[go: up one dir, main page]

JP2020180767A - Double pipe joint structure - Google Patents

Double pipe joint structure Download PDF

Info

Publication number
JP2020180767A
JP2020180767A JP2019085856A JP2019085856A JP2020180767A JP 2020180767 A JP2020180767 A JP 2020180767A JP 2019085856 A JP2019085856 A JP 2019085856A JP 2019085856 A JP2019085856 A JP 2019085856A JP 2020180767 A JP2020180767 A JP 2020180767A
Authority
JP
Japan
Prior art keywords
pipe
fluid
uneven
inner pipe
connecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019085856A
Other languages
Japanese (ja)
Other versions
JP7056951B2 (en
Inventor
佐藤 進
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waki Seisakusho KK
Original Assignee
Waki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waki Seisakusho KK filed Critical Waki Seisakusho KK
Priority to JP2019085856A priority Critical patent/JP7056951B2/en
Publication of JP2020180767A publication Critical patent/JP2020180767A/en
Application granted granted Critical
Publication of JP7056951B2 publication Critical patent/JP7056951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】二重管全体に充分な熱交換性能を得ると共にレイアウトの自由度を高めることができる接続管との継手構造を提供する。【解決手段】複数の螺旋状の凹凸部11を備えた内管1と外管2とから成る熱交換器用二重管と接続管3との継手構造において、内管1には、環状のシール用膨張部13と凹凸部11の端部11bとを接近させて設ける。外管2の端部2bには、接続管3の接続端末と内管1のシール用膨張部13とを囲う嵌合接続部21と、内管1の中心から内管1の壁面と外管2の壁面までの距離の差が接続管3へ向かうに従って漸増するよう囲繞して接続管3の端口3bから各旋回流路へ流体を誘導する流体誘導部22とを設ける。流体誘導部22には、断面積が最大となる最大口径部分24aから、一方側には流体誘導部22外の外管2に繋がるテーパー状の主壁部24を配し、他方側には接続管3に繋がる従壁部を配する。【選択図】図1PROBLEM TO BE SOLVED: To provide a joint structure with a connecting pipe capable of obtaining sufficient heat exchange performance for the entire double pipe and increasing the degree of freedom in layout. SOLUTION: In a joint structure of a heat exchanger double pipe composed of an inner pipe 1 and an outer pipe 2 provided with a plurality of spiral uneven portions 11 and a connecting pipe 3, the inner pipe 1 has an annular seal. The expansion portion 13 and the end portion 11b of the uneven portion 11 are provided close to each other. At the end 2b of the outer pipe 2, a fitting connection portion 21 that surrounds the connection terminal of the connection pipe 3 and the sealing expansion portion 13 of the inner pipe 1, and the wall surface of the inner pipe 1 and the outer pipe from the center of the inner pipe 1 are provided. A fluid guiding portion 22 for guiding the fluid from the end port 3b of the connecting pipe 3 to each swirling flow path is provided so as to surround the difference in the distance to the wall surface of the connecting pipe 3 so as to gradually increase toward the connecting pipe 3. The fluid guide portion 22 is provided with a tapered main wall portion 24 connected to the outer pipe 2 outside the fluid guide portion 22 from the maximum diameter portion 24a having the maximum cross-sectional area on one side, and is connected to the other side. A fluid wall portion connected to the pipe 3 is arranged. [Selection diagram] Fig. 1

Description

本発明は、内管と外管との間に螺旋状の熱交換通路を形成した熱交換器として使用される二重管と接続管との継手構造に関する。 The present invention relates to a joint structure of a double pipe and a connecting pipe used as a heat exchanger in which a spiral heat exchange passage is formed between an inner pipe and an outer pipe.

自動車の空調機の熱交換系等では、小型で熱交換効率の高い熱交換器として、内管と外管の間の螺旋状の熱交換通路に熱交換用の一方の流体を流通させ、他方の流体を内管に流通させて両流体間で熱交換を行う二重管が多用されている。
螺旋状の熱交換通路は内管に設けた螺旋状の凹凸部によって形成され、該二重管の両端部には該熱交換通路を流通する流体のインレット用とアウトレット用の接続管が連結される。
該二重管と接続管を連結した継手は、外管の端部に穿孔された接続孔に接続管が直立状態に接続された構造とするのが一般的であり、螺旋状の熱交換通路で旋回される流体のインレットとアウトレットの際の接続部分の急激な方向変換によって流体の流通が阻害され、熱交換性能が低下するという不具合があった。
In the heat exchange system of an automobile air conditioner, as a small heat exchanger with high heat exchange efficiency, one fluid for heat exchange is circulated in the spiral heat exchange passage between the inner pipe and the outer pipe, and the other. Double pipes are often used to exchange heat between the two fluids by circulating the fluids in the inner pipe.
The spiral heat exchange passage is formed by spiral uneven portions provided in the inner pipe, and connecting pipes for inlet and outlet of the fluid flowing through the heat exchange passage are connected to both ends of the double pipe. Helix.
The joint connecting the double pipe and the connecting pipe generally has a structure in which the connecting pipe is connected upright to the connecting hole drilled at the end of the outer pipe, and has a spiral heat exchange passage. There is a problem that the flow of the fluid is hindered by the sudden change of direction of the connecting portion between the inlet and the outlet of the fluid swirled in, and the heat exchange performance is deteriorated.

この不具合を改良するものとして、接続管の端口に対面する位置の内管の周面に環状溝を設け、流体の急激な方向変換を回避しようとする技術が知られている。しかし、この技術でも接続管が直交しているという基本構造が維持されているため流体の急激な方向変換は避けられず、根本的な改良とはならないだけではなく、急激な方向変換を回避するため環状溝の幅を広くすればするほど強度が低下し、流体から受ける流通圧力によって溝内の管壁が変形され易くなるという新たな問題が生じた。 As a technique for improving this problem, a technique is known in which an annular groove is provided on the peripheral surface of the inner pipe at a position facing the end port of the connecting pipe to avoid a sudden change of direction of the fluid. However, even with this technology, since the basic structure that the connecting pipes are orthogonal is maintained, a sudden change of direction of the fluid is unavoidable, and not only is it not a fundamental improvement, but also a sudden change of direction is avoided. Therefore, the wider the width of the annular groove, the lower the strength, and a new problem arises in which the pipe wall in the groove is easily deformed by the flow pressure received from the fluid.

これに対して、本願発明者は先に下記特許文献1の二重管の継手構造を提案し、二重管の外管の端部に軸方向へ平行に接続管を繋ぎ、該接続管に繋がる筒状の流通案内部を設けることで流路の急激な方向変換による流通性に対する阻害要因が解消され、流体の流通性が高められ充分な熱交換性能を得ることが可能となった。
又、上記従来の継手構造における環状溝は設ける必要がなくなったため内管の強度低下による問題も解決された。
On the other hand, the inventor of the present application previously proposed the joint structure of the double pipe of Patent Document 1 below, connected the connecting pipe to the end of the outer pipe of the double pipe in parallel in the axial direction, and connected the connecting pipe to the connecting pipe. By providing a connected tubular flow guide, the obstacles to the flowability due to the sudden change of direction of the flow path are eliminated, the fluid flowability is improved, and sufficient heat exchange performance can be obtained.
Further, since it is no longer necessary to provide the annular groove in the conventional joint structure, the problem due to the decrease in the strength of the inner pipe has been solved.

しかしながら、上記特許文献1の技術では、筒状の流通案内部が接続部から螺旋状の凹凸部間の旋回流路に確実に届くよう軸方向へ長く形成されるため、凹凸部の本数が多くなればなるほど各凹凸部に被せる流通案内部の長さを増加させなければならず、流通案内部の長さを増加させると、二重管の限られた長さの中で、増加させた分二重管を自由に屈曲させることが可能となる範囲が狭まることとなり、空調機等への組み付けの際のレイアウトの自由性が失われてしまうという問題があった。
又、シール用膨張部で旋回流路の端部が閉じられるため流通案内部の裏側では一部にデッドスペースができ、そこでは熱交換機能が損なわれ、熱交換効率が低下してしまうという問題があった。
However, in the technique of Patent Document 1, since the tubular flow guide portion is formed long in the axial direction so as to surely reach the swirling flow path between the spiral concave-convex portions, the number of concave-convex portions is large. The longer it becomes, the longer the length of the distribution guide that covers each uneven part must be increased, and if the length of the distribution guide is increased, the increased amount within the limited length of the double pipe. There is a problem that the range in which the double pipe can be freely bent is narrowed, and the freedom of layout when assembling to an air conditioner or the like is lost.
In addition, since the end of the swirling flow path is closed by the expansion portion for sealing, a dead space is partially created on the back side of the distribution guide portion, where the heat exchange function is impaired and the heat exchange efficiency is lowered. was there.

特開2013−124854号公報Japanese Unexamined Patent Publication No. 2013-124854

本発明は、上記特許文献1の二重管の継手構造の問題点を改良し、接続管との継手内を流体が二重管の端部まで全体に流通して充分な熱交換性能が得られ、内管の強度低下を起こさせずに使用場所における組み付けレイアウトの自由度をより高めることが可能となる二重管の継手構造を提供することを目的とする。 The present invention improves the problem of the joint structure of the double pipe of Patent Document 1 and obtains sufficient heat exchange performance by allowing the fluid to flow through the joint with the connecting pipe to the end of the double pipe. An object of the present invention is to provide a double pipe joint structure capable of increasing the degree of freedom in assembly layout at the place of use without causing a decrease in the strength of the inner pipe.

上記課題を解決するため、本発明の二重管の継手構造における請求項1の発明は、複数本の螺旋状の凹凸部を備えた内管と外管との間に熱交換通路が形成された熱交換器用二重管に対して、前記熱交換通路を流通する流体のインレット、アウトレットとなる接続管を接続した二重管の継手構造において、前記内管には、外管端部の内壁の対面部位を環状に膨出させたシール用膨張部を設け、前記凹凸部はその端部を該シール用膨張部に対して接近させて設け、前記接続管には、その端部に、外管端部の内側形状と前記内管のシール用膨張部の外側形状とによって囲まれた略D形の異形形状の接続端末を設け、前記外管には、その端部に、前記接続管の接続端末と前記内管のシール用膨張部とを囲うダルマ形の嵌合接続部と、前記接続管の端口と内管の凹凸部の端部の外側を覆って、前記接続管の端口から前記凹凸部間に形成される各旋回流路へと流体を誘導する誘導通路を形成する流体誘導部とを設け、前記流体誘導部は、最大口径部分を内管の凹凸部の頂部の外接円と複数本の旋回流路の断面積の総和よりも大きな断面積を有する略円形とし、且つ、内管の中心から内管の壁面と外管の壁面までの距離の差が接続管へ向かうに従って漸増するよう各旋回流路を囲繞して誘導通路を形成し、前記最大口径部分から一方側には流体誘導部外の外管に繋がるテーパー状の主壁部を配し、他方側には接続管に繋がる従壁部を配したことを特徴とする。 In order to solve the above problems, in the invention of claim 1 in the double pipe joint structure of the present invention, a heat exchange passage is formed between the inner pipe and the outer pipe having a plurality of spiral uneven portions. In the joint structure of the double pipe in which the inlet and the outlet of the fluid flowing through the heat exchange passage are connected to the double pipe for the heat exchanger, the inner pipe has an inner wall of the outer pipe end. A sealing expansion portion is provided in which the facing portion of the pipe is bulged in an annular shape, the uneven portion thereof is provided with its end portion close to the sealing expansion portion, and the connecting pipe is provided with an outer portion at the end portion. A substantially D-shaped irregularly shaped connecting terminal surrounded by the inner shape of the pipe end and the outer shape of the sealing expansion portion of the inner pipe is provided, and the outer pipe is provided with the connecting pipe at the end thereof. The Dharma-shaped fitting connection portion that surrounds the connection terminal and the expansion portion for sealing of the inner pipe, and the outside of the end portion of the connection pipe and the end portion of the uneven portion of the inner pipe are covered from the end opening of the connection pipe. A fluid guiding portion for forming a guiding passage for guiding the fluid to each swirling flow path formed between the uneven portions is provided, and the fluid guiding portion has a maximum diameter portion with an circumscribing circle at the top of the uneven portion of the inner pipe. It has a substantially circular shape with a cross-sectional area larger than the total cross-sectional area of multiple swirling flow paths, and the difference in the distance from the center of the inner pipe to the wall surface of the inner pipe and the wall surface of the outer pipe gradually increases toward the connecting pipe. A guide passage is formed by surrounding each swirl flow path, and a tapered main wall portion connected to an outer pipe outside the fluid guide portion is arranged on one side from the maximum diameter portion, and a connection pipe is arranged on the other side. It is characterized by arranging a sub-wall part that connects to.

