JP2020176784A - Thermosiphon type cooler for vehicle - Google Patents
Thermosiphon type cooler for vehicle Download PDFInfo
- Publication number
- JP2020176784A JP2020176784A JP2019080063A JP2019080063A JP2020176784A JP 2020176784 A JP2020176784 A JP 2020176784A JP 2019080063 A JP2019080063 A JP 2019080063A JP 2019080063 A JP2019080063 A JP 2019080063A JP 2020176784 A JP2020176784 A JP 2020176784A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- vehicle
- liquid
- amount
- storage unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 373
- 238000001816 cooling Methods 0.000 claims abstract description 96
- 238000001704 evaporation Methods 0.000 claims abstract description 24
- 230000008020 evaporation Effects 0.000 claims abstract description 21
- 239000007791 liquid phase Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 407
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 239000012071 phase Substances 0.000 claims description 8
- 238000009434 installation Methods 0.000 claims description 6
- 230000020169 heat generation Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 98
- 239000000498 cooling water Substances 0.000 description 37
- 238000004891 communication Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 18
- 238000004378 air conditioning Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000012447 hatching Effects 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical group F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/04—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
- B60K11/04—Arrangement or mounting of radiators, radiator shutters, or radiator blinds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D9/00—Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/06—Control arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/633—Control systems characterised by algorithms, flow charts, software details or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6552—Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6569—Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Secondary Cells (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
Description
本発明は、車載機器を冷却するサーモサイフォン式冷却装置に関する。 The present invention relates to a thermosiphon type cooling device for cooling an in-vehicle device.
従来、特許文献1には、冷媒を自然循環させるサーモサイフォン式冷却装置が記載されている。
Conventionally,
この従来技術は、ガス冷媒を凝縮して液冷媒とする熱交換部と、液冷媒を蒸発させてガス冷媒とする蒸発器とを備えている。熱交換部の液冷媒は蒸発器へ流下し、蒸発器のガス冷媒は熱交換部へ上昇する。蒸発器で液冷媒が吸熱することによって冷却作用を発揮する。 This conventional technique includes a heat exchange unit that condenses a gas refrigerant into a liquid refrigerant, and an evaporator that evaporates the liquid refrigerant into a gas refrigerant. The liquid refrigerant in the heat exchange section flows down to the evaporator, and the gas refrigerant in the evaporator rises to the heat exchange section. The liquid refrigerant absorbs heat in the evaporator to exert a cooling effect.
上記従来技術のようなサーモサイフォン式冷却装置をハイブリッド車両や電気自動車に搭載して走行用電池の冷却に適用した場合、車両の傾斜によって冷却性能を十分に発揮できないことが起こりうる。 When a thermosiphon type cooling device such as the above-mentioned conventional technique is mounted on a hybrid vehicle or an electric vehicle and applied to cool a traveling battery, it may occur that the cooling performance cannot be sufficiently exhibited due to the inclination of the vehicle.
すなわち、車両が傾斜すると蒸発器内において液冷媒に偏りが生じて液冷媒が存在しない部位が生じるので、液冷媒で吸熱できない部位が生じる。そのため、走行用電池を冷却できない部位が生じる。 That is, when the vehicle is tilted, the liquid refrigerant is biased in the evaporator and a portion where the liquid refrigerant does not exist is generated, so that a portion where the liquid refrigerant cannot absorb heat is generated. Therefore, there are some parts where the traveling battery cannot be cooled.
この対策として、液冷媒を多めに封入しておけば、車両が傾斜しても蒸発器内に液冷媒が存在しない部位が生じないようにすることができる。しかしながら、液冷媒を多めに封入すると、充電時といった走行用電池の発熱量が多い場合、蒸発器内において液冷媒の蒸発が激しくなって液冷媒がガス冷媒とともに吹き上げられてガス冷媒の上昇を妨げてしまい、冷却性能が低下してしまう。特に、急速充電時には、走行用電池の発熱量が極めて多くなって蒸発器内の液冷媒の蒸発が極めて激しくなるので、冷却性能が著しく低下してしまう。 As a countermeasure, if a large amount of liquid refrigerant is sealed, it is possible to prevent a portion where the liquid refrigerant does not exist in the evaporator even if the vehicle is tilted. However, if a large amount of liquid refrigerant is filled, when the amount of heat generated by the traveling battery is large, such as during charging, the liquid refrigerant evaporates violently in the evaporator and the liquid refrigerant is blown up together with the gas refrigerant to prevent the gas refrigerant from rising. This will reduce the cooling performance. In particular, during rapid charging, the amount of heat generated by the traveling battery becomes extremely large, and the liquid refrigerant in the evaporator evaporates extremely violently, so that the cooling performance is significantly deteriorated.
本発明は上記点に鑑みて、充電時に冷却性能を極力確保できる車両用サーモサイフォン式冷却装置を提供することを目的とする。 In view of the above points, it is an object of the present invention to provide a thermosiphon type cooling device for vehicles that can secure cooling performance as much as possible during charging.
本発明は上記点に鑑みて、蒸発器内の液冷媒の吹き上げによって冷却性能が低下することを抑制することを他の目的とする。 In view of the above points, another object of the present invention is to suppress deterioration of cooling performance due to blowing up of the liquid refrigerant in the evaporator.
上記目的を達成するため、請求項1に記載の車両用サーモサイフォン式冷却装置は、
二次電池(11)から吸熱して冷媒を蒸発させる蒸発部(13)と、
蒸発器で蒸発した冷媒を凝縮させる凝縮器(14)と、
蒸発部(13)と凝縮器(14)との間を循環する冷媒を液相状態で貯留する貯留部(40)と、
二次電池(11)が充電されている場合、または二次電池(11)が充電されると推定される場合、貯留部(40)の冷媒の貯留量を所定量(Vp)以上にする貯留量調整部(30、41、44、46、52、55)とを備える。
In order to achieve the above object, the vehicle thermosiphon type cooling device according to
An evaporation unit (13) that absorbs heat from the secondary battery (11) and evaporates the refrigerant, and
A condenser (14) that condenses the refrigerant evaporated by the evaporator, and
A storage unit (40) that stores the refrigerant circulating between the evaporation unit (13) and the condenser (14) in a liquid phase state, and
When the secondary battery (11) is charged, or when it is estimated that the secondary battery (11) is charged, the storage amount of the refrigerant in the storage unit (40) is set to a predetermined amount (Vp) or more. It is provided with an amount adjusting unit (30, 41, 44, 46, 52, 55).
これによると、二次電池(11)が充電されて発熱量が多くなったときに蒸発部(13)内の液冷媒の量を少なくすることができるので、蒸発部(13)内の液冷媒の吹き上げを抑制できる。そのため、充電時に冷却性能を極力確保できる。 According to this, when the secondary battery (11) is charged and the amount of heat generated increases, the amount of the liquid refrigerant in the evaporation unit (13) can be reduced, so that the liquid refrigerant in the evaporation unit (13) can be reduced. Can suppress the blow-up. Therefore, the cooling performance can be ensured as much as possible during charging.
上記他の目的を達成するため、請求項12に記載の車両用サーモサイフォン式冷却装置は、
二次電池(11)から吸熱して冷媒を蒸発させる蒸発部(13)と、
蒸発部で蒸発した前記冷媒を凝縮させる凝縮器(14)と、
蒸発部と前記凝縮器との間を循環する前記冷媒を液相状態で貯留する貯留部(40)と、
二次電池の発熱量に応じて前記貯留部の前記冷媒の貯留量を調整する貯留量調整部(30、41、44、46、52、55)とを備える。
In order to achieve the above other object, the thermosiphon type cooling device for a vehicle according to
An evaporation unit (13) that absorbs heat from the secondary battery (11) and evaporates the refrigerant, and
A condenser (14) that condenses the refrigerant evaporated in the evaporation section, and
A storage unit (40) that stores the refrigerant circulating between the evaporation unit and the condenser in a liquid phase state, and
It is provided with a storage amount adjusting unit (30, 41, 44, 46, 52, 55) that adjusts the storage amount of the refrigerant in the storage unit according to the heat generation amount of the secondary battery.
