[go: up one dir, main page]

JP2020167209A - Method for manufacturing r-t-b based permanent magnet - Google Patents

Method for manufacturing r-t-b based permanent magnet Download PDF

Info

Publication number
JP2020167209A
JP2020167209A JP2019064239A JP2019064239A JP2020167209A JP 2020167209 A JP2020167209 A JP 2020167209A JP 2019064239 A JP2019064239 A JP 2019064239A JP 2019064239 A JP2019064239 A JP 2019064239A JP 2020167209 A JP2020167209 A JP 2020167209A
Authority
JP
Japan
Prior art keywords
base material
magnet base
diffuser sheet
sheet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064239A
Other languages
Japanese (ja)
Other versions
JP7251264B2 (en
Inventor
清幸 増澤
Kiyoyuki Masuzawa
清幸 増澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019064239A priority Critical patent/JP7251264B2/en
Priority to CN202010217235.1A priority patent/CN111755235A/en
Publication of JP2020167209A publication Critical patent/JP2020167209A/en
Application granted granted Critical
Publication of JP7251264B2 publication Critical patent/JP7251264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a method for manufacturing an R-T-B based permanent magnet, by which a heavy rare earth element can be uniformly diffused into a magnet base material.SOLUTION: A method for manufacturing an R-T-B based permanent magnet comprises: a covering step of covering at least part of a surface of a magnet base material 2 with a diffusion material sheet 4 containing heavy rare earth elements and a binder; a heating step of softening the binder by heating the diffusion material sheet 4 covering the at least part of the surface of the magnet base material 2; a cooling step of hardening the binder by cooling the diffusion material sheet 4 after the heating step; and a diffusion step of diffusing the heavy rare earth element into the magnet base material 2 by heating the diffusion material sheet 4 and the magnet base material 2 after the cooling step. The magnet base material 2 contains rare earth elements R, transition metal elements T and boron, at least part of the rare earth elements R is neodymium, and at least part of the transition metal elements T is iron.SELECTED DRAWING: Figure 1

Description

本発明は、R‐T‐B系永久磁石の製造方法に関する。 The present invention relates to a method for producing an RTB-based permanent magnet.

希土類元素R(ネオジム等)と、遷移金属元素T(鉄等)と、ホウ素Bとを含有するR‐T‐B系永久磁石は、優れた磁気特性を有する。R‐T‐B系永久磁石の磁気特性を表す指標としては、一般的に、残留磁束密度Br(残留磁化)及び保磁力HcJが用いられる。 RTB-based permanent magnets containing a rare earth element R (neodymium or the like), a transition metal element T (iron or the like), and boron B have excellent magnetic properties. Generally, the residual magnetic flux density Br (residual magnetization) and the coercive force HcJ are used as indexes representing the magnetic characteristics of the RTB-based permanent magnets.

R‐T‐B系永久磁石は、ニュークリエーション型の永久磁石である。磁化方向と反対の磁場がニュークリエーション型の永久磁石へ印加されることにより、永久磁石を構成する多数の結晶粒子(主相粒子)の粒界近傍において磁化反転の核が発生し易い。この磁化反転の核により、永久磁石の保磁力が減少する。またR‐T‐B系永久磁石の保磁力は、温度の上昇に伴って減少する。モータ又は発電機等に使用されるR‐T‐B系永久磁石には、高温の環境下においても高い保磁力を有することが要求される。 The RTB-based permanent magnet is a new creation type permanent magnet. By applying a magnetic field opposite to the magnetization direction to the new creation type permanent magnet, magnetization reversal nuclei are likely to occur near the grain boundaries of a large number of crystal particles (main phase particles) constituting the permanent magnet. The core of this magnetization reversal reduces the coercive force of the permanent magnet. The coercive force of the RTB permanent magnet decreases as the temperature rises. RTB permanent magnets used in motors, generators, etc. are required to have a high coercive force even in a high temperature environment.

R‐T‐B系永久磁石の保磁力を向上させるために、ジスプロシウム等の重希土類元素がR‐T‐B系永久磁石へ添加される。重希土類元素の添加により異方性磁界が向上し、磁化反転核が発生し難くなるので、保磁力が増加する。近年では、より少ない量の重希土類元素で高い保磁力を得るために、粒界拡散法が利用されている。磁石表面から、重希土類元素を粒界に沿って拡散させることにより、異方性磁界が粒界近傍において局所的に大きくなり易く、磁化反転の核が粒界近傍において発生し難くなり、保磁力が増加する。 Heavy rare earth elements such as dysprosium are added to the RTB permanent magnets in order to improve the coercive force of the RTB permanent magnets. The addition of heavy rare earth elements improves the anisotropic magnetic field and makes it difficult for magnetization reversal nuclei to occur, thus increasing the coercive force. In recent years, the grain boundary diffusion method has been used to obtain a high coercive force with a smaller amount of heavy rare earth elements. By diffusing heavy rare earth elements along the grain boundaries from the magnet surface, the anisotropic magnetic field tends to grow locally near the grain boundaries, making it difficult for magnetization reversal nuclei to occur near the grain boundaries, and the coercive force. Will increase.