請求項2の発明は、上記発明において、前記主壁部の最大口径は、前記シール用膨張部と接続管の外径の合計値よりも小さな口径としたことを特徴とする。 The invention of claim 2 is characterized in that, in the above invention, the maximum diameter of the main wall portion is smaller than the total value of the outer diameters of the expansion portion for sealing and the connecting pipe.

請求項3の発明は、上記発明において、前記内管の凹凸部の端部と前記シール用膨張部との間を、環状溝を介して接近させたことを特徴とする。 The invention of claim 3 is characterized in that, in the above invention, the end portion of the uneven portion of the inner pipe and the expansion portion for sealing are brought close to each other via an annular groove.

請求項4の発明は、上記発明において、前記内管の凹凸部に近い主壁部の内壁の口径を、拡大したことを特徴とする。 The invention of claim 4 is characterized in that, in the above invention, the diameter of the inner wall of the main wall portion near the uneven portion of the inner pipe is enlarged.

本発明は上記構成であり、外管の端部に設けた流体誘導部内の流体は、外管の端部に差し込まれた接続管から二重管と同じ軸方向へ流れ、その際、主壁部は全長に渡って内管の外周よりも大きい口径なので、接続管前の広い誘導通路内を通りテーパー状の主壁部に誘導されて各旋回流路に分かれて流通する。このため、急激な方向変換を起さず円滑に流通させることが可能となる。
そして、流体誘導部には、内管の中心から内管の壁面と外管の壁面までの距離の差が接続管へ向かうに従って漸増するよう各旋回流路を囲繞した誘導通路が形成される。
このため、流体の取入口となる旋回流路の端口が存在する接続管により近い位置の複数の旋回流路の端口に対しては、漸増した広い空間を保持して充分な量の流体が供給可能となる。一方、接側管からより離れた位置の複数の旋回流路の端口に対しては、誘導通路の幅は徐々に狭まるので、円形の主壁部に誘導されて回り込むように狭い方へ収束されつつ周方向へ流通する。即ち、流体が各旋回流路を囲繞した誘導通路によって円滑に誘導され、求められる量に応じて必要な量の流体を的確に供給することが可能となる。
その際、接続部の端口から離れた位置にある凹凸部の端部にも流体が周方向に回り込んで流通するので、全ての旋回流路に流体の滞留するデッドスペースは生じることがない。
又、流体誘導部には、流体誘導部外の外管に繋がるテーパー状の主壁部と接続管に繋がる従壁部の間の略円形の最大口径部分の誘導通路を、全ての旋回流路の断面積の総和よりも大きな断面積としたので、接続管から直接流入する最大口径部分で誘導通路の断面積が一旦増大して、誘導通路内に全ての旋回流路内に必要とされる充分な量の流体が流通可能となる。流体はその増大した誘導通路を通り、徐々に狭くなる主壁部のテーパー状の斜面に誘導されて軸方向へ収束されつつ、最後に主壁部の末端から全ての旋回流路内へ分かれて円滑に流通することとなる。
The present invention has the above configuration, and the fluid in the fluid guide provided at the end of the outer pipe flows from the connecting pipe inserted at the end of the outer pipe in the same axial direction as the double pipe, and at that time, the main wall. Since the portion has a diameter larger than the outer circumference of the inner pipe over the entire length, it passes through a wide guide passage in front of the connecting pipe, is guided to the tapered main wall portion, and is divided into each swirling flow path for distribution. Therefore, it is possible to smoothly distribute the product without causing a sudden change of direction.
Then, in the fluid guiding portion, a guiding passage surrounding each swirling flow path is formed so that the difference in distance from the center of the inner pipe to the wall surface of the inner pipe and the wall surface of the outer pipe gradually increases toward the connecting pipe.
For this reason, a sufficient amount of fluid is supplied while maintaining a gradually increasing wide space to the end ports of a plurality of swirling flow paths located closer to the connection pipe where the end port of the swirling flow path serving as the fluid intake is present. It will be possible. On the other hand, since the width of the guide passage gradually narrows with respect to the end ports of the plurality of swirl passages located farther from the tangent pipe, the width of the guide passage gradually narrows, so that the guide passage is guided by the circular main wall and converges to the narrow side so as to go around. While circulating in the circumferential direction. That is, the fluid is smoothly guided by the guide passage surrounding each swirling flow path, and it is possible to accurately supply the required amount of fluid according to the required amount.
At that time, since the fluid circulates around the end of the uneven portion located at a position away from the end opening of the connecting portion in the circumferential direction, no dead space for the fluid to stay is generated in all the swirling flow paths.
Further, in the fluid guide portion, all swirling flow paths are provided with a substantially circular maximum diameter portion guide passage between the tapered main wall portion connected to the outer pipe outside the fluid guide portion and the slave wall portion connected to the connecting pipe. Since the cross-sectional area is larger than the total cross-sectional area of the guide passage, the cross-sectional area of the guide passage is once increased at the maximum diameter portion directly flowing from the connecting pipe, and is required in all the swivel flow paths in the guide passage. A sufficient amount of fluid can be circulated. The fluid passes through the increased guidance passage, is guided by the tapered slope of the main wall that gradually narrows, converges in the axial direction, and finally splits from the end of the main wall into all the swirling flow paths. It will be distributed smoothly.

又、誘導通路は接続管の前側の広い空間には流通に余裕があるので、その接続管の前側から周方向へ離れた各旋回流路へは流通量は少なくて済み、従って、誘導通路を、流量が多く必要な接続管側はより広くし、少ない流量で済む接続管から遠い側は徐々に狭くなるよう形成することで、最大口径部分の外径を小さくすることが可能となる。
このため、継手部分の外径のコンパクト化が可能となり、使用場所における組み付けのレイアウトの自由度を高めることができるようになる。
そして、上記の如き各旋回流路への流通を円滑に誘導させる誘導機能を備えた誘導通路により、継手内において各旋回流路との間に流路の急激な方向変換による大きな流通抵抗を発生させずに、二重管全体に流体を円滑に流通させることが可能となる。
In addition, since the guide passage has a margin for circulation in the wide space on the front side of the connecting pipe, the flow rate to each swirling flow path away from the front side of the connecting pipe in the circumferential direction can be small. By forming the connection pipe side that requires a large flow rate to be wider and the side far from the connection pipe that requires a small flow rate to be gradually narrowed, it is possible to reduce the outer diameter of the maximum diameter portion.
Therefore, the outer diameter of the joint portion can be made compact, and the degree of freedom in the assembly layout at the place of use can be increased.
Then, the guidance passage having the guidance function for smoothly guiding the flow to each swirl flow path as described above generates a large flow resistance in the joint between the swirl flow path and the flow path due to a sudden change of direction. It is possible to smoothly circulate the fluid throughout the double pipe without causing it.

又、主壁部は広い最大口径部分で必要とされる量の流体が余裕を待って流通可能とするため、主壁部のテーパー状の末端側では各旋回流路へ流入させる量は少なくて済み、主壁部を不必要に長くする必要がない。
このため、螺旋状の凹凸部の本数を増加させたとしても、その増加した本数に応じて主壁部を軸方向へ延ばす必要がなく、誘導通路の最大口径部分の容積の大きさに応じて、流体誘導部を短くすることができる。
そして、継手部分の領域を軸方向に短くすることで、使用場所の空間の形状に応じて主壁部の末端近くまで折り曲げることが可能となり、狭い場所でも使用できるよう組み付けのレイアウトの自由度を高めることが可能となる。
In addition, since the main wall portion allows the required amount of fluid to flow with a margin in the wide maximum diameter portion, the amount of fluid flowing into each swirling flow path is small on the tapered end side of the main wall portion. No need to lengthen the main wall unnecessarily.
Therefore, even if the number of spiral concavo-convex portions is increased, it is not necessary to extend the main wall portion in the axial direction according to the increased number, and the volume of the maximum diameter portion of the guide passage is increased. , The fluid guide can be shortened.
By shortening the area of the joint part in the axial direction, it is possible to bend it near the end of the main wall part according to the shape of the space of the place of use, and the degree of freedom of assembly layout is increased so that it can be used even in a narrow place. It becomes possible to increase.

又、内管の凹凸部の端部がシール用膨張部に接近しているので、二重管と接続管との継手の内管に脆弱となる広い平坦状の部分は形成されず、薄く柔らかいアルミニュウム製の内管に対して流体から大きな圧力を受けても変形や損傷を生じることがなくなる。 Further, since the end of the uneven portion of the inner pipe is close to the expanding portion for sealing, a wide flat portion that becomes fragile is not formed in the inner pipe of the joint between the double pipe and the connecting pipe, and it is thin and soft. Even if a large pressure is applied from the fluid to the inner tube made of aluminum, it will not be deformed or damaged.

請求項2の発明は、主壁部の最大口径をシール用膨張部と接続管の外径の合計値よりも小さな口径とすることで、流体誘導部の軸方向の長さを短くして継手全体を短くするだけではなく、継手部分における最大口径部分の外径を小さくなるように設定して径方向でもコンパクト化でき、レイアウトの自由度をより高めることが可能となる。 In the invention of claim 2, the maximum diameter of the main wall portion is set to a diameter smaller than the total value of the expansion portion for sealing and the outer diameter of the connecting pipe, so that the axial length of the fluid guiding portion is shortened to form a joint. Not only can the whole be shortened, but the outer diameter of the maximum diameter portion of the joint portion can be set to be small so that the diameter can be made compact, and the degree of freedom in layout can be further increased.

請求項3の発明は、前記内管の凹凸部の端部と該シール用膨張部との間を、環状溝を介して接近させたことで、該環状溝からも内管の凹凸部の端部間の旋回流路の端口に対してより多く流通させることが可能となる。
この結果、流体誘導部の軸方向の長さをさらに短くして継手全体をさらにコンパクト化でき、レイアウトの自由度をより高めることが可能となる。
According to the third aspect of the present invention, the end of the uneven portion of the inner pipe and the expansion portion for sealing are brought close to each other through the annular groove, so that the end of the uneven portion of the inner pipe is also from the annular groove. It is possible to distribute more to the end of the swirling flow path between the parts.
As a result, the axial length of the fluid guide portion can be further shortened to make the entire joint more compact, and the degree of freedom in layout can be further increased.

請求項4の発明は、前記内管の凹凸部に近い主壁部の内壁の口径を、拡大したことで、その拡大部からも内管の凹凸部の端部間の各旋回流路に対してより多く流通させることが可能となる。
この結果、流体誘導部の軸方向の長さをさらに短くして継手全体をさらにコンパクト化でき、レイアウトの自由度をより高めることが可能となる。
According to the fourth aspect of the present invention, the diameter of the inner wall of the main wall portion close to the uneven portion of the inner pipe is enlarged, so that the enlarged portion also covers each swirling flow path between the ends of the uneven portion of the inner pipe. It will be possible to distribute more.
As a result, the axial length of the fluid guide portion can be further shortened to make the entire joint more compact, and the degree of freedom in layout can be further increased.