これによると、二次電池(11)の発熱量が多くなったときに蒸発部(13)内の液冷媒の量を少なくして蒸発部(13)内の液冷媒の吹き上げを抑制できる。そのため、蒸発器内の液冷媒の吹き上げによって冷却性能が低下することを抑制できる。 According to this, when the calorific value of the secondary battery (11) increases, the amount of the liquid refrigerant in the evaporation unit (13) can be reduced to suppress the blow-up of the liquid refrigerant in the evaporation unit (13). Therefore, it is possible to prevent the cooling performance from being lowered due to the blowing up of the liquid refrigerant in the evaporator.
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 In addition, the reference numerals in parentheses of each means described in this column and the scope of claims indicate the correspondence with the specific means described in the embodiment described later.
以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In each of the following embodiments, parts that are the same or equal to each other are designated by the same reference numerals in the drawings.
(第1実施形態)
本実施形態の車両用サーモサイフォン式冷却装置10は、車両に搭載される電池を冷却する車両用電池冷却装置である。図1中、上下前後左右の矢印は、車両の上下前後左右方向を示している。
(First Embodiment)
The vehicle thermosiphon
組電池11は、電気エネルギーを蓄える二次電池である。組電池11は、インバータなどを介して走行用モータに電気を供給する。組電池11は、回生電力を蓄える蓄電池である。組電池11は、走行中など充放電使用時に自己発熱する。組電池11は、車両用サーモサイフォン式冷却装置10の冷却対象物である。
The assembled
組電池11の充電方式は、プラグインタイプである。プラグインタイプは、充電器の充電コネクタを、車両に設けられた充電コネクタ差込口に差し込んで充電する方式である。一般的な車両では、充電コネクタ差込口として、普通充電用ポートと急速充電用ポートのの2つのポートが設けられている。普通充電用ポートは、普通充電用の充電コネクタが差し込まれる充電用ポートである。急速充電用ポートは、急速充電用の充電コネクタが差し込まれる充電用ポートである。急速充電は、普通充電よりも大電力で急速に行われる充電のことである。
The charging method of the assembled
組電池11の充電方式は、非接触充電タイプや電線接触タイプであってもよい。非接触充電タイプは、例えば、電磁誘導方式や磁界共鳴方式がある。
The charging method of the assembled
組電池11は、複数の電池セル111を有している。図2に示すように、電池セル111が高温になると劣化あるいは破損を招く。そのため、電池に許容される出力および入力を抑えて発熱量を抑える必要がある。そのため、電池セル111を冷却して一定温度以下に維持する必要がある。
The assembled
特に加速時や登坂時(換言すれば走行負荷が高い時)には電池セル111の放電量が多くなって発熱量が増加するので、電池セル111を高い冷却能力で冷却する必要がある。
In particular, when accelerating or climbing a slope (in other words, when the traveling load is high), the amount of discharge of the
電池セル111の充電中も電池セル111の放電量が多くなって発熱量が増加するので、電池セル111を高い冷却能力で冷却する必要がある。特に、急速充電中の電池セル111の発熱量は、他の場合と比較して突出して大きくなる。
Since the amount of discharge of the
電池セル111の温度は、走行中や充電中だけでなく夏期の駐車放置中などにも上昇する。電池セル111を高温状態で放置すると寿命が大幅に低下するため、駐車放置中も冷却するなど電池温度を低温に維持する必要がある。
The temperature of the
図1に示すように、車両用サーモサイフォン式冷却装置10は、冷媒回路12を備える。冷媒回路12は、複数個の蒸発器13、凝縮器14、ガス配管15および液配管16を有している。
As shown in FIG. 1, the vehicle thermosiphon
冷媒回路12内には、冷媒が封入充填されている。冷媒回路12は、作動流体としての冷媒が循環する熱媒体回路である。冷媒は、HFO−1234yfやHFC−134aなどのフロン系冷媒である。
The
冷媒は、冷媒回路12に所定の圧力で封入されている。冷媒は、常温時には冷媒回路12内において大部分は液状態、一部はガス状態になっている。
The refrigerant is sealed in the
冷媒回路12は、冷媒の蒸発および凝縮により熱移動を行うヒートパイプである。冷媒回路12は、ガス状の冷媒が流れる流路と、液状の冷媒が流れる流路とが分離されたループ型のサーモサイフォンである。
The
複数個の蒸発器13は、組電池11から吸熱して冷媒を蒸発させる蒸発部である。蒸発器13は、冷媒を熱交換させる熱交換器である。蒸発器13は、複数の電池セル111を、冷媒の蒸発により冷却する。蒸発器13は、電池セル111と熱伝導可能になっている。蒸発器13は、電池セル111の熱を冷媒に吸熱させることによって電池セル111を冷却するとともに冷媒を蒸発させる。
The plurality of
蒸発器13は、車両上下方向に延びる薄形矩形状の外形を有している。蒸発器13は、熱交換部131、液通路部132およびガス通路部133を有している。熱交換部131、液通路部132およびガス通路部133は、上方から下方に向かって、ガス通路部133、熱交換部131、液通路部132の順番で配置されている。
The
熱交換部131の外面は平面状になっている。電池セル111は、直方体状の外形を有している。電池セル111の1つの面は、熱交換部131の外面に、電気絶縁熱伝導シート17を介して熱伝導可能に当接している。各電池セル111は、その端子112が熱交換部131とは反対側を向くように配置されている。
The outer surface of the
電気絶縁熱伝導シート17は、電気絶縁性と熱伝導性とを有する薄膜状の部材である。熱交換部131と電池セル111との間に、板状の熱伝導部材が介在していてもよい。
The electrically insulated heat
熱交換部131は、内部の冷媒流路を流れる液冷媒に電池セル111の熱を吸熱させて液冷媒を沸騰蒸発させる。
The
熱交換部131の内部には、図示しない多数の冷媒流路が形成されている。熱交換部131の多数の冷媒流路は、互いに並列に上下方向に延びている。
A large number of refrigerant flow paths (not shown) are formed inside the
液通路部132には、液配管16が接続されている。液通路部132は、液配管16を流れた液冷媒を熱交換部131の多数の冷媒流路に分配する。
A
ガス通路部133には、ガス配管15が接続されている。ガス通路部133は、熱交換部131の多数の冷媒流路にて沸騰蒸発したガス冷媒を集合させてガス配管15に流出させる。
A
凝縮器14は、蒸発器13で蒸発した冷媒を、冷却水回路20の冷却水と熱交換させて冷却凝縮させる熱交換器である。凝縮器14は、車両のエンジンルームに配置されている。凝縮器14は、蒸発器13よりも車両の上方側に配置されている。
The
冷却水は、熱媒体としての流体である。冷却水は、例えば、少なくともエチレングリコールまたはジメチルポリシロキサンを含む液体や、不凍液体、クーラント等である。 The cooling water is a fluid as a heat medium. The cooling water is, for example, a liquid containing at least ethylene glycol or dimethylpolysiloxane, an antifreeze liquid, a coolant, or the like.
