、凝縮器14から蒸発器12へ向かって液相の作動流体を流すための液通路が形成されている。 The liquid passage portion 18, which is a liquid phase passage portion, guides the working fluid of the liquid phase condensed in the condenser 14 to the evaporator 12. The liquid passage portion 18 is composed of, for example, a first pipe portion 181 extending in the vehicle vertical direction A2 and a second pipe portion 182 extending in the vehicle front-rear direction A3 by means of a piping member or the like. As shown in FIG. 2, the upper end portion of the first pipe portion 181 in the vehicle vertical direction A2 is connected to the condenser 14. The lower end of the first pipe portion 181 in the vehicle vertical direction A2 is connected to the vehicle front end portion of the second pipe portion 182 in the vehicle front-rear direction A3. The fluid inlet portion 422 of each of the three evaporators 12 is connected to the second pipe portion 182. The end of the second pipe portion 182 on the rear side of the vehicle in the vehicle front-rear direction A3 is connected to the fluid inlet portion 422 of the evaporator 12 located on the rearmost side of the vehicle in the vehicle front-rear direction A3. As a result, a liquid passage for flowing the working fluid of the liquid phase from the condenser 14 to the evaporator 12 is formed inside the liquid passage portion 18.

続いて、図1を用いて、実施形態1に係る冷却装置1の基本作動について説明する。 Subsequently, the basic operation of the cooling device 1 according to the first embodiment will be described with reference to FIG.

冷却装置1では、車両の走行時の自己発熱などによって組電池5の電池温度が上昇すると、組電池5の熱が蒸発器12に移動する。蒸発器12では、組電池5から吸熱することによって液相の作動流体の一部が蒸発する。組電池5は、蒸発器12の内部に存在する作動流体の蒸発潜熱によって冷却され、組電池5の温度が低下する。 In the cooling device 1, when the battery temperature of the assembled battery 5 rises due to self-heating during traveling of the vehicle or the like, the heat of the assembled battery 5 is transferred to the evaporator 12. In the evaporator 12, a part of the working fluid in the liquid phase evaporates by absorbing heat from the assembled battery 5. The assembled battery 5 is cooled by the latent heat of vaporization of the working fluid existing inside the evaporator 12, and the temperature of the assembled battery 5 is lowered.

蒸発器12にて蒸発した作動流体は、蒸発器12から第1ガス通路部16へ流出し、図1の矢印FL1で示すように、第1ガス通路部16を介して凝縮器14へ移動する。 The working fluid evaporated in the evaporator 12 flows out from the evaporator 12 to the first gas passage portion 16 and moves to the condenser 14 via the first gas passage portion 16 as shown by the arrow FL1 in FIG. ..

凝縮器14では、気相の作動流体が放熱することによって凝縮した液相の作動流体は、重力によって下降する。これにより、凝縮器14で凝縮した液相の作動流体は、凝縮器14から液通路部18へ流出し、図1の矢印FL2で示すように、液通路部18を介して蒸発器12へ移動する。そして、蒸発器12では、流入した液相の作動流体の一部が、組電池5から吸熱することによって蒸発する。 In the condenser 14, the working fluid of the liquid phase condensed by heat dissipation from the working fluid of the gas phase descends due to gravity. As a result, the working fluid of the liquid phase condensed in the condenser 14 flows out from the condenser 14 to the liquid passage portion 18, and moves to the evaporator 12 via the liquid passage portion 18 as shown by the arrow FL2 in FIG. To do. Then, in the evaporator 12, a part of the working fluid of the inflowing liquid phase evaporates by absorbing heat from the assembled battery 5.

このように、冷却装置1では、作動流体がガス状態と液状態とに相変化しながら蒸発器12と凝縮器14との間を循環し、蒸発器12から凝縮器14へ熱が輸送される。これにより、冷却対象である組電池5は冷却される。冷却装置1は、圧縮機などによる作動流体の循環に要する駆動力が無くても、作動流体回路10の内部を作動流体が自然循環する構成となっている。このため、冷却装置1は、電力消費量及び騒音の双方を抑えた効率の良い組電池5の冷却を実現することができる。 In this way, in the cooling device 1, the working fluid circulates between the evaporator 12 and the condenser 14 while changing the phase between the gas state and the liquid state, and heat is transported from the evaporator 12 to the condenser 14. .. As a result, the assembled battery 5 to be cooled is cooled. The cooling device 1 has a configuration in which the working fluid naturally circulates inside the working fluid circuit 10 even if there is no driving force required for circulating the working fluid by a compressor or the like. Therefore, the cooling device 1 can realize efficient cooling of the assembled battery 5 while suppressing both power consumption and noise.

次に、蒸発器12の構造について説明する。図1及び図3に示すように、蒸発器12は、流体蒸発部40と、流体蒸発部40の下端に連結された液供給部42と、流体蒸発部40の上端に連結された流体流出部44とを備えている。流体流出部44は、液供給部42及び流体蒸発部40よりも上方に配置され、液供給部42は流体流出部44及び流体蒸発部40よりも下方に配置されている。なお、図3では、各構成要素の配置をわかり易く図示するために、各構成要素の間に敢えて隙間をあけて各構成要素が図示されている。 Next, the structure of the evaporator 12 will be described. As shown in FIGS. 1 and 3, the evaporator 12 includes a fluid evaporation unit 40, a liquid supply unit 42 connected to the lower end of the fluid evaporation unit 40, and a fluid outflow unit connected to the upper end of the fluid evaporation unit 40. It has 44 and. The fluid outflow section 44 is arranged above the liquid supply section 42 and the fluid evaporation section 40, and the liquid supply section 42 is arranged below the fluid outflow section 44 and the fluid evaporation section 40. In FIG. 3, in order to show the arrangement of each component in an easy-to-understand manner, each component is shown with a gap between the components.

流体蒸発部40は、組電池5のうち立面である電池側面5bに対し、熱伝導可能に連結されている。詳細には、流体蒸発部40は、流体蒸発部40と組電池5との間に介在する熱伝導材38に接触することにより、組電池5に対し、熱伝導可能に連結されている。例えば、流体蒸発部40と組電池5との間の熱伝導性を高めるために、流体蒸発部40は、組電池5へ押し付けられた状態で保持されている。 The fluid evaporation unit 40 is thermally conductively connected to the battery side surface 5b, which is the elevation surface of the assembled battery 5. Specifically, the fluid evaporation unit 40 is thermally conductively connected to the assembly battery 5 by coming into contact with the heat conductive material 38 interposed between the fluid evaporation unit 40 and the assembly battery 5. For example, in order to increase the thermal conductivity between the fluid evaporation unit 40 and the assembled battery 5, the fluid evaporation unit 40 is held in a state of being pressed against the assembled battery 5.

熱伝導材38は、電気絶縁性と高い熱伝導性とを備えており、流体蒸発部40と組電池5との間の熱伝導性を高めるために、流体蒸発部40と組電池5とに挟まれている。例えば、熱伝導材38としては、グリスまたはシート状物が採用される。なお、流体蒸発部40と組電池5との間の電気絶縁性と熱伝導性とが十分に確保されるのであれば、熱伝導材38が設けられずに、流体蒸発部40は組電池5に直接接触していても差し支えない。 The heat conductive material 38 has electrical insulation and high heat conductivity, and in order to increase the heat conductivity between the fluid evaporation unit 40 and the assembled battery 5, the fluid evaporation unit 40 and the assembled battery 5 are combined. It is sandwiched. For example, as the heat conductive material 38, grease or a sheet-like material is adopted. If the electrical insulation and thermal conductivity between the fluid evaporating unit 40 and the assembled battery 5 are sufficiently ensured, the fluid evaporating unit 40 can be used as the assembled battery 5 without the heat conductive material 38 being provided. It does not matter if it is in direct contact with.

図3及び図4に示すように、流体蒸発部40の内部には、車両上下方向A2に延びる複数の蒸発流路401が形成されている。言い換えれば、複数の蒸発流路401はそれぞれ、電池側面5bに沿って、電池側面5bにおける側面下端5c側から側面上端5d側へと延びている。 As shown in FIGS. 3 and 4, a plurality of evaporation channels 401 extending in the vehicle vertical direction A2 are formed inside the fluid evaporation section 40. In other words, each of the plurality of evaporation flow paths 401 extends from the side lower end 5c side of the battery side surface 5b to the side surface upper end 5d side along the battery side surface 5b.

そして、流体蒸発部40は、複数の蒸発流路401内を流れる作動流体を組電池5の熱で蒸発させる。すなわち、各蒸発流路401内へ流入する液相の作動流体は、各蒸発流路401内を流れつつ、各蒸発流路401内で沸騰気化する。なお、図3には、液相の作動流体の液面SFが図示されている。また、図4では、見易い図示とするために、電池セル51は二点鎖線で図示されており、熱伝導材38の図示や、組電池5が有する複数の電池セル51のうち一部の図示などが省略されている。 Then, the fluid evaporation unit 40 evaporates the working fluid flowing in the plurality of evaporation flow paths 401 by the heat of the assembled battery 5. That is, the working fluid of the liquid phase flowing into each evaporation flow path 401 is boiled and vaporized in each evaporation flow path 401 while flowing in each evaporation flow path 401. Note that FIG. 3 shows the liquid level SF of the working fluid of the liquid phase. Further, in FIG. 4, the battery cell 51 is shown by a chain double-dashed line for easy viewing, and the heat conductive material 38 is shown and a part of the plurality of battery cells 51 included in the assembled battery 5 is shown. Etc. are omitted.

液供給部42の内部には、電池セル51の配列方向A1に延びる供給流路421が形成されている。また、流体流出部44の内部には、電池セル51の配列方向A1に延びる流出流路441が形成されている。 Inside the liquid supply unit 42, a supply flow path 421 extending in the arrangement direction A1 of the battery cells 51 is formed. Further, inside the fluid outflow portion 44, an outflow flow path 441 extending in the arrangement direction A1 of the battery cell 51 is formed.

