JP2020176239A - Epoxy resin composition, prepreg, method for producing prepreg, and method for producing fiber-reinforced composite material - Google Patents
Epoxy resin composition, prepreg, method for producing prepreg, and method for producing fiber-reinforced composite material Download PDFInfo
- Publication number
- JP2020176239A JP2020176239A JP2019080986A JP2019080986A JP2020176239A JP 2020176239 A JP2020176239 A JP 2020176239A JP 2019080986 A JP2019080986 A JP 2019080986A JP 2019080986 A JP2019080986 A JP 2019080986A JP 2020176239 A JP2020176239 A JP 2020176239A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- prepreg
- resin composition
- composite material
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 122
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 122
- 239000000203 mixture Substances 0.000 title claims abstract description 80
- 239000000463 material Substances 0.000 title claims description 58
- 239000003733 fiber-reinforced composite Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229920005989 resin Polymers 0.000 claims abstract description 84
- 239000011347 resin Substances 0.000 claims abstract description 84
- 229920001230 polyarylate Polymers 0.000 claims abstract description 45
- 238000010539 anionic addition polymerization reaction Methods 0.000 claims abstract description 26
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 150000003512 tertiary amines Chemical class 0.000 claims abstract description 6
- 239000012783 reinforcing fiber Substances 0.000 claims description 35
- 239000002685 polymerization catalyst Substances 0.000 claims description 21
- 125000002883 imidazolyl group Chemical group 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 58
- 238000003860 storage Methods 0.000 abstract description 28
- 238000000034 method Methods 0.000 description 36
- 239000011342 resin composition Substances 0.000 description 21
- 239000002131 composite material Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000835 fiber Substances 0.000 description 14
- 229920000049 Carbon (fiber) Polymers 0.000 description 13
- 239000004917 carbon fiber Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000013001 point bending Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000006082 mold release agent Substances 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000012943 hotmelt Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000012778 molding material Substances 0.000 description 4
- 239000013034 phenoxy resin Substances 0.000 description 4
- 229920006287 phenoxy resin Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- -1 phosphazene compound Chemical class 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052604 silicate mineral Inorganic materials 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000579895 Chlorostilbon Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 229910052876 emerald Inorganic materials 0.000 description 2
- 239000010976 emerald Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical group NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 2
- 239000013500 performance material Substances 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- POFFJVRXOKDESI-UHFFFAOYSA-N 1,3,5,7-tetraoxa-4-silaspiro[3.3]heptane-2,6-dione Chemical compound O1C(=O)O[Si]21OC(=O)O2 POFFJVRXOKDESI-UHFFFAOYSA-N 0.000 description 1
- PULOARGYCVHSDH-UHFFFAOYSA-N 2-amino-3,4,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1OC1CC1=C(CC2OC2)C(N)=C(O)C=C1CC1CO1 PULOARGYCVHSDH-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- VAGOJLCWTUPBKD-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxy)-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1COC(C=1)=CC=CC=1N(CC1OC1)CC1CO1 VAGOJLCWTUPBKD-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- AHIPJALLQVEEQF-UHFFFAOYSA-N 4-(oxiran-2-ylmethoxy)-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1COC(C=C1)=CC=C1N(CC1OC1)CC1CO1 AHIPJALLQVEEQF-UHFFFAOYSA-N 0.000 description 1
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 description 1
- JYLOJNIZTAUNGA-UHFFFAOYSA-N 4-amino-3-methyl-2,5,6-tris(oxiran-2-ylmethyl)phenol Chemical compound C1OC1CC=1C(O)=C(CC2OC2)C(C)=C(N)C=1CC1CO1 JYLOJNIZTAUNGA-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 description 1
- GWFGDXZQZYMSMJ-UHFFFAOYSA-N Octadecansaeure-heptadecylester Natural products CCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC GWFGDXZQZYMSMJ-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- NKBWPOSQERPBFI-UHFFFAOYSA-N octadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC NKBWPOSQERPBFI-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010125 resin casting Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、エポキシ樹脂組成物、プリプレグ、プリプレグの製造方法、及び繊維強化複合材料の製造方法に関する。更に詳述すれば、室温保管性に優れ、優れた離型性を有するエポキシ樹脂組成物、かかるエポキシ樹脂組成物を用いたプリプレグおよび繊維強化複合材料に関する。 The present invention relates to an epoxy resin composition, a prepreg, a method for producing a prepreg, and a method for producing a fiber-reinforced composite material. More specifically, the present invention relates to an epoxy resin composition having excellent room temperature storage property and excellent mold releasability, and a prepreg and a fiber-reinforced composite material using such an epoxy resin composition.
強化繊維と樹脂とからなる繊維強化複合材料(単に複合材料、またはFRPともいう)は、軽量、高強度、高弾性率等の特長を有し、航空機、スポーツ・レジャー、一般産業に広く応用されている。この繊維強化複合材料は、強化繊維と、マトリクス樹脂と呼ばれる樹脂又はその前駆体となる樹脂組成物と、が予め一体化されているプリプレグを経由して製造されることが多い。プリプレグを構成する樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が使用されている。特に、そのタック性、ドレープ性による成形自由度の高さから、熱硬化性樹脂、中でもエポキシ樹脂を用いたプリプレグが広く使用されている。 Fiber-reinforced composite materials (simply called composite materials or FRPs) consisting of reinforcing fibers and resins have features such as light weight, high strength, and high elastic modulus, and are widely applied to aircraft, sports / leisure, and general industry. ing. This fiber-reinforced composite material is often produced via a prepreg in which reinforcing fibers and a resin called a matrix resin or a resin composition serving as a precursor thereof are preliminarily integrated. As the resin constituting the prepreg, a thermosetting resin or a thermoplastic resin is used. In particular, thermosetting resins, especially prepregs using epoxy resins, are widely used because of their high degree of freedom in molding due to their tackiness and drapeability.
熱硬化性樹脂を含浸してなるプリプレグは通常、硬化反応を抑制するために冷蔵保管、もしくは、冷凍保管する必要がある。そのため、冷蔵・冷凍機能を有する保管設備が必要とされる。また、通常、複合材料の成形にプリプレグを供する際には、成形性の観点から、プリプレグの温度を室温に戻す必要があるが、室温での可使時間について、煩雑な管理が必要とされている。 The prepreg impregnated with the thermosetting resin usually needs to be stored refrigerated or frozen in order to suppress the curing reaction. Therefore, a storage facility having a refrigerating / freezing function is required. In addition, when a prepreg is usually used for molding a composite material, it is necessary to return the temperature of the prepreg to room temperature from the viewpoint of moldability, but complicated control is required for the pot life at room temperature. There is.
また、一般的に、エポキシ樹脂を用いたプリプレグから機械的特性の優れた複合材料を得るためには、高温・高圧で環境制御可能なオートクレーブ成形や真空バック成形を用いて、1時間以上の加熱硬化が必要である。しかし、成形装置の昇温降温の時間を含めると一回の成形に3時間〜6時間程度の成形時間が必要であった。 In general, in order to obtain a composite material having excellent mechanical properties from a prepreg using an epoxy resin, it is heated for 1 hour or more by using autoclave molding or vacuum back molding that can control the environment at high temperature and high pressure. It needs to be cured. However, including the time for raising and lowering the temperature of the molding apparatus, a molding time of about 3 to 6 hours was required for one molding.
近年、成形時間を短縮し成形コスト低減を図るべく、これらの成形サイクルを向上させる(サイクル性を高める)ため、プレス成形を用いてプリプレグを成形する方法が検討されている。プレス成形に用いるプリプレグとして、例えば、特許文献1、2には、潜在硬化剤と硬化促進剤を組み合わせ、比較的硬化時間の短いエポキシ樹脂組成物をマトリクス樹脂とするプリプレグが提案されている。しかしながら、特許文献1、2に記載された方法では、エポキシ樹脂組成物に、潜在硬化剤と共に、硬化促進剤が含まれるため、室温でも徐々に効果反応が進んでしまうため、室温での可使時間が短くなり、室温保管性の面では不十分である。また、これらに開示されるプリプレグを成形加工した後の、金型からの離型性も満足できるものではなく、そのため、十分な離型性を確保するために成形時金型に離型剤を塗布しなければならず、離型剤を塗布する手間や時間が成形サイクルを長くするという問題点があった。 In recent years, in order to shorten the molding time and reduce the molding cost, in order to improve these molding cycles (improve the cycleability), a method of molding a prepreg by using press molding has been studied. As a prepreg used for press molding, for example, Patent Documents 1 and 2 propose a prepreg in which a latent curing agent and a curing accelerator are combined and an epoxy resin composition having a relatively short curing time is used as a matrix resin. However, in the methods described in Patent Documents 1 and 2, since the epoxy resin composition contains a curing accelerator together with a latent curing agent, the effect reaction gradually proceeds even at room temperature, so that the epoxy resin composition can be used at room temperature. The time is shortened, and the room temperature storage property is insufficient. In addition, the mold release property from the mold after molding the prepreg disclosed in these is not satisfactory, and therefore, a mold release agent is applied to the mold during molding in order to ensure sufficient mold release property. It has to be applied, and there is a problem that the labor and time for applying the release agent prolongs the molding cycle.
そのため、室温での保管性に優れ、且つ、高いサイクル性、離型性を有する、プレス成形に適したプリプレグが求められている。 Therefore, there is a demand for a prepreg suitable for press molding, which is excellent in storage at room temperature and has high cycleability and releasability.
本発明の目的は、上記従来技術の問題点を解決し、優れた室温保管性と、高いサイクル性、離型性を有し、特にプレス成形に適したエポキシ樹脂組成物および、プリプレグを提供することである。 An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an epoxy resin composition having excellent room temperature storage property, high cycle property and releasability, and particularly suitable for press molding, and a prepreg. That is.
上記目的を達成する本発明は、少なくとも[A]エポキシ樹脂と[B]ポリアリレート樹脂と[C]アニオン重合系触媒を含んで成るエポキシ樹脂組成物である。本発明において、[A]エポキシ樹脂100質量部に対して、[B]ポリアリレート樹脂50〜170質量部、[C]アニオン重合系触媒0.01〜20質量部を含有することが好ましい。 The present invention that achieves the above object is an epoxy resin composition containing at least [A] epoxy resin, [B] polyarylate resin, and [C] anionic polymerization catalyst. In the present invention, it is preferable to contain 50 to 170 parts by mass of [B] polyarylate resin and 0.01 to 20 parts by mass of [C] anionic polymerization catalyst with respect to 100 parts by mass of [A] epoxy resin.