本発明の第1例の図3のA−A線で外管を縦断した状態を示す縦断側面図である。It is a vertical section side view which shows the state which traversed the outer tube by the line AA of FIG. 3 of the 1st example of this invention. 第1例の図3のB−B線で外管を横断した状態を示す横断平面図である。It is a cross-sectional plan view which shows the state which crossed the outer pipe by the line BB of FIG. 3 of the 1st example. 第1例及び第2例の継手を外管の端部方向から見た正面面である。It is a front surface which saw the joint of 1st example and 2nd example from the end direction of the outer pipe. 第1例の端部側から斜に見た斜視図である。It is a perspective view seen obliquely from the end side of the 1st example. 第1例の接続管を接続した側から見た平面図である。It is a top view seen from the side which connected the connection pipe of 1st example. 第1例の図1の(イ)はC−C線で切断し、(ロ)はD−D線で切断し、(ハ)はE−E線で切断し、(二)はF−F線で切断した各部の断面を示す輪切り断面図である。In FIG. 1 of the first example, (a) is cut by the CC line, (b) is cut by the DD line, (c) is cut by the EE line, and (2) is the FF. It is a circular cross-sectional view which shows the cross section of each part cut by a line. 本発明の第2例の図3のA−A線で外管を縦断した状態を示す縦断側面図である。It is a vertical section side view which shows the state which traversed the outer tube by the line AA of FIG. 3 of the 2nd example of this invention. 第2例の図3のB−B線で外管を横断した状態を示す横断平面図である。It is a cross-sectional plan view which shows the state which crossed the outer pipe by the line BB of FIG. 3 of the 2nd example. 第2例の図7の(イ)はG−G線で切断し、(ロ)はH−H線で切断した各部の断面を示す輪切り断面図である。FIG. 7 (a) of FIG. 7 of the second example is a circular cross-sectional view showing a cross section of each portion cut along the GG line and (b) is a cross-sectional view of each portion cut along the HH line. 本発明の第3例の図11のI−I線で外管を縦断した状態を示す縦断側面図である。It is a vertical section side view which shows the state which traversed the outer tube by the line I-I of FIG. 11 of the 3rd example of this invention. 第3例の継手を外管の端部方向から見た正面面である。This is the front surface of the joint of the third example as viewed from the end direction of the outer pipe. 第3例の図10の(イ)はJ−J線で切断し、(ロ)はK−K線で切断した各部の断面を示す輪切り断面図である。FIG. 10A of FIG. 10 of the third example is a circular cross-sectional view showing a cross section of each portion cut along the JJ line and (b).

以下、本発明を実施するための形態を図面に基づいて説明する。
先ず本発明の基本形態となる第1例で継手構造を説明する。
図1〜図6はその第1例を示すものである。
本来、二重管には上下及び左右として使用を限定するものでないが、以下、側面図である図1を基にして接続管が接続されている上側を上としその下側を下とし、正面図である図3を基にして接続管が接続されている方を上側にしたときの左側を左としその右側を右とし、図4に示す二重管の中心線の方向bを軸方向として説明することとする。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
First, the joint structure will be described in the first example, which is the basic embodiment of the present invention.
1 to 6 show a first example thereof.
Originally, the use of the double pipe is not limited to the top, bottom, left and right, but below, based on FIG. 1 which is a side view, the upper side to which the connecting pipe is connected is the upper side and the lower side is the lower side, and the front surface. Based on FIG. 3, the left side when the connecting pipe is connected to the upper side is the left side, the right side is the right side, and the direction b of the center line of the double pipe shown in FIG. 4 is the axial direction. I will explain it.

本発明は、図1及び図2に示すように、外管2と、該外管2内に貫挿された内管1と、外管2の拡張した端部2bに差し込まれて固定された接続管3とで構成される二重管の継手構造である。
該接続管3は、外管2と内管1との間に形成される熱交換通路5に流体を流通させるためにインレット側とアウトレット側に接続し、該接続管3の端部3aの軸方向aは二重管の軸方向bと平行となるように固定する。
使用する材料である素管は、いずれも熱伝導率の大きいアルミニウム製の管を用いる。
そして例えば、壁面の厚さは、外管及び内管では1.5mmとし、接続管では1mmとする。又、口径は、外管では19mm、内管では12mm、接続管では6mmとする。この場合、接続管の内径の断面積は約28mmである。
As shown in FIGS. 1 and 2, the present invention is inserted and fixed to the outer tube 2, the inner tube 1 inserted into the outer tube 2, and the extended end 2b of the outer tube 2. It is a double pipe joint structure composed of a connecting pipe 3.
The connecting pipe 3 is connected to the inlet side and the outlet side in order to allow fluid to flow through the heat exchange passage 5 formed between the outer pipe 2 and the inner pipe 1, and the shaft of the end portion 3a of the connecting pipe 3 is connected. The direction a is fixed so as to be parallel to the axial direction b of the double pipe.
As the raw material to be used, an aluminum tube having a high thermal conductivity is used.
And for example, the thickness of the wall surface is 1.5 mm for the outer pipe and the inner pipe, and 1 mm for the connecting pipe. The diameter of the outer pipe is 19 mm, that of the inner pipe is 12 mm, and that of the connecting pipe is 6 mm. In this case, the cross-sectional area of the inner diameter of the connecting pipe is about 28 mm 2 .

前記内管1は、図1及び図2に示すように、素管の壁面1aを外周に向けて隆起させた螺旋状の凹凸部11が複数並行して外管2の両端部2b間の長さより極僅かに短い長さに途中で切れることなく連続して管壁を旋回するよう設けられる。
そして、内管1の該凹凸部11の端部11bに繋がる素管部分には、前記凹凸部11の両端部11bに対して接近させた状態で管壁を一周膨出させた環状のシール用膨張部13を形成し、その際、該シール用膨張部13は前記外管2の端部2bの内壁面の対面部位に形成する。
なお、図1及び図2は二重管の片側のみを図示しており、それ以下の各図も同様に二重管の片側のみを図示したものである。二重管の両側は外管2のインレット側とアウトレット側となり、その両側は同じ構造となるので以下図1及び図2の如く一方側の構造で説明することとする。
As shown in FIGS. 1 and 2, the inner pipe 1 has a plurality of spiral concavo-convex portions 11 in which the wall surface 1a of the raw pipe is raised toward the outer circumference in parallel, and the length between both end portions 2b of the outer pipe 2. It is provided so as to continuously swivel the pipe wall to a very slightly shorter length without breaking in the middle.
Then, the raw pipe portion connected to the end portion 11b of the uneven portion 11 of the inner pipe 1 is used for an annular seal in which the pipe wall is bulged once in a state of being close to both end portions 11b of the uneven portion 11. The expansion portion 13 is formed, and at that time, the expansion portion 13 for sealing is formed at a portion facing the inner wall surface of the end portion 2b of the outer pipe 2.
It should be noted that FIGS. 1 and 2 show only one side of the double pipe, and each of the following figures also shows only one side of the double pipe. Both sides of the double pipe are the inlet side and the outlet side of the outer pipe 2, and both sides have the same structure. Therefore, the structure on one side will be described below as shown in FIGS. 1 and 2.

前記内管1の凹凸部11の両端部11bとシール用膨張部13とは接近させるが、その接近状態は、接した状態であるか又は僅かに離れて接近した状態であるかのいずれかとする。
第1例は接した状態の実施例であり、接していない状態は第2例で後述することとする。
この第1例は凹凸部11の端部11bとシール用膨張部13の側部との間に素管部分が無く、凹凸部11の端部11bとシール用膨張部13の側部が接して管壁から立ち上がった構造である。
このため、その両側の立ち上がり部分により強化された構造となって壁面が強化され、この接した部分では加圧による変形は起こらない。
Both ends 11b of the uneven portion 11 of the inner pipe 1 and the sealing expansion portion 13 are brought close to each other, but the approaching state is either in a state of being in contact with each other or in a state of being slightly separated from each other. ..
The first example is an example of a state of contact, and the state of no contact will be described later in the second example.
In this first example, there is no raw pipe portion between the end portion 11b of the uneven portion 11 and the side portion of the sealing expansion portion 13, and the end portion 11b of the uneven portion 11 and the side portion of the sealing expansion portion 13 are in contact with each other. It is a structure that rises from the pipe wall.
For this reason, the structure is reinforced by the rising portions on both sides thereof, and the wall surface is reinforced, and deformation due to pressurization does not occur at the contacted portions.

前記凹凸部11及びシール用膨張部13の形成方法は、例えば、各凹凸部11に対応した凹凸が形成された金型内に挿通して、内管1の内部に圧力を加えて管壁を膨出させる方法等が可能である。
該凹凸部11は、例えば、ピッチ38mmで3本の凹凸部11を螺旋状に並行するように膨出させ、その凹凸部11の横幅は9mmとし、高さは2mmとし、膨出させずに残される各凹凸部11間の凹部12の底幅を4mmとする。各凹凸部11間の総計断面積を28mmとすれば、接続管3の内径の断面積と同じとなる。シール用膨張部13は、環状に管壁を15mm幅で凹凸部11の膨出高さと同様の2mmの高さに形成する。
The method of forming the uneven portion 11 and the expanding portion 13 for sealing is, for example, to insert the uneven portion 11 into a mold in which the uneven portion corresponding to each uneven portion 11 is formed, and apply pressure to the inside of the inner pipe 1 to form a pipe wall. A method of swelling or the like is possible.
The uneven portion 11 has, for example, three uneven portions 11 bulged in parallel in a spiral shape at a pitch of 38 mm, the width of the uneven portion 11 is 9 mm, the height is 2 mm, and the uneven portion 11 is not bulged. The bottom width of the recess 12 between the remaining uneven portions 11 is 4 mm. If the total cross-sectional area between the uneven portions 11 is 28 mm 2 , it is the same as the cross-sectional area of the inner diameter of the connecting pipe 3. The sealing expansion portion 13 forms a tube wall in an annular shape with a width of 15 mm and a height of 2 mm, which is the same as the protrusion height of the uneven portion 11.

前記外管2は、図1及び図6の(二)に示すように、その内部に貫挿させた内管1の凹凸部11の頂部11aを内壁面に当接できる口径の素管を用いる。
例えば、内管1の凹凸部11の頂部11aの外径を19mmとしたとき、外管2の口径も19mmとする。即ち、外管2の内径と内管の凹凸部11の頂部11aの外径とを一致させる。
これにより、前記内管1を該外管2内に嵌挿すると、内管1の螺旋状の各凹凸部11間と外管2の内壁2aとの間に各々が独立した複数の旋回流路51a、51b、51cを有する熱交換通路5が形成される。
図1、図2及び図6の(二)には、3本の凹凸部11により、それらの間に3本の旋回流路51a、51b、51cが形成された態様を示している。なお凹凸部11の本数は複数とするものであるが、実用的な範囲としては2本〜5本程度である。
As shown in FIG. 1 and FIG. 6 (2), the outer pipe 2 uses a raw pipe having a diameter capable of contacting the top portion 11a of the uneven portion 11 of the inner pipe 1 inserted therein with the inner wall surface. ..
For example, when the outer diameter of the top portion 11a of the uneven portion 11 of the inner pipe 1 is 19 mm, the diameter of the outer pipe 2 is also 19 mm. That is, the inner diameter of the outer pipe 2 and the outer diameter of the top portion 11a of the uneven portion 11 of the inner pipe are made to match.
As a result, when the inner pipe 1 is fitted into the outer pipe 2, a plurality of independent swirling flow paths are provided between the spiral uneven portions 11 of the inner pipe 1 and the inner wall 2a of the outer pipe 2. A heat exchange passage 5 having 51a, 51b, and 51c is formed.
(2) of FIGS. 1, 2 and 6 shows an embodiment in which three swirling flow paths 51a, 51b and 51c are formed between the three uneven portions 11. The number of uneven portions 11 is a plurality, but the practical range is about 2 to 5.

前記外管2の端部2bは口径をテーパー状に拡張して、図1及び図2に示すように、内管1のシール用膨張部13との間に接続管3の端部3aを差し込み可能な広さの嵌合接続部21と、該嵌合接続部21に続けて接続管3の端部3aから複数の旋回流路51a、51b、51cへ流体を流通させる流体誘導部22とを形成する。 The end portion 2b of the outer pipe 2 has a tapered diameter, and as shown in FIGS. 1 and 2, the end portion 3a of the connecting pipe 3 is inserted between the end portion 2b and the sealing expansion portion 13 of the inner pipe 1. A fitting connection portion 21 having a possible width and a fluid guiding portion 22 that allows fluid to flow from the end portion 3a of the connecting pipe 3 to the plurality of swirling flow paths 51a, 51b, 51c following the fitting connection portion 21. Form.