蒸発器12の構成部材に着目すれば、蒸発器12はプレート積層構造となっている。そのため、蒸発器12は、第1プレート部材121と第2プレート部材122とを有している。そして、蒸発器12は、一対の第1プレート部材121及び第2プレート部材122が積層され、且つ、第1プレート部材121及び第2プレート部材122の周縁部分で互いに接合されることにより構成されている。第1プレート部材121と第2プレート部材122とは、いずれも熱伝導性が高いアルミニウム合金などの金属製であり、プレス加工などによって形成された成形品である。また、第1プレート部材121と第2プレート部材122との接合は、例えば、ロウ付けなどによって実施される。 Focusing on the constituent members of the evaporator 12, the evaporator 12 has a plate laminated structure. Therefore, the evaporator 12 has a first plate member 121 and a second plate member 122. The evaporator 12 is configured by stacking a pair of the first plate member 121 and the second plate member 122 and joining them to each other at the peripheral edge portions of the first plate member 121 and the second plate member 122. There is. The first plate member 121 and the second plate member 122 are both made of a metal such as an aluminum alloy having high thermal conductivity, and are molded products formed by press working or the like. Further, the joining of the first plate member 121 and the second plate member 122 is carried out by, for example, brazing.

詳細には、第1プレート部材121は、流体蒸発部40に含まれる第1蒸発形成部121aと、液供給部42に含まれる第1供給形成部121bと、流体流出部44に含まれる第1流出形成部121cとを有している。また、第2プレート部材122は、流体蒸発部40に含まれる第2蒸発形成部122aと、液供給部42に含まれる第2供給形成部122bと、流体流出部44に含まれる第2流出形成部122cとを有している。 Specifically, the first plate member 121 includes a first evaporation forming section 121a included in the fluid evaporation section 40, a first supply forming section 121b included in the liquid supply section 42, and a first included in the fluid outflow section 44. It has an outflow forming portion 121c. Further, the second plate member 122 includes a second evaporation forming portion 122a included in the fluid evaporation portion 40, a second supply forming portion 122b included in the liquid supply portion 42, and a second outflow formation included in the fluid outflow portion 44. It has a portion 122c.

そして、蒸発流路401と供給流路421と流出流路441とは、第1プレート部材121と第2プレート部材122との相互接合によって、蒸発器12の内部空間として形成されている。すなわち、第1プレート部材121と第2プレート部材122との接合によって、複数の蒸発流路401が第1蒸発形成部121aと第2蒸発形成部122aとの間に形成される。また、第1プレート部材121と第2プレート部材122との接合によって、供給流路421が第1供給形成部121bと第2供給形成部122bとの間に形成される。また、第1プレート部材121と第2プレート部材122との接合によって、流出流路441が第1流出形成部121cと第2流出形成部122cとの間に形成される。 The evaporation flow path 401, the supply flow path 421, and the outflow flow path 441 are formed as an internal space of the evaporator 12 by the mutual joining of the first plate member 121 and the second plate member 122. That is, by joining the first plate member 121 and the second plate member 122, a plurality of evaporation flow paths 401 are formed between the first evaporation forming portion 121a and the second evaporation forming portion 122a. Further, the supply flow path 421 is formed between the first supply forming portion 121b and the second supply forming portion 122b by joining the first plate member 121 and the second plate member 122. Further, by joining the first plate member 121 and the second plate member 122, an outflow flow path 441 is formed between the first outflow forming portion 121c and the second outflow forming portion 122c.

第1蒸発形成部121aは、第2蒸発形成部122aと組電池5との間に配置されている。したがって、流体蒸発部40は、第1蒸発形成部121aにて熱伝導材38に接触している。 The first evaporation forming portion 121a is arranged between the second evaporation forming portion 122a and the assembled battery 5. Therefore, the fluid evaporation unit 40 is in contact with the heat conductive material 38 at the first evaporation forming unit 121a.

第2プレート部材122の第2蒸発形成部122aは、第1プレート部材121の第1蒸発形成部121aへ向けて突き出た複数の凸部122dを有している。複数の凸部122dはそれぞれ、車両上下方向A2に延びるように形成されている。言い換えれば、複数の凸部122dはそれぞれ、流体蒸発部40のうち、液供給部42側から流体流出部44側へと延びるように形成されている。 The second evaporation forming portion 122a of the second plate member 122 has a plurality of convex portions 122d protruding toward the first evaporation forming portion 121a of the first plate member 121. Each of the plurality of convex portions 122d is formed so as to extend in the vertical direction A2 of the vehicle. In other words, each of the plurality of convex portions 122d is formed so as to extend from the liquid supply portion 42 side to the fluid outflow portion 44 side of the fluid evaporation portion 40.

複数の凸部122dはそれぞれ、第1蒸発形成部121aに当接し、第1蒸発形成部121aと接合されている。その接合は、例えばロウ付けなどによって実施される。複数の凸部122dは、第1蒸発形成部121aに当接し接合されることによって、複数の蒸発流路401を相互に仕切っている。 Each of the plurality of convex portions 122d is in contact with the first evaporation forming portion 121a and is joined to the first evaporation forming portion 121a. The joining is carried out, for example, by brazing. The plurality of convex portions 122d abut and join the first evaporation forming portion 121a to partition the plurality of evaporation flow paths 401 from each other.

また、複数の凸部122dは、電池セル51の配列方向A1に相互間隔をあけて並んで配置されているため、複数の蒸発流路401は電池セル51の配列方向A1に並んで配置されている。具体的には、凸部122dと蒸発流路401とは、電池セル51の配列方向A1に交互に並んでいる。例えば、蒸発流路401は、電池セル51と同数設けられ、電池セル51毎に1本の蒸発流路401が割り当てられるように配置されている。 Further, since the plurality of convex portions 122d are arranged side by side in the arrangement direction A1 of the battery cell 51 with mutual spacing, the plurality of evaporation flow paths 401 are arranged side by side in the arrangement direction A1 of the battery cell 51. There is. Specifically, the convex portions 122d and the evaporation flow path 401 are alternately arranged in the arrangement direction A1 of the battery cell 51. For example, the same number of evaporation channels 401 as the battery cells 51 are provided, and one evaporation channel 401 is assigned to each battery cell 51.

また、複数の蒸発流路401の流路断面はそれぞれ、電池セル51の配列方向A1へ延びた扁平断面形状を成している。言い換えれば、蒸発流路401の延び方向(すなわち、本実施形態では車両上下方向A2)に直交する断面において、その蒸発流路401の断面形状は、電池セル51の配列方向A1を長手方向とした扁平形状を成している。 Further, each of the flow path cross sections of the plurality of evaporation flow paths 401 has a flat cross-sectional shape extending in the arrangement direction A1 of the battery cells 51. In other words, in the cross section orthogonal to the extension direction of the evaporation flow path 401 (that is, the vehicle vertical direction A2 in this embodiment), the cross-sectional shape of the evaporation flow path 401 is such that the arrangement direction A1 of the battery cell 51 is the longitudinal direction. It has a flat shape.

また、蒸発流路401はそれぞれ、蒸発流路401の下端を作動流体流れ方向で上流側となる上流端401aとして有し、蒸発流路401の上端を作動流体流れ方向で下流側となる下流端401bとして有している。蒸発流路401内では、図4の一点鎖線矢印及び破線矢印で示すように、作動流体は上流端401aから下流端401bへ流れる。すなわち、蒸発流路401内では、作動流体は下方から上方へ流れる。 Further, each of the evaporation flow paths 401 has the lower end of the evaporation flow path 401 as the upstream end 401a on the upstream side in the working fluid flow direction, and the upper end of the evaporation flow path 401 as the downstream end on the downstream side in the working fluid flow direction. It has as 401b. In the evaporation flow path 401, the working fluid flows from the upstream end 401a to the downstream end 401b, as shown by the alternate long and short dash arrow in FIG. That is, in the evaporation flow path 401, the working fluid flows from the bottom to the top.

供給流路421には、複数の蒸発流路401の上流端401aがそれぞれ連結されている。したがって、液供給部42は、供給流路421内へ流入した液相の作動流体を複数の蒸発流路401の各々へ分配供給する。 Upstream ends 401a of the plurality of evaporation channels 401 are connected to the supply channel 421, respectively. Therefore, the liquid supply unit 42 distributes and supplies the working fluid of the liquid phase that has flowed into the supply flow path 421 to each of the plurality of evaporation flow paths 401.

一方、流出流路441には、複数の蒸発流路401の下流端401bがそれぞれ連結されている。したがって、流出流路441には、複数の蒸発流路401の各々から作動流体が流入する。そして、流体流出部44は、流出流路441に流入した作動流体を第1ガス通路部16及び第2ガス通路部17へ流出させる。 On the other hand, the downstream ends 401b of the plurality of evaporation channels 401 are connected to the outflow channel 441, respectively. Therefore, the working fluid flows into the outflow flow path 441 from each of the plurality of evaporation flow paths 401. Then, the fluid outflow section 44 causes the working fluid that has flowed into the outflow flow path 441 to flow out to the first gas passage section 16 and the second gas passage section 17.

図1及び図4に示すように、液供給部42は電池セル51の配列方向A1に延びるように形成されているため、電池セル51の配列方向A1で一方側に一端部42aを有し、電池セル51の配列方向A1で他方側に他端部42bを有している。液供給部42の一端部42aには、液通路部18が連結された流体入口部422が設けられている。流体入口部422は、供給流路421と連通している。その一方で、液供給部42の他端部42bは、供給流路421のうち電池セル51の配列方向A1で他方側の端を形成し、その他方側の端を塞いでいる。 As shown in FIGS. 1 and 4, since the liquid supply unit 42 is formed so as to extend in the arrangement direction A1 of the battery cells 51, it has one end portion 42a on one side in the arrangement direction A1 of the battery cells 51. The other end 42b is provided on the other side in the arrangement direction A1 of the battery cells 51. A fluid inlet portion 422 to which the liquid passage portion 18 is connected is provided at one end portion 42a of the liquid supply portion 42. The fluid inlet 422 communicates with the supply flow path 421. On the other hand, the other end 42b of the liquid supply unit 42 forms the other end of the supply flow path 421 in the arrangement direction A1 of the battery cells 51, and closes the other end.