本発明で用いるポリアリレート樹脂は、重量平均分子量Mw1000〜10000であることが好ましく、アニオン重合系触媒は、3級アミンを有するイミダゾール類系触媒であることが好ましい。 The polyarylate resin used in the present invention preferably has a weight average molecular weight of Mw1000 to 10000, and the anionic polymerization catalyst is preferably an imidazole catalyst having a tertiary amine.
本発明は、かかるエポキシ樹脂組成物を強化繊維基材へ含浸させたプリプレグ、かかるプリプレグの製造方法、および、かかるプリプレグを硬化させた繊維強化複合材料を包含する。 The present invention includes a prepreg in which the reinforcing fiber base material is impregnated with the epoxy resin composition, a method for producing the prepreg, and a fiber-reinforced composite material obtained by curing the prepreg.
本発明のエポキシ樹脂組成物は、室温保管性に優れ、プレス成形において高いサイクル性と、優れた離型性を有するプリプレグを得ることができる。 The epoxy resin composition of the present invention is excellent in room temperature storage property, and can obtain a prepreg having high cycle property and excellent mold releasability in press molding.
本発明のプリプレグは、室温保管性に優れ、かつ、サイクル性と離型性にも優れるため、生産性良く繊維強化複合材料を得ることができる。 Since the prepreg of the present invention is excellent in room temperature storage property, cycle property and mold release property, a fiber-reinforced composite material can be obtained with good productivity.
以下、本発明のエポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法の詳細について説明する。 Hereinafter, the details of the epoxy resin composition, the prepreg, the fiber-reinforced composite material of the present invention, and the method for producing them will be described.
(1) エポキシ樹脂組成物
本発明のエポキシ樹脂組成物は、少なくとも[A]エポキシ樹脂と[B]ポリアリレート樹脂と[C]アニオン重合系触媒を含んで成るエポキシ樹脂組成物である。本発明の発明者は、鋭意検討の結果、エポキシ樹脂組成物中に、[B]ポリアリレート樹脂と[C]アニオン重合系触媒がともに含まれると、エポキシ樹脂とポリアリレート樹脂との間にエステル挿間反応が起こることを見出した。この反応により、本発明のエポキシ樹脂組成物を特定に温度に加熱すると、樹脂組成物の硬化体が形成される。一方で、特定温度に満たない温度ではエステル挿間反応は抑制され、硬化体されない。そのため、特定温度に満たない温度では、保管安定性に優れた樹脂組成物となる。
(1) Epoxy Resin Composition The epoxy resin composition of the present invention is an epoxy resin composition containing at least [A] epoxy resin, [B] polyarylate resin, and [C] anionic polymerization system catalyst. As a result of diligent studies, the inventor of the present invention found that when the epoxy resin composition contained both the [B] polyarylate resin and the [C] anionic polymerization catalyst, an ester was formed between the epoxy resin and the polyarylate resin. We have found that an intercalation reaction occurs. By this reaction, when the epoxy resin composition of the present invention is heated to a specific temperature, a cured product of the resin composition is formed. On the other hand, at a temperature less than a specific temperature, the ester interposition reaction is suppressed and the cured product is not formed. Therefore, at a temperature less than a specific temperature, the resin composition has excellent storage stability.
本発明の樹脂組成物は、エポキシ樹脂100質量部に対して、ポリアリレート樹脂50〜170質量部、アニオン重合系触媒0.01〜2質量部を含有するエポキシ樹脂組成物であることが好ましい。また、エポキシ樹脂100質量部に対して、ポリアリレート樹脂80〜120質量部であることがより好ましい。本発明のエポキシ樹脂組成物は、これらの他に、熱可塑性樹脂やその他の添加剤を含んでいても良い。本発明においては、エポキシ樹脂組成物に含まれる、ポリアリレート樹脂およびアニオン重合系触媒以外のエポキシ樹脂硬化剤または硬化促進剤の量が、室温保存安定性の観点から、エポキシ樹脂100質量部に対して、5質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.1質量部以下であることがさらに好ましい。 The resin composition of the present invention is preferably an epoxy resin composition containing 50 to 170 parts by mass of a polyarylate resin and 0.01 to 2 parts by mass of an anionic polymerization catalyst with respect to 100 parts by mass of the epoxy resin. Further, it is more preferable that the polyarylate resin is 80 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin. In addition to these, the epoxy resin composition of the present invention may contain a thermoplastic resin and other additives. In the present invention, the amount of the epoxy resin curing agent or curing accelerator other than the polyarylate resin and the anion polymerization catalyst contained in the epoxy resin composition is based on 100 parts by mass of the epoxy resin from the viewpoint of room temperature storage stability. It is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.1 part by mass or less.
本発明のエポキシ樹脂組成物は、100℃における粘度が、1〜1000Pa・sであることが好ましく、10〜500Pa・sであることがより好ましい。粘度がこの範囲であると、成形加工時の樹脂流出が抑制され、且つ、繊維層に樹脂が十分含侵するため、ボイドの形成が抑制され、機械特性に優れた複合材料を得ることができる。粘度が低すぎる場合、成形加工時にプリプレグから樹脂が流出し易くなる傾向がある。粘度が高すぎる場合、プリプレグに未含浸部分が生じ易くなる場合がある。その結果、得られる繊維強化複合材料においてボイド等が形成され易くなる傾向がある。 The epoxy resin composition of the present invention preferably has a viscosity at 100 ° C. of 1 to 1000 Pa · s, more preferably 10 to 500 Pa · s. When the viscosity is in this range, the outflow of the resin during the molding process is suppressed, and the fiber layer is sufficiently impregnated with the resin, so that the formation of voids is suppressed, and a composite material having excellent mechanical properties can be obtained. .. If the viscosity is too low, the resin tends to flow out of the prepreg during molding. If the viscosity is too high, unimpregnated portions may easily form in the prepreg. As a result, voids and the like tend to be easily formed in the obtained fiber-reinforced composite material.
(1−1) [A]エポキシ樹脂
本発明のエポキシ樹脂組成物には、特に制限なく、公知のエポキシ樹脂を用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、または、トリグリシジルアミノフェノール樹脂等が挙げられる。
(1-1) [A] Epoxy Resin A known epoxy resin can be used in the epoxy resin composition of the present invention without particular limitation. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, triglycidyl aminophenol resin and the like.
具体的には、以下に例示されるものを用いることができる。これらの中でも芳香族基を含有するエポキシ樹脂が好ましく、グリシジルアミン構造、グリシジルエーテル構造のいずれかを含有するエポキシ樹脂が好ましい。また、脂環族エポキシ樹脂も好適に用いることができる。 Specifically, those exemplified below can be used. Among these, an epoxy resin containing an aromatic group is preferable, and an epoxy resin containing either a glycidylamine structure or a glycidyl ether structure is preferable. Further, an alicyclic epoxy resin can also be preferably used.
グリシジルアミン構造を含有するエポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール、N,N,O−トリグリシジル−3−メチル−4−アミノフェノール、トリグリシジルアミノクレゾールの各種異性体などが例示される。 Examples of the epoxy resin containing a glycidylamine structure include tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol, N, N, O-. Examples thereof include triglycidyl-3-methyl-4-aminophenol and various isomers of triglycidylaminocresol.
グリシジルエーテル構造を含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が例示される。 Examples of the epoxy resin containing the glycidyl ether structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
また、これらのエポキシ樹脂は、必要に応じて、芳香族環構造などに、非反応性置換基を有していても良い。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基やフェニルなどの芳香族基やアルコキシル基、アラルキル基、塩素や臭素などの如くハロゲン基などが例示される。 Further, these epoxy resins may have a non-reactive substituent in the aromatic ring structure or the like, if necessary. Examples of the non-reactive substituent include an alkyl group such as methyl, ethyl and isopropyl, an aromatic group such as phenyl, an alkoxyl group, an aralkyl group, and a halogen group such as chlorine and bromine.
(1−2) [B]ポリアリレート樹脂
本発明のエポキシ樹脂組成物は、ポリアリレート樹脂を含んでなる。ポリアリレート樹脂としては、特に制限なく、公知のポリアリレート樹脂を用いることができる。ポリアリレート樹脂とは、2価フェノールとフタル酸・カルボン酸などの2塩基酸との重縮合を基本骨格として製造される非晶性の熱可塑性樹脂である。ポリアリレート樹脂としては、末端OH基を有するポリアリレート樹脂、末端を封鎖したポリアリレート樹脂などを好ましく用いることができる。このようなポリアリレート樹脂としては、具体的には、「ユニファイナー(登録商標)」(ユニチカ株式会社製)などが挙げられる。
(1-2) [B] Polyarylate Resin The epoxy resin composition of the present invention comprises a polyarylate resin. As the polyarylate resin, a known polyarylate resin can be used without particular limitation. The polyarylate resin is an amorphous thermoplastic resin produced by polycondensing a dihydric phenol with a dibasic acid such as phthalic acid or carboxylic acid as a basic skeleton. As the polyarylate resin, a polyarylate resin having a terminal OH group, a polyarylate resin having a closed end, or the like can be preferably used. Specific examples of such a polyarylate resin include "Unifiner (registered trademark)" (manufactured by Unitika Ltd.).