例えば、下記特許文献1に記載のR‐T‐B系永久磁石の製造方法では、重希土類元素の化合物(フッ化物および/または酸フッ化物)及び樹脂成分を含むシート(成形体)が用いられる。下記特許文献2に記載のR‐T‐B系永久磁石の製造方法では、重希土類元素の酸化物及び樹脂成分を含むシート(成形体)が用いられる。シートが磁石基材の表面に配置された状態で、磁石基材を焼結温度以下の温度で加熱することにより、シート中の重希土類元素が焼結体内へ拡散する。 For example, in the method for producing an RTB-based permanent magnet described in Patent Document 1 below, a sheet (molded body) containing a compound of a heavy rare earth element (fluoride and / or acid fluoride) and a resin component is used. .. In the method for producing an RTB-based permanent magnet described in Patent Document 2 below, a sheet (molded product) containing an oxide of a heavy rare earth element and a resin component is used. By heating the magnet base material at a temperature equal to or lower than the sintering temperature while the sheet is arranged on the surface of the magnet base material, the heavy rare earth elements in the sheet are diffused into the sintered body.

国際公開第2016/093173号パンフレットInternational Publication No. 2016/093173 Pamphlet 国際公開第2016/093174号パンフレットInternational Publication No. 2016/093174 Pamphlet

重希土類元素を含むシートが磁石基材の表面に配置される場合、シートが磁石基材の表面に十分に密着せず、シートと磁石基材の表面との間に隙間が形成され易い。またシートが重ねられた磁石基材のハンドリングに伴って、シートの位置が所定の位置からずれたり、シートが磁石基材の表面から剥離したりする。これらの問題に因り、シート中の重希土類元素が磁石基材の表面へ均一に拡散し難い。その結果、R‐T‐B系永久磁石の組成及び磁気特性がばらつき、R‐T‐B系永久磁石の保磁力が十分に向上しない。上記の問題は、磁石基材の表面が曲面である場合に顕著である。 When a sheet containing a heavy rare earth element is arranged on the surface of the magnet base material, the sheet does not sufficiently adhere to the surface of the magnet base material, and a gap is likely to be formed between the sheet and the surface of the magnet base material. Further, with the handling of the magnet base material on which the sheets are stacked, the position of the sheet deviates from a predetermined position, or the sheet peels off from the surface of the magnet base material. Due to these problems, it is difficult for the heavy rare earth elements in the sheet to diffuse uniformly to the surface of the magnet base material. As a result, the composition and magnetic characteristics of the RTB-based permanent magnets vary, and the coercive force of the RTB-based permanent magnets is not sufficiently improved. The above problem is remarkable when the surface of the magnet base material is a curved surface.

本発明は、上記事情に鑑みてなされたものであり、重希土類元素を磁石基材の内部へ均一に拡散させることができるR‐T‐B系永久磁石の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing an RTB-based permanent magnet capable of uniformly diffusing heavy rare earth elements into a magnet base material. To do.

本発明の一側面に係るR‐T‐B系永久磁石の製造方法は、磁石基材の表面の少なくとも一部を、重希土類元素及びバインダを含む拡散材シートで覆う被覆工程と、磁石基材の表面の少なくとも一部を覆う拡散材シートを加熱することにより、バインダを軟化させる加熱工程と、加熱工程後、拡散材シートを冷却することにより、バインダを硬化させる冷却工程と、冷却工程後、拡散材シート及び磁石基材を加熱することにより、重希土類元素を磁石基材内へ拡散させる拡散工程とを備え、磁石基材が、希土類元素R、遷移金属元素T、及びホウ素を含み、少なくとも一部の希土類元素Rが、ネオジムであり、少なくとも一部の遷移金属元素Tが、鉄である。 The method for producing an RTB-based permanent magnet according to one aspect of the present invention includes a coating step of covering at least a part of the surface of the magnet base material with a diffuser sheet containing a heavy rare earth element and a binder, and a magnet base material. A heating step that softens the binder by heating a diffuser sheet that covers at least a part of the surface of the magnet, a cooling step that cures the binder by cooling the diffuser sheet after the heating step, and a cooling step. The magnet base material comprises a diffusion step of diffusing the heavy rare earth element into the magnet base material by heating the diffuser sheet and the magnet base material, and the magnet base material contains at least the rare earth element R, the transition metal element T, and boron. Some rare earth elements R are neodymium, and at least some transition metal elements T are iron.

R‐T‐B系永久磁石の製造方法は、冷却工程後、拡散材シート及び磁石基材を加熱炉内へ搬送する搬送工程を更に備えてよく、加熱炉内において拡散工程が実施されてよい。 The method for manufacturing the RTB-based permanent magnet may further include a transfer step of transporting the diffusing material sheet and the magnet base material into the heating furnace after the cooling step, and the diffusion step may be carried out in the heating furnace. ..

冷却工程では、拡散材シートが冷却されながら、拡散材シート及び磁石基材が加熱炉内へ搬送されてよく、加熱炉内において拡散工程が実施されてよい。 In the cooling step, the diffusing material sheet and the magnet base material may be conveyed into the heating furnace while the diffusing material sheet is being cooled, and the diffusing step may be carried out in the heating furnace.

加熱工程では、拡散材シート及び磁石基材のうち少なくとも一方を加圧することにより、拡散材シート及び磁石基材を互いに密着させてよい。 In the heating step, the diffuser sheet and the magnet base material may be brought into close contact with each other by pressurizing at least one of the diffuser sheet and the magnet base material.