前記接続管3はその端部3aに、拡張した外管2の端部2b内に差し込むための接続端末31を形成する。
図4は接続管3の接続端末31を差し込む前の状態を示している。この接続端末31は、外管2の端部1bの嵌合接続部21の内側形状と内管1のシール用膨張部13の外側形状とによって囲まれる異形形状(D形)に変形加工し、その異形形状部分31aには、シール用膨張部13の外周面に密接可能となる凹面部31bを形成する。
該異形形状部分31aは、凹面部31bの両側を下へ突き出すように拡張させ、変形による容積の減少を解消し、又内管1のシール用膨張部13に凹面部31bが安定的に接合できるようにする。
又、異形形状部分31aの凹面部31bで外管2の拡張した端部2bに幅広く接するため、各管を固着する際に、ろう付け(図1中にろう材を符号6で示す)不良が起きなくなり、内管1、外管2及び接続管3の各接続部分のシール性が向上する。
The connecting pipe 3 forms a connecting terminal 31 at its end 3a for inserting into the end 2b of the expanded outer pipe 2.
FIG. 4 shows a state before the connection terminal 31 of the connection pipe 3 is inserted. The connection terminal 31 is deformed into a deformed shape (D shape) surrounded by the inner shape of the fitting connection portion 21 of the end portion 1b of the outer pipe 2 and the outer shape of the sealing expansion portion 13 of the inner pipe 1. The irregularly shaped portion 31a is formed with a concave surface portion 31b that can be brought into close contact with the outer peripheral surface of the sealing expansion portion 13.
The irregularly shaped portion 31a is expanded so that both sides of the concave surface portion 31b protrude downward to eliminate the decrease in volume due to deformation, and the concave surface portion 31b can be stably joined to the sealing expansion portion 13 of the inner pipe 1. To do so.
Further, since the concave surface portion 31b of the irregularly shaped portion 31a is widely in contact with the expanded end portion 2b of the outer pipe 2, there is a defect in brazing (the brazing material is indicated by reference numeral 6 in FIG. 1) when fixing each pipe. It does not occur, and the sealing property of each connecting portion of the inner pipe 1, the outer pipe 2 and the connecting pipe 3 is improved.

該接続管3の接続端末31は、図6の(イ)に示すように、外管2の嵌合接続部21内に差し込まれ、内管1のシール用膨張部13の外周面13aに凹面部31bが当接されるが、その際、図4に示すように、接続された接続管3の中心線aは、二重管の内管1の中心線bとを略平行とする。
従って、内管1に接続管3が添うように近接配管されるので、継手の周囲をコンパクト化することが可能となる。
又、外管2の端部2bに接続管3を内管1と略平行に接続したことで、流体は急激な方向変換を起こさず円滑に流通可能となる。
As shown in FIG. 6A, the connection terminal 31 of the connection pipe 3 is inserted into the fitting connection portion 21 of the outer pipe 2 and has a concave surface on the outer peripheral surface 13a of the sealing expansion portion 13 of the inner pipe 1. The portion 31b is brought into contact with each other, and at that time, as shown in FIG. 4, the center line a of the connected connecting pipe 3 is substantially parallel to the center line b of the inner pipe 1 of the double pipe.
Therefore, since the connecting pipe 3 is closely connected to the inner pipe 1, the circumference of the joint can be made compact.
Further, by connecting the connecting pipe 3 to the end 2b of the outer pipe 2 substantially parallel to the inner pipe 1, the fluid can flow smoothly without causing a sudden change of direction.

前記外管2の端部2bは、図1に示すように、テーパー状に拡張する際に、接続管3の接続端末31が差し込まれる側が広く、接続端末31が差し込まれないシール用膨張部13を囲う側が狭くなるよう、テーパー状の管の中心線を上側の接続管3側に向けて傾斜させる。
そして、外管2の拡張部分の端口2c側に、シール用膨張部13及び接続管3の両外壁面に密着可能な嵌合接続部21を形成する。
As shown in FIG. 1, the end portion 2b of the outer pipe 2 has a wide side into which the connection terminal 31 of the connection pipe 3 is inserted when expanded in a tapered shape, and the seal expansion portion 13 into which the connection terminal 31 is not inserted. The center line of the tapered pipe is inclined toward the upper connecting pipe 3 side so that the side surrounding the pipe is narrowed.
Then, a fitting connection portion 21 that can be in close contact with both outer wall surfaces of the sealing expansion portion 13 and the connection pipe 3 is formed on the end opening 2c side of the expansion portion of the outer pipe 2.

該嵌合接続部21の形成方法は、接続管3とシール用膨張部13に相当する金型を外管の拡張部分に差し込み、外管2の端部2bの外周側を加圧して、金型の外形に馴染むように凹ませる方法が可能である。
そして、一方にはシール用膨張部13に対して大きく絞られた絞り部26が、他方には接続端末31に対して大きく絞られた絞り部27が形成され、接続管3の接続端末31と内管1のシール用膨張部13に内壁が接するように囲われて、拡張された外管2の端口2cがダルマ形となる。
ダルマ形とは、図3及び図6の(イ)に示すように、下側のシール用膨張部13の半円形と、上側の接続管3の接続端末31を半円径と、両半円形を繋ぐ接続管3の異形形状部分31aの左右の側面とが連続した雪ダルマの外形の如き形状のことである。
The method of forming the fitting connection portion 21 is to insert a mold corresponding to the connection pipe 3 and the expansion portion 13 for sealing into the expansion portion of the outer pipe, pressurize the outer peripheral side of the end portion 2b of the outer pipe 2, and press the metal. It is possible to dent it so that it fits the outer shape of the mold.
Then, a narrowing portion 26 that is largely narrowed with respect to the expansion portion 13 for sealing is formed on one side, and a narrowing portion 27 that is largely narrowed with respect to the connecting terminal 31 is formed on the other side. The inner wall is surrounded so as to be in contact with the sealing expansion portion 13 of the inner pipe 1, and the end opening 2c of the expanded outer pipe 2 has a Dharma shape.
As shown in (a) of FIGS. 3 and 6, the Dharma type means that the lower sealing expansion portion 13 has a semicircular shape and the upper connecting pipe 3 has a semicircular diameter and both semicircular diameters. It is a shape like the outer shape of a snowman in which the left and right side surfaces of the irregularly shaped portion 31a of the connecting pipe 3 connecting the two are continuous.

接続管3は外管2の端部2bに差し込まれた後、接続端末31及びシール用膨張部13と嵌合接続部21内面との間にできた隙間にはろう付けをして、隙間からの流体の漏出を防ぎ、外管2と内管1と接続管3とを強固に固着する。 After the connecting pipe 3 is inserted into the end portion 2b of the outer pipe 2, the gap formed between the connecting terminal 31 and the sealing expansion portion 13 and the inner surface of the mating connecting portion 21 is brazed to the gap. Prevents the leakage of the fluid, and firmly fixes the outer pipe 2, the inner pipe 1, and the connecting pipe 3.

又、前記流体誘導部22には、各旋回流路51a、51b、51cを囲繞し、図1及び図2に示すように、接続管3の端口3bと凹凸部11の頂部11a間の各旋回流路51a、51b、51cとの間に流体を流通させる誘導通路53を形成する。
該誘導通路53は、流体をインレット側では流体を接続管3の端口3bから凹凸部11間の各旋回流路51a、51b、51cへと誘導し、アウトレット側ではインレット側とは逆に、凹凸部11間の各旋回流路51a、51b、51cから接続管3の端口3bへと誘導するものである。
Further, the fluid guiding portion 22 surrounds the swirling flow paths 51a, 51b, and 51c, and as shown in FIGS. 1 and 2, each swivel between the end port 3b of the connecting pipe 3 and the top portion 11a of the uneven portion 11. A guide passage 53 for flowing a fluid is formed between the flow paths 51a, 51b, and 51c.
The guide passage 53 guides the fluid from the end port 3b of the connecting pipe 3 to the swirling passages 51a, 51b, 51c between the uneven portions 11 on the inlet side, and is uneven on the outlet side, contrary to the inlet side. It guides the swirling flow paths 51a, 51b, 51c between the portions 11 to the end port 3b of the connecting pipe 3.

該流体誘導部22は、嵌合接続部21から軸方向の内側に向けて誘導通路53が広がる従壁部23と、該従壁部23から内管1の凹凸部11の頂部11aに接するまで口径がテーパー状に漸減する主壁部24とで構成する。
そして、図2に示すように、該従壁部23に繋がって主壁部24の基端は最大口径αとなり、その最大口径部分24aの近傍では軸方向両側に周壁面がなだらかに連続する曲面となるように形成する。
The fluid guide portion 22 is in contact with the slave wall portion 23 in which the guide passage 53 extends inward in the axial direction from the fitting connection portion 21 and the top portion 11a of the uneven portion 11 of the inner pipe 1 from the slave wall portion 23. It is composed of a main wall portion 24 whose diameter gradually decreases in a tapered shape.
Then, as shown in FIG. 2, the base end of the main wall portion 24 connected to the secondary wall portion 23 has a maximum diameter α, and in the vicinity of the maximum diameter portion 24a, a curved surface in which peripheral wall surfaces are gently continuous on both sides in the axial direction. It is formed so as to be.

前記従壁部23は、図4に示すように、素管を一旦円錐筒形の円形の底側形状に拡張し、端部2bの嵌合接続部21をダルマ形に変形する際に、円形部分が加圧されてダルマ形になるまで遷移して行く曲面部分に形成する。
その際、外管2の端口2c側の左右が陥没されるので壁面内の面積が嵌合接続部21へ向かって減少し、陥没されずに円形のまま残る部分が次に繋がる主壁部24の基端の最大口径部分24aとなる。
即ち、下半分の絞り部26ではシール用膨張部13に向かって左右の断面積が減少し、上半部の絞り部27では接続端末31の端口31bに向かって左右の断面積が減少する。
As shown in FIG. 4, the secondary wall portion 23 is circular when the raw pipe is once expanded into a conical tubular bottom-side shape and the fitting connection portion 21 of the end portion 2b is deformed into a Dharma shape. It is formed on a curved surface that transitions until the portion is pressurized and becomes a Dharma shape.
At that time, since the left and right sides of the end port 2c side of the outer pipe 2 are depressed, the area inside the wall surface is reduced toward the fitting connection portion 21, and the portion that remains circular without being depressed is connected to the main wall portion 24 next. It becomes the maximum diameter portion 24a of the base end of.
That is, the left and right cross-sectional areas of the lower half of the narrowed portion 26 decrease toward the sealing expansion portion 13, and the left and right cross-sectional areas of the upper half of the narrowed portion 27 decrease toward the end port 31b of the connection terminal 31.

なお、前記従壁部23に臨む接続管3の端口3bは、図1に示すように、誘導通路53内へ突出しないようにシール用膨張部13の内側側壁よりも僅かに後退させて配設することで、流体がここを流通する際に、接続管3の管口部分における大きな乱流を発生させずに誘導通路53へ円滑に流通可能となる。 As shown in FIG. 1, the end port 3b of the connecting pipe 3 facing the secondary wall portion 23 is arranged so as to be slightly retracted from the inner side wall of the sealing expansion portion 13 so as not to protrude into the guide passage 53. By doing so, when the fluid circulates here, it can smoothly circulate to the guide passage 53 without generating a large turbulent flow at the pipe mouth portion of the connecting pipe 3.

前記主壁部24は、図4に示すように、基端は、最大口径αとなって従壁部23に繋がり、末端は、テーパー状に先細りして、内管1の凹凸部11の頂部11aに接する円と同径の最小口径βとなる。
主壁部24は、テーパー状とした管の中心線を上側の接続管3側に向けて傾斜させることで、図6の(ロ)の輪切り断面で示した最大口径部分24aでは、内部の誘導通路53は接続管3に近い上側が広く、接続管3から離れた下側が狭くなる。
そして、主壁部24の中間部位でも、図6の(ハ)に示すように、口径は小さくなるものの内管1の凹凸部11との間に上側が広く、下側が狭い誘導通路53が形成される。
As shown in FIG. 4, the main wall portion 24 has a base end having a maximum diameter α and is connected to the slave wall portion 23, and the end is tapered in a tapered shape to form the top of the uneven portion 11 of the inner pipe 1. The minimum diameter β is the same as the circle in contact with 11a.
The main wall portion 24 is inclined so that the center line of the tapered pipe is inclined toward the upper connecting pipe 3 side, so that the maximum diameter portion 24a shown in the circular cross section of FIG. The upper side of the passage 53 near the connecting pipe 3 is wide, and the lower side away from the connecting pipe 3 is narrow.
Further, even in the intermediate portion of the main wall portion 24, as shown in FIG. 6 (c), a guide passage 53 having a small diameter but a wide upper side and a narrow lower side is formed between the inner pipe 1 and the uneven portion 11. Will be done.