エポキシ樹脂組成物に配合されるポリアリレート樹脂は、重量平均分子量が300〜10000であることが好ましく、1000〜30000であることがより好ましい。重量平均分子量が小さすぎると、エステル挿間反応による反応起点が少なくなり、硬化が不十分になる。また、重量平均分子量が大きすぎる場合、樹脂組成物の粘度が高くなり過ぎて、強化繊維層内に樹脂組成物が含浸しにくくなる等の加工上の問題点が発生しやすくなる。また、エポキシ樹脂組成物に配合されるポリアリレート樹脂の分子量分布は均一であることが好ましい。特に、重量平均分子量(Mw)と数平均分子量(Mn)の比である多分散度(Mw/Mn)が1〜10の範囲であることが好ましく、1.1〜5の範囲であることがより好ましい。 The polyarylate resin blended in the epoxy resin composition preferably has a weight average molecular weight of 300 to 10,000, more preferably 1000 to 30,000. If the weight average molecular weight is too small, the number of reaction starting points due to the ester insertion reaction is reduced, resulting in insufficient curing. On the other hand, if the weight average molecular weight is too large, the viscosity of the resin composition becomes too high, and processing problems such as difficulty in impregnating the reinforcing fiber layer with the resin composition are likely to occur. Further, it is preferable that the molecular weight distribution of the polyarylate resin blended in the epoxy resin composition is uniform. In particular, the polydispersity (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably in the range of 1 to 10, and preferably in the range of 1.1 to 5. More preferred.
エポキシ樹脂組成物に配合されるポリアリレート樹脂は、エポキシ樹脂へ溶解して用いることも可能であり、紛体のまま分散させて用いても良い。エポキシ樹脂組成物に配合されるポリアリレート樹脂を溶解させて使用する場合、ポリアリレート樹脂が溶解することでエポキシ樹脂組成物の粘度も調整することができる。 The polyarylate resin blended in the epoxy resin composition can be used by dissolving it in the epoxy resin, or it may be used by dispersing it as a powder. When the polyarylate resin blended in the epoxy resin composition is dissolved and used, the viscosity of the epoxy resin composition can also be adjusted by dissolving the polyarylate resin.
一方、エポキシ樹脂組成物に配合されるポリアリレート樹脂を分散させて用いる場合、エポキシ樹脂の硬化過程で加熱されることによりポリアリレート樹脂がエポキシ樹脂に溶解し、エポキシ樹脂組成物の粘度を増加させることができる。これにより、硬化過程における粘度低下に起因するエポキシ樹脂組成物のフロー(プリプレグ内から樹脂組成物が流出する現象)を防止することができる。 On the other hand, when the polyarylate resin blended in the epoxy resin composition is dispersed and used, the polyarylate resin is dissolved in the epoxy resin by being heated in the curing process of the epoxy resin, and the viscosity of the epoxy resin composition is increased. be able to. This makes it possible to prevent the flow of the epoxy resin composition (a phenomenon in which the resin composition flows out from the prepreg) due to the decrease in viscosity in the curing process.
(1−3) [C]アニオン重合系触媒
本発明のエポキシ樹脂組成物は、アニオン重合系触媒を含んでなる。本発明で用いるアニオン重合系触媒としては、特に制限なく、公知のアニオン重合系触媒を用いることができる。中でも、アニオン重合系触媒としては、イミダゾール類系触媒、3級アミンを有する触媒が、反応性を温度により制御しやすく、プリプレグの室温保存安定性の観点から、好ましく用いられる。
(1-3) [C] Anionic Polymerization Catalyst The epoxy resin composition of the present invention comprises an anionic polymerization catalyst. The anionic polymerization catalyst used in the present invention is not particularly limited, and a known anionic polymerization catalyst can be used. Among them, as the anionic polymerization catalyst, an imidazole catalyst and a catalyst having a tertiary amine are preferably used from the viewpoint of stability of prepreg storage at room temperature because the reactivity can be easily controlled by temperature.
(1−4) その他の添加剤
本発明のエポキシ樹脂組成物には、必要に応じて、難燃剤や、無機系充填剤、内部離型剤、導電性粒子などが配合されていてもよい。
(1-4) Other Additives The epoxy resin composition of the present invention may contain a flame retardant, an inorganic filler, an internal mold release agent, conductive particles, or the like, if necessary.
難燃剤としては、リン系難燃剤が例示される。リン系難燃剤としては、分子中にリン原子を含むものであれば特に限定されず、例えば、リン酸エステル、縮合リン酸エステル、ホスファゼン化合物、ポリリン酸塩などの有機リン化合物や赤リンが挙げられる。 Examples of the flame retardant include phosphorus-based flame retardants. The phosphorus-based flame retardant is not particularly limited as long as it contains a phosphorus atom in the molecule, and examples thereof include organic phosphorus compounds such as phosphoric acid ester, condensed phosphoric acid ester, phosphazene compound, and polyphosphate, and red phosphorus. Be done.
無機系充填材としては、例えば、ホウ酸アルミニウム、炭酸カルシウム、炭酸ケイ素、窒化ケイ素、チタン酸カリウム、塩基性硫酸マグネシウム、酸化亜鉛、グラファイト、硫酸カルシウム、ホウ酸マグネシウム、酸化マグネシウム、ケイ酸塩鉱物が挙げられる。特に、ケイ酸塩鉱物を用いることが好ましい。ケイ酸塩鉱物の市販品としては、THIXOTROPIC AGENT DT 5039(ハンツマン・ジャパン株式会社 製)が挙げられる。 Examples of the inorganic filler include aluminum borate, calcium carbonate, silicon carbonate, silicon nitride, potassium titanate, basic magnesium sulfate, zinc oxide, graphite, calcium sulfate, magnesium borate, magnesium oxide, and silicate minerals. Can be mentioned. In particular, it is preferable to use silicate minerals. Examples of commercially available silicate minerals include THIXOTROPIC AGENT DT 5039 (manufactured by Huntsman Japan Corporation).
内部離型剤としては、例えば、金属石鹸類、ポリエチレンワックスやカルバナワックス等の植物ワックス、脂肪酸エステル系離型剤、シリコンオイル、動物ワックス、フッ素系非イオン界面活性剤を挙げることができる。これら内部離型剤の配合量は、前記エポキシ樹脂100質量部に対して、0.1〜5質量部であることが好ましく、0.2〜2質量部であることがさらに好ましい。この範囲内においては、金型からの離型効果が好適に発揮される。 Examples of the internal mold release agent include metal soaps, vegetable waxes such as polyethylene wax and carbana wax, fatty acid ester mold release agents, silicon oil, animal wax, and fluorine-based nonionic surfactant. The blending amount of these internal mold release agents is preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the epoxy resin. Within this range, the mold release effect from the mold is preferably exhibited.
内部離型剤の市販品としては、“MOLD WIZ(登録商標)” INT1846(AXEL PLASTICS RESEARCH LABORATORIES INC.製)、Licowax S、Licowax P、Licowax OP、Licowax PE190、Licowax PED(クラリアントジャパン社製)、ステアリルステアレート(SL−900A;理研ビタミン(株)製が挙げられる。 Commercially available internal mold release agents include "MOLD WIZ (registered trademark)" INT1846 (AXEL PLASTICS RESEARCH LABORATORIES INC.), Licowax S, Licowax P, Licowax OP, Licowax PE190, Licowax PE190, Licowax PE190, Licowax Stearyl stearate (SL-900A; manufactured by RIKEN Vitamin Co., Ltd.) can be mentioned.
導電性粒子としては、ポリアセチレン粒子、ポリアニリン粒子、ポリピロール粒子、ポリチオフェン粒子、ポリイソチアナフテン粒子及びポリエチレンジオキシチオフェン粒子等の導電性ポリマー粒子;、カーボン粒子;、炭素繊維粒子;、金属粒子;、無機材料又は有機材料から成るコア材を導電性物質で被覆した粒子が例示される。 The conductive particles include conductive polymer particles such as polyacetylene particles, polyaniline particles, polypyrrole particles, polythiophene particles, polyisothianaften particles and polyethylenedioxythiophene particles ;, carbon particles ;, carbon fiber particles ;, metal particles ;, Examples thereof include particles in which a core material made of an inorganic material or an organic material is coated with a conductive substance.
(1−5) エポキシ樹脂組成物の製造方法
本発明のエポキシ樹脂組成物は、[A]エポキシ樹脂と[B]ポリアリレート樹脂と[C]アニオン重合系触媒やその他の成分と、を混合することにより製造できる。これらの樹脂を混合する順番は特に制限はないが、[A]エポキシ樹脂と[B]ポリアリレート樹脂を混練した後、最後に[C]アニオン重合系触媒を添加することが好ましい。
(1-5) Method for Producing Epoxy Resin Composition In the epoxy resin composition of the present invention, [A] epoxy resin, [B] polyarylate resin, [C] anionic polymerization catalyst and other components are mixed. Can be manufactured by. The order in which these resins are mixed is not particularly limited, but it is preferable to knead the [A] epoxy resin and the [B] polyarylate resin, and finally add the [C] anionic polymerization catalyst.
エポキシ樹脂組成物の製造方法は、特に限定されるものではなく、従来公知のいずれの方法を用いてもよい。[A]エポキシ樹脂と[B]ポリアリレート樹脂の混合温度としては、50〜160℃の範囲であることが好ましい。この温度範囲であると、エポキシ樹脂の自己重合効果反応が起こりにくいため、樹脂組成物を安定して均一に混合することができる。160℃を超える場合、エポキシ樹脂の部分的に自己重合硬化反応が進行し、プリプレグの製造が安定して製造できない場合がある。50℃未満である場合、エポキシ樹脂組成物の粘度が高く、実質的に混合が困難となる場合がある。好ましくは50〜140℃であり、さらに好ましくは80〜120℃の範囲である。 The method for producing the epoxy resin composition is not particularly limited, and any conventionally known method may be used. The mixing temperature of the [A] epoxy resin and the [B] polyarylate resin is preferably in the range of 50 to 160 ° C. In this temperature range, the self-polymerization effect reaction of the epoxy resin is unlikely to occur, so that the resin composition can be mixed stably and uniformly. If the temperature exceeds 160 ° C., the epoxy resin may partially undergo a self-polymerization curing reaction, and the prepreg may not be stably produced. If the temperature is lower than 50 ° C., the viscosity of the epoxy resin composition may be high, which may make mixing substantially difficult. It is preferably in the range of 50 to 140 ° C, more preferably 80 to 120 ° C.