冷却工程では、拡散材シート及び磁石基材のうち少なくとも一方を加圧することにより、拡散材シート及び磁石基材を互いに密着させてよい。 In the cooling step, the diffuser sheet and the magnet base material may be brought into close contact with each other by pressurizing at least one of the diffuser sheet and the magnet base material.

フィルムとフィルムに重なる拡散材シートとを含む積層体が用いられてよく、被覆工程では、拡散材シートが磁石基材の表面に接するように、磁石基材の表面の少なくとも一部が積層体で覆われてよく、磁石基材の表面の少なくとも一部が積層体で覆われた状態において、加熱工程及び冷却工程が実施されてよい。 A laminate containing a film and a diffuser sheet that overlaps the film may be used, and in the coating step, at least a part of the surface of the magnet substrate is a laminate so that the diffuser sheet is in contact with the surface of the magnet substrate. The heating step and the cooling step may be carried out in a state where the magnet base material may be covered and at least a part of the surface of the magnet base material is covered with the laminate.

冷却工程後、フィルムが拡散材シートから剥離及び除去されてよく、フィルムの除去後、拡散工程が実施されてよい。 After the cooling step, the film may be peeled and removed from the diffusing material sheet, and after the film is removed, the diffusing step may be carried out.

磁石基材の表面の少なくとも一部が積層体で覆われた状態において、拡散工程が更に実施されてよい。 The diffusion step may be further carried out in a state where at least a part of the surface of the magnet base material is covered with the laminate.

フィルムとフィルムに重なる拡散材シートとを含む積層体が用いられてよく、拡散材シートの第一表面は、積層体においてフィルムに接しない表面であってよく、拡散材シートの第二表面は、積層体においてフィルムに接する表面であってよく、被覆工程前に、フィルムが拡散材シートから剥離及び除去されてよく、被覆工程では、第二表面が磁石基材の表面に接するように、磁石基材の表面の少なくとも一部が拡散材シートで覆われてよい。 A laminate containing a film and a diffuser sheet overlapping the film may be used, the first surface of the diffuser sheet may be a surface of the laminate that does not contact the film, and the second surface of the diffuser sheet may be. The surface of the laminate may be in contact with the film, the film may be peeled off and removed from the diffusing material sheet before the coating step, and in the coating step, the magnet group so that the second surface is in contact with the surface of the magnet base material. At least a part of the surface of the material may be covered with a diffuser sheet.

フィルムとフィルムに重なる拡散材シートとを含む積層体が用いられてよく、拡散材シートの第一表面は、積層体においてフィルムに接しない表面であってよく、拡散材シートの第二表面は、積層体においてフィルムに接する表面であってよく、被覆工程前に、フィルムが拡散材シートから剥離及び除去されてよく、被覆工程では、第一表面が磁石基材の表面に接するように、磁石基材の表面の少なくとも一部が拡散材シートで覆われてよい。 A laminate containing a film and a diffuser sheet overlapping the film may be used, the first surface of the diffuser sheet may be a surface of the laminate that does not contact the film, and the second surface of the diffuser sheet may be. The surface of the laminate may be in contact with the film, the film may be peeled off and removed from the diffusing material sheet before the coating step, and in the coating step, the magnet group so that the first surface is in contact with the surface of the magnet base material. At least a part of the surface of the material may be covered with a diffuser sheet.

本発明によれば、重希土類元素を磁石基材の内部へ均一に拡散させることができるR‐T‐B系永久磁石の製造方法が提供される。 According to the present invention, there is provided a method for producing an RTB-based permanent magnet capable of uniformly diffusing heavy rare earth elements into a magnet base material.

図1中の(a)、図1中の(b)及び図1中の(c)は、本実施形態に係るR‐T‐B系永久磁石の製造方法における被覆工程、加熱工程及び冷却工程の概要を示す。(A) in FIG. 1, (b) in FIG. 1, and (c) in FIG. 1 are a coating step, a heating step, and a cooling step in the method for manufacturing an RTB-based permanent magnet according to the present embodiment. The outline of is shown. 図2中の(a)、図2中の(b)及び図2中の(c)は、本実施形態に係るR‐T‐B系永久磁石の製造方法における被覆工程、加熱工程及び冷却工程の概要を示す。(A) in FIG. 2, (b) in FIG. 2, and (c) in FIG. 2 are a coating step, a heating step, and a cooling step in the method for manufacturing an RTB-based permanent magnet according to the present embodiment. The outline of is shown.

以下、図面を参照しながら、本発明の好適な実施形態が説明される。図面において、同等の構成要素には同等の符号が付される。本発明は下記実施形態に限定されるものではない。以下に記載の「永久磁石」はいずれも、「R‐T‐B系永久磁石」を意味する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, equivalent components are labeled with equivalent reference numerals. The present invention is not limited to the following embodiments. All of the "permanent magnets" described below mean "RTB-based permanent magnets".