ガス配管15および液配管16は、蒸発器13と凝縮器14とを接続する冷媒配管である。ガス配管15は、蒸発器13で蒸発したガス冷媒が流れる冷媒配管である。ガス配管15は、ガス冷媒を凝縮器14に導くガス冷媒流路を形成している。
The
液配管16は、凝縮器14で凝縮した液冷媒が流れる冷媒配管である。液配管16は、液冷媒を蒸発器13に導く液冷媒流路を形成している。
The
車両用サーモサイフォン式冷却装置10は、凝縮器14が車両前方側に位置し、蒸発器13が車両後方側に位置するように車両に搭載されている。ガス配管15および液配管16は、車両前後方向に延びている。
The vehicle thermosiphon
複数個の蒸発器13は、車両前後方向に並んで配置されている。複数個の蒸発器13は、車両に対して、互いに同じ高さに配置されている。複数個の蒸発器13は、車両前後方向に延びる1組のガス配管15および液配管16から分岐するように配置されている。
The plurality of
図1の例では、蒸発器13が3個配置されている。3個の蒸発器13は、ガス配管15および液配管16に対して車両左方側に配置されている。複数個の蒸発器13は、互いの相対位置が固定されている。
In the example of FIG. 1, three
蒸発器13の個数は3個に限定されるものではなく、1個または2個であってもよいし、3個よりも多い複数個であってもよい。
The number of
車両用サーモサイフォン式冷却装置10は、貯液部40、ヒータ41、液連通配管42、ガス連通配管43、貯液弁44および逆止弁45を備える。
The thermosiphon
貯液部40は、車両用サーモサイフォン式冷却装置10の冷媒を液相状態で貯留する貯留部である。貯液部40は、車両に対して、蒸発器13とほぼ同じ高さに配置されている。貯液部40は、冷媒入口401と冷媒出口402とを有している。冷媒入口401および冷媒出口402は、冷媒が流通する冷媒流通口である。
The
ヒータ41は、貯液部40内の液冷媒を加熱して蒸発させる。ヒータ41は、電力を供給されることによって発熱する電気ヒータである。
The
液連通配管42は、貯液部40の冷媒入口401と液配管16とを接続している。液連通配管42は、冷媒回路12の液冷媒を貯液部40に流入させる冷媒流路を形成している。
The
ガス連通配管43は、貯液部40のガス冷媒入口401とガス配管15とを接続している。ガス連通配管43は、貯液部40のガス冷媒を冷媒回路12に流入させる冷媒流路を形成している。
The
貯液弁44は、液連通配管42を開閉する電磁弁である。逆止弁45は、ガス連通配管43において、貯液部40側からガス配管15側への冷媒の流れを許容し、ガス配管15側から貯液部40側への冷媒の流れを禁止する。
The
貯液部40は、複数個の蒸発器13のうち凝縮器14から最も離れた蒸発器13の近傍に配置されている。
The
冷却水回路20は、冷却水ポンプ21およびラジエータ22を有している。冷却水ポンプ21は、冷却水回路20の冷却水を吸入して吐出するポンプである。ラジエータ22は、冷却水回路20を循環する冷却水と外気とを熱交換させて冷却水を冷却する熱交換器である。外気送風機23は、ラジエータ22に外気を送風する送風機である。
The cooling
ヒータ41、貯液弁44、冷却水ポンプ21および外気送風機23の作動は、制御装置30によって制御される。制御装置30は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。
The operation of the
制御装置30は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された冷却水ポンプ21および外気送風機23等の作動を制御する制御部である。
The
制御装置30、ヒータ41および貯液弁44は、貯液部40の冷媒の貯留量を調整する貯留量調整部である。
The
制御装置30の入力側には、電池セル温度センサ31、液面センサ32、ジャイロセンサ33等のセンサ群が接続されている。制御装置30には、センサ群の検出信号が入力される。
A sensor group such as a battery cell temperature sensor 31, a
電池セル温度センサ31は、複数の電池セル111のうち、少なくとも2つ以上の電池セル111の温度を検出する温度検出部である。液面センサ32は、貯液部40内の液冷媒の液面の高さを検出する。
The battery cell temperature sensor 31 is a temperature detection unit that detects the temperature of at least two or
ジャイロセンサ33は、車両の傾斜角度(換言すれば、車両用サーモサイフォン式冷却装置10の傾斜角度)を検出するジャイロセンサ33は、車両の傾斜量を検出する傾斜量検出部である。
The gyro sensor 33 detects the tilt angle of the vehicle (in other words, the tilt angle of the thermosiphon
図3は、車両が水平状態、換言すれば車両用サーモサイフォン式冷却装置10が水平状態にあり、かつ貯液弁44が開いている状態を示している。図3では、車両用サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
FIG. 3 shows a state in which the vehicle is in a horizontal state, in other words, the thermosiphon
図3の状態において液冷媒の液面が蒸発器13および貯液部40のほぼ中間の高さに位置するように、車両用サーモサイフォン式冷却装置10への液冷媒の封入量が設定されている。
The amount of the liquid refrigerant filled in the vehicle thermosiphon
図4は、車両が水平状態、換言すれば車両用サーモサイフォン式冷却装置10が水平状態にあり、かつ貯液弁44が閉じてヒータ41が作動した状態を示している。図4では、車両用サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
FIG. 4 shows a state in which the vehicle is in a horizontal state, in other words, the thermosiphon
図4の状態では、ヒータ41が作動して貯液部40内の冷媒が加熱されて蒸発することによって、図3の状態と比較して貯液部40内の液冷媒の液面が低下し、蒸発器13内の液冷媒の液面が上昇する。
In the state of FIG. 4, the
次に、上記構成における作動を説明する。冷却水ポンプ21が作動して凝縮器14に冷却水を供給している状態において、組電池11の温度が冷媒の沸点よりも高ければ、車両用サーモサイフォン式冷却装置10の冷媒回路12では、サーモサイフォン現象(換言すれば冷媒の相変化)によって冷媒が循環する。
Next, the operation in the above configuration will be described. If the temperature of the assembled
具体的には、蒸発器13内において、液冷媒は組電池11からの熱を吸熱して蒸発してガス冷媒となる。蒸発器13内で蒸発したガス冷媒はガス配管15に流入し、ガス配管15を上昇して凝縮器14に流入する。
Specifically, in the
凝縮器14では、ガス配管15から流入したガス冷媒が冷却水回路20の冷却水に放熱して凝縮し、液冷媒となる。凝縮器14で凝縮した液冷媒は、重力により液配管16を流下して蒸発器13に流入する。
In the
このように冷媒回路12を冷媒が循環することによって、蒸発器13で組電池11を冷却できる。動力を極力利用することなく冷媒回路12に冷媒を循環させることができるので、省動力化を図ることができ、駐車放置時にも組電池11を冷却できる。
By circulating the refrigerant through the
このとき、制御装置30は、図5のフローチャートに示す制御処理を実行する。ステップS100では、組電池11の急速充電が開始される可能性が高い(換言すれば、組電池11が急速充電されると推定される)、または組電池11が急速充電中であるか否かを判定する。
At this time, the
以下の(1)〜(4)の条件の少なくとも1つが成立している場合、制御装置30は、組電池11の急速充電が開始される可能性が高いと判定する。
When at least one of the following conditions (1) to (4) is satisfied, the
(1)車両の急速充電コネクタ差込口に、急速充電器側のケーブルが差し込まれたとき、または、車両の急速充電コネクタ差込口のカバーが開けられたとき。 (1) When the cable on the quick charger side is inserted into the quick charging connector insertion port of the vehicle, or when the cover of the quick charging connector insertion port of the vehicle is opened.
(2)カーナビゲーション装置の車両位置情報に基づいて、急速充電器の充電ケーブルの届く範囲に停車されたと判断できるとき。 (2) When it can be determined that the vehicle has stopped within the reach of the charging cable of the quick charger based on the vehicle position information of the car navigation device.
(3)カーナビゲーション装置の情報により急速充電器(すなわち急速充電可能な施設)の設置場所に到着したと判断されたとき。 (3) When it is determined that the car navigation device has arrived at the installation location of the quick charger (that is, a facility that can be quickly charged).
(4)カーナビゲーション装置で目的地が急速充電器の設置場所に設定されている場合において、その目的地に到着したと判断されたとき。 (4) When the car navigation device sets the destination to the installation location of the quick charger and it is determined that the destination has arrived.
以下の(5)〜(7)の条件の少なくとも1つが成立している場合、制御装置30は、組電池11が急速充電中であると判定する。
When at least one of the following conditions (5) to (7) is satisfied, the
(5)車両の急速充電コネクタ差込口に、急速充電器側のケーブルが差し込まれているとき。 (5) When the cable on the quick charger side is inserted into the quick charging connector insertion port of the vehicle.
(6)車両から要求される充電電力あるいは充電電流が閾値以上であるとき。 (6) When the charging power or charging current required by the vehicle is equal to or greater than the threshold value.
(7)充電中の電池の発熱量が閾値よりも大きいとき。 (7) When the calorific value of the battery being charged is larger than the threshold value.