第1例では、図6の(ロ)に示すように、主壁部24の下側のシール用膨張部側の内壁28は最下部では内管1の凹凸部11の頂部11aに接しているので、内管1の中心Pからの主壁部24の壁面の距離Lと、内管1の半径Rとの距離の差はない。
そして、シール用膨張部側の内壁28の最下部から左右の上側に行くに従って、内管1の中心Pからの主壁部24の壁面の距離Lと内管1の半径Rとの距離の差は大きくなる。そして、最上側では両者の距離の差が最大となる。
従って、該流体誘導部22は、流体が直接流入する接続管3の端口3前の近い位置で最大口径αとなって、その距離の差が最大となり、その広くなった空間内に接続管3の口径の大きさに応じて必要とされる流量が円滑に流通可能となる。
そして、接続管33の端口3bから下側へ最も遠い旋回流路51cの旋回流路の端口52cでは、旋回流路の端口52cから下側へ離れて行くに従って狭まるが、旋回流路51cの流路途中が左右側方に旋回して左右の開いた円形内の空間に続くので、下側の旋回流路51cの旋回流路の端口52c部分はシール用膨張部13で塞がれていても、流通の滞るデッドスペースはできず、流体は旋回流路の端口52cまで流通可能となる。
In the first example, as shown in FIG. 6B, the inner wall 28 on the side of the expanding portion for sealing on the lower side of the main wall portion 24 is in contact with the top portion 11a of the uneven portion 11 of the inner pipe 1 at the lowermost portion. Therefore, there is no difference between the distance L of the wall surface of the main wall portion 24 from the center P of the inner pipe 1 and the radius R of the inner pipe 1.
Then, the difference between the distance L of the wall surface of the main wall portion 24 from the center P of the inner pipe 1 and the radius R of the inner pipe 1 from the lowermost portion of the inner wall 28 on the expansion portion side for sealing to the upper left and right sides. Becomes larger. Then, on the uppermost side, the difference in distance between the two becomes maximum.
Therefore, the fluid guiding portion 22 has a maximum diameter α at a close position in front of the end port 3 of the connecting pipe 3 into which the fluid directly flows, and the difference in the distances is maximized, and the connecting pipe 3 is in the widened space. The required flow rate can be smoothly distributed according to the size of the diameter.
Then, the end port 52c of the swirling flow path of the swirling flow path 51c farthest downward from the end port 3b of the connecting pipe 33 narrows as it goes downward from the end port 52c of the swirling flow path, but the flow of the swirling flow path 51c. Since the middle of the road turns to the left and right and continues to the space in the open circle on the left and right, even if the end 52c portion of the swirling flow path of the lower swivel flow path 51c is blocked by the sealing expansion portion 13. There is no dead space where the flow is stagnant, and the fluid can flow up to the end 52c of the swirling flow path.

また、軸方向では、主壁部24の壁面の距離Lと内管1の半径Rとの距離の差は、最大口径部分24aから末端に向かって漸減して行き、その末端の最小口径部分24bで内管1の中心Pから凹凸部11の頂部11aに接する円と同一径となり、図6の(二)に示すように、その距離の差がなくなる。
そして、主壁部24の全長に亘って渡って、誘導通路53に臨む下側の旋回流路51b、51cに、流体が最大口径部分24aの広い左右の誘導通路からテーパー状の壁面に絞り込むように誘導されて流通する。
Further, in the axial direction, the difference between the distance L of the wall surface of the main wall portion 24 and the radius R of the inner pipe 1 gradually decreases from the maximum diameter portion 24a toward the end, and the minimum diameter portion 24b at the end thereof. The diameter is the same as the circle in contact with the top portion 11a of the uneven portion 11 from the center P of the inner pipe 1, and there is no difference in the distance as shown in (2) of FIG.
Then, over the entire length of the main wall portion 24, the fluid is narrowed down to the tapered wall surface from the wide left and right guidance passages of the maximum diameter portion 24a in the lower swirling passages 51b and 51c facing the guidance passage 53. It is guided by and distributed.

上記特許文献1では、流通案内部の先端部に突き当たったり、斜めに屈折したりして複雑な方向変換が起こり各所に乱流を発生させるが、これに対して本発明では、誘導通路53の広い接続管側から流体が流入して凹凸部間の旋回流路へ流出するまで流体誘導部22が旋回流路の全周を略円形に囲繞し、流体が最大口径部分24aの広い左右の誘導通路から隙間が漸減するテーパー状の壁面によって絞り込むように収束されて行き、その間、殆ど乱流を発生させずに円滑に流通させることができる。 In the above-mentioned Patent Document 1, a complicated direction change occurs by hitting the tip of the distribution guide portion or refracting diagonally to generate turbulent flow in various places. On the other hand, in the present invention, the guide passage 53 The fluid guiding unit 22 surrounds the entire circumference of the swirling flow path in a substantially circular shape until the fluid flows in from the wide connecting pipe side and flows out to the swirling flow path between the uneven portions, and the fluid guides the wide left and right sides of the maximum diameter portion 24a. It is converged so as to be narrowed down by a tapered wall surface in which the gap gradually decreases from the passage, and during that time, it can be smoothly circulated with almost no turbulence.

そして、流体誘導部22は、誘導通路53の左右の空間が過度に狭くなるのを避けるため、最大口径部分24aを内管1の凹凸部11の頂部11aの外接円と複数本の旋回流路51の断面積の総和よりも大きな断面積を有する略円形とする。
このため、従壁部23と主壁部24の内部の誘導通路53には流体が円滑に流通するに必要な一定の容積が保持される。
前記主壁部24内の誘導通路53の下側は下に行くに従って徐々に狭くなるが、主壁部24の内壁の軸方向部位が内管2の各凹凸部11の頂部11aに対して一列に接している場合であっても、接続管3前の流体が直接流入する広い上側から円形に膨らんだ誘導通路53の左右の空間を通って下側へ供給され、又流体を受け入れるよう誘導通路53に臨んで開いた旋回流路51は螺旋状に旋回することで最下部から上側の左右の空間に続いて斜めに開いているので、下側は上側に較べて少ない流入量で済み、誘導通路53はより狭くすることができる。
このように、誘導通路53は流量が多く必要な上側の接続管3側はより広く、少ない流量で済む下側の接続管3から遠い側は徐々に狭くなるよう形成することで、二重管の継手部分の外径を小さくコンパクト化することが可能となる。そして、使用場所における組み付けのレイアウトの自由度を高めることが可能となる。
Then, in order to prevent the space on the left and right of the guiding passage 53 from becoming excessively narrow, the fluid guiding portion 22 uses the maximum diameter portion 24a as the circumscribed circle of the top portion 11a of the uneven portion 11 of the inner pipe 1 and a plurality of swirling flow paths. It is a substantially circular shape having a cross-sectional area larger than the total cross-sectional area of 51.
Therefore, a certain volume required for smooth flow of the fluid is maintained in the guide passage 53 inside the secondary wall portion 23 and the main wall portion 24.
The lower side of the guide passage 53 in the main wall portion 24 gradually narrows as it goes down, but the axial portion of the inner wall of the main wall portion 24 is aligned with the top portion 11a of each uneven portion 11 of the inner pipe 2. Even if it is in contact with the connecting pipe 3, the fluid in front of the connecting pipe 3 is supplied to the lower side through the space on the left and right of the circularly bulging guide passage 53 from the wide upper side, and the guide passage for receiving the fluid. Since the swirling flow path 51 that opens facing the 53 spirally swirls and opens diagonally from the bottom to the upper left and right spaces, the lower side requires a smaller inflow amount than the upper side, and is guided. The passage 53 can be made narrower.
In this way, the guide passage 53 is formed so that the upper connecting pipe 3 side, which requires a large flow rate, is wider and the side far from the lower connecting pipe 3 requiring a small flow rate is gradually narrowed. It is possible to make the outer diameter of the joint portion smaller and more compact. Then, it is possible to increase the degree of freedom in the layout of the assembly at the place of use.

例えば、前記主壁部24は、最大口径部分24aである最大口径α部分の口径を22mmとすると、その円形の断面積が約414mmとなる。
凹凸部11のある内管の外径の断面積238mmであるので、最大口径α部分では差し引き176mmの断面積となる誘導通路53ができる。
この断面積は、各凹凸部間の各旋回流路51a、51b、51cの断面積の総和が28mmに対して約6倍の断面積となり、流体を円滑に流通させるに充分な断面積である。
なお、図3では主壁部24の輪郭が略円形を成しているが、その略円形の形状は、円形に近い真円、楕円、長円等を含ものである。
For example, if the diameter of the maximum diameter α portion, which is the maximum diameter portion 24a, of the main wall portion 24 is 22 mm, the circular cross-sectional area thereof is about 414 mm 2 .
Since the cross-sectional area of the outer diameter of the inner pipe having the uneven portion 11 is 238 mm 2 , a guide passage 53 having a cross-sectional area of 176 mm 2 is formed at the maximum diameter α portion.
This cross-sectional area is about 6 times the total cross-sectional area of each swirling flow path 51a, 51b, 51c between each uneven portion with respect to 28 mm 2 , and is sufficient for smooth flow of fluid. is there.
In FIG. 3, the outline of the main wall portion 24 is substantially circular, but the substantially circular shape includes a perfect circle, an ellipse, an oval, and the like that are close to a circle.

又、図3に示すように、前記従壁部23と主壁部24の境界である最大口径αとなる部分を、シール用膨張部13と接続管3の外径の合計値よりも小さな口径とすれば、外管2と接続管3の外周に外接する円形内に全て納まって外径をコンパクト化でき、使用場所の配管が厳しい状況に対応して使用できるようにレイアウトの自由度をより高めることが可能となる。 Further, as shown in FIG. 3, the portion having the maximum diameter α, which is the boundary between the secondary wall portion 23 and the main wall portion 24, has a diameter smaller than the total value of the outer diameters of the sealing expansion portion 13 and the connecting pipe 3. If so, the outer diameter can be made compact by fitting all of the outer pipe 2 and the connecting pipe 3 in a circular shape that is in contact with the outer circumference, and the degree of freedom in layout is increased so that the piping at the place of use can be used in severe situations. It becomes possible to increase.