[原料合金の調製工程]
原料合金の調製工程では、永久磁石を構成する各元素を含む金属原料から、合金材が作製される。原料合金は、ストリップキャスティング法、ブックモールド法、又は遠心鋳造法によって作製されてよい。金属原料は、例えば、希土類元素の単体(金属単体)、希土類元素を含む合金、純鉄、フェロボロン、又はこれらを含む合金であってよい。これらの金属原料は、所望の磁石基材の組成に一致するように秤量される。原料合金として、組成が異なる二種以上の合金が作製されてもよい。
[Preparation process of raw material alloy]
In the process of preparing the raw material alloy, an alloy material is produced from a metal raw material containing each element constituting a permanent magnet. The raw material alloy may be produced by a strip casting method, a book molding method, or a centrifugal casting method. The metal raw material may be, for example, a simple substance of a rare earth element (elemental substance of a metal), an alloy containing a rare earth element, pure iron, ferrobolon, or an alloy containing these. These metal raw materials are weighed to match the desired composition of the magnetic substrate. As the raw material alloy, two or more alloys having different compositions may be produced.

原料合金は、少なくとも希土類元素R、遷移金属元素T、及びホウ素(B)を含む。 The raw material alloy contains at least a rare earth element R, a transition metal element T, and boron (B).

原料合金に含まれる少なくとも一部のRは、ネオジム(Nd)である。永久磁石は、他のRとして、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群より選ばれる少なくとも一種を更に含んでよい。原料合金はPrを含んでよい。原料合金はPrを含まなくてもよい。原料合金はTb及びDyのうち一方又は両方を含んでよい。原料合金はTb及びDyのうち一方又は両方を含まなくてもよい。 At least a part of R contained in the raw material alloy is neodymium (Nd). Other Rs of the permanent magnet are scandium (Sc), ittrium (Y), lantern (La), cerium (Ce), placeozim (Pr), promethium (Pm), samarium (Sm), europium (Eu), and gadolinium. Further comprises at least one selected from the group consisting of (Gd), terbium (Tb), displosium (Dy), holmium (Ho), erbium (Er), samarium (Tm), itterbium (Yb), and lutetium (Lu). It's fine. The raw material alloy may contain Pr. The raw material alloy does not have to contain Pr. The raw material alloy may contain one or both of Tb and Dy. The raw material alloy may not contain one or both of Tb and Dy.

原料合金に含まれる少なくとも一部の遷移金属元素Tは、鉄(Fe)である。Tは、Fe及びコバルト(Co)であってもよい。全てのTがFeであってよい。全てのTが、Fe及びCoであってよい。原料合金は、Fe及びCo以外の他の遷移金属元素を更に含んでよい。以下に記載のTは、Feのみ、又はFe及びCoを意味する。 At least a part of the transition metal element T contained in the raw material alloy is iron (Fe). T may be Fe and cobalt (Co). All Ts may be Fe. All Ts may be Fe and Co. The raw material alloy may further contain other transition metal elements other than Fe and Co. The T described below means Fe only, or Fe and Co.

原料合金は、R、T及びBに加えて他の元素を更に含んでよい。例えば、原料合金は、他の元素として、銅(Cu)、ガリウム(Ga)、アルミニウム(Al)、ジルコニウム(Zr)、マンガン(Mn)、炭素(C)、窒素(N)、酸素(O)、カルシウム(Ca)、ニッケル(Ni)、銅(Cu)、ケイ素(Si)、塩素(Cl)、硫黄(S)及びフッ素(F)からなる群より選ばれる少なくとも一種を含んでもよい。 The raw material alloy may further contain other elements in addition to R, T and B. For example, the raw material alloy has other elements such as copper (Cu), gallium (Ga), aluminum (Al), zirconium (Zr), manganese (Mn), carbon (C), nitrogen (N), and oxygen (O). , Calcium (Ca), Nickel (Ni), Copper (Cu), Silicon (Si), Chlorine (Cl), Sulfur (S) and Fluorine (F) may contain at least one selected from the group.

[粉砕工程]
粉砕工程では、上記の原料合金を非酸化的雰囲気中で粉砕することにより、合金粉末が調製されてよい。原料合金は、粗粉砕工程及び微粉砕工程の二段階で粉砕されてよい。粗粉砕工程では、例えば、スタンプミル、ジョークラッシャー、又はブラウンミル等の粉砕方法が用いられてよい。粗粉砕工程は、不活性ガス雰囲気中で行われてよい。水素を原料合金へ吸蔵させた後、原料合金が粉砕されてよい。つまり、粗粉砕工程として水素吸蔵粉砕が行われてもよい。粗粉砕工程においては、原料合金は、その粒径が数百μm程度となるまで粉砕されてよい。粗粉砕工程に続く微粉砕工程では、粗粉砕工程を経た原料合金は、その平均粒径が数μmとなるまで更に粉砕されてよい。微粉砕工程では、例えば、ジェットミルが用いられてよい。原料合金は、一段階の粉砕工程のみによって粉砕されてもよい。例えば、微粉砕工程のみが行われてもよい。複数種の原料合金が用いられる場合、各原料合金が別々に粉砕された後、各原料合金が混合されてもよい。合金粉末は、脂肪酸、脂肪酸エステル及び脂肪酸の金属塩(金属石鹸)からなる群より選ばれる少なくとも一種の潤滑剤(粉砕助剤)を含んでいてよい。換言すれば、原料合金は粉砕助剤と共に粉砕されてよい。
[Crushing process]
In the pulverization step, an alloy powder may be prepared by pulverizing the above-mentioned raw material alloy in a non-oxidizing atmosphere. The raw material alloy may be pulverized in two steps, a coarse pulverization step and a fine pulverization step. In the coarse crushing step, for example, a crushing method such as a stamp mill, a jaw crusher, or a brown mill may be used. The coarse grinding step may be carried out in an inert gas atmosphere. After storing hydrogen in the raw material alloy, the raw material alloy may be crushed. That is, hydrogen storage pulverization may be performed as a coarse pulverization step. In the rough pulverization step, the raw material alloy may be pulverized until its particle size becomes about several hundred μm. In the fine pulverization step following the coarse pulverization step, the raw material alloy that has undergone the coarse pulverization step may be further pulverized until its average particle size becomes several μm. In the pulverization step, for example, a jet mill may be used. The raw material alloy may be milled by only a one-step milling step. For example, only the pulverization step may be performed. When a plurality of types of raw material alloys are used, each raw material alloy may be mixed after being separately pulverized. The alloy powder may contain at least one lubricant (grinding aid) selected from the group consisting of fatty acids, fatty acid esters and metal salts of fatty acids (metal soaps). In other words, the raw material alloy may be milled with the milling aid.