ステップS100にて組電池11の急速充電が開始される可能性が高い、または組電池11が急速充電中であると判定した場合、ステップS110へ進み、貯液部40の貯液量を所定量Vp以上に増加させる。所定量Vpは、制御装置30に予め記憶されている。
If it is highly likely that the quick charging of the assembled
ステップS110では、具体的には、貯液部40の貯液量が所定量Vp未満である場合、貯液弁44を開く。そして、貯液部40の貯液量が上限量Vmax以上になったら貯液弁44を閉じる。
Specifically, in step S110, when the amount of liquid stored in the
貯液部40の貯液量が所定量Vp未満であるか否か、貯液部40の貯液量が上限量Vmax以上であるか否かは、液面センサ32の検出信号に基づいて判定する。
Whether or not the amount of liquid stored in the
貯液弁44を開くことにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、図3に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
By opening the
冷媒回路12を循環する冷媒の量が減少することによって蒸発器13内の液冷媒の量が減少するので、急速充電によって組電池11の発熱量が著しく大きくなって液冷媒の蒸発が著しく激しくなっても、液冷媒の吹き上がりを抑制できる。
Since the amount of the liquid refrigerant in the
ステップS100にて急速充電が開始される可能性が高くなく、かつ急速充電中でないと判定した場合、急速充電が終了したと判断してステップS120へ進み、貯液部40の貯液量を所定量Vp未満に減少させる。具体的には、貯液部40の貯液量が所定量Vp以上である場合、ヒータ41を作動させる。そして、貯液部40の貯液量が下限量Vmin未満になったらヒータ41を停止させる。
If it is determined in step S100 that the rapid charging is not likely to be started and the rapid charging is not in progress, it is determined that the rapid charging is completed, the process proceeds to step S120, and the amount of liquid stored in the
貯液部40の貯液量が所定量Vp以上であるか否か、貯液部40の貯液量が下限量Vmin未満であるか否かは、液面センサ32の検出信号に基づいて判定する。
Whether or not the amount of liquid stored in the
ヒータ41を作動させることにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、図4に示すように、貯液部40内の液冷媒の液面が低下する。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
By operating the
冷媒回路12を循環する冷媒の量が増加することによって蒸発器13内の液冷媒の量が増加するので、図6に示すように車両が傾斜しても蒸発器13内に液冷媒が存在しない部位が生じないようにすることができる。図6に示す傾斜角度θは、車両の前後方向における傾斜角度である。
Since the amount of liquid refrigerant in the
本実施形態では、制御装置30および貯液弁44は、組電池11が急速充電されている場合、または組電池11が急速充電されると推定される場合、貯留部40の冷媒の貯留量を所定量Vp以上にする。
In the present embodiment, the
これによると、組電池11が急速充電されて発熱量が著しく多くなったときに蒸発器13内の液冷媒の量を少なくすることができるので、蒸発器13内の液冷媒の吹き上げを抑制できる。そのため、充電時に冷却性能を極力確保できる。
According to this, when the assembled
本実施形態では、制御装置30およびヒータ41は、組電池11の充電が終了した場合、貯留部40の冷媒の貯留量を所定量Vpよりも減少させる。
In the present embodiment, when the charging of the assembled
これにより、蒸発器13内の液冷媒の吹き上げのおそれが少ない場合に蒸発器13内の液冷媒の量が不足することを抑制できる。
As a result, it is possible to prevent the amount of the liquid refrigerant in the evaporator 13 from becoming insufficient when there is little risk of the liquid refrigerant being blown up in the
本実施形態では、制御装置30およびヒータ41は、貯液部40内の冷媒の液相から気相への相変化を伴う伝熱を行うことによって、貯液部40の冷媒の貯留量を減少させる。これにより、組電池11の充電が完了したときに貯液部40の液冷媒の貯留量を確実に減少させることができる。
In the present embodiment, the
本実施形態では、制御装置30および貯液弁44は、貯液部40の冷媒入口401の開口面積を調整することによって貯液部40の冷媒の貯留量を増加させる。これにより、組電池11が充電されて発熱量が多くなったときに貯液部40の冷媒の貯留量を確実に増加させることができる。
In the present embodiment, the
本実施形態では、複数個の蒸発器13の互いの相対位置が固定されているので、全ての蒸発器13に対して液冷媒の量を適切に調整できる。
In the present embodiment, since the relative positions of the plurality of
(第2実施形態)
上記第1実施形態では、急速充電が開始される可能性が高い、または急速充電中であると判定した場合、貯液部40の貯液量を所定量Vp以上に増加させるが、本実施形態では、普通充電が開始される可能性が高い、または普通充電中であると判定した場合であっても、図6に示す傾斜角度θの絶対値|θ|が閾値α以上である場合、貯液部40の貯液量を所定量Vp以上に増加させない。
(Second Embodiment)
In the first embodiment, when it is determined that there is a high possibility that rapid charging will be started or that rapid charging is in progress, the amount of liquid stored in the
制御装置30は、図7のフローチャートに示す制御処理を実行する。ステップS200では、組電池11の普通充電が開始される可能性が高い(換言すれば、組電池11が普通充電されると推定される)、または組電池11が普通充電中であるか否かを判定する。
The
この場合、以下の(1)〜(6)の条件の少なくとも1つが成立している場合、制御装置30は、普通充電が開始される可能性が高いと判定する。
In this case, if at least one of the following conditions (1) to (6) is satisfied, the
(1)車両の普通充電コネクタ差込口に、普通充電器側のケーブルが差し込まれたとき、または、車両の普通充電コネクタ差込口のカバーが開けられたとき。 (1) When the cable on the normal charger side is inserted into the normal charging connector insertion port of the vehicle, or when the cover of the normal charging connector insertion port of the vehicle is opened.
(2)カーナビゲーション装置の車両位置情報に基づいて、普通充電器の充電ケーブルの届く範囲に停車されたと判断できるとき。 (2) When it can be determined that the vehicle has stopped within the reach of the charging cable of the normal charger based on the vehicle position information of the car navigation device.
(3)カーナビゲーション装置の情報により普通充電器(すなわち、普通充電可能な施設)の設置場所に到着したと判断されたとき。 (3) When it is determined from the information of the car navigation device that the vehicle has arrived at the installation location of the ordinary charger (that is, a facility that can normally charge).
(4)カーナビゲーション装置で目的地が普通充電器の設置場所に設定されている場合において、その目的地に到着したと判断されたとき。 (4) When the car navigation device sets the destination to the installation location of the normal charger and it is determined that the destination has arrived.
(5)普通充電の開始時間をタイマーで設定している時に、普通充電の開始時間に近づいたとき。 (5) When the start time of normal charging is approached while the start time of normal charging is set by the timer.
(6)組電池11の蓄電残量SOCが低い状態で停車したとき。
(6) When the vehicle is stopped with the remaining battery capacity SOC of the assembled
以下の(7)の条件が成立している場合、制御装置30は、組電池11が普通充電中であると判定する。
When the following condition (7) is satisfied, the
(7)車両の普通充電コネクタ差込口に、普通充電器側のケーブルが差し込まれているとき。 (7) When the cable on the normal charger side is inserted into the normal charging connector outlet of the vehicle.