なお、流体誘導部22の主壁部24の末端の最小口径部分24b付近では、誘導通路53は徐々に狭くなる。このため、最小口径部分24bが嵌合接続部21に近く、且つ主壁部24が過度に短く、内部に形成される誘導通路53の容積が過度に小さくなる場合には、一部の旋回流路51cへ繋がる流路が極めて狭小となり、その旋回流路51cでは流体が流通し難くなるので好ましくない。
例えば、凹凸部11の横幅を9mmとした場合では、前記流体誘導部22の軸方向の長さを4mm程度と短くすると、その部分の輪切り断面積は大きくても水平断面積が極めて小さくなり、誘導通路53が上下方向に偏平となってこの部分の容積が過度に小さくなり、又主壁部24の壁面が急傾斜することによって、接続管3内を直進したる流体がその急傾斜壁に突き当たり、流れる方向の急激な方向変換により円滑な流通が阻害されることとなってしまうので好ましくない。
また、嵌合接続部21から主壁部の末端の最小口径部分24bが遠く離れ、形成される誘導通路53が不必要に長い場合には、流体の流れは阻害されないが、加工範囲が広く製造が困難となるだけではなく、嵌合接続部21から遠くなる程レイアウトする際に屈曲できる範囲がより狭まってしまい、又凹凸部11の頂部11aと外管2の間に横隙が長く形成されて各旋回流路の独立性が損なわれ熱交換効率が低下することとなるので好ましくない。
即ち、主壁部24の軸方向の長さは短くても流通性は充分であるので無駄に長くする必要がなく、嵌合接続部21の長さは嵌合接続部21から螺旋状の凹凸部11を少なくとも1つは越え、3つを越えない程度の範囲とすることが好ましい。
In the vicinity of the minimum diameter portion 24b at the end of the main wall portion 24 of the fluid guiding portion 22, the guiding passage 53 gradually narrows. Therefore, when the minimum diameter portion 24b is close to the fitting connection portion 21, the main wall portion 24 is excessively short, and the volume of the guide passage 53 formed inside is excessively small, a part of the swirling flow flows. The flow path connected to the path 51c becomes extremely narrow, and it becomes difficult for the fluid to flow in the swirling flow path 51c, which is not preferable.
For example, when the width of the uneven portion 11 is 9 mm and the axial length of the fluid guiding portion 22 is shortened to about 4 mm, the horizontal cross-sectional area becomes extremely small even if the round-cut cross-sectional area of that portion is large. The guide passage 53 is flattened in the vertical direction and the volume of this portion becomes excessively small, and the wall surface of the main wall portion 24 is steeply inclined so that the fluid traveling straight through the connecting pipe 3 becomes the steeply inclined wall. At the end, a sudden change in the direction of flow hinders smooth flow, which is not preferable.
Further, when the minimum diameter portion 24b at the end of the main wall portion is far away from the fitting connection portion 21 and the guided passage 53 formed is unnecessarily long, the fluid flow is not obstructed, but the processing range is wide. Not only is it difficult, but the range that can be bent when laying out becomes narrower as the distance from the fitting connection portion 21 increases, and a long lateral gap is formed between the top portion 11a of the uneven portion 11 and the outer pipe 2. This is not preferable because the independence of each swirling flow path is impaired and the heat exchange efficiency is lowered.
That is, even if the length of the main wall portion 24 in the axial direction is short, the flowability is sufficient, so that it is not necessary to lengthen it unnecessarily, and the length of the fitting connection portion 21 is spirally uneven from the fitting connection portion 21. It is preferable that the range exceeds at least one and does not exceed three.

この主壁部24の最小口径部分24bの位置は、例えば、各部を上記例示の如く3本の凹凸部11を38ピッチにした場合には、上述の如く、誘導通路53の最大口径α部分では176mmの断面積であり、各旋回流路51a、51b、51cの断面積の合計28mmに対して、主壁部24の中間部における誘導通路53の断面積が、最大口径α部分の半分の約88mmとなる。このため、主壁部24の最小口径部分24bの位置は、嵌合接続部21から螺旋状の凹凸部11を少なくとも1つは越える場合から3つを越えない場合の数値の9mmから27mmと、極めて短くすることができる。
第1例の図1では主壁部24の末端の最小口径部分24bが嵌合接続部21から凹凸部11の2つを越えない程度である態様を示し、これより主壁部24の長さを短くできる第2例の図7では、主壁部24の主壁部の末端の最小口径部分24bの位置が嵌合接続部21から凹凸部11の1つを越えた程度である態様を示している。
このように、主壁部24の最小口径βとなる最小口径部分24bの位置は、熱交換通路5を形成する各旋回流路51a、51b、51cに流体が接続管3の端口3bから誘導通路53を介して過不足なく円滑に流通可能な位置となるように調節して決めることができる。
The position of the minimum diameter portion 24b of the main wall portion 24 is, for example, when each portion has three uneven portions 11 at 38 pitches as in the above example, the position of the minimum diameter portion α portion of the guide passage 53 is as described above. is the cross-sectional area of 176 mm 2, each swirl channel 51a, 51b, the total 28mm 2 cross-sectional area of 51c, the cross-sectional area of the guide channel 53 in the intermediate portion of the main wall portion 24, half of the maximum aperture α portion It becomes about 88 mm 2 . Therefore, the position of the minimum diameter portion 24b of the main wall portion 24 is 9 mm to 27 mm, which is a numerical value when at least one spiral uneven portion 11 is exceeded from the fitting connection portion 21 and when not exceeding three. It can be extremely short.
FIG. 1 of the first example shows an embodiment in which the minimum diameter portion 24b at the end of the main wall portion 24 does not exceed two of the fitting connection portion 21 and the uneven portion 11, and the length of the main wall portion 24 is longer than this. In FIG. 7 of the second example, the position of the minimum diameter portion 24b at the end of the main wall portion of the main wall portion 24 is such that the position of the minimum diameter portion 24b exceeds one of the uneven portions 11 from the fitting connection portion 21. ing.
In this way, the position of the minimum diameter portion 24b, which is the minimum diameter β of the main wall portion 24, is such that the fluid is guided from the end port 3b of the connecting pipe 3 to the swirling flow paths 51a, 51b, 51c forming the heat exchange passage 5. It can be adjusted and determined so that the position can be smoothly distributed without excess or deficiency via 53.

この主壁部24内で流体は螺旋状の凹凸部11間の旋回流路51内を旋回でき、その凹凸部11間の旋回流路51は最大口径部分24a側では円周方向に大きく広かった誘導通路53内の空間に臨み、末端の最小口径部分24b側では空間が狭くなる。
誘導通路53は最大口径部分24aで断面積が最大となるが、そこでの流体の容量に余裕があるので、主壁部24は不必要に長くはしない。
そして、その狭い末端部分が軸方向に短くても各旋回流路51a、51b、51c全てに流体が流通されるので、最小口径部分24bの位置は凹凸部11の頂部11a間の幅が同じであれば凹凸部の本数が3本以上であっても変わらない。
The fluid can swirl in the swirling flow path 51 between the spiral concavo-convex portions 11 in the main wall portion 24, and the swirling flow path 51 between the concavo-convex portions 11 is widely wide in the circumferential direction on the maximum diameter portion 24a side. It faces the space in the guide passage 53, and the space becomes narrower on the side of the minimum diameter portion 24b at the end.
The guide passage 53 has the maximum cross-sectional area at the maximum diameter portion 24a, but the main wall portion 24 is not unnecessarily long because there is a margin in the capacity of the fluid there.
Further, even if the narrow end portion is short in the axial direction, the fluid flows through all of the swirling flow paths 51a, 51b, and 51c, so that the position of the minimum diameter portion 24b has the same width between the top portions 11a of the uneven portion 11. If there is, it does not change even if the number of uneven portions is 3 or more.

この点で、本発明の改良対象である上記特許文献1では、凹凸部の本数が多くなればなるほど各凹凸部に届くように筒状の流通案内部の長さを増加させなければなかったが、本発明ではその必要がなく、テーパー状の主壁部24の基端の口径を最大な円形に拡張したことで複数の全ての旋回流路51への円滑な流通性が確保され、そのことで、上記特許文献1とは逆に、継手部分の軸方向の長さを短くすることが可能となる。
そして、例えば、自動車の空調機での使用では、熱交換系の配管の設計は、通常他の装置に較べて優先順位が低く、エンジン等各種装置のレイアウトが決まった後に、残された狭く複雑な空間に配管のルートが決められることが多く、そのため、熱交換用の二重管は数ミリ単位で長さぎりぎりまで屈曲しなければ納まらないことがある。
このような状況にあって、本発明では、屈曲できない継手部分の流体誘導部22を短くすることで屈曲可能範囲を広げ、又継手部分の外径を小さくすることで限られた空間にあっても多様に対応できるレイアウトが可能となる。
In this respect, in the above-mentioned Patent Document 1 which is the object of improvement of the present invention, it is necessary to increase the length of the tubular distribution guide portion so as to reach each uneven portion as the number of uneven portions increases. In the present invention, this is not necessary, and by expanding the diameter of the base end of the tapered main wall portion 24 to the maximum circular shape, smooth flowability to all the plurality of swirling flow paths 51 is ensured. Therefore, contrary to the above-mentioned Patent Document 1, it is possible to shorten the axial length of the joint portion.
And, for example, in the use of automobile air conditioners, the design of heat exchange piping is usually a lower priority than other devices, and it is narrow and complicated left after the layout of various devices such as engines is decided. Piping routes are often determined in various spaces, so double pipes for heat exchange may not fit unless they are bent to the limit of a few millimeters.
In such a situation, in the present invention, the bendable range is widened by shortening the fluid guide portion 22 of the joint portion that cannot be bent, and the outer diameter of the joint portion is reduced to provide a limited space. It is possible to have a layout that can be used in a variety of ways.

前記流体誘導部22内の流体は、インレット方向の流れとアウトレット方向の流れとが逆に流れる。
インレット方向へは、図1及び図2に示すように、上側では流体は接続管3端口3bから軸方位に進み、主壁部24によって絞られるようその末端の最小口径部分24bから全て各旋回流路51内に進むこととなる。一方、下側では、図6の(ロ)及び(ハ)の矢印で示すように、接続管3端口3bから入った流体は下側に向かって徐々に狭くなる誘導通路53を左右に分かれて下側へ回り込み、各旋回流路51b、51cへ分かれて徐々に収束されて行く。
この結果、図6の(二)に示すように、誘導通路53を通って各旋回流路51a、51b、51cに全て円滑に流出することとなる。
アウトレット方向へは、螺旋状の凹凸部11間の各旋回流路51を旋回しつつ進行してきた流体が、各旋回流路51a、51b、51cに臨んで開放された誘導通路53内へ流出する。
更に円周方向に広がった誘導通路53を壁部24の旋回しつつ接続管3の端口3bに向かって前進し、従壁部23の漸閉面に誘導されて接続管3の端口3bへと収束されて出て行く。
従って、インレットとアウトレットのいずれの方向へも円滑に流通することとなる。
In the fluid in the fluid guiding portion 22, the flow in the inlet direction and the flow in the outlet direction flow in opposite directions.
In the inlet direction, as shown in FIGS. 1 and 2, on the upper side, the fluid travels in the axial direction from the connection pipe 3 end port 3b, and all swirling flows from the minimum diameter portion 24b at the end so as to be throttled by the main wall portion 24. It will proceed in the road 51. On the other hand, on the lower side, as shown by the arrows (b) and (c) in FIG. 6, the fluid entering from the connection pipe 3 end port 3b divides the guide passage 53 into left and right, which gradually narrows toward the lower side. It wraps around to the lower side, divides into each swirling flow path 51b and 51c, and gradually converges.
As a result, as shown in FIG. 6 (2), all of the swirling passages 51a, 51b, and 51c smoothly flow out through the guidance passage 53.
In the outlet direction, the fluid traveling while swirling each swirling flow path 51 between the spiral concavo-convex portions 11 flows out into the induction passage 53 opened facing the swirling flow paths 51a, 51b, 51c. ..
Further, the guide passage 53 extending in the circumferential direction is advanced toward the end port 3b of the connecting pipe 3 while turning the wall portion 24, and is guided to the gradually closing surface of the slave wall portion 23 to the end opening 3b of the connecting pipe 3. It is converged and goes out.
Therefore, it can be smoothly distributed in both the inlet and outlet directions.

以上が本発明の第1例であり、次に、上記第1例とは別の形態である第2例について説明する。
図7〜図9は第2例を示すものである。
第2例は、基本となる継手構造は上記第1例と同様であるものの 上記第1例では、内管1の螺旋状の凹凸部11の端部11bがシール用膨張部13に接しているが、第2例では、図7及び図8に示すように、内管1のシール用膨張部13と凹凸部11の端部11bとの間を僅かに離している。この離した部分には凹凸部11の凹部12の底面に溝底が繋がる環状溝4が形成され、該環状溝4の内部には、誘導通路53の一部を成す環状空間55が形成される。
なお、第2例では、図7及び図9の(ロ)に示すように、外管2の主壁部24の内壁に内管2の凹凸部11の頂部11aが下側で軸方向に一列に接しており、この点は上記第1例と同様である。
The above is the first example of the present invention, and next, a second example which is a form different from the first example will be described.
7 to 9 show a second example.
In the second example, the basic joint structure is the same as in the first example, but in the first example, the end portion 11b of the spiral uneven portion 11 of the inner pipe 1 is in contact with the sealing expansion portion 13. However, in the second example, as shown in FIGS. 7 and 8, the sealing expansion portion 13 of the inner pipe 1 and the end portion 11b of the uneven portion 11 are slightly separated from each other. An annular groove 4 in which the groove bottom is connected to the bottom surface of the recess 12 of the uneven portion 11 is formed in the separated portion, and an annular space 55 forming a part of the guide passage 53 is formed inside the annular groove 4. ..
In the second example, as shown in FIGS. 7 and 9 (b), the top 11a of the uneven portion 11 of the inner pipe 2 is aligned in the axial direction on the inner wall of the main wall portion 24 of the outer pipe 2. This point is the same as that of the first example.