[成形工程]
成形工程では、上記の合金粉末を磁場中で成形することにより、磁場に沿って配向した合金粉末を含む成形体が得られてよい。例えば、金型内の合金粉末に磁場を印加しながら、合金粉末を金型で加圧することにより、成形体が得られてよい。金型が合金粉末に及ぼす圧力は、20MPa以上300MPa以下であってよい。合金粉末に印加される磁場の強さは、950kA/m以上1600kA/m以下であってよい。
[Molding process]
In the molding step, by molding the above alloy powder in a magnetic field, a molded product containing the alloy powder oriented along the magnetic field may be obtained. For example, a molded product may be obtained by pressurizing the alloy powder with the mold while applying a magnetic field to the alloy powder in the mold. The pressure exerted by the mold on the alloy powder may be 20 MPa or more and 300 MPa or less. The strength of the magnetic field applied to the alloy powder may be 950 kA / m or more and 1600 kA / m or less.

[焼結工程]
焼結工程では、上述の成形体を真空又は不活性ガス雰囲気中で焼結することにより、焼結体が得られてよい。焼結条件は、目的とする永久磁石の組成、原料合金の粉砕方法及び粒度等に応じて、適宜設定されてよい。焼結温度は、例えば、1000℃以上1200℃以下であってよい。焼結時間は、1時間以上20時間以下であってよい。
[Sintering process]
In the sintering step, a sintered body may be obtained by sintering the above-mentioned molded product in a vacuum or an atmosphere of an inert gas. The sintering conditions may be appropriately set according to the composition of the target permanent magnet, the crushing method of the raw material alloy, the particle size, and the like. The sintering temperature may be, for example, 1000 ° C. or higher and 1200 ° C. or lower. The sintering time may be 1 hour or more and 20 hours or less.

[時効処理工程]
時効処理工程では、焼結体が焼結温度よりも低温で加熱されてよい。時効処理工程では、焼結体が真空又は不活性ガス雰囲気中で加熱されてよい。後述される拡散工程が時効処理工程を兼ねていてよい。その場合、拡散工程とは別の時効処理工程は実施されなくてよい。時効処理工程は、第一時効処理と、第一時効処理に続く第二処理とから構成されていてよい。第一時効処理は、焼結体が700℃以上900℃以下の温度で加熱されてよい。第一時効処理の時間は、1時間以上10時間以下であってよい。第二時効処理では、焼結体が500℃以上700℃以下の温度で加熱されてよい。第二時効処理の時間は、1時間以上10時間以下であってよい。
[Aging process]
In the aging treatment step, the sintered body may be heated at a temperature lower than the sintering temperature. In the aging process, the sintered body may be heated in a vacuum or an atmosphere of an inert gas. The diffusion step described later may also serve as the aging treatment step. In that case, it is not necessary to carry out the aging treatment step different from the diffusion step. The aging treatment step may be composed of a first temporary aging treatment and a second treatment following the first temporary aging treatment. In the first temporary effect treatment, the sintered body may be heated at a temperature of 700 ° C. or higher and 900 ° C. or lower. The time of the first temporary effect treatment may be 1 hour or more and 10 hours or less. In the second aging treatment, the sintered body may be heated at a temperature of 500 ° C. or higher and 700 ° C. or lower. The time of the second aging treatment may be 1 hour or more and 10 hours or less.