ステップS200にて組電池11の普通充電が開始される可能性が高い、または組電池11が普通充電中であると判定した場合、ステップS210へ進み、車両の傾斜角度θの絶対値|θ|が閾値α未満であるか否かを、ジャイロセンサ33が検出した車両の傾斜角度に基づいて判定する。
If it is highly likely that the assembled
ステップS210にて車両の傾斜角度θの絶対値|θ|が閾値α未満であると判定した場合、ステップS220へ進み、貯液部40の貯液量を所定量Vp以上に増加させる。具体的には、貯液部40の貯液量が所定量Vp未満である場合、貯液弁44を開く。そして、貯液部40の貯液量が上限量Vmax以上になったら貯液弁44を閉じる。
If it is determined in step S210 that the absolute value | θ | of the inclination angle θ of the vehicle is less than the threshold value α, the process proceeds to step S220, and the amount of liquid stored in the
これにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、図3に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
As a result, a part of the liquid refrigerant circulating in the
冷媒回路12を循環する冷媒の量が減少することによって蒸発器13内の液冷媒の量が減少するので、普通充電によって組電池11の発熱量が大きくなって液冷媒の蒸発が激しくなっても、液冷媒の吹き上がりを抑制できる。
Since the amount of liquid refrigerant in the
ステップS200にて組電池11の普通充電が開始される可能性が高くなく、かつ組電池11が普通充電中でないと判定した場合、普通充電が終了したと判断してステップS230へ進み、貯液部40の貯液量を所定量Vp未満に減少させる。具体的には、貯液部40の貯液量が所定量Vp以上である場合、ヒータ41を作動させる。そして、貯液部40の貯液量が下限量Vmin未満になったらヒータ41を停止させる。
If it is determined in step S200 that the normal charging of the assembled
これにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、図4に示すように、貯液部40内の液冷媒の液面が低下する。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
As a result, the liquid refrigerant in the
冷媒回路12を循環する冷媒の量が増加することによって蒸発器13内の液冷媒の量が増加するので、図6に示すように車両が傾斜しても蒸発器13内に液冷媒が存在しない部位が生じないようにすることができる。
Since the amount of liquid refrigerant in the
ステップS210にて車両の傾斜角度θの絶対値|θ|が閾値α以上であると判定した場合も、ステップS230へ進み、貯液部40の貯液量を所定量Vp未満に減少させる。
Even when it is determined in step S210 that the absolute value | θ | of the inclination angle θ of the vehicle is equal to or greater than the threshold value α, the process proceeds to step S230, and the amount of liquid stored in the
これにより、普通充電によって組電池11の発熱量が大きくなって液冷媒の蒸発が激しくなった場合であっても、車両が傾斜することによって蒸発器13内に液冷媒が存在しない部位が生じることを抑制できる。
As a result, even when the calorific value of the assembled
本実施形態では、制御装置30および貯液弁44は、組電池11が充電されている場合、または組電池11が充電されると推定され、かつ車両の傾斜角度θが所定角度よりも小さい場合、貯留部40の冷媒の貯留量を所定量Vp以上にする。
In the present embodiment, the
これにより、車両の傾斜が少なくて蒸発器13内の液冷媒に偏りが小さくなっているときに組電池11が充電されて発熱量が多くなった場合、蒸発器13内の液冷媒の量を少なくするので、組電池11が充電されて発熱量が多くなったときに蒸発器13内の液冷媒の吹き上げを抑制できるとともに、蒸発器13内に液冷媒が存在しない部位が生じることも抑制できる。
As a result, when the assembled
(第3実施形態)
上記第2実施形態では、急速充電が開始される可能性が高い、または急速充電中であり、かつ傾斜角度θの絶対値|θ|が閾値α未満であると判定した場合、貯液部40の貯液量を所定量Vp以上に増加させるが、本実施形態では、車両が停車中であり、かつ傾斜角度θの絶対値|θ|が閾値α未満であると判定した場合、貯液部40の貯液量を所定量Vp以上に増加させる。
(Third Embodiment)
In the second embodiment, when it is determined that there is a high possibility that rapid charging will be started, or that rapid charging is in progress, and the absolute value | θ | of the inclination angle θ is less than the threshold value α, the
制御装置30は、図8のフローチャートに示す制御処理を実行する。ステップS300では、車両が停車中であるか否かを判定する。車両が停車中であるか否かは、例えば、車両の速度、パーキングブレーキの操作状態、カーナビゲーションの位置情報、および電池の発電量の少なくとも1つに基づいて判定可能である。
The
ステップS300にて車両が停車中あると判定した場合、ステップS310へ進み、車両の傾斜角度θの絶対値|θ|が閾値α未満であるか否かを、ジャイロセンサ33が検出した車両の傾斜角度に基づいて判定する。 If it is determined in step S300 that the vehicle is stopped, the process proceeds to step S310, and the inclination of the vehicle detected by the gyro sensor 33 as to whether or not the absolute value | θ | of the inclination angle θ of the vehicle is less than the threshold value α. Judgment is based on the angle.
ステップS310にて車両の傾斜角度θの絶対値|θ|が閾値α未満であると判定した場合、ステップS220へ進み、貯液部40の貯液量を所定量Vp以上に増加させる。具体的には、貯液部40の貯液量が所定量Vp未満である場合、貯液弁44を開く。そして、貯液部40の貯液量が上限量Vmax以上になったら貯液弁44を閉じる。
If it is determined in step S310 that the absolute value | θ | of the inclination angle θ of the vehicle is less than the threshold value α, the process proceeds to step S220, and the amount of liquid stored in the
これにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、図3に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
As a result, a part of the liquid refrigerant circulating in the
冷媒回路12を循環する冷媒の量が減少することによって蒸発器13内の液冷媒の量が減少するので、停車中に充電が開始されて組電池11の発熱量が大きくなって液冷媒の蒸発が激しくなっても、液冷媒の吹き上がりを抑制できる。
Since the amount of the liquid refrigerant in the
ステップS300にて車両が停車中でないと判定した場合、ステップS330へ進み、貯液部40の貯液量を所定量Vp未満に減少させる。具体的には、貯液部40の貯液量が所定量Vp以上である場合、ヒータ41を作動させる。そして、貯液部40の貯液量が下限量Vmin未満になったら、ヒータ41を停止させる。
If it is determined in step S300 that the vehicle is not stopped, the process proceeds to step S330, and the amount of liquid stored in the
これにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、図4に示すように、貯液部40内の液冷媒の液面が低下する。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
As a result, the liquid refrigerant in the
冷媒回路12を循環する冷媒の量が増加することによって蒸発器13内の液冷媒の量が増加するので、車両が傾斜しても蒸発器13内に液冷媒が存在しない部位が生じないようにすることができる。
Since the amount of the liquid refrigerant in the
ステップS310にて車両の傾斜角度θの絶対値|θ|が閾値α以上であると判定した場合も、ステップS330へ進み、貯液部40の貯液量を所定量Vp未満に減少させる。
Even when it is determined in step S310 that the absolute value | θ | of the inclination angle θ of the vehicle is equal to or greater than the threshold value α, the process proceeds to step S330, and the amount of liquid stored in the
これにより、車両が傾斜することによって蒸発器13内に液冷媒が存在しない部位が生じることを抑制できる。
As a result, it is possible to suppress the occurrence of a portion in the
本実施形態では、制御装置30および貯液弁44は、車両が停車中かつ車両の傾斜角度θが所定角度αよりも小さい場合、貯留部40の冷媒の貯留量を所定量Vp以上にする。
In the present embodiment, the
これにより、組電池11が充電される可能性があり且つ車両の傾斜が小さいときに蒸発器13内の液冷媒の量を少なくすることができるので、組電池11が充電されて発熱量が多くなったときに蒸発器13内の液冷媒の吹き上げを抑制できる。
As a result, the assembled
本実施形態では、制御装置30およびヒータ41は、車両が停車を終了した場合、貯留部40の冷媒の貯留量を所定量Vpよりも減少させる。
In the present embodiment, the
これにより、組電池11に充電される可能性がないときに蒸発器13内の液冷媒の量を多くすることができるので、蒸発器13内の液冷媒の吹き上げのおそれが少ない場合に蒸発器13内の液冷媒の量が不足することを抑制できる。
As a result, the amount of the liquid refrigerant in the
(第4実施形態)
上記第1実施形態では、ガス連通配管43に逆止弁45が配置されているが、本実施形態では、図9に示すように、ガス連通配管43に開閉弁46が配置されている。
(Fourth Embodiment)
In the first embodiment, the
開閉弁46は、ガス連通配管43を開閉する電磁弁である。開閉弁46の作動は、制御装置30によって制御される。開閉弁46は貯留量調整部である。
The on-off
制御装置30が、貯液弁44を閉じた状態でヒータ41を作動させることにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。このとき、開閉弁46を開くことにより、貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、図10に示すように、貯液部40内の液冷媒の液面が低下する。図9および図10では、車両用サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
When the
制御装置30が貯液弁44を開くことにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、図9に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
When the
本実施形態においても、上記第1実施形態と同様の作用効果を奏することができる。 Also in this embodiment, the same effects as those in the first embodiment can be obtained.
ガス配管15からガス連通配管43への冷媒の逆流が発生する可能性がある場合、開閉弁46を閉じる。ガス配管15からガス連通配管43への冷媒の逆流が発生する可能性がない場合、開閉弁46を開ける。
When there is a possibility that the refrigerant flows back from the
開閉弁46を閉じている場合であっても、貯液部40の内圧が上限値よりも上昇した場合、開閉弁46を開ける。これにより、冷媒の温度上昇により貯液部40の内圧が上昇しても、貯液部40の破損を抑制できる。
Even when the on-off
開閉弁46にリリーフ弁が付いていてもよい。リリーフ弁は、貯液部40の内圧が所定圧力よりも上昇すると機械的機構により開弁する弁である。これによると、貯液部40の内圧が所定圧力よりも上昇したときに貯液部40内の液冷媒を逃がして貯留部40の内圧を低下させることができる。そのため、冷媒の温度が過度に上昇したときに貯留部40の内圧が過度に上昇して貯留部40が破損することを抑制できる。
The on-off
(第5実施形態)
上記実施形態では、貯液部40は冷媒入口401と冷媒出口402とを有しているが、本実施形態では、図11に示すように、貯液部40は冷媒出入口403を有している。
(Fifth Embodiment)
In the above embodiment, the
貯液部40は、複数個の蒸発器13のうち凝縮器14に最も近い蒸発器13の近傍に配置されている。貯液部40の冷媒出入口403は、貯液部40の上部に設けられている。貯液部40の冷媒出入口403は、連通配管51によってガス配管15に接続されている。
The
連通配管51には開閉弁52が配置されている。開閉弁52は、連通配管51を開閉する電磁弁である。開閉弁52は貯留量調整部である。開閉弁52の作動は、制御装置30によって制御される。
An on-off
制御装置30がヒータ41を作動させて開閉弁52を開けることにより、貯液部40内の液冷媒が加熱されて蒸発し、連通配管51を通じてガス配管15に流入し、冷媒回路12を循環するので、図12に示すように、貯液部40内の液冷媒の液面が低下する。図11および図12では、車両用サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
When the
貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
As the liquid level of the liquid refrigerant in the
蒸発器13における液冷媒の液面が高いときに制御装置30がヒータ41を作動させることなく開閉弁52を開けることにより、蒸発器13からガス配管15に吹き上がった液冷媒が連通配管51を通じて貯液部40に流入する。そのため、図11に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
When the liquid level of the liquid refrigerant in the
本実施形態においても、上記実施形態と同様の作用効果を奏することができる。 Also in this embodiment, the same effects as those in the above embodiment can be obtained.