流体流出部44は、電池セル51の配列方向A1に延びるように形成されているため、電池セル51の配列方向A1で一方側に一端部44aを有し、電池セル51の配列方向A1で他方側に他端部44bを有している。流体流出部44の他端部44bには、第1ガス通路部16が連結された流体出口部442が設けられている。流体出口部442は、流出流路441と連通している。その一方で、流体流出部44の一端部44aは、流出流路441のうち電池セル51の配列方向A1で一方側の端を形成し、その一方側の端を塞いでいる。流体流出部44は、蒸発した作動流体ガスが液相の作動流体とともに吹き上げる気泡流の気液分離を行い、流出流路441は、分離された作動流体ガスを排出するための流路となっている。 Since the fluid outflow portion 44 is formed so as to extend in the arrangement direction A1 of the battery cells 51, the fluid outflow portion 44 has one end 44a on one side in the arrangement direction A1 of the battery cells 51, and the other end portion 44a in the arrangement direction A1 of the battery cells 51. The other end 44b is provided on the side. The other end 44b of the fluid outflow portion 44 is provided with a fluid outlet portion 442 to which the first gas passage portion 16 is connected. The fluid outlet portion 442 communicates with the outflow flow path 441. On the other hand, one end 44a of the fluid outflow portion 44 forms one end of the outflow flow path 441 in the arrangement direction A1 of the battery cells 51, and closes the one end. The fluid outflow section 44 performs gas-liquid separation of a bubble flow in which the evaporated working fluid gas blows up together with the working fluid of the liquid phase, and the outflow flow path 441 serves as a flow path for discharging the separated working fluid gas. There is.

図1及び図3に示すように、流体蒸発部40は熱伝導材38に接触しているが、液供給部42は、組電池5と熱伝導材38とのいずれからも離れて配置されている。すなわち、液供給部42と、組電池5及び熱伝導材38との間に介在する空気は、それらの間の伝熱を妨げる断熱部39として機能する。そして、液供給部42は、液供給部42と組電池5及び熱伝導材38との間に断熱部39を介在させて配置されているため、組電池5に対し、熱的に接続していない。また、流体流出部44も組電池5と熱伝導材38との両方から離れて配置されているため、組電池5に対し、熱的に接続していない。 As shown in FIGS. 1 and 3, the fluid evaporation unit 40 is in contact with the heat conductive material 38, but the liquid supply unit 42 is arranged away from both the assembled battery 5 and the heat conductive material 38. There is. That is, the air interposed between the liquid supply unit 42, the assembled battery 5, and the heat conductive material 38 functions as a heat insulating unit 39 that hinders heat transfer between them. Since the liquid supply unit 42 is arranged with the heat insulating portion 39 interposed between the liquid supply unit 42, the assembled battery 5, and the heat conductive material 38, the liquid supply unit 42 is thermally connected to the assembled battery 5. Absent. Further, since the fluid outflow portion 44 is also arranged away from both the assembled battery 5 and the heat conductive material 38, it is not thermally connected to the assembled battery 5.

上述したように、蒸発器12の蒸発流路401と供給流路421と流出流路441とは相互に連通しているため、図4及び図5に示す一点鎖線矢印及び破線矢印のように蒸発器12内を作動流体が流通する。なお、前記一点鎖線矢印は蒸発器12内の液相の作動流体流れを表し、前記破線矢印は蒸発器12内の気相の作動流体の流れを表している。 As described above, since the evaporation flow path 401, the supply flow path 421, and the outflow flow path 441 of the evaporator 12 communicate with each other, they evaporate as shown by the alternate long and short dash arrows shown in FIGS. 4 and 5. The working fluid circulates in the vessel 12. The alternate long and short dash arrow represents the flow of the working fluid in the liquid phase in the evaporator 12, and the dashed arrow represents the flow of the working fluid in the gas phase in the evaporator 12.

具体的には、液通路部18からの液相の作動流体は、図4の矢印F1のように流体入口部422から供給流路421へ流入する。その流入した液相の作動流体は、図4の矢印F2のように、供給流路421内では電池セル51の配列方向A1の一方側から他方側へ流れる。そして、液相の作動流体は、供給流路421から複数の蒸発流路401のそれぞれへ分配される。このとき、液供給部42は、組電池5の熱を受けにくいため、作動流体は液相のまま各蒸発流路401へ流入する。すなわち、凝縮器14から供給された液相の作動流体は、供給流路421を経由して、各電池セル51の下側近傍まで、沸騰せずに、且つ、気泡流になることなく、液相のまま供給される。 Specifically, the working fluid of the liquid phase from the liquid passage portion 18 flows into the supply flow path 421 from the fluid inlet portion 422 as shown by the arrow F1 in FIG. The working fluid of the inflowing liquid phase flows from one side to the other side of the battery cell 51 in the arrangement direction A1 in the supply flow path 421 as shown by the arrow F2 in FIG. Then, the working fluid of the liquid phase is distributed from the supply flow path 421 to each of the plurality of evaporation flow paths 401. At this time, since the liquid supply unit 42 is less likely to receive the heat of the assembled battery 5, the working fluid flows into each evaporation flow path 401 in the liquid phase. That is, the working fluid of the liquid phase supplied from the condenser 14 passes through the supply flow path 421 to the vicinity of the lower side of each battery cell 51 without boiling and without forming a bubble flow. It is supplied as it is.

各蒸発流路401内では、液相の作動流体が下方から上方へ流れつつ、組電池5の熱によって気化させられる。すなわち、作動流体は蒸発流路401内を流れつつ、各電池セル51から熱を奪い蒸発する。そのため、各蒸発流路401で作動流体は、気相のみ、または、気液二相となって、流出流路441へ流入する。 In each evaporation flow path 401, the working fluid of the liquid phase flows from the bottom to the top and is vaporized by the heat of the assembled battery 5. That is, the working fluid takes heat from each battery cell 51 and evaporates while flowing in the evaporation flow path 401. Therefore, in each evaporation flow path 401, the working fluid flows into the outflow flow path 441 only in the gas phase or in the gas-liquid two-phase.

流出流路441へ流入した作動流体は、気液分離されるとともに、図4の矢印F3のように流出流路441内で電池セル51の配列方向A1の一方側から他方側へ流れる。流出流路441内で電池セル51の配列方向A1の他方側の端まで流れた気相の作動流体は、図4の矢印F4のように流体出口部442から第1ガス通路部16及び第2ガス通路部17へ流出する。 The working fluid flowing into the outflow flow path 441 is gas-liquid separated and flows from one side to the other side of the battery cell 51 in the arrangement direction A1 in the outflow flow path 441 as shown by the arrow F3 in FIG. The working fluid of the gas phase that has flowed to the other end of the arrangement direction A1 of the battery cell 51 in the outflow flow path 441 is from the fluid outlet portion 442 to the first gas passage portion 16 and the second as shown by the arrow F4 in FIG. It flows out to the gas passage portion 17.

図6は、登坂時における冷却装置1の姿勢を示した図である。図6に示すように、登坂時における冷却装置1の姿勢は、車両前側が車両後ろ側よりも高くなるように水平方向に対して傾く、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して高い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動する。このように、冷却装置1が傾くと、作動流体回路10の下部となる車両前後方向A3で車両後ろ側に、液相の作動流体が溜まるような液相の作動流体の流れが重力などによって生じる。 FIG. 6 is a diagram showing the posture of the cooling device 1 when climbing a slope. As shown in FIG. 6, the posture of the cooling device 1 when climbing a slope is tilted with respect to the horizontal direction so that the front side of the vehicle is higher than the rear side of the vehicle, in other words, the condenser 14 side is the other side in the vehicle front-rear direction A3. The condenser 14 side and the other side move relative to each other in the vehicle vertical direction A2 so as to be at a higher position with respect to the vehicle. In this way, when the cooling device 1 is tilted, a flow of the working fluid of the liquid phase is generated by gravity or the like so that the working fluid of the liquid phase accumulates behind the vehicle in the vehicle front-rear direction A3 which is the lower part of the working fluid circuit 10. ..

そのため、登坂時には、液通路部18から各流体入口部422を介して各蒸発器12に流入した液相の作動流体が、液相の状態を保ったまま各流体出口部442を介して第1ガス通路部16及び第2ガス通路部17に流出することがある。この際、第1ガス通路部16に流出した液相の作動流体は、図6に示した液面高さHの位置まで第1管部161に溜まる。また、第2ガス通路部17に流出した液相の作動流体は、第1管部171を通って第2管部172に設けられた全閉状態の電磁開閉弁61の位置まで溜まる。 Therefore, when climbing a slope, the working fluid of the liquid phase that has flowed into each evaporator 12 from the liquid passage portion 18 via each fluid inlet portion 422 is the first via each fluid outlet portion 442 while maintaining the state of the liquid phase. It may flow out to the gas passage portion 16 and the second gas passage portion 17. At this time, the working fluid of the liquid phase flowing out to the first gas passage portion 16 accumulates in the first pipe portion 161 up to the position of the liquid level height H shown in FIG. Further, the working fluid of the liquid phase flowing out to the second gas passage portion 17 passes through the first pipe portion 171 and accumulates up to the position of the fully closed electromagnetic on-off valve 61 provided in the second pipe portion 172.