以上の工程により、焼結体が得られる。焼結体は、後述される拡散工程に用いられる磁石基材である。磁石基材は、互いに焼結された複数の主相粒子を備える。主相粒子は、少なくともNd、Fe及びBを含む。主相粒子は、R14Bの結晶を含んでよく、少なくとも一部のRがNdであってよく、少なくとも一部のTがFeであってよい。主相粒子の一部又は全体は、R14Bの結晶(単結晶又は多結晶)のみからなっていてよい。R14Bは、例えば、NdFe14Bであってよい。NdFe14B中のNdの一部が、Pr、Tb及びDyのうち少なくとも一種で置換されていてよい。NdFe14B中のFeの一部が、Coで置換されていてよい。主相粒子は、R、T及びBに加えて上記の元素(原料合金に含まれ得る元素)を含んでもよい。磁石基材は、主相粒子の間に形成された粒界を備える。磁石基材は、粒界として複数の粒界三重点を備える。粒界三重点とは、少なくとも三つの主相粒子に囲まれた粒界である。磁石基材は、粒界として複数の二粒子粒界も備える。二粒子粒界は、隣り合う二つの主相粒子の間に位置する粒界である。粒界は、少なくともNdを含んでよく、粒界中のNdの含有量は主相粒子中のNdの含有量よりも大きくてよい。つまり粒界はNd‐rich相を含んでよい。粒界は、Ndに加えて、Fe及びBのうち少なくとも一種を含んでよい。 A sintered body is obtained by the above steps. The sintered body is a magnet base material used in the diffusion step described later. The magnetic substrate comprises a plurality of main phase particles sintered from each other. The main phase particles contain at least Nd, Fe and B. The main phase particles may contain crystals of R 2 T 14 B, at least a portion of R may be Nd, and at least a portion of T may be Fe. Some or all of the main phase particles may consist only crystals of R 2 T 14 B (monocrystalline or polycrystalline). R 2 T 14 B may be, for example, Nd 2 Fe 14 B. A part of Nd in Nd 2 Fe 14 B may be replaced with at least one of Pr, Tb and Dy. A part of Fe in Nd 2 Fe 14 B may be replaced with Co. The main phase particles may contain the above elements (elements that can be contained in the raw material alloy) in addition to R, T and B. The magnetic substrate comprises grain boundaries formed between the main phase particles. The magnet base material has a plurality of grain boundary triple points as grain boundaries. A grain boundary triple point is a grain boundary surrounded by at least three main phase particles. The magnet base material also includes a plurality of two-particle grain boundaries as grain boundaries. A two-particle grain boundary is a grain boundary located between two adjacent main phase particles. The grain boundaries may contain at least Nd, and the content of Nd in the grain boundaries may be larger than the content of Nd in the main phase particles. That is, the grain boundaries may include the Nd-rich phase. The grain boundaries may include at least one of Fe and B in addition to Nd.

主相粒子の平均粒子径は、特に限定されないが、例えば、1.0μm以上10.0μm以下であってよい。磁石基材における主相粒子の体積の割合の合計値は、特に限定されないが、例えば、75体積%以上100体積%未満であってよい。 The average particle size of the main phase particles is not particularly limited, but may be, for example, 1.0 μm or more and 10.0 μm or less. The total value of the volume ratio of the main phase particles in the magnet base material is not particularly limited, but may be, for example, 75% by volume or more and less than 100% by volume.

[被覆工程、加熱工程、冷却工程及び拡散工程]
本実施形態に係るR‐T‐B系永久磁石の製造方法は、上記の工程に加えて、被覆工程、加熱工程、冷却工程及び拡散工程を備える。以下では、各工程が図面を参照しながら説明される。図1中の(a)及び図2中の(a)は、拡散材シート4及びフィルム6其々の断面を示し、これらの断面は、拡散材シート4及びフィルム6其々の表面に垂直である。図1中の(b)及び図1中の(c)は、拡散材シート4、フィルム6及び磁石基材2其々の断面を示し、これらの断面は、拡散材シート4、フィルム6及び磁石基材2其々の表面に垂直である。図2中の(b)及び図2中の(c)は、拡散材シート4及び磁石基材2其々の断面を示し、これらの断面は、拡散材シート4及び磁石基材2其々の表面に垂直である。
[Coating process, heating process, cooling process and diffusion process]
The method for manufacturing an RTB-based permanent magnet according to the present embodiment includes a coating step, a heating step, a cooling step, and a diffusion step in addition to the above steps. In the following, each step will be described with reference to the drawings. (A) in FIG. 1 and (a) in FIG. 2 show cross sections of the diffuser sheet 4 and the film 6 respectively, and these cross sections are perpendicular to the surfaces of the diffuser sheet 4 and the film 6 respectively. is there. (B) in FIG. 1 and (c) in FIG. 1 show cross sections of the diffuser sheet 4, the film 6 and the magnet base material 2, respectively, and these cross sections are the diffuser sheet 4, the film 6 and the magnet. The base material 2 is perpendicular to the surface of each. (B) in FIG. 2 and (c) in FIG. 2 show cross sections of the diffuser sheet 4 and the magnet base material 2, and these cross sections are the cross sections of the diffuser sheet 4 and the magnet base material 2, respectively. It is perpendicular to the surface.

被覆工程では、磁石基材2の表面の少なくとも一部が、拡散材シート4で覆われる。拡散材シート4は、少なくとも重希土類元素及びバインダを含む。重希土類元素は、例えば、Tb及びDyのうち少なくとも一つの元素であってよい。上述の通り、磁石基材2は、希土類元素R、遷移金属元素T、及びホウ素を含む。少なくとも一部の希土類元素Rは、ネオジムであり、少なくとも一部の遷移金属元素Tは、鉄である。 In the coating step, at least a part of the surface of the magnet base material 2 is covered with the diffuser sheet 4. The diffusing material sheet 4 contains at least heavy rare earth elements and a binder. The heavy rare earth element may be, for example, at least one element of Tb and Dy. As described above, the magnet base material 2 contains a rare earth element R, a transition metal element T, and boron. At least some rare earth elements R are neodymium, and at least some transition metal elements T are iron.