連通配管51とガス配管15との接続部に気液分離器が配置されていれば貯液部40に液冷媒を効率良く貯めることができる。気液分離器で分離された液冷媒を貯液部40に流入させ、気液分離器で分離されたガス冷媒を凝縮器14に流入させることができるからである。
If a gas-liquid separator is arranged at the connection portion between the
(第6実施形態)
上記実施形態では、貯液部40は冷媒回路12から独立した機器になっているが、本実施形態では、図13〜図14に示すように、貯液部40は凝縮器14と一体化されている。
(Sixth Embodiment)
In the above embodiment, the
貯液部40は、冷媒入口401、ガス冷媒出口405および液冷媒出口406を有している。冷媒入口401およびガス冷媒出口405は貯液部40の上部に設けられている。液冷媒出口406は貯液部40の下部に設けられている。
The
冷媒入口401はガス配管15に接続されている。ガス冷媒出口405は凝縮器14のガス冷媒入口141に接続されている。凝縮器14のガス冷媒入口141は凝縮器14の上部に設けられている。液冷媒出口406は凝縮器14の液冷媒入口142に接続されている。凝縮器14の液冷媒出口143は凝縮器14の下部に設けられている。
The
貯液部40の液冷媒出口406には流出弁55が配置されている。流出弁55は、貯液部40の液冷媒出口406を開閉する電磁弁である。流出弁55は貯留量調整部である。流出弁55の作動は、制御装置30によって制御される。
An
制御装置30が流出弁55を開けることにより、貯液部40内の液冷媒が液冷媒出口406を通じて液冷媒入口142から凝縮器14に流入するので、図15に示すように、貯液部40内の液冷媒の液面が低下する。図13および図15では、車両用サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
When the
貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
As the liquid level of the liquid refrigerant in the
蒸発器13における液冷媒の液面が高くなっていると、蒸発器13からガス配管15に吹き上がった液冷媒が冷媒入口401を通じて貯液部40に流入して貯えられるので、図13に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
When the liquid level of the liquid refrigerant in the
ガス配管15から冷媒入口401を通じて貯液部40に流入したガス冷媒は、ガス冷媒出口405からガス冷媒入口141を通じて凝縮器14に流入する。
The gas refrigerant that has flowed into the
本実施形態では、貯液部40は、蒸発器13から流出した冷媒が流入する冷媒入口401と、凝縮器14側へ気相の冷媒を流出させるガス冷媒出口405と、凝縮器14側へ液相の冷媒を流出させる液冷媒出口406とを有している。流出弁55は、貯液部40の液冷媒出口406を開閉する。
In the present embodiment, the
これにより、上記実施形態と同様の作用効果を奏することができる。 As a result, the same effects as those of the above embodiment can be obtained.
(第7実施形態)
上記第1実施形態では、複数個の蒸発器13は、ガス配管15および液配管16に対して車両左方側に配置されているが、本実施形態では、図16に示すように、複数個の蒸発器13は、ガス配管15および液配管16に対して車両左右方向の両側に配置されている。図16の例では、蒸発器13が車両左右方向に3個ずつ配置されている。
(7th Embodiment)
In the first embodiment, the plurality of
本実施形態においても、上記実施形態と同様の作用効果を奏することができる。 Also in this embodiment, the same effects as those in the above embodiment can be obtained.
(第8実施形態)
上記第1実施形態では、1組のガス配管15および液配管16が車両前後方向に延びているが、本実施形態では、図17に示すように、凝縮器14に接続された1組のガス配管15および液配管16が、蒸発器13側で2組に分岐して車両前後方向に延びている。
(8th Embodiment)
In the first embodiment, a set of
蒸発器13は、各組のガス配管15および液配管16の途中に複数個ずつ配置されている。図17の例では、蒸発器13は、各組のガス配管15および液配管16の途中に2個ずつ配置されている。各組のガス配管15および液配管16において、2個の蒸発器13は、互いに直列に配置されている。
A plurality of
車両前後方向に延びるガス配管15および液配管16は2組に限定されるものではなく、3組以上の複数組であってもよい。
The
各組のガス配管15および液配管16の途中に配置される蒸発器13の個数は2個ずつに限定されるものではなく、1個でもよいし、3個以上の複数個であってもよい。
The number of
本実施形態においても、上記実施形態と同様の作用効果を奏することができる。 Also in this embodiment, the same effects as those in the above embodiment can be obtained.
(第9実施形態)
上記実施形態では、凝縮器14は蒸発器13よりも車両の上方側に配置されているが、本実施形態では、図18に示すように、凝縮器14は蒸発器13とほぼ同じ高さに配置されている。そのため、凝縮器14に高温の冷却水を流すことによって組電池11を加熱できる。
(9th Embodiment)
In the above embodiment, the
凝縮器14に高温の冷却水を流すことによって、凝縮器14で液冷媒が蒸発し、蒸発器13で組電池11がガス冷媒から吸熱することによってガス冷媒が凝縮する。
By flowing high-temperature cooling water through the
本実施形態によると、凝縮器14に低温の冷却水を流すことによって組電池11を冷却でき、凝縮器14に高温の冷却水を流すことによって組電池11を加熱できる。
According to this embodiment, the assembled
(第10実施形態)
上記実施形態では、車両用サーモサイフォン式冷却装置10によって組電池11を冷却するが、本実施形態では、車両用サーモサイフォン式冷却装置10のヒータ41を利用して組電池11を加熱する。
(10th Embodiment)
In the above embodiment, the assembled
制御装置30は、図19のフローチャートに示す制御処理を実行する。ステップS400では、組電池11の加熱が必要であるか否かを、電池セル温度センサ31が検出した電池セル111の温度等に基づいて判定する。
The
ステップS400にて組電池11の加熱が必要であると判定した場合、ステップS410へ進み、ヒータ41を作動させるとともに貯液弁44を開弁させる。
If it is determined in step S400 that the assembled
これにより、貯液部40内の液冷媒がヒータ41で加熱されて蒸発してガス冷媒となる。貯液部40内のガス冷媒は、図20の矢印に示すように、ガス連通配管43およびガス配管15を通じて蒸発器13に流入し、蒸発器13で電池セル111に放熱して凝縮して液冷媒となる。蒸発器13内の液冷媒は、液配管16および液連通配管42を通じて貯液部40に流入する。
As a result, the liquid refrigerant in the
したがって、車両用サーモサイフォン式冷却装置10のヒータ41を利用して組電池11を加熱できる。
Therefore, the assembled
(第11実施形態)
上記実施形態では、凝縮器14は、冷媒を冷却水回路20の冷却水と熱交換させる熱交換器であるが、凝縮器14は冷媒と種々の冷却用媒体とを熱交換させる熱交換器であってもよい。
(11th Embodiment)
In the above embodiment, the
図21に示す第1実施例のように、凝縮器14は、冷媒を外気と熱交換させる熱交換器であってもよい。凝縮器14には、室外送風機59によって外気が送風される。凝縮器14および室外送風機59は、車両1のエンジンルームに配置されている。
As in the first embodiment shown in FIG. 21, the
図22に示す第2実施例のように、凝縮器14は冷媒と冷却水回路20の冷却水とを熱交換させる熱交換器であり、冷却水回路20の冷却水は、冷凍サイクル60の冷媒によって冷却されるようになっていてもよい。
As in the second embodiment shown in FIG. 22, the
冷凍サイクル60は、圧縮機61と放熱器62と電池冷却用膨張弁63と冷却水冷却器64とを備える。
The refrigerating
圧縮機61は、冷凍サイクル60の冷媒を吸入して圧縮し吐出する。放熱器62は、圧縮機61から吐出された冷媒を放熱させて凝縮させる熱交換器である。電池冷却用膨張弁63は、放熱器62で凝縮された冷媒を減圧膨張させる減圧部である。冷却水冷却器64は、電池冷却用膨張弁63で減圧膨張された冷凍サイクル60の冷媒と、冷却水回路20の冷却水とを熱交換させて、冷凍サイクル60の冷媒を蒸発させるとともに冷却水回路20の冷却水を冷却する。
The
図23に示す第3実施例のように、凝縮器14は、冷媒回路12の冷媒と冷凍サイクル60の冷媒とを熱交換させる熱交換器であってもよい。凝縮器14は、電池冷却用膨張弁63で減圧膨張された冷凍サイクル60の冷媒と、蒸発器13で蒸発した冷媒回路12の冷媒とを熱交換させて、冷凍サイクル60の冷媒を蒸発させるとともに冷媒回路12の冷媒を凝縮させる。
As in the third embodiment shown in FIG. 23, the
図24に示す第4実施例のように、冷凍サイクル60は、空調用膨張弁65および空調用蒸発器66を備えていてもよい。
As in the fourth embodiment shown in FIG. 24, the
空調用膨張弁65は、放熱器62で凝縮された冷媒を減圧膨張させる減圧部である。空調用蒸発器66は、冷凍サイクル60の冷媒と車室内へ送風させる空気とを熱交換させて車室内へ送風させる空気を冷却する冷却用熱交換器である。
The air
空調用膨張弁65および空調用蒸発器66は、冷凍サイクル60の冷媒流れにおいて放熱器62と並列に配置されている。
The air
電池冷却用膨張弁63の冷媒入口には、電池冷却側開閉弁67が配置されている。電池冷却側開閉弁67は、電池冷却用膨張弁63側の冷媒流路を開閉する電磁弁である。電池冷却側開閉弁67の作動は、制御装置30によって制御される。
A battery cooling side on-off
空調用膨張弁65の冷媒入口には、空調側開閉弁68が配置されている。空調側開閉弁68は、電池冷却用膨張弁63側の冷媒流路を開閉する電磁弁である。空調側開閉弁68の作動は、制御装置30によって制御される。
An air-conditioning side on-off
本実施形態の第1〜第4実施例においても、上記実施形態と同様の作用効果を奏することができる。 In the first to fourth embodiments of the present embodiment, the same effects as those of the above embodiment can be obtained.