前記環状溝4の溝底と螺旋状の凹凸部11間の凹部12の底面とは、図7及び図8に示すように、素管の壁面として段差無く繋がっている。このため凹凸部11の端部11b間の旋回流路の端口52が環状溝4の溝底に接して環状空間55から誘導通路53内に流体の流路がそのまま直接的に接続される。 As shown in FIGS. 7 and 8, the bottom of the annular groove 4 and the bottom of the recess 12 between the spiral concave-convex portion 11 are connected without a step as the wall surface of the raw pipe. Therefore, the end port 52 of the swirling flow path between the end portions 11b of the uneven portion 11 comes into contact with the groove bottom of the annular groove 4, and the fluid flow path is directly connected from the annular space 55 into the guide passage 53 as it is.

該環状溝4は、溝幅を大きくするほど前記環状溝4内の環状空間55の容量が増えて流体が流通し易くなる。
しかし、環状溝4の溝底は平坦的であるので、その溝幅を大きくすればするほど流体からの圧力に対する管壁の強度が低下して変形や圧潰され易くなってしまう。そして変形してしまうと内管1内の流体の通路が狭小化して流体が流れ難くなってしまうという不具合を生じることとなる。
このため、本発明では環状溝4を極めて狭い幅とし、最大でも内管1の一つの凹凸部11間の溝幅よりも狭い溝幅とすることが好ましい。このような狭い溝幅であると、凹凸部11の端部11bとシール用膨張部13の側部と接近して環状溝4の両側に立ち上がり、その立ち上がり面がリブ構造の如く作用して溝底の強度低下が起こらなくなる。
例えば、凹凸部11間の凹部12の底の幅を4mmとした場合、環状溝4の溝底幅は4mm程度までとし、凹凸部11の高さを2mmとし、シール用膨張部13の高さを2mmとした場合、両側に形成した2mmの立ち上がった壁面で環状溝4が強化される。
As the groove width of the annular groove 4 is increased, the capacity of the annular space 55 in the annular groove 4 increases, and the fluid easily flows.
However, since the groove bottom of the annular groove 4 is flat, the larger the groove width, the lower the strength of the pipe wall against the pressure from the fluid, and the more easily it is deformed or crushed. If it is deformed, the passage of the fluid in the inner pipe 1 is narrowed, which makes it difficult for the fluid to flow.
Therefore, in the present invention, it is preferable that the annular groove 4 has an extremely narrow width, and the groove width is narrower than the groove width between one uneven portion 11 of the inner pipe 1 at the maximum. With such a narrow groove width, the end portion 11b of the uneven portion 11 and the side portion of the sealing expansion portion 13 approach each other and rise to both sides of the annular groove 4, and the rising surface acts like a rib structure to form a groove. The strength of the bottom does not decrease.
For example, when the width of the bottom of the concave portion 12 between the uneven portions 11 is 4 mm, the groove bottom width of the annular groove 4 is up to about 4 mm, the height of the uneven portion 11 is 2 mm, and the height of the expansion portion 13 for sealing is set. When is 2 mm, the annular groove 4 is reinforced by the rising wall surfaces of 2 mm formed on both sides.

このような環状溝4を設けるのは、二重管のレイアウトの自由度が更に大きくなるよう主壁部24をより短くするためである。
誘導通路53に臨んで下側に開く旋回流路の端口52cは、上側に開く旋回流路の端口52aよりも誘導通路53が狭くなるので流通性が劣る傾向がある。従って、主壁部24の長さを短くするには、流通性が劣る下側に開く旋回流路の端口52cの方への流通性を高めれば効果的に改善されることとなる。
第2例では、図9の(イ)及び(ロ)に矢印で示したように、流体は接続管3側から環状溝4内の環状空間55の下側へ回り込むように下降し、その流体は環状空間55から下側の旋回流路51cの端口52cを通過して相当な流量が旋回流路51cへ流入する。
この環状空間55に流通する下側の旋回流路51cへの流量と、誘導通路53に臨む凹凸部11の上側の頂部11a側から旋回流路に流入する量とを合計すれば、全ての旋回流路51a、51b、51cへより多くの流量の流体が流通可能となる。
The reason for providing such an annular groove 4 is to shorten the main wall portion 24 so that the degree of freedom in the layout of the double pipe is further increased.
The end port 52c of the swirling flow path that opens downward facing the guide passage 53 tends to be inferior in flowability because the guide passage 53 is narrower than the end port 52a of the swirl flow path that opens upward. Therefore, in order to shorten the length of the main wall portion 24, it is effective to improve the flowability toward the end port 52c of the swirling flow path that opens downward, which is inferior in flowability.
In the second example, as shown by the arrows in (a) and (b) of FIG. 9, the fluid descends from the connecting pipe 3 side to the lower side of the annular space 55 in the annular groove 4, and the fluid wraps around. Passes from the annular space 55 through the end port 52c of the lower swirling flow path 51c, and a considerable flow rate flows into the swirling flow path 51c.
If the flow rate to the lower swirl flow path 51c flowing through the annular space 55 and the amount flowing into the swirl flow path from the upper top 11a side of the uneven portion 11 facing the guide passage 53 are totaled, all swivel. A larger flow rate of fluid can flow through the flow paths 51a, 51b, 51c.

例えば、第1例では環状溝4がなくて主壁部24の末端が嵌合接続部21から15mm程度離れた位置にあったものを、これと同程度の流通性能を得るのに、第3例では環状溝4の溝幅を凹凸部11の凹部12の底幅と同じ4mmとした場合には、主壁部24の末端の最小口径部分24bを嵌合接続部21から1本の旋回流路51の幅だけ離れた9mm程度の位置にまで短縮させることが可能となる。 For example, in the first example, if there is no annular groove 4 and the end of the main wall portion 24 is located at a position about 15 mm away from the fitting connection portion 21, a third example can obtain the same level of distribution performance. In the example, when the groove width of the annular groove 4 is 4 mm, which is the same as the bottom width of the recess 12 of the concave-convex portion 11, the minimum diameter portion 24b at the end of the main wall portion 24 is swirled from the fitting connection portion 21. It is possible to shorten the position to about 9 mm, which is separated by the width of the road 51.

次に、前記第1例及び第2例とは別の形態である第3例について説明する。
図10〜図12は第3例を示すものである。
第3例では、図10に示すように、主壁部24の最大口径部分24aと最小口径部分24bとの間の下側の内壁が凹凸部11の頂部11aから離れるようテーパー状に管径を下側に拡張して拡大部25が形成され、該拡大部25の内部には、誘導通路53の一部を成す開拡空間55が形成される。
この開拡空間54により主壁部24の内壁と内管1の凹凸部11の頂部11aとの間に流体が流量を増して流通可能となる。
上記第1例及び第2例が、主壁部24の下側の壁面に内管1の凹凸部11の頂部11aが軸方向に一列に並ぶように接するものなので、この点で第3例は上記第1例及び第2例とは異なるが、この他の基本となる継手構造は上記第1例と同様である。
Next, a third example, which is a form different from the first and second examples, will be described.
10 to 12 show a third example.
In the third example, as shown in FIG. 10, the pipe diameter is tapered so that the lower inner wall between the maximum diameter portion 24a and the minimum diameter portion 24b of the main wall portion 24 is separated from the top portion 11a of the uneven portion 11. An expansion portion 25 is formed by expanding to the lower side, and an expansion space 55 forming a part of the guide passage 53 is formed inside the expansion portion 25.
The open space 54 allows the fluid to flow by increasing the flow rate between the inner wall of the main wall portion 24 and the top portion 11a of the uneven portion 11 of the inner pipe 1.
In the first and second examples, the top 11a of the uneven portion 11 of the inner pipe 1 is in contact with the lower wall surface of the main wall portion 24 so as to be aligned in the axial direction. Although different from the first and second examples, the other basic joint structure is the same as that of the first example.

又、第1例では、誘導通路53が下側に向かうに従って空間が狭くなるので凹凸部11の頂部11aを越えて流れる量が減少して行き、最下側では主壁部24の下側の壁面が凹凸部11の頂部11aと接触することで誘導通路53の隙間は殆どなくなってしまう。
しかし、凹凸部11の頂部11a間の旋回流路51c自体は、流路の断面積は全く減少せずに接触部分の両側へ斜めに連通しているので、旋回流路51cの流体は充分流通させることができる。
第3例では、その誘導通路53の下側部分を広げた拡大部25を設ける。この結果、主壁部24内の最下側からも流体が凹凸部11の頂部11aを越えて開拡空間54内に流通可能となる。
この第3例では、誘導通路53の下側に形成される開拡空間54から流体が多く流通できるため、この拡大部25の拡張の大きさに応じて、第1例よりも主壁部24の軸方向の長さを短くすることが可能となる。
そして、継手部分全体をより短くすることで二重管の組み付けのレイアウトの自由度をより高めることが可能となる。
拡大部25内に開拡空間54がある誘導通路53の断面は、図12の(イ)及び(ロ)に示すように、基本的には全長を円形とするものであるが、下側を拡張するので、円形に近い楕円形や長円形等の真円ではない円形とすることもできる。
Further, in the first example, since the space becomes narrower as the guide passage 53 goes downward, the amount of flow over the top 11a of the uneven portion 11 decreases, and the lowermost side is the lower side of the main wall portion 24. When the wall surface comes into contact with the top portion 11a of the uneven portion 11, the gap in the guide passage 53 is almost eliminated.
However, since the swirling flow path 51c itself between the tops 11a of the uneven portion 11 communicates diagonally with both sides of the contact portion without reducing the cross-sectional area of the flow path at all, the fluid of the swirling flow path 51c sufficiently flows. Can be made to.
In the third example, an enlarged portion 25 is provided by expanding the lower portion of the guide passage 53. As a result, the fluid can flow from the lowest side in the main wall portion 24 beyond the top portion 11a of the uneven portion 11 into the open space 54.
In this third example, since a large amount of fluid can flow from the open expansion space 54 formed under the guide passage 53, the main wall portion 24 is larger than the first example depending on the size of the expansion of the expansion portion 25. It is possible to shorten the axial length of.
Then, by making the entire joint portion shorter, it is possible to increase the degree of freedom in the layout of the double pipe assembly.
As shown in (a) and (b) of FIG. 12, the cross section of the guide passage 53 having the expansion space 54 in the expansion portion 25 is basically circular in total length, but the lower side is Since it is expanded, it can be a circle that is not a perfect circle, such as an ellipse that is close to a circle or an oval.

前記拡大部25は、主壁部24の下側に下側の旋回流路51cと流体が流れ易くなるように開拡空間54を設けるものであり、図11に示すように、拡大部25の範囲は下側半分程度とする。
そして、その拡張する内管1からの高さは、下側の旋回流路51cの断面積が得られる凹凸部11の凹部12から頂部11aまでの高さと同程度以下の小さい距離で充分である。この高さで、拡大部25内に開拡空間54のある誘導通路53の断面積は各旋回流路51b、51cの総計した断面積をより大きいので、流体の充分な流通性が確保できる。
The enlarged portion 25 is provided with an open / expanded space 54 on the lower side of the main wall portion 24 so that the lower swirling flow path 51c and the fluid can easily flow, and as shown in FIG. 11, the enlarged portion 25 of the enlarged portion 25. The range is about the lower half.
The height from the expanding inner pipe 1 is sufficient at a small distance equal to or less than the height from the recess 12 to the top 11a of the uneven portion 11 where the cross-sectional area of the lower swirl flow path 51c can be obtained. .. At this height, the cross-sectional area of the guide passage 53 having the expansion space 54 in the expansion portion 25 is larger than the total cross-sectional area of the swirling passages 51b and 51c, so that sufficient fluid flowability can be ensured.