磁石基材2の表面の一部のみが、拡散材シート4で覆われてよい。磁石基材2の表面全体が、拡散材シート4で覆われてもよい。磁石基材2が複数の面を有する場合、磁石基材2の一つの面のみが拡散材シート4で覆われてもよい。磁石基材2が複数の面を有する場合、磁石基材2の複数の面が拡散材シート4で覆われてもよい。例えば、磁石基材2の主面と主面の裏面の両面が拡散材シート4で覆われてよい。磁石基材2が複数の面を有する場合、磁石基材2の全ての面が拡散材シート4で覆われてもよい。 Only a part of the surface of the magnet base material 2 may be covered with the diffuser sheet 4. The entire surface of the magnet base material 2 may be covered with the diffuser sheet 4. When the magnet base material 2 has a plurality of surfaces, only one surface of the magnet base material 2 may be covered with the diffuser sheet 4. When the magnet base material 2 has a plurality of surfaces, the plurality of surfaces of the magnet base material 2 may be covered with the diffuser sheet 4. For example, both the main surface of the magnet base material 2 and the back surface of the main surface may be covered with the diffuser sheet 4. When the magnet base material 2 has a plurality of surfaces, all the surfaces of the magnet base material 2 may be covered with the diffuser sheet 4.

加熱工程では、磁石基材2の表面を覆う拡散材シート4を加熱することにより、バインダを軟化させる。バインダの軟化により、拡散材シート4が磁石基材2の表面における凹部及び凸部に沿って変形して、拡散材シート4が磁石基材2の表面に密着する。つまり、バインダの軟化により、拡散材シート4と磁石基材2の表面との間の隙間が減少する。加熱工程では、磁石基材2及び拡散材シート4の両方が加熱されてよい。磁石基材2及び拡散材シート4のうち一方のみが加熱されてよい。加熱方法は任意であってよい。加熱工程における拡散材シート4の温度が高過ぎる場合、拡散材シート4の保形力が不足し、また冷却工程の効率が低下する。したがって、拡散材シート4の温度は高過ぎないほうがよく、拡散材シート4の最適温度がある。つまり、バインダの組成及び軟化温度並びに拡散材シート4の保形力に応じて、加熱工程における拡散材シート4の温度が調整されてよい。加熱工程における拡散材シート4の温度は、例えば、60℃以上250℃以下であってよい。 In the heating step, the binder is softened by heating the diffuser sheet 4 that covers the surface of the magnet base material 2. Due to the softening of the binder, the diffuser sheet 4 is deformed along the concave and convex portions on the surface of the magnet base material 2, and the diffuser sheet 4 comes into close contact with the surface of the magnet base material 2. That is, the softening of the binder reduces the gap between the diffuser sheet 4 and the surface of the magnet base material 2. In the heating step, both the magnet base material 2 and the diffusing material sheet 4 may be heated. Only one of the magnet base material 2 and the diffuser sheet 4 may be heated. The heating method may be arbitrary. If the temperature of the diffusing material sheet 4 in the heating step is too high, the shape-retaining power of the diffusing material sheet 4 is insufficient, and the efficiency of the cooling step is lowered. Therefore, the temperature of the diffusing material sheet 4 should not be too high, and there is an optimum temperature of the diffusing material sheet 4. That is, the temperature of the diffusing material sheet 4 in the heating step may be adjusted according to the composition and softening temperature of the binder and the shape-retaining power of the diffusing material sheet 4. The temperature of the diffusing material sheet 4 in the heating step may be, for example, 60 ° C. or higher and 250 ° C. or lower.

加熱工程では、拡散材シート4及び磁石基材2のうち少なくとも一方を加圧することにより、拡散材シート4及び磁石基材2を互いに密着させてよい。つまり、拡散材シート4の加熱と並行して、拡散材シート4及び磁石基材2のうち少なくとも一方が加圧されてよい。加圧により、拡散材シート4が磁石基材2の表面に更に密着する。拡散材シート4のみが加圧されてよい。磁石基材2のみが加圧されてよい。拡散材シート4及び磁石基材2を加圧手段で挟むことにより、拡散材シート4及び磁石基材2の両方が加圧されてよい。拡散材シート4が平面に設置された後、磁石基材2が拡散材シート4へ押し当てられてもよい。加熱工程において拡散材シート4に加わる圧力は、例えば、0.05MPa以上10MPa以下であってよい。 In the heating step, the diffuser sheet 4 and the magnet base material 2 may be brought into close contact with each other by pressurizing at least one of the diffuser sheet 4 and the magnet base material 2. That is, at least one of the diffuser sheet 4 and the magnet base material 2 may be pressurized in parallel with the heating of the diffuser sheet 4. By pressurizing, the diffusing material sheet 4 further adheres to the surface of the magnet base material 2. Only the diffuser sheet 4 may be pressurized. Only the magnet base material 2 may be pressurized. By sandwiching the diffuser sheet 4 and the magnet base material 2 with the pressurizing means, both the diffuser sheet 4 and the magnet base material 2 may be pressurized. After the diffuser sheet 4 is installed on a flat surface, the magnet base material 2 may be pressed against the diffuser sheet 4. The pressure applied to the diffusing material sheet 4 in the heating step may be, for example, 0.05 MPa or more and 10 MPa or less.