(他の実施形態)
上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
(Other embodiments)
The above embodiments can be combined as appropriate. The above embodiment can be variously modified as follows, for example.
(1)ガス配管15および液配管16は、車両搭載の都合上、車両の他の部品や部材を迂回するように配置されていてもよい。
(1) The
(2)上記実施形態では、組電池11は、車両の床下に配置されているが、組電池11は、車両の後方の、例えばトランクルームやリアシート下などに配置されていてもよい。組電池11は、車両の前方の、例えばエンジンルームなどに配置されていてもよい。
(2) In the above embodiment, the assembled
(3)上記実施形態では、冷媒回路12の冷媒としてフロン系冷媒が用いられているが、作動時に超臨界状態にならない特性を持つ種々の冷媒が用いられてもよい。
(3) In the above embodiment, a fluorocarbon-based refrigerant is used as the refrigerant of the
(4)上記実施形態では、車両用サーモサイフォン式冷却装置10によって冷却される機器が組電池11である例を示したが、車両用サーモサイフォン式冷却装置10によって冷却される機器は、モータ、インバータ、充電器等の種々の車載機器であってもよい。
(4) In the above embodiment, the device cooled by the vehicle thermosiphon
(5)上記第1実施形態では、冷却水回路20に冷却水が循環するが、冷却水の代わりに液体状の冷却媒体(例えば、絶縁オイル等の絶縁流体)が循環するようになっていてもよい。
(5) In the first embodiment, the cooling water circulates in the
(6)蒸発器13で電池セル111を冷却する構造は、上記実施形態に示した構造に限定されない。
(6) The structure for cooling the
各電池セル111の外形は直方体状に限定されるものではなく、例えば円筒状やラミネート状であってもよい。
The outer shape of each
(7)上記実施形態では、凝縮器14と蒸発器13とが車両前後方向に並んでいるが、これに限定されるものではなく、例えば、凝縮器14と蒸発器13とが車両左右方向に並んでいてもよい。
(7) In the above embodiment, the
(8)上記実施形態では、傾斜角度θの正負は、車両前方が上方を向く側が正であり、車両前方が下方を向く側が負であるが、傾斜角度θの正負は、これと逆であってもよい。すなわち、傾斜角度θの正負は、車両前方が下方を向く側が正で、車両前方が上方を向く側が負であってもよい。 (8) In the above embodiment, the positive / negative of the inclination angle θ is positive on the side where the front of the vehicle faces upward, and negative on the side where the front of the vehicle faces downward, but the positive / negative of the inclination angle θ is opposite to this. You may. That is, the positive / negative of the inclination angle θ may be positive on the side where the front of the vehicle faces downward and negative on the side where the front of the vehicle faces upward.
(9)上記実施形態では、車両前後方向の傾きに応じて貯液部40の冷媒の貯留量を調整するが、これに限定されるものではなく、例えば、車両左右方向の傾きに応じて貯液部40の冷媒の貯留量を調整してもよい。
(9) In the above embodiment, the amount of refrigerant stored in the
(10)上記第1実施形態では、急速充電が開始される可能性が高い、または急速充電中である場合に貯液部40の貯液量を所定量Vp以上に増加させるが、普通充電が開始される可能性が高い、または普通充電中である場合に貯液部40の貯液量を所定量Vp以上に増加させてもよい。
(10) In the first embodiment, when there is a high possibility that quick charging is started or when quick charging is in progress, the amount of liquid stored in the
(11)上記第1実施形態では、ステップS110において、貯液部40の貯液量を液面センサ32の検出信号に基づいて判定するが、他の種々の方法によって貯液部40の貯液量を判定してもよい。
(11) In the first embodiment, in step S110, the amount of liquid stored in the
例えば、冷媒回路12内に封入した冷媒量に基づいて、貯液弁44を開いた状態での液面の位置を推定し、推定した液面の位置に基づいて貯液量を推定してもよい。その際、ジャイロセンサ33の検出した角度を用いてもよい。ジャイロセンサ33の検出した角度を用いることにより、更に精度よく貯液量を推定することができる。
For example, the position of the liquid level in the state where the
(12)上記第1実施形態では、ステップS120において、貯液部40の貯液量を液面センサ32の検出信号に基づいて判定するが、他の種々の方法によって貯液部40の貯液量を判定してもよい。例えば、ヒータ41の作動電力および作動時間に基づいて貯液量を推定してもよい。
(12) In the first embodiment, in step S120, the amount of liquid stored in the
(13)上記第1実施形態等では、制御装置30および貯液弁44は、充電が開始される可能性が高い、または充電中である場合に貯液部40の貯液量を所定量Vp以上に増加させるが、制御装置30および貯液弁44は、組電池11の発熱量に応じて貯液部40の貯液量を調整してもよい。
(13) In the first embodiment or the like, the
具体的には、制御装置30および貯液弁44は、組電池11の発熱量が多いほど、貯液部40の貯液量を増加させてもよい。
Specifically, the
これによると、充電によって組電池11の発熱量が多くなる場合のみならず、組電池11の放電量が多くなって発熱量が増加する場合においても蒸発器13内の液冷媒の吹き上げを抑制できるので、充電時に冷却性能を極力確保できる。
According to this, it is possible to suppress the blow-up of the liquid refrigerant in the
例えば、停車中であっても、空調装置等の電気機器が組電池11の電力を消費して組電池11の発熱量が多くなる場合においても、蒸発器13内の液冷媒の吹き上げを抑制できるので、冷却性能を極力確保できる。
For example, even when the vehicle is stopped, even when an electric device such as an air conditioner consumes the electric power of the assembled
(14)上記第2実施形態では、制御装置30および貯液弁44は、組電池11が充電されている場合、または組電池11が充電されると推定され、かつ車両の傾斜角度θが所定角度よりも小さい場合、貯留部40の冷媒の貯留量を所定量Vp以上にする。
(14) In the second embodiment, the
これに対して、制御装置30および貯液弁44は、組電池11の発熱量が所定量よりも多く、かつ車両の傾斜角度θが所定角度よりも小さい場合、貯液部40の貯留量を所定量以上にしてもよい。
On the other hand, when the calorific value of the assembled
これによると、車両の傾斜が少なくて蒸発器13内の液冷媒に偏りが小さくなっているときに、充電によって組電池11の発熱量が多くなる場合のみならず、組電池11の放電量が多くなって発熱量が増加する場合においても蒸発器13内の液冷媒の吹き上げを抑制できるとともに、蒸発器13内に液冷媒が存在しない部位が生じることも抑制できる。そのため、冷却性能を極力確保できる。
According to this, when the inclination of the vehicle is small and the bias of the liquid refrigerant in the
11 二次電池
13 蒸発器(蒸発部)
14 凝縮器
30 制御装置(貯留量調整部)
33 ジャイロセンサ(傾斜量検出部)
40 貯留部
41 ヒータ(貯留量調整部)
44 貯液弁(貯留量調整部)
401 冷媒入口(冷媒流通口)
402 冷媒出口(冷媒流通口)
11
14
33 Gyro sensor (tilt amount detector)
40
44 Liquid storage valve (storage amount adjustment unit)
401 Refrigerant inlet (refrigerant flow port)
402 Refrigerant outlet (refrigerant distribution port)
Claims (14)
前記蒸発部で蒸発した前記冷媒を凝縮させる凝縮器(14)と、
前記蒸発部と前記凝縮器との間を循環する前記冷媒を液相状態で貯留する貯留部(40)と、
前記二次電池が充電されている場合、または前記二次電池が充電されると推定される場合、前記貯留部の前記冷媒の貯留量を所定量(Vp)以上にする貯留量調整部(30、41、44、46、52、55)とを備える車両用サーモサイフォン式冷却装置。 An evaporation unit (13) that absorbs heat from the secondary battery (11) and evaporates the refrigerant, and
A condenser (14) that condenses the refrigerant evaporated in the evaporation section, and
A storage unit (40) that stores the refrigerant circulating between the evaporation unit and the condenser in a liquid phase state, and
When the secondary battery is charged, or when it is estimated that the secondary battery is charged, the storage amount adjusting unit (30) that sets the storage amount of the refrigerant in the storage unit to a predetermined amount (Vp) or more. , 41, 44, 46, 52, 55) and a thermosiphon type cooling device for vehicles.