次に、[A]エポキシ樹脂と[B]ポリアリレート樹脂の混合物に[C]アニオン重合系触媒を混合する方法として、エポキシ樹脂の部分的に自己重合硬化反応を抑制するために、80℃以下が好ましい。好ましくは50〜80℃であり、さらに好ましくは60〜70℃の範囲である。混合温度が低すぎる場合、エポキシ樹脂組成物の粘度が高く、実質的に混合が困難となる場合がある。 Next, as a method of mixing the [C] anionic polymerization catalyst with the mixture of the [A] epoxy resin and the [B] polyarylate resin, the temperature is 80 ° C. or lower in order to partially suppress the self-polymerization curing reaction of the epoxy resin. Is preferable. It is preferably in the range of 50 to 80 ° C, more preferably 60 to 70 ° C. If the mixing temperature is too low, the viscosity of the epoxy resin composition may be high, making mixing substantially difficult.
混合機械装置としては、従来公知のものを用いることができる。具体的な例としては、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を備えた混合容器、横型混合槽などが挙げられる。各成分の混合は、大気中又は不活性ガス雰囲気下で行うことができる。大気中で混合が行われる場合は、温度、湿度が管理された雰囲気が好ましい。特に限定されるものではないが、例えば、30℃以下の一定温度に管理された温度や、相対湿度50%RH以下の低湿度雰囲気で混合することが好ましい。 As the mixing machine device, a conventionally known one can be used. Specific examples include a roll mill, a planetary mixer, a kneader, an extruder, a vanbury mixer, a mixing vessel equipped with a stirring blade, a horizontal mixing tank, and the like. The mixing of each component can be carried out in the air or in an atmosphere of an inert gas. When mixing is performed in the air, an atmosphere in which the temperature and humidity are controlled is preferable. Although not particularly limited, for example, it is preferable to mix in a temperature controlled to a constant temperature of 30 ° C. or lower or a low humidity atmosphere having a relative humidity of 50% RH or less.
上記のような本発明のエポキシ樹脂組成物は、室温での保管性に優れ、且つ、硬化速度が速く、離型性にも優れているため、生産性良く繊維強化複合材料を製造することができる。本発明のエポキシ樹脂組成物は、特に、プレス成形により繊維強化複合材料を得ることに適している。 Since the epoxy resin composition of the present invention as described above is excellent in storage at room temperature, has a high curing rate, and is also excellent in releasability, it is possible to produce a fiber-reinforced composite material with good productivity. it can. The epoxy resin composition of the present invention is particularly suitable for obtaining a fiber-reinforced composite material by press molding.
(2) プリプレグ
本発明のプリプレグは、強化繊維基材と、前記強化繊維基材内に含浸された上記エポキシ樹脂組成物と、から成る。
(2) Prepreg The prepreg of the present invention comprises a reinforcing fiber base material and the epoxy resin composition impregnated in the reinforcing fiber base material.
本発明のプリプレグは、強化繊維基材の一部又は全体に上記エポキシ樹脂組成物が含浸されたプリプレグである。プリプレグ全体におけるエポキシ樹脂組成物の含有率は、プリプレグの全質量を基準として、15〜60質量%であることが好ましい。樹脂含有率が15質量%未満である場合、得られる繊維強化複合材料に空隙などが発生し、機械物性を低下させる場合がある。樹脂含有率が60質量%を超える場合、強化繊維による補強効果が不十分となり、実質的に質量対比機械物性が低いものになる場合がある。樹脂含有率は、20〜55質量%であることが好ましく、25〜50質量%であることがより好ましい。 The prepreg of the present invention is a prepreg in which a part or the whole of a reinforcing fiber base material is impregnated with the epoxy resin composition. The content of the epoxy resin composition in the entire prepreg is preferably 15 to 60% by mass based on the total mass of the prepreg. When the resin content is less than 15% by mass, voids or the like may be generated in the obtained fiber-reinforced composite material, which may reduce the mechanical properties. If the resin content exceeds 60% by mass, the reinforcing effect of the reinforcing fibers may be insufficient, and the mechanical properties relative to the mass may be substantially low. The resin content is preferably 20 to 55% by mass, more preferably 25 to 50% by mass.
(2−1) 強化繊維基材
本発明で用いる強化繊維基材としては、特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維などが挙げられる。
(2-1) Reinforcing fiber base material The reinforcing fiber base material used in the present invention is not particularly limited, and for example, carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, polyester fiber, ceramic fiber, alumina fiber, and boron. Examples include fibers, metal fibers, mineral fibers, rock fibers and slug fibers.
これらの強化繊維の中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。比強度、比弾性率が良好で、軽量かつ高強度の繊維強化複合材料が得られる点で、炭素繊維がより好ましい。引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維が特に好ましい。 Among these reinforcing fibers, carbon fiber, glass fiber, and aramid fiber are preferable. Carbon fiber is more preferable because it has good specific strength and specific elastic modulus, and a lightweight and high-strength fiber-reinforced composite material can be obtained. Polyacrylonitrile (PAN) -based carbon fibers are particularly preferable because they are excellent in tensile strength.
強化繊維にPAN系炭素繊維を用いる場合、その引張弾性率は、100〜600GPaであることが好ましく、200〜500GPaであることがより好ましく、230〜450GPaであることが特に好ましい。また、引張強度は、2000MPa〜10000MPaであることが好ましく、3000〜8000MPaであることがより好ましい。炭素繊維の直径は、4〜20μmが好ましく、5〜10μmがより好ましい。このような炭素繊維を用いることにより、得られる繊維強化複合材料の機械的性質を向上できる。 When a PAN-based carbon fiber is used as the reinforcing fiber, its tensile elastic modulus is preferably 100 to 600 GPa, more preferably 200 to 500 GPa, and particularly preferably 230 to 450 GPa. The tensile strength is preferably 2000 MPa to 10000 MPa, more preferably 3000 to 8000 MPa. The diameter of the carbon fiber is preferably 4 to 20 μm, more preferably 5 to 10 μm. By using such carbon fibers, the mechanical properties of the obtained fiber-reinforced composite material can be improved.
強化繊維は、強化繊維束であってもよく、強化繊維をシート状に形成した強化繊維シートとして用いてもよい。シート状に形成して用いることが好ましい。強化繊維シートとしては、例えば、多数本の強化繊維を一方向に引き揃えたシートや、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙を挙げることができる。これらの中でも、強化繊維を連続繊維としてシート状に形成した一方向引揃えシートや二方向織物、多軸織物基材を用いると、より機械物性に優れた繊維強化複合材料が得られるため好ましい。シート状の強化繊維基材の厚さは、0.01〜3mmが好ましく、0.1〜1.5mmがより好ましい。 The reinforcing fiber may be a bundle of reinforcing fibers, or may be used as a reinforcing fiber sheet in which reinforcing fibers are formed in a sheet shape. It is preferable to form it in a sheet shape and use it. Examples of the reinforcing fiber sheet include a sheet in which a large number of reinforcing fibers are arranged in one direction, a bidirectional woven fabric such as plain weave and twill weave, a multi-axis woven fabric, a non-woven fabric, a mat, a knit, a braid, and a paper made from reinforcing fibers. Can be mentioned. Among these, it is preferable to use a unidirectionally aligned sheet, a bidirectional woven fabric, or a multi-axis woven fabric base material in which reinforcing fibers are formed into a sheet as continuous fibers because a fiber-reinforced composite material having more excellent mechanical properties can be obtained. The thickness of the sheet-shaped reinforcing fiber base material is preferably 0.01 to 3 mm, more preferably 0.1 to 1.5 mm.
(2−2) プリプレグの製造方法
本発明のプリプレグの製造方法は、特に制限がなく、従来公知のいかなる方法も採用できる。具体的には、ホットメルト法や溶剤法が好適に採用できる。
(2-2) Method for producing prepreg The method for producing a prepreg of the present invention is not particularly limited, and any conventionally known method can be adopted. Specifically, the hot melt method and the solvent method can be preferably adopted.
ホットメルト法は、離型紙の上に、樹脂組成物を薄いフィルム状に塗布して樹脂組成物フィルムを形成し、強化繊維基材に該樹脂組成物フィルムを積層して加圧下で加熱することにより樹脂組成物を強化繊維基材層内に含浸させる方法である。 In the hot melt method, a resin composition is applied in the form of a thin film on a release paper to form a resin composition film, and the resin composition film is laminated on a reinforcing fiber base material and heated under pressure. This is a method of impregnating the resin composition into the reinforcing fiber base material layer.
樹脂組成物を樹脂組成物フィルムにする方法としては、特に限定されるものではなく、従来公知のいずれの方法を用いることもできる。具体的には、ダイ押し出し、アプリケーター、リバースロールコーター、コンマコーターなどを用いて、離型紙やフィルムなどの支持体上に樹脂組成物を流延、キャストをすることにより樹脂組成物フィルムを得ることができる。フィルムを製造する際の樹脂温度は、樹脂組成物の組成や粘度に応じて適宜決定する。具体的には、前述のエポキシ樹脂組成物の製造方法における混合温度と同じ温度条件が好適に用いられる。樹脂組成物の強化繊維基材層内への含浸は1回で行っても良いし、複数回に分けて行っても良い。 The method for forming the resin composition into a resin composition film is not particularly limited, and any conventionally known method can be used. Specifically, a resin composition film is obtained by casting and casting a resin composition on a support such as a paper pattern or a film using a die extrusion, an applicator, a reverse roll coater, a comma coater, or the like. Can be done. The resin temperature at the time of producing the film is appropriately determined according to the composition and viscosity of the resin composition. Specifically, the same temperature conditions as the mixing temperature in the method for producing the epoxy resin composition described above are preferably used. The impregnation of the resin composition into the reinforcing fiber base material layer may be performed once or may be performed in a plurality of times.
溶剤法は、エポキシ樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを強化繊維基材層内に含浸させる方法である。 The solvent method is a method in which an epoxy resin composition is formed into a varnish using an appropriate solvent, and the varnish is impregnated in the reinforcing fiber base material layer.
本発明のプリプレグは、これらの従来法の中でも、溶剤を用いないホットメルト法により好適に製造することができる。 Among these conventional methods, the prepreg of the present invention can be suitably produced by a hot melt method that does not use a solvent.