図7は、降坂時における冷却装置1の姿勢を示した図である。図7に示すように、降坂時における冷却装置1の姿勢は、車両前側が車両後ろ側よりも低くなるように水平方向に対して傾く、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して低い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動する。このように、冷却装置1が傾くと、作動流体回路10の下部となる車両前後方向A3で車両前側に、液相の作動流体が溜まるような作動流体の流れが重力などによって生じる。 FIG. 7 is a diagram showing the posture of the cooling device 1 when descending a slope. As shown in FIG. 7, the posture of the cooling device 1 when descending a slope is tilted with respect to the horizontal direction so that the front side of the vehicle is lower than the rear side of the vehicle, in other words, the condenser 14 side is the other in the vehicle front-rear direction A3. The condenser 14 side and the other side move relative to each other in the vehicle vertical direction A2 so as to be in a lower position with respect to the side. In this way, when the cooling device 1 is tilted, a flow of the working fluid such that the working fluid of the liquid phase is accumulated is generated on the front side of the vehicle in the vehicle front-rear direction A3 which is the lower part of the working fluid circuit 10 due to gravity or the like.

そのため、登坂時に第1ガス通路部16の第1管部161に溜まっていた液相の作動流体の一部は、第1管部161と接続された各流体出口部442を介して各蒸発器12に流入する。そして、第1ガス通路部16の残りの液相の作動流体は、降坂時に第1ガス通路部16の下部となる第1管部161の端部と第2管部162の端部との接続部分あたりに、図7に示した液面高さHの位置まで溜まる。そのため、登坂から連続して降坂へ切り替わったときには、第1ガス通路部16が液相の作動流体によって閉塞された状態となる。 Therefore, a part of the working fluid of the liquid phase accumulated in the first pipe portion 161 of the first gas passage portion 16 at the time of climbing a slope is sent to each evaporator via each fluid outlet portion 442 connected to the first pipe portion 161. It flows into 12. Then, the working fluid of the remaining liquid phase of the first gas passage portion 16 is formed between the end portion of the first pipe portion 161 and the end portion of the second pipe portion 162, which are the lower parts of the first gas passage portion 16 when descending a slope. Around the connection portion, the fluid accumulates up to the position of the liquid level height H shown in FIG. Therefore, when the slope is continuously switched from climbing to descending, the first gas passage portion 16 is in a state of being blocked by the working fluid of the liquid phase.

また、登坂から連続して降坂へ切り替わったときには、登坂時に第2ガス通路部17の第1管部171及び第2管部172に溜まっていた液相の作動流体のほとんどが、第1管部171の端部と接続された流体出口部442を介して蒸発器12または第1ガス通路部16に流出する。ここで、本実施形態においては、登坂時に全閉状態であった電磁開閉弁61を降坂時に全開状態にする。そのため、登坂から連続して降坂へ切り替わったときには、第2ガス通路部17の内部に、蒸発器12から凝縮器14に向かって気相の作動流体を流すためのガス通路部が確保される。 Further, when the slope is continuously switched from climbing to descending, most of the working fluid of the liquid phase accumulated in the first pipe portion 171 and the second pipe portion 172 of the second gas passage portion 17 at the time of climbing is the first pipe. It flows out to the evaporator 12 or the first gas passage portion 16 via the fluid outlet portion 442 connected to the end portion of the portion 171. Here, in the present embodiment, the electromagnetic on-off valve 61, which was in a fully closed state when climbing a slope, is brought into a fully open state when descending a slope. Therefore, when the slope is continuously switched from climbing to descending, a gas passage for flowing the working fluid of the gas phase from the evaporator 12 to the condenser 14 is secured inside the second gas passage 17. ..

そして、図7に示した降坂時には、第1ガス通路部16の第1管部161に接続された各流体出口部442が、いずれも液面高さHよりも上方に位置している。そのため、各蒸発器12から各流体出口部442を介して第1ガス通路部16の第1管部161に流出した気相の作動流体は、車両前後方向A3で最も車両後ろ側に位置する蒸発器12の流体出口部442を介して第2ガス通路部17の第1管部161に流入する。これにより、気相の作動流体は、第2ガス通路部17を通り、第1ガス通路部16の第2管部162を介して凝縮器14に流入する。 When descending the slope shown in FIG. 7, each fluid outlet portion 442 connected to the first pipe portion 161 of the first gas passage portion 16 is located above the liquid level height H. Therefore, the working fluid of the gas phase flowing out from each evaporator 12 to the first pipe portion 161 of the first gas passage portion 16 via each fluid outlet portion 442 evaporates located most rearward of the vehicle in the vehicle front-rear direction A3. It flows into the first pipe portion 161 of the second gas passage portion 17 through the fluid outlet portion 442 of the vessel 12. As a result, the working fluid of the gas phase flows into the condenser 14 through the second gas passage portion 17 and the second pipe portion 162 of the first gas passage portion 16.

実施形態1に係る冷却装置1においては、登坂から連続して降坂へ切り替わったときに懸念される、第2ガス通路部17への液相の作動流体の溜りを防止し、第2ガス通路部17を通して蒸発器12から凝縮器14に気相の作動流体を移動させることができる。 In the cooling device 1 according to the first embodiment, the accumulation of the working fluid of the liquid phase in the second gas passage portion 17, which is a concern when continuously switching from the uphill to the downhill, is prevented, and the second gas passage The working fluid of the gas phase can be moved from the evaporator 12 to the condenser 14 through the portion 17.

なお、実施形態1に係る冷却装置1では、不図示の傾斜判定手段によって冷却装置1の傾きを判定している。そして、例えば、降坂時のように、車両前側が車両後ろ側よりも低くなるように水平方向に対して傾いた、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して低い位置となるように、凝縮器14側前記他方側とが車両上下方向A2に相対移動した、と前記傾斜判定手段によって判定されたときには、電磁開閉弁61を全開状態にする。また、登坂時のように、車両前側が車両後ろ側よりも高くなるように水平方向に対して傾いた、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して高い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動した、と前記傾斜判定手段によって判定されたときには、電磁開閉弁61を全閉状態にする。前記傾斜判定手段としては、例えば、ジャイロセンサ、ルートマップ、及び、車載カメラなどを利用することができる。 In the cooling device 1 according to the first embodiment, the inclination of the cooling device 1 is determined by an inclination determining means (not shown). Then, for example, when descending a slope, the front side of the vehicle is tilted in the horizontal direction so as to be lower than the rear side of the vehicle, in other words, the position where the condenser 14 side is lower than the other side in the vehicle front-rear direction A3. When it is determined by the inclination determining means that the condenser 14 side and the other side have moved relative to the vehicle in the vertical direction A2, the electromagnetic on-off valve 61 is fully opened. Further, as in the case of climbing a slope, the front side of the vehicle is tilted in the horizontal direction so as to be higher than the rear side of the vehicle, in other words, the condenser 14 side is higher than the other side in the vehicle front-rear direction A3. When it is determined by the inclination determining means that the condenser 14 side and the other side have moved relative to each other in the vehicle vertical direction A2, the electromagnetic on-off valve 61 is fully closed. As the inclination determination means, for example, a gyro sensor, a route map, an in-vehicle camera, or the like can be used.

また、本実施形態では、蒸発器12よりも凝縮器14が車両前後方向A3で車両前側に位置するように、冷却装置1を車両に搭載した場合で説明したが、これに限定されるものではない。例えば、蒸発器12よりも凝縮器14が車両前後方向A3で車両後ろ側に位置するように、冷却装置1を車両に搭載してもよい。この場合、電磁開閉弁61は、少なくとも降坂時に全閉状態とし、少なくとも登坂時に全開状態とする。これにより、降坂時から連続した登坂時に懸念される、第2ガス通路部17への液相の作動流体の溜りを防止し、第2ガス通路部17を通して蒸発器12から凝縮器14に気相の作動流体を移動させることができる。 Further, in the present embodiment, the case where the cooling device 1 is mounted on the vehicle so that the condenser 14 is located on the front side of the vehicle in the vehicle front-rear direction A3 rather than the evaporator 12 has been described, but the present invention is not limited to this. Absent. For example, the cooling device 1 may be mounted on the vehicle so that the condenser 14 is located behind the vehicle in the vehicle front-rear direction A3 rather than the evaporator 12. In this case, the electromagnetic on-off valve 61 is fully closed at least when descending a slope, and is fully opened at least when climbing a slope. As a result, the accumulation of the working fluid of the liquid phase in the second gas passage portion 17, which is a concern during continuous climbing from the time of descending the slope, is prevented, and the evaporator 12 to the condenser 14 are aired through the second gas passage portion 17. The working fluid of the phase can be moved.

(実施形態2)
以下に、本発明に係る冷却装置の実施形態2について説明する。なお、実施形態1と共通する箇所の説明は適宜省略する。
(Embodiment 2)
The second embodiment of the cooling device according to the present invention will be described below. The description of the parts common to the first embodiment will be omitted as appropriate.

図8は、実施形態2に係る冷却装置1の概略構成を示した斜視図である。なお、図8では、水平な路面上に車両が位置するときにおける冷却装置1の姿勢を示している。また、図8においては、組電池5の図示を省略しているが、1つの蒸発器12に対して車両前後方向A3の車両前側と車両後ろ側との少なくとも一方に組電池5が隣接して配置される。 FIG. 8 is a perspective view showing a schematic configuration of the cooling device 1 according to the second embodiment. Note that FIG. 8 shows the posture of the cooling device 1 when the vehicle is positioned on a horizontal road surface. Further, although the assembly battery 5 is not shown in FIG. 8, the assembly battery 5 is adjacent to at least one of the front side and the rear side of the vehicle in the vehicle front-rear direction A3 with respect to one evaporator 12. Be placed.