さらに、前記液冷媒出口を開閉する流出弁(55)を備える請求項1ないし6のいずれか1つに記載の車両用サーモサイフォン式冷却装置。 The storage unit includes a refrigerant inlet (401) into which the refrigerant flowing out of the evaporation unit flows in, a gas refrigerant outlet (405) in which the gas phase refrigerant flows out to the condenser side, and a liquid to the condenser side. It has a liquid refrigerant outlet (406) that allows the phase of the refrigerant to flow out.
The vehicle thermosiphon type cooling device according to any one of claims 1 to 6, further comprising an outflow valve (55) that opens and closes the liquid refrigerant outlet.
前記複数の蒸発器は、互いの相対位置が固定されている請求項1ないし8のいずれか1つに記載の車両用サーモサイフォン式冷却装置。 The evaporating unit has a plurality of evaporators that absorb heat from the secondary battery to evaporate the refrigerant.
The vehicle thermosiphon type cooling device according to any one of claims 1 to 8, wherein the plurality of evaporators are fixed in relative positions to each other.
前記蒸発部で蒸発した前記冷媒を凝縮させる凝縮器(14)と、
前記蒸発部と前記凝縮器との間を循環する前記冷媒を液相状態で貯留する貯留部(40)と、
前記二次電池の発熱量に応じて前記貯留部の前記冷媒の貯留量を調整する貯留量調整部(30、41、44、46、52、55)とを備える車両用サーモサイフォン式冷却装置。 An evaporation unit (13) that absorbs heat from the secondary battery (11) and evaporates the refrigerant, and
A condenser (14) that condenses the refrigerant evaporated in the evaporation section, and
A storage unit (40) that stores the refrigerant circulating between the evaporation unit and the condenser in a liquid phase state, and
A thermosiphon type cooling device for vehicles including a storage amount adjusting unit (30, 41, 44, 46, 52, 55) that adjusts the storage amount of the refrigerant in the storage unit according to the heat generation amount of the secondary battery.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080063A JP2020176784A (en) | 2019-04-19 | 2019-04-19 | Thermosiphon type cooler for vehicle |
PCT/JP2020/016164 WO2020213535A1 (en) | 2019-04-19 | 2020-04-10 | Thermosiphon-type cooling device for vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080063A JP2020176784A (en) | 2019-04-19 | 2019-04-19 | Thermosiphon type cooler for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020176784A true JP2020176784A (en) | 2020-10-29 |
Family
ID=72837870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019080063A Pending JP2020176784A (en) | 2019-04-19 | 2019-04-19 | Thermosiphon type cooler for vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020176784A (en) |
WO (1) | WO2020213535A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024503565A (en) * | 2021-12-21 | 2024-01-26 | エルジー エナジー ソリューション リミテッド | A battery pack including a heat transfer member formed with an inlet and an outlet for cooling fluid. |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114533259B (en) * | 2022-02-21 | 2023-08-29 | 深圳市华创通实业有限公司 | Heat dissipation control system based on dehairing instrument |
CN115360460B (en) * | 2022-10-20 | 2023-02-03 | 常州博瑞电力自动化设备有限公司 | Immersed cooling energy storage system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5942943B2 (en) * | 1976-10-12 | 1984-10-18 | 株式会社東芝 | cathode ray tube |
JP6733630B2 (en) * | 2017-09-13 | 2020-08-05 | 株式会社デンソー | Thermo siphon |
-
2019
- 2019-04-19 JP JP2019080063A patent/JP2020176784A/en active Pending
-
2020
- 2020-04-10 WO PCT/JP2020/016164 patent/WO2020213535A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024503565A (en) * | 2021-12-21 | 2024-01-26 | エルジー エナジー ソリューション リミテッド | A battery pack including a heat transfer member formed with an inlet and an outlet for cooling fluid. |
JP7601342B2 (en) | 2021-12-21 | 2024-12-17 | エルジー エナジー ソリューション リミテッド | Battery pack including a heat transfer member having a cooling fluid inlet and outlet formed therein |
Also Published As
Publication number | Publication date |
---|---|
WO2020213535A1 (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190363411A1 (en) | Device temperature regulator | |
JP6879122B2 (en) | Battery temperature controller | |
US9643469B2 (en) | Vehicle thermal management system | |
US11029098B2 (en) | Device temperature regulator | |
JP6604442B2 (en) | Equipment temperature controller | |
US7462414B2 (en) | Fuel cell system | |
WO2018168276A1 (en) | Device temperature adjusting apparatus | |
JP6610800B2 (en) | Equipment temperature controller | |
CN105452025A (en) | Temperature controller for battery | |
WO2020213535A1 (en) | Thermosiphon-type cooling device for vehicles | |
JP6729527B2 (en) | Equipment temperature controller | |
WO2018047533A1 (en) | Device temperature adjusting apparatus | |
WO2020129491A1 (en) | Battery heating device | |
JP2021027045A (en) | Temperature adjustment apparatus | |
WO2020203152A1 (en) | Thermosiphon-type cooling device for vehicle | |
WO2019150751A1 (en) | Temperature regulating device | |
JP2020184427A (en) | Battery cooling device | |
WO2018186179A1 (en) | Device for cooling vehicle-mounted instrument | |
JP7159771B2 (en) | Equipment temperature controller | |
JP6919505B2 (en) | Thermosiphon type temperature controller | |
US12341171B2 (en) | Battery cooling device | |
WO2019123881A1 (en) | Device temperature adjusting apparatus | |
JP6733630B2 (en) | Thermo siphon | |
JP2020200964A (en) | Ebullient cooling apparatus | |
JP2020067226A (en) | Temperature control device |