エポキシ樹脂組成物フィルムをホットメルト法で強化繊維基材層内に含浸させる場合の含浸温度は、50〜120℃の範囲が好ましい。含浸温度が50℃未満の場合、エポキシ樹脂の粘度が高く、強化繊維基材層内へ十分に含浸しない場合がある。含浸温度が120℃を超える場合、エポキシ樹脂組成物の硬化反応が進行し、得られるプリプレグの保存安定性が低下したり、ドレープ性が低下したりする場合がある。含浸温度は、60〜110℃がより好ましく、70〜100℃が特に好ましい。 When the epoxy resin composition film is impregnated into the reinforcing fiber base material layer by a hot melt method, the impregnation temperature is preferably in the range of 50 to 120 ° C. When the impregnation temperature is less than 50 ° C., the viscosity of the epoxy resin is high, and the reinforcing fiber base material layer may not be sufficiently impregnated. When the impregnation temperature exceeds 120 ° C., the curing reaction of the epoxy resin composition proceeds, and the storage stability of the obtained prepreg may decrease or the drape property may decrease. The impregnation temperature is more preferably 60 to 110 ° C, particularly preferably 70 to 100 ° C.
エポキシ樹脂組成物フィルムをホットメルト法で強化繊維基材層内に含浸させる際の含浸圧力は、その樹脂組成物の粘度・樹脂フローなどを勘案し、適宜決定する。 The impregnation pressure when the epoxy resin composition film is impregnated into the reinforcing fiber base material layer by the hot melt method is appropriately determined in consideration of the viscosity and resin flow of the resin composition.
具体的な含浸圧力は、1〜250(N/cm)であり、10〜200(N/cm)であることが好ましい。 The specific impregnation pressure is 1 to 250 (N / cm), preferably 10 to 200 (N / cm).
上記のような本発明のプリプレグは、室温での保管性に優れ、且つ、硬化速度が速く、離型性にも優れているため、生産性良く繊維強化複合材料を製造することができる。本発明のプリプレグは、プレス成形により好ましく用いることができ、特に、自動車部材等の用途の繊維強化複合材料(FRP)のハイサイクルプレス成形に好適に用いることができる。 Since the prepreg of the present invention as described above is excellent in storage at room temperature, has a high curing rate, and is also excellent in releasability, it is possible to produce a fiber-reinforced composite material with good productivity. The prepreg of the present invention can be preferably used by press molding, and in particular, can be preferably used by high cycle press molding of a fiber reinforced composite material (FRP) for applications such as automobile members.
(3) 繊維強化複合材料
本発明のエポキシ樹脂組成物は、繊維強化複合材料のマトリクス樹脂として好ましく用いることができる。強化繊維基材と、本発明のエポキシ樹脂組成物と、を複合化した状態で硬化させることにより複合材料を製造することができる。繊維強化複合材料の製造方法としては、特に制限はないが、強化繊維基材とエポキシ樹脂組成物とが予め複合化された本発明のプリプレグを用いて作製することが好ましい。
(3) Fiber Reinforced Composite Material The epoxy resin composition of the present invention can be preferably used as a matrix resin for a fiber reinforced composite material. A composite material can be produced by curing the reinforcing fiber base material and the epoxy resin composition of the present invention in a composite state. The method for producing the fiber-reinforced composite material is not particularly limited, but it is preferably produced using the prepreg of the present invention in which the reinforcing fiber base material and the epoxy resin composition are previously composited.
本発明のプリプレグを用いて、FRPを製造する方法としては、オートクレーブ成形やプレス成形等の公知の成形法が挙げられる。本発明のプリプレグは、プレス成形により好ましく用いることができ、特に、自動車部材等の用途の繊維強化複合材料(FRP)のハイサイクルプレス成形に好適に用いることができる。 Examples of the method for producing FRP using the prepreg of the present invention include known molding methods such as autoclave molding and press molding. The prepreg of the present invention can be preferably used by press molding, and in particular, can be preferably used by high cycle press molding of a fiber reinforced composite material (FRP) for applications such as automobile members.
また、レジントランスファー成形法(RTM法)、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法に例示されるように成形と同時に強化繊維基材とエポキシ樹脂組成物とを複合化してもよい。 Further, as exemplified by the resin transfer molding method (RTM method), the hand lay-up method, the filament winding method, and the plutrusion method, the reinforcing fiber base material and the epoxy resin composition may be composited at the same time as molding.
(3−1)プレス成形法
本発明において複合材料の製造方法としては、プレス成形法が好ましく用いられる。プレス成形法は、プリプレグ又はプリプレグを積層して形成したプリフォームなどの成形材料を、金型により高温高圧で硬化させて成形することにより繊維強化複合材料を得る方法である。金型は、予め硬化温度に加熱しておくことが好ましい。
(3-1) Press forming method In the present invention, a press forming method is preferably used as a method for producing a composite material. The press molding method is a method of obtaining a fiber-reinforced composite material by curing a molding material such as a prepreg or a preform formed by laminating prepregs at a high temperature and high pressure with a mold. The mold is preferably preheated to a curing temperature.
プレス成形に用いる金型としては、成形材料を高温高圧下で硬化させることのできる金型であればよく、金型を閉じた時に該金型の内部を気密に保つことのできる構造を有する金型を用いることが好ましい。ここで、気密とは、金型を満たすのに十分な量の成形材料を金型内に入れ、加圧した際にも成形材料を構成するエポキシ樹脂組成物が金型から実質的に漏れ出さないことをいう。 The mold used for press molding may be any mold that can cure the molding material under high temperature and high pressure, and has a structure that can keep the inside of the mold airtight when the mold is closed. It is preferable to use a mold. Here, airtightness means that an epoxy resin composition constituting a molding material actually leaks from the mold even when a sufficient amount of molding material is put into the mold and pressure is applied. Say no.
プレス成形時の金型の温度は、150〜180℃が好ましい。成形温度が150℃以上であれば、十分に硬化反応を起こすことができ、成形板のTgを180℃以上まで向上させることが可能となり、脱型時に変形することが無い。それにより金型の温度を一定温度で保持できることから、高い生産性でFRPを得ることができる。また、成形温度が180℃以下であれば、樹脂粘度が低くなり過ぎることがなく、金型内における樹脂の過剰な流動を抑えることができる。その結果、金型からの樹脂の流出や繊維の蛇行を抑制できるため、高品質のFRPが得られる。 The temperature of the die during press molding is preferably 150 to 180 ° C. When the molding temperature is 150 ° C. or higher, a sufficient curing reaction can be caused, the Tg of the molded plate can be improved to 180 ° C. or higher, and the molding plate is not deformed at the time of mold removal. As a result, the temperature of the mold can be maintained at a constant temperature, so that FRP can be obtained with high productivity. Further, when the molding temperature is 180 ° C. or lower, the resin viscosity does not become too low, and excessive flow of the resin in the mold can be suppressed. As a result, it is possible to suppress the outflow of resin from the mold and the meandering of fibers, so that high quality FRP can be obtained.
成形時の圧力は、0.2〜10MPaである。圧力が0.2MPa以上であれば、樹脂の適度な流動が得られ、外観不良やボイドの発生を防ぐことができる。また、プリプレグが十分に金型に密着するため、良好な外観のFRPを製造することができる。圧力が10MPa以下であれば、樹脂を必要以上に流動させることがないため、得られるFRPの外観不良が生じ難い。また、金型に必要以上の負荷をかけることがないため、金型の変形等が生じ難い。成形時間は1〜10分が好ましい。 The pressure at the time of molding is 0.2 to 10 MPa. When the pressure is 0.2 MPa or more, an appropriate flow of the resin can be obtained, and poor appearance and generation of voids can be prevented. Moreover, since the prepreg is sufficiently adhered to the mold, it is possible to manufacture an FRP having a good appearance. When the pressure is 10 MPa or less, the resin does not flow more than necessary, so that the appearance of the obtained FRP is unlikely to deteriorate. In addition, since the mold is not loaded more than necessary, the mold is unlikely to be deformed. The molding time is preferably 1 to 10 minutes.
(3−2)オートクレーブ成形法
本発明において複合材料の製造方法として、オートクレーブ成形法も好ましく用いられる。オートクレーブ成形法は、金型の下型にプリプレグ及びフィルムバッグを順次敷設し、該プリプレグを下型とフィルムバッグとの間に密封し、下型とフィルムバッグとにより形成される空間を真空にするとともに、オートクレーブ成形装置で、加熱と加圧をする成形方法である。成形時の条件は、昇温速度を1〜50℃/分とし、0.2〜0.7MPa、150〜180℃で1〜10分間、加熱及び加圧することが好ましい。
(3-2) Autoclave molding method In the present invention, an autoclave molding method is also preferably used as a method for producing a composite material. In the autoclave molding method, a prepreg and a film bag are sequentially laid on the lower mold of the mold, the prepreg is sealed between the lower mold and the film bag, and the space formed by the lower mold and the film bag is evacuated. At the same time, it is a molding method in which heating and pressurization are performed with an autoclave molding apparatus. The conditions at the time of molding are preferably such that the heating rate is 1 to 50 ° C./min, and heating and pressurization are performed at 0.2 to 0.7 MPa and 150 to 180 ° C. for 1 to 10 minutes.
本発明のエポキシ樹脂組成物は、室温での保管性に優れ、且つ、硬化速度が速くサイクル性に優れるとともに、離型性にも優れている。そのため、上記のように本発明のエポキシ樹脂組成物をマトリクス樹脂として用いて繊維強化複合材料を製造すると、生産性良く繊維強化複合材料を製造することができる。 The epoxy resin composition of the present invention is excellent in storage at room temperature, has a high curing rate, is excellent in cycleability, and is also excellent in releasability. Therefore, when the fiber-reinforced composite material is produced by using the epoxy resin composition of the present invention as the matrix resin as described above, the fiber-reinforced composite material can be produced with high productivity.