実施形態2に係る冷却装置1では、第2ガス通路部17に電磁開閉弁が設けられておらず、第1ガス通路部16と第2ガス通路部17とを上下方向に繋ぐ気相通路部であるバイパス通路部19に、電磁開閉弁62が設けられている。バイパス通路部19は、車両上下方向A2に延在している。バイパス通路部19の車両上下方向A2で下側の端部は、車両前後方向A3で最も車両前側に位置する蒸発器12の流体出口部442よりも車両前側で、第1ガス通路部16の第1管部161に接続されている。バイパス通路部19の車両上下方向A2で上側の端部は、第2ガス通路部17の第2管部172に接続されている。電磁開閉弁62は、通常、全開状態に保たれている。 In the cooling device 1 according to the second embodiment, the second gas passage portion 17 is not provided with an electromagnetic on-off valve, and the gas phase passage portion that connects the first gas passage portion 16 and the second gas passage portion 17 in the vertical direction. An electromagnetic on-off valve 62 is provided in the bypass passage portion 19. The bypass passage portion 19 extends in the vertical direction A2 of the vehicle. The lower end of the bypass passage portion 19 in the vehicle vertical direction A2 is on the vehicle front side of the fluid outlet portion 442 of the evaporator 12 located on the vehicle front side most in the vehicle front-rear direction A3, and is the first gas passage portion 16. It is connected to one pipe portion 161. The upper end of the bypass passage portion 19 in the vehicle vertical direction A2 is connected to the second pipe portion 172 of the second gas passage portion 17. The electromagnetic on-off valve 62 is normally kept in a fully open state.

図9は、登坂時における冷却装置1の姿勢を示した図である。図9に示すように、登坂時における冷却装置1の姿勢は、車両前側が車両後ろ側よりも高くなるように水平方向に対して傾く。言い換えると、車両前後方向A3で凝縮器14側が他方側に対して高い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動する。このように、冷却装置1が傾くと、作動流体回路10の下部となる車両前後方向A3で車両後ろ側に、液相の作動流体が溜まるような液相の作動流体の流れが重力などによって生じる。 FIG. 9 is a diagram showing the posture of the cooling device 1 when climbing a slope. As shown in FIG. 9, the posture of the cooling device 1 when climbing a slope is tilted with respect to the horizontal direction so that the front side of the vehicle is higher than the rear side of the vehicle. In other words, the condenser 14 side and the other side move relative to the vehicle vertical direction A2 so that the condenser 14 side is higher than the other side in the vehicle front-rear direction A3. In this way, when the cooling device 1 is tilted, a flow of the working fluid of the liquid phase is generated by gravity or the like so that the working fluid of the liquid phase accumulates behind the vehicle in the vehicle front-rear direction A3 which is the lower part of the working fluid circuit 10. ..

そのため、登坂時には、液通路部18から各流体入口部422を介して各蒸発器12に流入した液相の作動流体が、液相の状態を保ったまま各流体出口部442を介して第1ガス通路部16及び第2ガス通路部17に流出することがある。この際、第1ガス通路部16に流出した液相の作動流体は、図8に示した液面高さHの位置まで第1管部161に溜まる。また、第2ガス通路部17に流出した液相の作動流体は、図8に示した液面高さHの位置まで第1管部171を通って第2管部172に溜まる。 Therefore, when climbing a slope, the working fluid of the liquid phase that has flowed into each evaporator 12 from the liquid passage portion 18 via each fluid inlet portion 422 is the first via each fluid outlet portion 442 while maintaining the state of the liquid phase. It may flow out to the gas passage portion 16 and the second gas passage portion 17. At this time, the working fluid of the liquid phase flowing out to the first gas passage portion 16 accumulates in the first pipe portion 161 up to the position of the liquid level height H shown in FIG. Further, the working fluid of the liquid phase flowing out to the second gas passage portion 17 passes through the first pipe portion 171 to the position of the liquid level height H shown in FIG. 8 and accumulates in the second pipe portion 172.

図10は、降坂時における冷却装置1の姿勢を示した図である。図10に示すように、降坂時における冷却装置1の姿勢は、車両前側が車両後ろ側よりも低くなるように水平方向に対して傾く、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して低い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動する。このように、冷却装置1が傾くと、作動流体回路10の下部となる車両前後方向A3で車両前側に、液相の作動流体が溜まるような作動流体の流れが重力などによって生じる。 FIG. 10 is a diagram showing the posture of the cooling device 1 when descending a slope. As shown in FIG. 10, the posture of the cooling device 1 when descending a slope is tilted with respect to the horizontal direction so that the front side of the vehicle is lower than the rear side of the vehicle, in other words, the condenser 14 side is the other in the vehicle front-rear direction A3. The condenser 14 side and the other side move relative to each other in the vehicle vertical direction A2 so as to be in a lower position with respect to the side. In this way, when the cooling device 1 is tilted, a flow of the working fluid such that the working fluid of the liquid phase is accumulated is generated on the front side of the vehicle in the vehicle front-rear direction A3 which is the lower part of the working fluid circuit 10 due to gravity or the like.

そのため、登坂時に第1ガス通路部16の第1管部161に溜まっていた液相の作動流体の一部は、第1管部161と接続された各流体出口部442を介して各蒸発器12に流入する。そして、第1ガス通路部16の残りの液相の作動流体は、降坂時に第1ガス通路部16の下部となる第1管部161の端部と第2管部162の端部との接続部分あたりに、図10に示した液面高さHの位置まで溜まる。そのため、登坂から連続して降坂へ切り替わったときには、第1ガス通路部16が液相の作動流体によって閉塞された状態となる。 Therefore, a part of the working fluid of the liquid phase accumulated in the first pipe portion 161 of the first gas passage portion 16 at the time of climbing a slope is sent to each evaporator via each fluid outlet portion 442 connected to the first pipe portion 161. It flows into 12. Then, the working fluid of the remaining liquid phase of the first gas passage portion 16 is formed between the end portion of the first pipe portion 161 and the end portion of the second pipe portion 162, which are the lower parts of the first gas passage portion 16 when descending a slope. Around the connection portion, the fluid accumulates up to the position of the liquid level height H shown in FIG. Therefore, when the slope is continuously switched from climbing to descending, the first gas passage portion 16 is in a state of being blocked by the working fluid of the liquid phase.

また、登坂から連続して降坂へ切り替わったときには、登坂時に第2ガス通路部17の第1管部171及び第2管部172に溜まっていた液相の作動流体の一部が、第1管部171の端部と接続された流体出口部442を介して蒸発器12または第1ガス通路部16に流出する。また、第2ガス通路部17の残りの液相の作動流体は、第2管部172を車両前後方向A3で車両前側に流れて、電磁開閉弁62が全開状態のバイパス通路部19を通り、第1ガス通路部16に流出する。そのため、登坂から連続して降坂へ切り替わったときには、第2ガス通路部17の内部に、蒸発器12から凝縮器14に向かって気相の作動流体を流すためのガス通路部が確保される。 Further, when the slope is continuously switched from climbing to descending, a part of the working fluid of the liquid phase accumulated in the first pipe portion 171 and the second pipe portion 172 of the second gas passage portion 17 at the time of climbing is first. It flows out to the evaporator 12 or the first gas passage portion 16 via the fluid outlet portion 442 connected to the end portion of the pipe portion 171. Further, the working fluid of the remaining liquid phase of the second gas passage portion 17 flows through the second pipe portion 172 to the front side of the vehicle in the vehicle front-rear direction A3, and the electromagnetic on-off valve 62 passes through the bypass passage portion 19 in the fully opened state. It flows out to the first gas passage portion 16. Therefore, when the slope is continuously switched from climbing to descending, a gas passage for flowing the working fluid of the gas phase from the evaporator 12 to the condenser 14 is secured inside the second gas passage 17. ..

そして、図10に示した降坂時には、第1ガス通路部16の第1管部161に接続された各流体出口部442が、いずれも液面高さHよりも上方に位置している。そのため、各蒸発器12から各流体出口部442を介して第1ガス通路部16の第1管部161に流出した気相の作動流体は、車両前後方向A3で最も車両後ろ側に位置する蒸発器12の流体出口部442を介して第2ガス通路部17の第1管部161に流入する。これにより、気相の作動流体は、第2ガス通路部17を通り、第1ガス通路部16の第2管部162を介して凝縮器14に流入する。 When descending the slope shown in FIG. 10, each fluid outlet portion 442 connected to the first pipe portion 161 of the first gas passage portion 16 is located above the liquid level height H. Therefore, the working fluid of the gas phase flowing out from each evaporator 12 to the first pipe portion 161 of the first gas passage portion 16 via each fluid outlet portion 442 evaporates located most rearward of the vehicle in the vehicle front-rear direction A3. It flows into the first pipe portion 161 of the second gas passage portion 17 through the fluid outlet portion 442 of the vessel 12. As a result, the working fluid of the gas phase flows into the condenser 14 through the second gas passage portion 17 and the second pipe portion 162 of the first gas passage portion 16.

実施形態2に係る冷却装置1においては、登坂から連続して降坂へ切り替わったときに懸念される、第2ガス通路部17への液相の作動流体の溜りを防止し、第2ガス通路部17を通して蒸発器12から凝縮器14に気相の作動流体を移動させることができる。 In the cooling device 1 according to the second embodiment, the accumulation of the working fluid of the liquid phase in the second gas passage portion 17, which is a concern when continuously switching from the uphill to the downhill, is prevented, and the second gas passage The working fluid of the gas phase can be moved from the evaporator 12 to the condenser 14 through the portion 17.

図11は、所定の傾斜角度を超えた降坂時における冷却装置1の姿勢を示した図である。図11に示したような、所定の傾斜角度を超えた降坂時には、電磁開閉弁62が全開状態であると、第1ガス通路部16の液相の作動流体がバイパス通路部19を通って第2ガス通路部17に流入するおそれがある。そのため、本実施形態においては、所定の傾斜角度を超えた降坂時に、電磁開閉弁62を全閉状態にして、第1ガス通路部16からバイパス通路部19を介して第2ガス通路部17に液相の作動媒体が浸入するのを防止している。 FIG. 11 is a diagram showing the posture of the cooling device 1 when descending a slope exceeding a predetermined inclination angle. When the electromagnetic on-off valve 62 is in the fully open state when descending a slope exceeding a predetermined inclination angle as shown in FIG. 11, the working fluid of the liquid phase of the first gas passage portion 16 passes through the bypass passage portion 19. There is a risk of flowing into the second gas passage portion 17. Therefore, in the present embodiment, when the slope exceeds a predetermined inclination angle, the electromagnetic on-off valve 62 is fully closed, and the second gas passage portion 17 is passed from the first gas passage portion 16 to the bypass passage portion 19. It prevents the working medium of the liquid phase from infiltrating into the air.