第3例では、図12の(イ)に示すように、拡大部25の両側の拡張基端部25aと拡張末端部25bの両端部は拡張による段差部分を緩傾斜にして乱流を発生させ難くする。
この結果、下側の流体の流通性が改善され、主壁部24の長さを第1例よりもさらに短くすることが可能となる。
なお、口径の拡張により継手の径が下側に僅かに大きくなるとしても、その口径の増加は極めて僅かであるので径方向におけるレイアウトの自由度には殆ど影響なく、それよりも継手部分を軸方向により短くすることで二重管の組み付けレイアウトの自由度を更に広げることが可能となる。
例えば、凹凸部11の高さを2mmとし、開拡空間54の幅をこれと同じ2mmとする。主壁部24の最大口径部分24aの口径を第1例では22mmとすると、この第3例では、最大口径部分24aは下方へ2mm拡大されて24mmと僅かに拡大される。そして嵌合接続部21から主壁部24の末端までの距離を第1例では15mmとすると、この第3例では嵌合接続部21から1本の旋回流路51の幅だけ離れた9mm程度の位置にまで短縮させることが可能となる。
In the third example, as shown in (a) of FIG. 12, both ends of the expansion base end portion 25a and the expansion end portion 25b on both sides of the expansion portion 25 gently incline the stepped portion due to expansion to generate turbulence. Make it difficult.
As a result, the flowability of the lower fluid is improved, and the length of the main wall portion 24 can be further shortened as compared with the first example.
Even if the diameter of the joint increases slightly downward due to the expansion of the diameter, the increase in the diameter is extremely small, so there is almost no effect on the degree of freedom in layout in the radial direction, and the joint portion is the axis. By shortening the length depending on the direction, it is possible to further expand the degree of freedom in the assembly layout of the double pipe.
For example, the height of the uneven portion 11 is 2 mm, and the width of the expansion space 54 is the same 2 mm. Assuming that the diameter of the maximum diameter portion 24a of the main wall portion 24 is 22 mm in the first example, in this third example, the maximum diameter portion 24a is expanded downward by 2 mm and slightly expanded to 24 mm. Assuming that the distance from the fitting connection portion 21 to the end of the main wall portion 24 is 15 mm in the first example, in this third example, the distance from the fitting connection portion 21 by the width of one swirling flow path 51 is about 9 mm. It is possible to shorten it to the position of.

本発明は、自動車の空調機の熱交換器の他に、家庭用や産業用の各種熱交換装置の熱交換器として使用することが可能である。 INDUSTRIAL APPLICABILITY The present invention can be used as a heat exchanger for various heat exchangers for home and industrial use, in addition to the heat exchanger for an automobile air conditioner.

1 内管
1a 外壁
11 凹凸部
11a 頂部
11b 端部
12 凹部
13 シール用膨張部
2 外管
2a 内壁
2b 端部
2c 端口
21 嵌合接続部
22 流体誘導部
23 従壁部
24 主壁部
24a 最大口径部分
24b 最小口径部分
25 拡大部
25a 拡大基端部
25b 拡大末端部
26 絞り部
27 絞り部
28 シール用膨張部側の内壁
3 接続管
3a 端部
3b 端口
31 接続端末
31a 異形形状部分
31b 凹面部
4 環状溝
5 熱交換通路
51 旋回流路
51a、51b、51c 旋回流路
52 旋回流路の端口
52a、52b、52c 旋回流路の端口
53 誘導通路
54 開拡空間
55 環状空間
6 ろう材
a 接続管端部の軸方向
b 二重管の軸方向
α 最大口径
β 最小口径
P 内管の中心
R 内管の凹凸部の頂部に接する円の半径
L 流体誘導部の壁面の内管の中心からの距離


1 Inner pipe 1a Outer wall 11 Concavo-convex part 11a Top 11b End part 12 Recessed part 13 Inflatable part for sealing 2 Outer pipe 2a Inner wall 2b End part 2c End mouth 21 Fitting connection part 22 Fluid guidance part 23 Sub-wall part 24 Main wall part 24a Maximum diameter Part 24b Minimum diameter part 25 Enlarged part 25a Enlarged base end part 25b Enlarged end part 26 Squeezed part 27 Squeezed part 28 Inner wall on the expansion part side for sealing 3 Connection pipe 3a End 3b End mouth 31 Connection terminal 31a Deformed part 31b Concave part 4 Circular groove 5 Heat exchange passage 51 Swirling flow path 51a, 51b, 51c Swirling flow path 52 Swirling flow path end port 52a, 52b, 52c Swirling flow path end port 53 Guide passage 54 Opening space 55 Circular space 6 Wax material a Connection pipe Axial direction of the end b Axial direction of the double pipe α Maximum diameter β Minimum diameter P Center of the inner pipe R Radius of the circle in contact with the top of the uneven part of the inner pipe L Distance from the center of the inner pipe of the wall surface of the fluid guide


Claims (4)

複数本の螺旋状の凹凸部を備えた内管と外管との間に熱交換通路が形成された熱交換器用二重管に対して、前記熱交換通路を流通する流体のインレット、アウトレットとなる接続管を接続した二重管の継手構造において、
前記内管には、外管端部の内壁の対面部位を環状に膨出させたシール用膨張部を設け、前記凹凸部はその端部を該シール用膨張部に対して接近させて設け、前記接続管には、その端部に、外管端部の内側形状と前記内管のシール用膨張部の外側形状とによって囲まれた略D形の異形形状の接続端末を設け、
前記外管には、その端部に、前記接続管の接続端末と前記内管のシール用膨張部とを囲うダルマ形の嵌合接続部と、前記接続管の端口と内管の凹凸部の端部の外側を覆って、前記接続管の端口から前記凹凸部間に形成される各旋回流路へと流体を誘導する誘導通路を形成する流体誘導部とを設け、
前記流体誘導部は、最大口径部分を内管の凹凸部の頂部の外接円と複数本の旋回流路の断面積の総和よりも大きな断面積を有する略円形とし、且つ、内管の中心から内管の壁面と外管の壁面までの距離の差が接続管へ向かうに従って漸増するよう各旋回流路を囲繞して誘導通路を形成し、前記最大口径部分から一方側には流体誘導部外の外管に繋がるテーパー状の主壁部を配し、他方側には接続管に繋がる従壁部を配したことを特徴とする二重管の継手構造。
For a double pipe for a heat exchanger in which a heat exchange passage is formed between an inner pipe and an outer pipe having a plurality of spiral uneven portions, an inlet and an outlet of a fluid flowing through the heat exchange passage are used. In the joint structure of the double pipe connecting the connecting pipes
The inner pipe is provided with a sealing expansion portion in which the facing portion of the inner wall of the outer pipe end portion is bulged in an annular shape, and the uneven portion is provided with the end portion approaching the sealing expansion portion. The connecting pipe is provided with a substantially D-shaped irregularly shaped connecting terminal surrounded by the inner shape of the outer pipe end and the outer shape of the sealing expansion portion of the inner pipe at the end thereof.
The outer pipe has a Dharma-shaped fitting connection portion that surrounds the connection terminal of the connection pipe and the expansion portion for sealing of the inner pipe, and the end opening of the connection pipe and the uneven portion of the inner pipe. A fluid guiding portion is provided so as to cover the outside of the end portion and form a guiding passage for guiding the fluid from the end opening of the connecting pipe to each swirling flow path formed between the uneven portions.
The maximum diameter portion of the fluid guide portion is a substantially circular shape having a cross-sectional area larger than the sum of the circumscribed circle at the top of the uneven portion of the inner pipe and the cross-sectional area of a plurality of swirling flow paths, and from the center of the inner pipe. A guide passage is formed by surrounding each swirl flow path so that the difference in distance between the wall surface of the inner pipe and the wall surface of the outer pipe gradually increases toward the connecting pipe, and the outside of the fluid guide portion is on one side from the maximum diameter portion. A double pipe joint structure characterized in that a tapered main wall part connected to the outer pipe of the pipe is arranged, and a secondary wall part connected to the connecting pipe is arranged on the other side.
主壁部の最大口径は、シール用膨張部と接続管の外径の合計値よりも小さな口径としたことを特徴とする二重管の継手構造。 The maximum diameter of the main wall is a double pipe joint structure that is smaller than the total diameter of the expansion part for sealing and the outer diameter of the connecting pipe. 内管の凹凸部の端部とシール用膨張部との間を、環状溝を介して接近させたことを特徴とする二重管の継手構造。 A double pipe joint structure characterized in that the end of the uneven portion of the inner pipe and the expansion portion for sealing are brought close to each other through an annular groove. 内管の凹凸部に近い主壁部の内壁の口径を、拡大したことを特徴とする二重管の継手構造。


A double pipe joint structure characterized by enlarging the diameter of the inner wall of the main wall near the uneven part of the inner pipe.


JP2019085856A 2019-04-26 2019-04-26 Double pipe joint structure Active JP7056951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085856A JP7056951B2 (en) 2019-04-26 2019-04-26 Double pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085856A JP7056951B2 (en) 2019-04-26 2019-04-26 Double pipe joint structure

Publications (2)

Publication Number Publication Date
JP2020180767A true JP2020180767A (en) 2020-11-05
JP7056951B2 JP7056951B2 (en) 2022-04-19

Family

ID=73024493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085856A Active JP7056951B2 (en) 2019-04-26 2019-04-26 Double pipe joint structure

Country Status (1)

Country Link
JP (1) JP7056951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464736A (en) * 2021-07-01 2021-10-01 江西冉升管业有限公司 Double-channel metal corrugated pipe and manufacturing process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150855A (en) * 1976-06-10 1977-12-14 Daikin Ind Ltd Connecting means of communication pipe for double pipe heat exchanger
JP2002318083A (en) * 2001-04-20 2002-10-31 Harman Kikaku:Kk Double pipe heat exchanger and its manufacturing method
JP2013124854A (en) * 2011-12-16 2013-06-24 Watanabe Seisakusho:Kk Joint structure of double pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150855A (en) * 1976-06-10 1977-12-14 Daikin Ind Ltd Connecting means of communication pipe for double pipe heat exchanger
JP2002318083A (en) * 2001-04-20 2002-10-31 Harman Kikaku:Kk Double pipe heat exchanger and its manufacturing method
JP2013124854A (en) * 2011-12-16 2013-06-24 Watanabe Seisakusho:Kk Joint structure of double pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464736A (en) * 2021-07-01 2021-10-01 江西冉升管业有限公司 Double-channel metal corrugated pipe and manufacturing process thereof

Also Published As

Publication number Publication date
JP7056951B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US6814133B2 (en) Heat exchanger for cooling oil with water
JP5075276B2 (en) Plate heat exchanger
JP5254082B2 (en) Heat exchange tube
US20150300745A1 (en) Counterflow helical heat exchanger
US12292239B2 (en) Double tube for heat-exchange
US10295282B2 (en) Heat exchanger with flow obstructions to reduce fluid dead zones
US20050230090A1 (en) Layered heat exchangers
EP1873471B1 (en) Heat transfer tube for supplying hot water
JP3110197U (en) Refrigerant tube of heat exchanger
US20040134645A1 (en) Layered heat exchangers
JP7056951B2 (en) Double pipe joint structure
JP2009024565A (en) Waste heat recovery device for internal combustion engine
US20240280326A1 (en) Micro-channel heat exchanger
US20020038701A1 (en) Heat exchanger
CN100510599C (en) Double pipe heat exchanger and method of making the same
CN104567474A (en) Heat exchanger
JPH1172104A (en) Vortex generator and manufacture thereof
CN220102268U (en) Valve device, electronic expansion valve and refrigerating system
JP2008281249A (en) Heat exchanger
JP2010255864A (en) Flat tube and heat exchanger
JP2009092269A (en) Double tube-type heat exchanger
JP3587189B2 (en) Heat exchanger
US11698234B2 (en) Distributor, heat exchanger unit and air conditioner
JP2018155433A (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2007177848A (en) Piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7056951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350