また、本発明のエポキシ樹脂組成物が用いられる用途としては、特に制限はなく、上記繊維強化複合材料の他にも、例えば、プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用絶縁材料、半導体封止材料、半導体装置、導電ペースト、導電フィルム、ビルドアップ基板、ビルドアップ用接着フィルム、樹脂注型材料、接着剤、コーティング剤、透明材料、光学材料、電子材料、他樹脂等への添加剤等が挙げられる。これら各種用途のうち、プリント配線板材料、回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ、いわゆる電子部品内蔵用基板用の絶縁材料として用いることができる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤、電子材料用の接着剤などが挙げられる。 The use of the epoxy resin composition of the present invention is not particularly limited, and in addition to the fiber-reinforced composite material described above, for example, a printed wiring board material, a resin composition for a flexible wiring board, and a build-up substrate. Insulation materials for circuit boards such as interlayer insulation materials, semiconductor encapsulation materials, semiconductor devices, conductive pastes, conductive films, build-up substrates, adhesive films for build-up, resin casting materials, adhesives, coating agents, transparent materials, Examples include optical materials, electronic materials, additives to other resins, and the like. Among these various applications, in the applications of printed wiring board materials, insulating materials for circuit boards, and adhesive films for build-up, passive components such as capacitors and active components such as IC chips are embedded in the substrate, so-called substrates for built-in electronic components. Can be used as an insulating material for Examples of the adhesive include an adhesive for civil engineering, construction, automobiles, general office work, medical use, and an adhesive for electronic materials.
以下、実施例によって本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。本実施例、比較例において使用する成分や試験方法を以下に記載する。
〔樹脂組成物〕
[A]エポキシ樹脂
・jER828:ビスフェノールA型エポキシ、三菱ケミカル株式会社製 jER828(製品名)
・jER807:ビスフェノールF型エポキシ、三菱ケミカル株式会社製 jER807(製品名)
・MY0510:トリグリシジル−パラアミノフェノール、ハンツマン・アドバンスト・マテリアルズ社製 アラルダイト MY0510(製品名)
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples. The components and test methods used in this example and comparative example are described below.
[Resin composition]
[A] Epoxy resin jER828: Bisphenol A type epoxy, manufactured by Mitsubishi Chemical Corporation jER828 (product name)
-JER807: Bisphenol F type epoxy, manufactured by Mitsubishi Chemical Corporation jER807 (product name)
MY0510: Triglycidyl-paraaminophenol, Huntsman Advanced Materials' Araldite MY0510 (product name)
[B]ポリアリレート樹脂
・V−575:末端OH型ポリアリレート樹脂、平均粒子径15μm、数平均分子量(Mn)1400、官能基当量210g/eqユニチカ株式会社製 ユニファイナーV575(製品名)
・W−575:末端封鎖型ポリアリレート樹脂、平均粒子径15μm、数平均分子量(Mn)1400、ユニチカ株式会社製 ユニファイナーW−575(製品名)
[B] Polyarylate resin V-575: Terminal OH type polyarylate resin, average particle size 15 μm, number average molecular weight (Mn) 1400, functional group equivalent 210 g / eq Unifiedr V575 (product name)
W-575: End-blocking polyarylate resin, average particle diameter 15 μm, number average molecular weight (Mn) 1400, Unitika Ltd. Unifier W-575 (product name)
[C]アニオン重合系触媒
・2E4Mz:3級アミンを有するイミダゾール類系触媒、四国化成株式会社製 キュアゾール 2E4Mz(製品名)
・2PzPw:3級アミンを有するイミダゾール類系触媒、四国化成株式会社製 キュアゾール 2PzPw(製品名)
[C] Anionic polymerization catalyst, 2E4Mz: Imidazole catalyst having a tertiary amine, Curesol 2E4Mz manufactured by Shikoku Chemicals Corporation (product name)
2PzPw: Imidazole-based catalyst having a tertiary amine, Curesol 2PzPw (product name) manufactured by Shikoku Chemicals Corporation
[その他成分]
(熱可塑性樹脂)
・PKHP−200:フェノキシ樹脂、Gabriel Performance Products社製 PKHP−200(製品名)
・PES−5003P:末端水酸基型ポリエーテルサルホン樹脂、住友化学工業株式会社製 スミカエクセル PES−5003P(製品名)、平均粒子径20μm、ガラス転移温度230℃、100重合繰り返し単位当たりの水酸基数0.6〜1.4(カタログ値)
(硬化剤)
・DDA 5 :ジシアンジアミド、Emerald Performance Materials社製オミキュア−DDA 5(製品名)
・3,3’−DDS:3,3’−ジアミノジフェニルスルホン、小西化学工業株式会社製
(硬化促進剤)
・U24:2,4−Toluene bis Dimethyl Urea、Emerald Performance Materials社製 オミキュア−U24(製品名)
[Other ingredients]
(Thermoplastic resin)
-PKHP-200: Phenoxy resin, PKHP-200 manufactured by Gabriel Performance Products (product name)
-PES-5003P: Terminal hydroxyl group type polyether sulfone resin, Sumika Excel PES-5003P (product name) manufactured by Sumitomo Chemical Industries, Ltd., average particle size 20 μm, glass transition temperature 230 ° C, 100 hydroxyl groups per polymerization repeating unit 0 .6 to 1.4 (catalog value)
(Hardener)
-DDA 5: dicyandiamide, Omicure-DDA 5 (product name) manufactured by Emerald Performance Materials.
・ 3,3'-DDS: 3,3'-diaminodiphenyl sulfone, manufactured by Konishi Chemical Industry Co., Ltd. (curing accelerator)
U24: 2,4-Toluene bis Dimethylurea, Emerald Performance Materials Omicure-U24 (product name)
〔炭素繊維〕
・帝人株式会社製 炭素繊維ストランド “テナックス”(登録商標) STS40 F22 24000tex、引張強度4.0GPa、引張弾性率235GPa
〔Carbon fiber〕
-Teijin Limited carbon fiber strand "Tenax" (registered trademark) STS40 F22 24000tex, tensile strength 4.0 GPa, tensile elastic modulus 235 GPa
〔評価方法〕
(1) サイクル成形性評価
一組の金型で繊維強化複合材料の成形品を成形する工程を繰り返すサイクル成形により、プリプレグの離型性およびサイクル成形性を評価した。プリプレグを縦295mm×横208mmに切断し、[0°]の繊維方向で10枚重ねて積層し、プリフォーム(厚さ2.3mm)を用意した。金型の上型と下型をあらかじめ170℃に加熱し、離型剤(ケムトレンド社製 ケムリース HT−S)を金型成型面に吹き付けた。前記プリフォームを縦297mm×横210mmの金型内に入れ、3MPaで加熱加圧し、3分間保持し硬化させた。硬化後に金型から脱型して縦297mm×横210mm×厚み約1.9mmの平板成形品を得た。続けて、新たに離型剤を吹き付けることなしで上述の条件にて繰り返し成形を行った。成形品が金型から脱型可能な繰り返し成形回数を測定した。
○:成形品が樹脂の欠損、クラック等の欠陥無しに成形品が金型から良好に脱型可能な繰り返し成形回数が20回以上
△:成形品が樹脂の欠損、クラック等の欠陥無しに成形品が金型から良好に脱型可能な繰り返し成形回数が11回以上
×:成形品が樹脂の欠損、クラック等の欠陥無しに成形品が金型から良好に脱型可能な繰り返し成形回数が10回以下
〔Evaluation methods〕
(1) Evaluation of cycle moldability The mold releasability and cycle moldability of the prepreg were evaluated by cycle molding in which the process of molding a molded product of a fiber-reinforced composite material with a set of molds was repeated. The prepreg was cut into a length of 295 mm and a width of 208 mm, and 10 sheets were laminated in the fiber direction of [0 °] to prepare a preform (thickness 2.3 mm). The upper and lower molds of the mold were preheated to 170 ° C., and a mold release agent (Chem Lease HT-S manufactured by Chemtrend) was sprayed on the mold molding surface. The preform was placed in a mold having a length of 297 mm and a width of 210 mm, heated and pressurized at 3 MPa, held for 3 minutes, and cured. After curing, the mold was removed from the mold to obtain a flat plate molded product having a length of 297 mm, a width of 210 mm, and a thickness of about 1.9 mm. Subsequently, repeated molding was carried out under the above-mentioned conditions without newly spraying a mold release agent. The number of repeated moldings in which the molded product can be removed from the mold was measured.
◯: The molded product can be satisfactorily removed from the mold without defects such as resin defects and cracks. The number of repeated moldings is 20 or more. Δ: The molded product is molded without defects such as resin defects and cracks. The number of repetitive moldings that allows the product to be successfully removed from the mold is 11 or more. ×: The number of repetitive moldings that allows the molded product to be successfully removed from the mold without defects such as resin defects and cracks is 10. Less than once
(2) オートクレーブによる成形性の評価
プリプレグを縦297mm×210mmに切断し、10枚重ねて積層したプリフォーム(厚さ2.3mm)を用意した。オートクレーブ内で5℃/分で昇温し、170℃にて10分間加熱硬化し、5℃/分で50℃まで降温させて成形板を作製した。この間、オートクレーブ内を0.5MPaに加圧し、バッグ内を真空に保った。得られた成形板のボイドを下記の方法で評価した。
○:ボイド無く成形可能
×:ボイド発生し成形不可
(2) Evaluation of Formability by Autoclave A prepreg was cut into a length of 297 mm × 210 mm, and 10 preforms (thickness 2.3 mm) were prepared. The temperature was raised at 5 ° C./min in an autoclave, heat-cured at 170 ° C. for 10 minutes, and lowered to 50 ° C. at 5 ° C./min to prepare a molded plate. During this time, the inside of the autoclave was pressurized to 0.5 MPa, and the inside of the bag was kept in a vacuum. The voids of the obtained molded plate were evaluated by the following method.
◯: Molding is possible without voids ×: Molding is not possible due to voids
(3) 保存安定性
プリプレグを温度70℃に10日間保存した後に、プリプレグをカットし、上記オートクレーブ成形性評価と同様成形板を作製し、ボイドの有・無を確認した。評価結果は以下の基準(○〜×)で表した。
○:ボイド無く成形可能
×:プリプレグの硬化反応が進行し、樹脂流動性が低下しボイド発生
(3) Storage stability After the prepreg was stored at a temperature of 70 ° C. for 10 days, the prepreg was cut to prepare a molded plate in the same manner as in the above autoclave moldability evaluation, and the presence or absence of voids was confirmed. The evaluation results are represented by the following criteria (○ to ×).
◯: Molding is possible without voids ×: The curing reaction of the prepreg proceeds, the resin fluidity decreases, and voids are generated.