なお、所定の傾斜角度とは、車両前側が車両後ろ側よりも低くなるように水平方向に対して傾く、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して低い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動したときにおいて、第1ガス通路部16の液相の作動媒体が、バイパス通路部19に到達するときの角度とする。 The predetermined tilt angle is such that the front side of the vehicle is tilted in the horizontal direction so as to be lower than the rear side of the vehicle, in other words, the condenser 14 side is lower than the other side in the vehicle front-rear direction A3. The angle at which the working medium of the liquid phase of the first gas passage portion 16 reaches the bypass passage portion 19 when the condenser 14 side and the other side move relative to each other in the vehicle vertical direction A2.

また、実施形態2に係る冷却装置1では、不図示の傾斜判定手段によって冷却装置1の傾きを判定している。そして、例えば、所定の傾斜角度を超えた降坂時のように、車両前側が車両後ろ側よりも低くなるように水平方向に対して所定の傾斜角度を超えて傾いた、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して低い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に所定の傾斜角度を超えて相対移動した、と前記傾斜判定手段によって判定されたときには、電磁開閉弁62を全閉状態にする。また、登坂時のように、車両前側が車両後ろ側よりも高くなるように水平方向に対して傾いた、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して高い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動した、と前記傾斜判定手段によって判定されたときには、電磁開閉弁62を全開状態にする。 Further, in the cooling device 1 according to the second embodiment, the inclination of the cooling device 1 is determined by an inclination determining means (not shown). Then, for example, when descending a slope that exceeds a predetermined inclination angle, the front side of the vehicle is tilted beyond a predetermined inclination angle with respect to the horizontal direction so as to be lower than the rear side of the vehicle, in other words, the front and rear of the vehicle. The tilt determining means said that the condenser 14 side and the other side moved relative to each other in the vehicle vertical direction A2 beyond a predetermined tilt angle so that the condenser 14 side was lower than the other side in the direction A3. When determined by, the electromagnetic on-off valve 62 is fully closed. Further, as in the case of climbing a slope, the front side of the vehicle is tilted in the horizontal direction so as to be higher than the rear side of the vehicle, in other words, the condenser 14 side is higher than the other side in the vehicle front-rear direction A3. When it is determined by the inclination determining means that the condenser 14 side and the other side have moved relative to each other in the vehicle vertical direction A2, the electromagnetic on-off valve 62 is fully opened.

また、本実施形態では、蒸発器12よりも凝縮器14が車両前後方向A3で車両前側に位置するように、冷却装置1を車両に搭載した場合で説明したが、これに限定されるものではない。例えば、蒸発器12よりも凝縮器14が車両前後方向A3で車両後ろ側に位置するように、冷却装置1を車両に搭載してもよい。この場合、電磁開閉弁62は、少なくとも降坂時と所定の傾斜角度を超えない登坂時とに全開状態とし、少なくとも所定の傾斜角度を超えた登坂時に全閉状態とする。これにより、降坂時から連続した登坂時に懸念される、第2ガス通路部17への液相の作動流体の溜りを防止し、第2ガス通路部17を通して蒸発器12から凝縮器14に気相の作動流体を移動させることができる。 Further, in the present embodiment, the case where the cooling device 1 is mounted on the vehicle so that the condenser 14 is located on the front side of the vehicle in the vehicle front-rear direction A3 rather than the evaporator 12 has been described, but the present invention is not limited to this. Absent. For example, the cooling device 1 may be mounted on the vehicle so that the condenser 14 is located behind the vehicle in the vehicle front-rear direction A3 rather than the evaporator 12. In this case, the electromagnetic on-off valve 62 is fully opened at least when descending a slope and when climbing a slope that does not exceed a predetermined inclination angle, and is fully closed when climbing a slope that exceeds at least a predetermined inclination angle. As a result, the accumulation of the working fluid of the liquid phase in the second gas passage portion 17, which is a concern during continuous climbing from the time of descending the slope, is prevented, and the evaporator 12 to the condenser 14 are aired through the second gas passage portion 17. The working fluid of the phase can be moved.

(実施形態3)
以下に、本発明に係る冷却装置の実施形態3について説明する。なお、実施形態1と共通する箇所の説明は適宜省略する。
(Embodiment 3)
The third embodiment of the cooling device according to the present invention will be described below. The description of the parts common to the first embodiment will be omitted as appropriate.

図12は、実施形態3に係る冷却装置1の概略構成を示した斜視図である。なお、図12では、水平な路面上に車両が位置するときにおける冷却装置1の姿勢を示している。また、図12においては、組電池5の図示を省略しているが、1つの蒸発器12に対して車両前後方向A3の車両前側と車両後ろ側との少なくとも一方に組電池5が隣接して配置される。図13は、登坂時におけるボール開閉弁70の状態を示した図である。図14は、降坂時におけるボール開閉弁70の状態を示した図である。 FIG. 12 is a perspective view showing a schematic configuration of the cooling device 1 according to the third embodiment. Note that FIG. 12 shows the posture of the cooling device 1 when the vehicle is positioned on a horizontal road surface. Further, although the assembled battery 5 is not shown in FIG. 12, the assembled battery 5 is adjacent to at least one of the front side and the rear side of the vehicle in the vehicle front-rear direction A3 with respect to one evaporator 12. Be placed. FIG. 13 is a diagram showing a state of the ball on-off valve 70 when climbing a slope. FIG. 14 is a diagram showing a state of the ball on-off valve 70 when descending a slope.

実施形態3に係る冷却装置1では、第2ガス通路部17にボール開閉弁70とバイパス通路部174とが設けられている。ボール開閉弁70は、第2ガス通路部17の第2管部172内を移動可能な移動体であるボール71と、ボール71の移動を一定範囲内に規制するための登坂時規制部175及び降坂時規制部176と、を備えている。なお、ボール71の直径は、第1管部171の内径よりも大きく、第2管部172の内径よりも小さい。 In the cooling device 1 according to the third embodiment, the ball on-off valve 70 and the bypass passage portion 174 are provided in the second gas passage portion 17. The ball on-off valve 70 includes a ball 71, which is a moving body that can move in the second pipe portion 172 of the second gas passage portion 17, and a climbing regulation portion 175 for restricting the movement of the ball 71 within a certain range. It is equipped with a downhill regulation section 176. The diameter of the ball 71 is larger than the inner diameter of the first pipe portion 171 and smaller than the inner diameter of the second pipe portion 172.

登坂時規制部175は、第1管部171の車両上下方向A2で上側の端部と、第2管部172の車両前後方向A3で車両後ろ側の端部との接続部分に設けられている。登坂時規制部175は、第1管部171の前記上側の端部に形成された開口175bを塞ぐように、第1管部171の前記上側の端部に設けられた、ボール71が嵌り込む嵌合部175aを有している。 The climbing regulation unit 175 is provided at a connection portion between the upper end portion of the first pipe portion 171 in the vehicle vertical direction A2 and the end portion of the second pipe portion 172 in the vehicle front-rear direction A3 on the vehicle rear side. .. The climbing regulation portion 175 is fitted with a ball 71 provided at the upper end portion of the first pipe portion 171 so as to close the opening 175b formed at the upper end portion of the first pipe portion 171. It has a fitting portion 175a.

降坂時規制部176は、第2管部172の前記接続部分よりも車両前後方向A3で車両前側に設けられている。降坂時規制部176は、ボール71が嵌り込む嵌合部176aを有している。この嵌合部176aでは、第2管部172の一部の壁部が周方向にわたって径方向内側に凸となっており、第2管部172の他の部分の内径よりも小径の開口176bが形成されている。 The downhill regulation unit 176 is provided on the front side of the vehicle in the vehicle front-rear direction A3 with respect to the connection portion of the second pipe unit 172. The downhill regulation portion 176 has a fitting portion 176a into which the ball 71 is fitted. In this fitting portion 176a, a part of the wall portion of the second pipe portion 172 is convex in the radial direction in the circumferential direction, and an opening 176b having a diameter smaller than the inner diameter of the other portion of the second pipe portion 172 is formed. It is formed.

また、第2ガス通路部17の車両上下方向A2で上側の壁部には、第2管部172から分岐した気相の作動流体を流すため気相通路部であるバイパス通路部174が設けられている。バイパス通路部174は、第2管部172の降坂時規制部176よりも車両前後方向A3で車両後ろ側に形成された流入口174aと、第2管部172の降坂時規制部176よりも車両前後方向A3で車両前側に形成された流出口174bとを有している。 Further, a bypass passage portion 174, which is a gas phase passage portion, is provided on the upper wall portion of the second gas passage portion 17 in the vehicle vertical direction A2 in order to allow the working fluid of the gas phase branched from the second pipe portion 172 to flow. ing. The bypass passage portion 174 is provided by the inflow port 174a formed on the rear side of the vehicle in the vehicle front-rear direction A3 from the downhill regulation portion 176 of the second pipe portion 172 and the downhill regulation portion 176 of the second pipe portion 172. Also has an outflow port 174b formed on the front side of the vehicle in the vehicle front-rear direction A3.