(4) ボイドの評価方法
成形板を切断し、サンドペーパーを用いて600番、1000番、2000番の順で研磨し、最終仕上げとして、コロイダルシリカを用いたバフ研磨を施し、断面を鏡面に仕上げた。光学顕微鏡(倍率:500倍)を用いて、鏡面研磨した断面を観察し、ボイドの有・無を確認した。
(4) Void evaluation method The molded plate is cut and polished in the order of 600, 1000, 2000 using sandpaper, and buffing with colloidal silica is applied as the final finish to make the cross section a mirror surface. Finished. Using an optical microscope (magnification: 500 times), the mirror-polished cross section was observed to confirm the presence or absence of voids.
(5) ガラス転移温度(DMA−Tg)
動的粘弾性測定装置(DMA)を用いて、ASTM D7028−07法に準じて、炭素繊維強化樹脂複合材料のガラス転移温度(Tg)を測定した。
(5) Glass transition temperature (DMA-Tg)
The glass transition temperature (Tg) of the carbon fiber reinforced resin composite material was measured using a dynamic viscoelasticity measuring device (DMA) according to the ASTM D7028-07 method.
上記、オートクレーブによる成形性の評価と同じようにして得られた繊維強化複合材料の成形板を、50mm×6mm×2mm切り出し試験片とした。UBM社製動的粘弾性測定装置Rheogel−E400を用い、測定周波数1Hz、昇温速度5℃/分、ひずみ0.0167%の条件で、チャック間の距離を30mmとし、50℃からゴム弾性領域まで貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の平坦領域の近似直線と、E’が転移する領域の近似直線との交点から求められる温度をガラス転移温度(Tg)として記録した。 The molded plate of the fiber-reinforced composite material obtained in the same manner as in the evaluation of moldability by the autoclave was used as a 50 mm × 6 mm × 2 mm cutout test piece. Using a dynamic viscoelasticity measuring device Rheogel-E400 manufactured by UBM, the distance between chucks is set to 30 mm under the conditions of a measurement frequency of 1 Hz, a temperature rise rate of 5 ° C./min, and a strain of 0.0167%, and a rubber elastic region from 50 ° C. The storage elastic modulus E'was measured up to. LogE'was plotted against temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region of logE'and the approximate straight line of the region where E'transitioned was recorded as the glass transition temperature (Tg).
(6) 3点曲げ試験
プリプレグを0°方向に縦297mm×横210mmに切断し、10枚重ねて積層したプリフォーム(厚さ2.3mm)を用意した。オートクレーブを用いて、5℃/分の昇温条件で180℃、20分、0.5MPaの成形条件で成形し、厚み2.0mmの繊維強化複合材料成形板を得た。得られた成形板を用いて、機械物性(曲げ特性)評価を実施した。
(6) Three-point bending test A prepreg was cut in the 0 ° direction to a length of 297 mm and a width of 210 mm, and a preform (thickness 2.3 mm) in which 10 sheets were laminated was prepared. Using an autoclave, molding was performed under a heating condition of 5 ° C./min under a molding condition of 180 ° C. for 20 minutes and 0.5 MPa to obtain a fiber-reinforced composite material molded plate having a thickness of 2.0 mm. Mechanical physical properties (bending characteristics) were evaluated using the obtained molded plate.
得られた成形板から繊維軸0°方向に長さ100mm、幅15mm、厚み2.0mmの評価用試験片を切り出した。JIS K 7074の試験規格に準拠し、スパン長80mm、試験速度5mm/分で3点曲げ試験を実施し、最大点応力、変位から曲げ強度、曲げ弾性率を算出した。 An evaluation test piece having a length of 100 mm, a width of 15 mm, and a thickness of 2.0 mm was cut out from the obtained molded plate in the fiber axis 0 ° direction. A three-point bending test was carried out at a span length of 80 mm and a test speed of 5 mm / min in accordance with the JIS K 7074 test standard, and the bending strength and flexural modulus were calculated from the maximum point stress and displacement.
(実施例1)
表1に記載する割合で、攪拌機を用いてエポキシ樹脂に、ポリアリレート樹脂の半量(40質量部)を120℃で溶解させた。ポリアリレート樹脂は、粉砕し粉末状にして添加した。その後、70℃まで降温し、残りのポリアリレート樹脂粉末とアニオン重合触媒を添加して30分間混合し、エポキシ樹脂組成物を調製した。
(Example 1)
Half the amount (40 parts by mass) of the polyarylate resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 1. The polyarylate resin was added in the form of pulverized powder. Then, the temperature was lowered to 70 ° C., the remaining polyarylate resin powder and anionic polymerization catalyst were added and mixed for 30 minutes to prepare an epoxy resin composition.
得られたエポキシ樹脂組成物を、フィルムコーターを用いて、離型紙上に塗布して50g/m2目付の樹脂フィルムを作製した。 The obtained epoxy resin composition was applied onto a paper pattern using a film coater to prepare a resin film having a basis weight of 50 g / m 2 .
次いで単位面積当たりの繊維質量が190g/m2となるように炭素繊維を一方向に整列させてシート状の強化繊維基材層を作製した。この強化繊維基材層の両面に上記樹脂フィルムを積重し、温度130℃、200N/cmの条件で加熱加圧して、炭素繊維含有率が65質量%の一方向プリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性を表1に示した。また、実施例1のプリプレグから得られた複合材料のTg、3点曲げ特性を評価し、結果を表1に記載した。 Next, the carbon fibers were arranged in one direction so that the fiber mass per unit area was 190 g / m 2, and a sheet-shaped reinforcing fiber base material layer was prepared. The resin film was stacked on both sides of the reinforcing fiber base material layer and heated and pressed under the conditions of a temperature of 130 ° C. and 200 N / cm to prepare a unidirectional prepreg having a carbon fiber content of 65% by mass. Table 1 shows the mold releasability, moldability and storage stability of the obtained prepreg. In addition, the Tg and three-point bending characteristics of the composite material obtained from the prepreg of Example 1 were evaluated, and the results are shown in Table 1.
実施例1で得られたプリプレグは、成形性、離型性に優れサイクル成形が可能であり、さらに、プリプレグを温度70℃に10日間保存した後でもボイドレスで成形可能な優れた保存安定性を有していた。また、得られた複合材料は、高い3点曲げ強度を有する優れた複合材料であった。 The prepreg obtained in Example 1 has excellent moldability and mold releasability, can be cycle-molded, and further has excellent storage stability that can be molded with a voidless even after the prepreg is stored at a temperature of 70 ° C. for 10 days. Had had. Moreover, the obtained composite material was an excellent composite material having a high three-point bending strength.
(実施例2〜7)
樹脂の組成を表1に記載する割合に変更した以外は実施例1と同様にしてプリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性と、各実施例のプリプレグから得られた複合材料のTg、3点曲げ特性を評価し、結果を表1に記載した。
(Examples 2 to 7)
A prepreg was prepared in the same manner as in Example 1 except that the composition of the resin was changed to the ratio shown in Table 1. The mold releasability, moldability and storage stability of the obtained prepreg, and the Tg and three-point bending characteristics of the composite material obtained from the prepreg of each example were evaluated, and the results are shown in Table 1.
各実施例で得られたプリプレグいずれも、成形性、離型性に優れサイクル成形が可能であり、さらに、プリプレグを温度70℃に10日間保存した後でもボイドレスで成形可能な優れた保存安定性を有していた。 All of the prepregs obtained in each example have excellent moldability and mold releasability, and can be cycle-molded. Furthermore, even after the prepreg is stored at a temperature of 70 ° C. for 10 days, it can be molded with a voidless. Had.
(比較例1)
比較例1では、ポリアリレート樹脂とアニオン重合系触媒を用いる代わりに、ジシアンジアミド系硬化剤と尿素系硬化促進剤を用いてプリプレグを作製した。表2に記載する割合で、攪拌機を用いてエポキシ樹脂にフェノキシ樹脂を120℃で溶解させた。その後、70℃まで降温し、硬化剤、硬化促進剤を添加して30分間混合し、エポキシ樹脂組成物を得た。その他の工程は、実施例1と同様の工程によりプリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性を表2に示した。また、比較例1のプリプレグから得られた複合材料のTg、3点曲げ特性を評価し、結果を表2に記載した。
(Comparative Example 1)
In Comparative Example 1, a prepreg was prepared using a dicyandiamide-based curing agent and a urea-based curing accelerator instead of using a polyarylate resin and an anionic polymerization-based catalyst. The phenoxy resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 2. Then, the temperature was lowered to 70 ° C., a curing agent and a curing accelerator were added, and the mixture was mixed for 30 minutes to obtain an epoxy resin composition. As for other steps, a prepreg was prepared by the same steps as in Example 1. Table 2 shows the mold releasability, moldability and storage stability of the obtained prepreg. In addition, the Tg and 3-point bending characteristics of the composite material obtained from the prepreg of Comparative Example 1 were evaluated, and the results are shown in Table 2.
成形板のTgが金型温度(170℃)よりも低いため、比較例1のプリプレグから得られた複合材料では、変形および樹脂の欠損が生じた。また、室温での保存安定性が悪く、サイクル成形性も不十分であった。 Since the Tg of the molded plate was lower than the mold temperature (170 ° C.), the composite material obtained from the prepreg of Comparative Example 1 was deformed and the resin was chipped. In addition, the storage stability at room temperature was poor, and the cycle moldability was also insufficient.
(比較例2)
表2に記載する割合で、攪拌機を用いてエポキシ樹脂にポリエーテルサルホン樹脂を120℃で溶解させた。その後、70℃まで降温し、硬化剤、硬化促進剤を添加して30分間混合し、エポキシ樹脂組成物を得た。その他の工程は、実施例1と同様の工程によりプリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性を表2に示した。また、比較例2のプリプレグから得られた複合材料のTg、3点曲げ特性を評価し、結果を表2に記載した。
(Comparative Example 2)
The polyether sulfone resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 2. Then, the temperature was lowered to 70 ° C., a curing agent and a curing accelerator were added, and the mixture was mixed for 30 minutes to obtain an epoxy resin composition. As for other steps, a prepreg was prepared by the same steps as in Example 1. Table 2 shows the mold releasability, moldability and storage stability of the obtained prepreg. In addition, the Tg and 3-point bending characteristics of the composite material obtained from the prepreg of Comparative Example 2 were evaluated, and the results are shown in Table 2.