登坂時に、車両前側が車両後ろ側よりも高くなるように水平方向に対して傾く、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して高い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動したときには、図13に示すように、第2ガス通路部17の第2管部172内をボール71が車両前後方向A3で車両後ろ側に移動する。そして、登坂時規制部175の嵌合部175aにボール71が嵌り込むことによって、ボール71の移動が規制されるとともに、第1管部171の開口175bがボール71によって閉塞される。 When climbing a slope, the front side of the vehicle tilts in the horizontal direction so that it is higher than the rear side of the vehicle, in other words, the condenser 14 side is in a higher position with respect to the other side in the vehicle front-rear direction A3. When and the other side move relative to each other in the vehicle vertical direction A2, the ball 71 moves to the vehicle rear side in the vehicle front-rear direction A3 in the second pipe portion 172 of the second gas passage portion 17, as shown in FIG. To do. Then, by fitting the ball 71 into the fitting portion 175a of the climbing regulation portion 175, the movement of the ball 71 is restricted, and the opening 175b of the first pipe portion 171 is closed by the ball 71.

これにより、登坂時に、作動流体回路10の下部となる車両前後方向A3で車両後ろ側に、液相の作動流体が溜まることによって、図13に示すように第2ガス通路部17の第1管部171に流入した液相の作動流体が、第2管部172に浸入するのをボール71によって防止することができる。 As a result, when climbing a slope, the working fluid of the liquid phase accumulates on the rear side of the vehicle in the vehicle front-rear direction A3, which is the lower part of the working fluid circuit 10, and as shown in FIG. 13, the first pipe of the second gas passage portion 17 The ball 71 can prevent the working fluid of the liquid phase that has flowed into the portion 171 from entering the second pipe portion 172.

また、車両前側が車両後ろ側よりも低くなるように水平方向に対して傾く、言い換えると、車両前後方向A3で凝縮器14側が他方側に対して低い位置となるように、凝縮器14側と前記他方側とが車両上下方向A2に相対移動したときには、図14に示すように、第2ガス通路部17の第2管部172内をボール71が車両前後方向A3で車両前側に移動する。そして、降坂時規制部176の嵌合部176aにボール71が嵌り込むことによって、ボール71の移動が規制されるとともに、降坂時規制部176の開口176bがボール71によって閉塞される。なお、この際、開口176bは、ボール71によって完全に閉塞されること(開度が0[%])に限定されず、開口176bが全開(開度が100[%])のときよりも開度が下げられていればよい。 Further, the front side of the vehicle is tilted with respect to the horizontal direction so as to be lower than the rear side of the vehicle. In other words, the condenser 14 side is lower than the other side in the vehicle front-rear direction A3. When the other side moves relative to the vehicle in the vertical direction A2, the ball 71 moves to the front side of the vehicle in the vehicle front-rear direction A3 in the second pipe portion 172 of the second gas passage portion 17, as shown in FIG. Then, by fitting the ball 71 into the fitting portion 176a of the downhill regulation portion 176, the movement of the ball 71 is restricted, and the opening 176b of the downhill regulation portion 176 is closed by the ball 71. At this time, the opening 176b is not limited to being completely closed by the ball 71 (opening is 0 [%]), and is more open than when the opening 176b is fully opened (opening is 100 [%]). It suffices if the degree is lowered.

これにより、降坂時には、図14に示すように第1管部171の開口175bが開放、言い換えれば、ボール開閉弁70が全開状態となる。そして、第2ガス通路部17の第1管部171を通って第2管部172に流入した気相の作動流体は、流入口174aからバイパス通路部174を通った後、流出口174bから第2管部172に流出される。これにより、気相の作動流体は、第2ガス通路部17を通り、第1ガス通路部16の第2管部162を介して凝縮器14に流入する。 As a result, when descending a slope, the opening 175b of the first pipe portion 171 is opened, in other words, the ball on-off valve 70 is fully opened as shown in FIG. Then, the working fluid of the gas phase that has flowed into the second pipe portion 172 through the first pipe portion 171 of the second gas passage portion 17 passes through the bypass passage portion 174 from the inflow port 174a, and then passes through the bypass passage portion 174, and then from the outflow port 174b. 2 It is discharged to the pipe portion 172. As a result, the working fluid of the gas phase flows into the condenser 14 through the second gas passage portion 17 and the second pipe portion 162 of the first gas passage portion 16.

実施形態3に係る冷却装置1においては、登坂から連続して降坂へ切り替わったときに懸念される、第2ガス通路部17への液相の作動流体の溜りを防止し、第2ガス通路部17を通して蒸発器12から凝縮器14に気相の作動流体を移動させることができる。 In the cooling device 1 according to the third embodiment, the accumulation of the working fluid of the liquid phase in the second gas passage portion 17, which is a concern when continuously switching from the uphill to the downhill, is prevented, and the second gas passage The working fluid of the gas phase can be moved from the evaporator 12 to the condenser 14 through the portion 17.

また、実施形態3に係る冷却装置1では、ボール開閉弁70を用いることによって、簡易な構成で開閉弁を設けることができる。 Further, in the cooling device 1 according to the third embodiment, the on-off valve can be provided with a simple configuration by using the ball on-off valve 70.

(変形例)
図15は、変形例に係る降坂時におけるボール開閉弁70の状態を示した図である。図16は、図15のA−A断面図である。変形例に係る冷却装置1では、第2ガス通路部17にボール開閉弁70を設けているが、第2管部172から分岐したバイパス通路部を設けていない。
(Modification example)
FIG. 15 is a diagram showing a state of the ball on-off valve 70 at the time of descending a slope according to a modified example. FIG. 16 is a cross-sectional view taken along the line AA of FIG. In the cooling device 1 according to the modified example, the ball on-off valve 70 is provided in the second gas passage portion 17, but the bypass passage portion branched from the second pipe portion 172 is not provided.

変形例に係る冷却装置1の降坂時規制部177は、第2管部172の前記接続部分よりも車両前後方向A3で車両前側に設けられている。降坂時規制部177は、ボール72が嵌り込む嵌合部177aと、開口177bとを有している。この嵌合部177aは、第2管部172の一部の壁部が周方向に所定の間隔をあけて径方向内側に突出した複数の凸部によって構成されている。そして、嵌合部177aにボール72が嵌り込むことによって、開口177bの開度が下げられる。この際、開口177bは、ボール72によって完全に閉塞されず、嵌合部177aを構成する複数の凸部の間に隙間が形成されており、開口177bの一部が開いた状態となっている。 The downhill regulation portion 177 of the cooling device 1 according to the modified example is provided on the vehicle front side in the vehicle front-rear direction A3 from the connection portion of the second pipe portion 172. The downhill regulation portion 177 has a fitting portion 177a into which the ball 72 is fitted and an opening 177b. The fitting portion 177a is composed of a plurality of convex portions in which a part of the wall portion of the second pipe portion 172 protrudes inward in the radial direction at a predetermined interval in the circumferential direction. Then, the opening of the opening 177b is reduced by fitting the ball 72 into the fitting portion 177a. At this time, the opening 177b is not completely closed by the ball 72, a gap is formed between the plurality of convex portions constituting the fitting portion 177a, and a part of the opening 177b is open. ..

これにより、降坂時に、第2ガス通路部17の第1管部171を通って第2管部172に流入した気相の作動流体は、降坂時規制部177の開度が下がった開口177bを通って第2管部172を流れることができる。よって、第2管部172から分岐したバイパス通路部を設けない分、簡易な構成にすることが可能となる。 As a result, the working fluid of the gas phase that has flowed into the second pipe portion 172 through the first pipe portion 171 of the second gas passage portion 17 when descending the slope has an opening in which the opening degree of the regulation portion 177 when descending the slope is reduced. It can flow through the second pipe portion 172 through 177b. Therefore, since the bypass passage portion branched from the second pipe portion 172 is not provided, the configuration can be simplified.

1 冷却装置
5 組電池
5a 電池下面
5b 電池側面
5c 側面下端
5d 側面上端
10 作動流体回路
12 蒸発器
14 凝縮器
16 第1ガス通路部
17 第2ガス通路部
18 液通路部
19 バイパス通路部
21 冷凍サイクル装置
22 冷媒回路
24 圧縮機
26 空調用凝縮器
27 送風機
28 第1膨張弁
30 空調用蒸発器
32 第2膨張弁
34 開閉弁
36 冷媒側熱交換器
38 熱伝導材
39 断熱部
40 流体蒸発部
42 液供給部
42a 一端部
42b 他端部
44 流体流出部
44a 一端部
44b 他端部
51 電池セル
61 電磁開閉弁
62 電磁開閉弁
70 ボール開閉弁
71 ボール
72 ボール
121 第1プレート部材
121a 第1蒸発形成部
121b 第1供給形成部
121c 第1流出形成部
122 第2プレート部材
122a 第2蒸発形成部
122b 第2供給形成部
122c 第2流出形成部
122d 凸部
161 第1管部
162 第2管部
171 第1管部
172 第2管部
173 第3管部
174 バイパス通路部
175 登坂時規制部
175a 嵌合部
175b 開口
176 降坂時規制部
176a 嵌合部
176b 開口
177 降坂時規制部
177a 嵌合部
177b 開口
181 第1管部
182 第2管部
401 蒸発流路
401a 上流端
401b 下流端
421 供給流路
422 流体入口部
441 流出流路
442 流体出口部
1 Cooling device 5 assembled battery 5a Battery lower surface 5b Battery side surface 5c Side lower end 5d Side upper end 10 Working fluid circuit 12 Evaporator 14 Condenser 16 1st gas passage 17 2nd gas passage 18 Liquid passage 19 Bypass passage 21 Refrigeration Cycle device 22 Refrigerant circuit 24 Compressor 26 Air conditioning condenser 27 Blower 28 First expansion valve 30 Air conditioning evaporator 32 Second expansion valve 34 On-off valve 36 Refrigerant side heat exchanger 38 Heat conductive material 39 Insulation unit 40 Fluid evaporation unit 42 Liquid supply part 42a One end 42b End end 44 Fluid outflow part 44a One end 44b The other end 51 Battery cell 61 Electromagnetic on-off valve 62 Electromagnetic on-off valve 70 Ball on-off valve 71 Ball 72 Ball 121 First plate member 121a First evaporation Forming part 121b First supply forming part 121c First outflow forming part 122 Second plate member 122a Second evaporation forming part 122b Second supply forming part 122c Second outflow forming part 122d Convex part 161 First pipe part 162 Second pipe part 171 1st pipe 172 2nd pipe 173 3rd pipe 174 Bypass passage 175 Climbing regulation part 175a Fitting part 175b Opening 176 Downhill regulation part 176a Fitting part 176b Opening 177 Downhill regulation part 177a Fitting Joint part 177b Opening 181 First pipe part 182 Second pipe part 401 Evaporation flow path 401a Upstream end 401b Downstream end 421 Supply flow path 422 Fluid inlet part 441 Outflow flow path 442 Fluid outlet part