成形板のTgが金型温度(170℃)よりも低いため、比較例2のプリプレグから得られた複合材料では、変形および樹脂の欠損が生じた。また、室温での保存安定性が悪く、サイクル成形性も不十分であった。 Since the Tg of the molded plate was lower than the mold temperature (170 ° C.), the composite material obtained from the prepreg of Comparative Example 2 was deformed and the resin was chipped. In addition, the storage stability at room temperature was poor, and the cycle moldability was also insufficient.
(比較例3)
比較例3では、アニオン重合系触媒を用いる代わりに、ジシアンジアミド系硬化剤と尿素系硬化促進剤を用いてプリプレグを作製した。表2に記載する割合で、攪拌機を用いてエポキシ樹脂にポリアリレート樹脂を120℃で溶解させた。その後、70℃まで降温し、硬化剤、硬化促進剤を添加して30分間混合し、エポキシ樹脂組成物を得た。その他の工程は、実施例1と同様の工程によりプリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性を表2に示した。また、比較例3のプリプレグから得られた複合材料のTg、3点曲げ特性を評価し、結果を表2に記載した。
(Comparative Example 3)
In Comparative Example 3, a prepreg was prepared using a dicyandiamide-based curing agent and a urea-based curing accelerator instead of using an anionic polymerization catalyst. The polyarylate resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 2. Then, the temperature was lowered to 70 ° C., a curing agent and a curing accelerator were added, and the mixture was mixed for 30 minutes to obtain an epoxy resin composition. As for other steps, a prepreg was prepared by the same steps as in Example 1. Table 2 shows the mold releasability, moldability and storage stability of the obtained prepreg. In addition, the Tg and 3-point bending characteristics of the composite material obtained from the prepreg of Comparative Example 3 were evaluated, and the results are shown in Table 2.
成形板のTgが金型温度(170℃)よりも低いため、比較例3のプリプレグから得られた複合材料では、変形および樹脂の欠損が生じた。また、室温での保存安定性が悪く、サイクル成形性も不十分であった。さらに、分子量の低いポリアリレートがエポキシ骨格内に挿入されないため、得られた複合材料の物性(3点曲げ強度)が大幅に低下した。 Since the Tg of the molded plate was lower than the mold temperature (170 ° C.), the composite material obtained from the prepreg of Comparative Example 3 was deformed and the resin was chipped. In addition, the storage stability at room temperature was poor, and the cycle moldability was also insufficient. Furthermore, since polyarylate having a low molecular weight is not inserted into the epoxy skeleton, the physical properties (three-point bending strength) of the obtained composite material are significantly reduced.
(比較例4)
比較例4では、ポリアリレート樹脂を用いる代わりに、フェノキシ樹脂を用いてプリプレグを作製した。表2に記載する割合で、攪拌機を用いてエポキシ樹脂にフェノキシ樹脂を120℃で溶解させた。その後、70℃まで降温し、アニオン重合系触媒を添加して30分間混合し、エポキシ樹脂組成物を得た。その他の工程は、実施例1と同様の工程によりプリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性を表2に示した。
(Comparative Example 4)
In Comparative Example 4, a prepreg was prepared using a phenoxy resin instead of using a polyarylate resin. The phenoxy resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 2. Then, the temperature was lowered to 70 ° C., an anionic polymerization catalyst was added, and the mixture was mixed for 30 minutes to obtain an epoxy resin composition. As for other steps, a prepreg was prepared by the same steps as in Example 1. Table 2 shows the mold releasability, moldability and storage stability of the obtained prepreg.
得られたプリプレグは、規定の時間内では硬化反応がほとんど進行せず、硬化物が得られなかった。 In the obtained prepreg, the curing reaction hardly proceeded within the specified time, and a cured product could not be obtained.
(比較例5)
表2に記載する割合で、攪拌機を用いてエポキシ樹脂にポリエーテルサルホン樹脂を120℃で溶解させた。その後、70℃まで降温し、硬化剤を添加して30分間混合し、エポキシ樹脂組成物を得た。その他の工程は、実施例1と同様の工程によりプリプレグを作製した。得られたプリプレグの離型性、成形性および保存安定性を表2に示した。
(Comparative Example 5)
The polyether sulfone resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 2. Then, the temperature was lowered to 70 ° C., a curing agent was added, and the mixture was mixed for 30 minutes to obtain an epoxy resin composition. As for other steps, a prepreg was prepared by the same steps as in Example 1. Table 2 shows the mold releasability, moldability and storage stability of the obtained prepreg.
得られたプリプレグは、規定の時間内では硬化反応が不十分であり、硬化物が得られなかった。 The obtained prepreg had an insufficient curing reaction within a specified time, and a cured product could not be obtained.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080986A JP2020176239A (en) | 2019-04-22 | 2019-04-22 | Epoxy resin composition, prepreg, method for producing prepreg, and method for producing fiber-reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080986A JP2020176239A (en) | 2019-04-22 | 2019-04-22 | Epoxy resin composition, prepreg, method for producing prepreg, and method for producing fiber-reinforced composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020176239A true JP2020176239A (en) | 2020-10-29 |
Family
ID=72937009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019080986A Pending JP2020176239A (en) | 2019-04-22 | 2019-04-22 | Epoxy resin composition, prepreg, method for producing prepreg, and method for producing fiber-reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020176239A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024090394A1 (en) * | 2022-10-24 | 2024-05-02 | 太陽ホールディングス株式会社 | Laminated structure, method for producing same, cured product, and electronic component |
WO2024090396A1 (en) * | 2022-10-24 | 2024-05-02 | 太陽ホールディングス株式会社 | Curable resin composition, multilayer structure, cured product and electronic component |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0551517A (en) * | 1991-08-23 | 1993-03-02 | Hitachi Chem Co Ltd | Thermosetting resin composition |
WO2017073549A1 (en) * | 2015-10-30 | 2017-05-04 | ユニチカ株式会社 | Polyarylate resin, method for preparing same, and polyarylate resin composition |
WO2017175716A1 (en) * | 2016-04-05 | 2017-10-12 | ユニチカ株式会社 | Polyarylate resin and resin composition of same |
WO2018020981A1 (en) * | 2016-07-28 | 2018-02-01 | Jsr株式会社 | Polymer, composition, molded article, cured product, and laminate |
WO2018199038A1 (en) * | 2017-04-25 | 2018-11-01 | ユニチカ株式会社 | Polyarylate resin and polyarylate resin composition |
-
2019
- 2019-04-22 JP JP2019080986A patent/JP2020176239A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0551517A (en) * | 1991-08-23 | 1993-03-02 | Hitachi Chem Co Ltd | Thermosetting resin composition |
WO2017073549A1 (en) * | 2015-10-30 | 2017-05-04 | ユニチカ株式会社 | Polyarylate resin, method for preparing same, and polyarylate resin composition |
WO2017175716A1 (en) * | 2016-04-05 | 2017-10-12 | ユニチカ株式会社 | Polyarylate resin and resin composition of same |
WO2018020981A1 (en) * | 2016-07-28 | 2018-02-01 | Jsr株式会社 | Polymer, composition, molded article, cured product, and laminate |
WO2018199038A1 (en) * | 2017-04-25 | 2018-11-01 | ユニチカ株式会社 | Polyarylate resin and polyarylate resin composition |
Non-Patent Citations (1)
Title |
---|
ユニチカ株式会社: "エポキシ樹脂の耐熱性・誘電特性を改良するポリアリレート樹脂低分子量タイプ『ユニファイナーVシリーズ』", ユニチカ株式会社プレスリリース, JPN7022005346, 22 March 2016 (2016-03-22), ISSN: 0005057986 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024090394A1 (en) * | 2022-10-24 | 2024-05-02 | 太陽ホールディングス株式会社 | Laminated structure, method for producing same, cured product, and electronic component |
WO2024090396A1 (en) * | 2022-10-24 | 2024-05-02 | 太陽ホールディングス株式会社 | Curable resin composition, multilayer structure, cured product and electronic component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6731987B2 (en) | Fiber reinforced plastic molding | |
US10647849B2 (en) | Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor | |
CN110536914A (en) | Sheet molding compound and fiber-reinforced composite material | |
JP7448409B2 (en) | prepreg | |
TWI782968B (en) | Method for producing fiber-reinforced plastic precursor and method for producing fiber-reinforced plastic | |
TWI540171B (en) | A resin composition, a resin sheet, a resin cured product, and a substrate | |
CN110114385B (en) | Curable epoxy resin composition and fiber-reinforced composite material using same | |
US11746445B2 (en) | Carbon fiber bundle, prepreg, and fiber-reinforced composite material | |
JPWO2020137945A1 (en) | Resin compositions, fiber reinforced plastic molding materials and moldings | |
JP2020176239A (en) | Epoxy resin composition, prepreg, method for producing prepreg, and method for producing fiber-reinforced composite material | |
JP2019157095A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
CN110621727B (en) | Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method for producing fiber-reinforced composite material | |
JP2013142123A (en) | Prepreg, and method for producing prepreg | |
JP7481160B2 (en) | Prepreg | |
JP2019156981A (en) | Prepreg, fiber reinforced composite material, and manufacturing method therefor | |
JP2020097694A (en) | Epoxy resin composition for fiber-reinforced composite material and preform for fiber-reinforced composite material and fiber-reinforced composite material | |
JP2019157096A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
JP2013142122A (en) | Prepreg, and method for producing prepreg | |
JP7538983B1 (en) | Prepreg and method for producing fiber-reinforced composite material using said prepreg | |
KR102184814B1 (en) | Epoxy resin composition having improved adhesion and fiber-rubber composite connecting material using the same | |
JP2021195473A (en) | Prepreg | |
JP2020169268A (en) | Epoxy compound, epoxy resin, epoxy resin composition, resin cured product, prepreg, fiber-reinforced composite material, and method for producing the same | |
JP2023149496A (en) | Epoxy resin composition, prepreg, fiber-reinforced composite material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230516 |