Claims (6)

冷却対象物と熱媒体との熱交換により前記熱媒体を蒸発させることによって、前記冷却対象物を冷却する蒸発部と、
前記蒸発部よりも上方に配置されており、前記熱媒体と外部流体との熱交換により前記熱媒体を凝縮させることによって、前記熱媒体の熱を前記外部流体に放熱する凝縮部と、
前記蒸発部から前記凝縮部に気相の前記熱媒体を導くための気相通路部と、
前記凝縮部から前記蒸発部に液相の前記熱媒体を導くための液相通路部と、
を備えた冷却装置であって、
前記気相通路部に開閉弁を設けたことを特徴とする冷却装置。
An evaporating part that cools the object to be cooled by evaporating the heat medium by heat exchange between the object to be cooled and the heat medium.
A condensing unit that is arranged above the evaporation unit and that dissipates heat from the heat medium to the external fluid by condensing the heat medium by heat exchange between the heat medium and the external fluid.
A gas phase passage portion for guiding the heat medium of the gas phase from the evaporation portion to the condensing portion,
A liquid phase passage portion for guiding the heat medium of the liquid phase from the condensing portion to the evaporation portion,
It is a cooling device equipped with
A cooling device characterized in that an on-off valve is provided in the gas phase passage portion.
前記開閉弁は、所定方向の一方側である前記凝縮部側が、前記所定方向の他方側に対して高い位置となるように、前記凝縮部側と前記他方側とが上下方向に相対移動したときに、開度を下げることを特徴とする請求項1に記載の冷却装置。 When the condensing portion side and the other side of the on-off valve move relative to each other in the vertical direction so that the condensing portion side, which is one side in a predetermined direction, is at a higher position with respect to the other side in the predetermined direction. The cooling device according to claim 1, wherein the opening degree is lowered. 前記気相通路部として、第1気相通路部と、前記第1気相通路部よりも少なくとも一部が上方に位置するように配置された第2気相通路部と、を備えており、
前記開閉弁は前記第2気相通路部に設けられていることを特徴とする請求項1または2に記載の冷却装置。
The gas phase passage portion includes a first gas phase passage portion and a second gas phase passage portion arranged so that at least a part thereof is located above the first gas phase passage portion.
The cooling device according to claim 1 or 2, wherein the on-off valve is provided in the second gas phase passage portion.
前記開閉弁は、前記凝縮部側と前記蒸発部側とが上下方向に相対移動するときに、前記第2気相通路部を移動する移動体と、前記移動体の移動を一定範囲内に規制する規制部と、を有することを特徴とする請求項3に記載の冷却装置。 The on-off valve restricts the movement of the moving body moving in the second vapor phase passage portion and the movement of the moving body within a certain range when the condensing portion side and the evaporating portion side move relative to each other in the vertical direction. The cooling device according to claim 3, wherein the cooling device is provided with a regulation unit. 前記凝縮部側と前記蒸発部側との相対移動を判定する判定手段を有しており、
前記凝縮部側が前記蒸発部側に対して高い位置となるように、前記凝縮部側と前記蒸発部側とが上下方向に相対移動したと、前記判定手段によって判定されたときに、前記開閉弁の開度を下げることを特徴とする請求項1乃至3のいずれか1項に記載の冷却装置。
It has a determination means for determining the relative movement between the condensing portion side and the evaporating portion side.
The on-off valve when the determination means determines that the condensing portion side and the evaporating portion side have moved relative to each other in the vertical direction so that the condensing portion side is at a higher position than the evaporating portion side. The cooling device according to any one of claims 1 to 3, wherein the opening degree of the cooling device is reduced.
前記気相通路部として、第1気相通路部と、前記第1気相通路部よりも少なくとも一部が上方に位置するように配置された第2気相通路部と、前記第1気相通路部と前記第2気相通路部とを上下方向に接続するバイパス通路部と、を備えており、
前記開閉弁は前記バイパス通路部に設けられており、
前記凝縮部側と前記蒸発部側との相対移動を判定する判定手段を有しており、
前記凝縮部側が前記蒸発部側に対して高い位置となるように、前記凝縮部側と前記蒸発部側とが上下方向に相対移動した後、前記凝縮部側が前記蒸発部側に対して低い位置となるように、前記凝縮部側と前記蒸発部側とが上下方向に相対移動したと、前記判定手段によって判定されたときに、前記開閉弁の開度を上げることを特徴とする請求項1に記載の冷却装置。
As the gas phase passage portion, a first gas phase passage portion, a second gas phase passage portion arranged so that at least a part thereof is located above the first gas phase passage portion, and the first gas phase portion. A bypass passage portion for connecting the passage portion and the second gas phase passage portion in the vertical direction is provided.
The on-off valve is provided in the bypass passage portion and is provided.
It has a determination means for determining the relative movement between the condensing portion side and the evaporating portion side.
After the condensed portion side and the evaporated portion side move relative to each other in the vertical direction so that the condensed portion side is at a higher position with respect to the evaporated portion side, the condensed portion side is at a lower position with respect to the evaporated portion side. The first aspect of the present invention is to increase the opening degree of the on-off valve when it is determined by the determination means that the condensing portion side and the evaporating portion side have moved relative to each other in the vertical direction. The cooling device described in.
JP2019086509A 2019-04-26 2019-04-26 Cooling device Pending JP2020183814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019086509A JP2020183814A (en) 2019-04-26 2019-04-26 Cooling device
PCT/JP2020/015944 WO2020218007A1 (en) 2019-04-26 2020-04-09 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019086509A JP2020183814A (en) 2019-04-26 2019-04-26 Cooling device

Publications (1)

Publication Number Publication Date
JP2020183814A true JP2020183814A (en) 2020-11-12

Family

ID=72941895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086509A Pending JP2020183814A (en) 2019-04-26 2019-04-26 Cooling device

Country Status (2)

Country Link
JP (1) JP2020183814A (en)
WO (1) WO2020218007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022082354A (en) * 2020-11-20 2022-06-01 本田技研工業株式会社 Vehicular battery pack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216052A1 (en) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Cooling device for a traction battery of a vehicle
KR20230094366A (en) * 2021-12-21 2023-06-28 주식회사 엘지에너지솔루션 Battery Pack Comprising Heat Transfer Member Formed With Inlet and Outlet of Cooling Fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460383A (en) * 1990-06-27 1992-02-26 Fujikura Ltd How to control a thermal storage water heater
US20070163754A1 (en) * 2006-01-19 2007-07-19 Dionne, Marien & Associes Inc. Thermosiphon having improved efficiency
US20120186787A1 (en) * 2011-01-25 2012-07-26 Khanh Dinh Heat pipe system having common vapor rail
EP2631183A1 (en) * 2010-10-21 2013-08-28 Ibérica del Espacio, S.A. Thermal control device regulated by pressure
JP2019052837A (en) * 2017-09-13 2019-04-04 株式会社デンソー Apparatus temperature adjustment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460383A (en) * 1990-06-27 1992-02-26 Fujikura Ltd How to control a thermal storage water heater
US20070163754A1 (en) * 2006-01-19 2007-07-19 Dionne, Marien & Associes Inc. Thermosiphon having improved efficiency
EP2631183A1 (en) * 2010-10-21 2013-08-28 Ibérica del Espacio, S.A. Thermal control device regulated by pressure
US20120186787A1 (en) * 2011-01-25 2012-07-26 Khanh Dinh Heat pipe system having common vapor rail
JP2019052837A (en) * 2017-09-13 2019-04-04 株式会社デンソー Apparatus temperature adjustment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022082354A (en) * 2020-11-20 2022-06-01 本田技研工業株式会社 Vehicular battery pack
JP7317789B2 (en) 2020-11-20 2023-07-31 本田技研工業株式会社 vehicle battery pack

Also Published As

Publication number Publication date
WO2020218007A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6724888B2 (en) Equipment temperature controller
JP6528844B2 (en) Refrigeration system and in-vehicle refrigeration system
JP5626194B2 (en) Heat exchange system
CN111854488B (en) Cooling device
WO2020218007A1 (en) Cooling device
WO2018168276A1 (en) Device temperature adjusting apparatus
CN104884892A (en) Heat exchanger
JP6575690B2 (en) Equipment temperature controller
WO2018047533A1 (en) Device temperature adjusting apparatus
JP2019052837A (en) Apparatus temperature adjustment device
WO2019150751A1 (en) Temperature regulating device
WO2020203152A1 (en) Thermosiphon-type cooling device for vehicle
JP2020184429A (en) Cooling system
JP7099144B2 (en) Thermosiphon type temperature controller
JP7159771B2 (en) Equipment temperature controller
JP2017172948A (en) Heat exchange unit and vehicle air conditioner
WO2019087574A1 (en) Thermosiphon-type temperature control device
WO2019123881A1 (en) Device temperature adjusting apparatus
WO2019054076A1 (en) Device temperature adjustment apparatus
JP2011189824A (en) Air-conditioning system for vehicle
WO2020084956A1 (en) Temperature regulating device
WO2020246248A1 (en) Ebullient cooling device
WO2020235475A1 (en) Device temperature adjustment apparatus
WO2020129645A1 (en) Equipment temperature regulating device
JP7376415B2 (en) Cooler

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213