冷却工程では、加熱工程を経た拡散材シート4を冷却することにより、バインダを硬化させる。バインダの硬化により、拡散材シート4が磁石基材2の表面に密着した状態で拡散材シート4が固まる。つまり冷却工程により、拡散材シート4が磁石基材2の表面に接着され、拡散材シート4及び磁石基材2が一体化される。その結果、拡散材シート4が磁石基材2の表面に固定され、冷却工程以降において磁石基材2の表面からの拡散材シート4の剥離が抑制される。また冷却工程以降において磁石基材2の表面における拡散材シート4の位置ずれが抑制される。冷却工程では、拡散材シート4が室温下で冷却されてよい。 In the cooling step, the binder is cured by cooling the diffusing material sheet 4 that has undergone the heating step. By curing the binder, the diffuser sheet 4 is solidified in a state where the diffuser sheet 4 is in close contact with the surface of the magnet base material 2. That is, in the cooling step, the diffusing material sheet 4 is adhered to the surface of the magnet base material 2, and the diffusing material sheet 4 and the magnet base material 2 are integrated. As a result, the diffuser sheet 4 is fixed to the surface of the magnet base material 2, and peeling of the diffuser sheet 4 from the surface of the magnet base material 2 is suppressed after the cooling step. Further, after the cooling step, the displacement of the diffuser sheet 4 on the surface of the magnet base material 2 is suppressed. In the cooling step, the diffusing material sheet 4 may be cooled at room temperature.

冷却工程では、拡散材シート4及び磁石基材2のうち少なくとも一方を加圧することにより、拡散材シート4及び磁石基材2を互いに密着させてよい。つまり、拡散材シート4の冷却と並行して、拡散材シート4及び磁石基材2のうち少なくとも一方が加圧されてよい。加圧により、拡散材シート4が磁石基材2の表面に更に密着する。拡散材シート4のみが加圧されてよい。磁石基材2のみが加圧されてよい。拡散材シート4及び磁石基材2を加圧手段で挟むことにより、拡散材シート4及び磁石基材2の両方が加圧されてよい。拡散材シート4が平面に設置された後、磁石基材2が拡散材シート4へ押し当てられてもよい。 In the cooling step, the diffuser sheet 4 and the magnet base material 2 may be brought into close contact with each other by pressurizing at least one of the diffuser sheet 4 and the magnet base material 2. That is, at least one of the diffuser sheet 4 and the magnet base material 2 may be pressurized in parallel with the cooling of the diffuser sheet 4. By pressurizing, the diffusing material sheet 4 further adheres to the surface of the magnet base material 2. Only the diffuser sheet 4 may be pressurized. Only the magnet base material 2 may be pressurized. By sandwiching the diffuser sheet 4 and the magnet base material 2 with the pressurizing means, both the diffuser sheet 4 and the magnet base material 2 may be pressurized. After the diffuser sheet 4 is installed on a flat surface, the magnet base material 2 may be pressed against the diffuser sheet 4.

加熱工程及び冷却工程のうちのいずれか一方の工程のみにおいて、上記の加圧が実施されてよい。加熱工程及び冷却工程の両方の工程において、上記の加圧が実施されてもよい。 The above pressurization may be performed only in one of the heating step and the cooling step. The above pressurization may be performed in both the heating step and the cooling step.

上記の被覆工程では磁石基材2の一面が拡散材シート4で覆われるが、磁石基材2の二面が拡散材シート4で覆われてもよい。例えば、磁石基材2の対向する二面が拡散材シート4で覆われてよい。磁石基材2の異なる二面が拡散材シート4で覆われた後、上述の加熱工程及び冷却工程が実施されてよい。磁石基材2の一面が拡散材シート4で覆われた状態において加熱工程及び冷却工程が実施された後、さらに磁石基材2の別の面が拡散材シート4で覆われてよい。磁石基材2の別の面が拡散材シート4で覆われた後、加熱工程及び冷却工程が再び実施されてよい。磁石基材2の複数の面が拡散材シート4で覆われる場合、磁石基材2の一面ごとに被覆工程、加熱工程及び冷却工程が実施されてよい。磁石基材2の二つ以上の面が同時に拡散材シート4で覆われた後、加熱工程及び冷却工程が実施されてよい。 In the above coating step, one side of the magnet base material 2 is covered with the diffuser sheet 4, but two sides of the magnet base material 2 may be covered with the diffuser sheet 4. For example, the two opposing surfaces of the magnet base material 2 may be covered with the diffuser sheet 4. After the two different surfaces of the magnet base material 2 are covered with the diffuser sheet 4, the above-mentioned heating step and cooling step may be carried out. After the heating step and the cooling step are performed in a state where one surface of the magnet base material 2 is covered with the diffuser sheet 4, another surface of the magnet base material 2 may be further covered with the diffuser sheet 4. After another surface of the magnet base material 2 is covered with the diffuser sheet 4, the heating step and the cooling step may be performed again. When a plurality of surfaces of the magnet base material 2 are covered with the diffuser sheet 4, a coating step, a heating step, and a cooling step may be performed for each surface of the magnet base material 2. After the two or more surfaces of the magnet base material 2 are simultaneously covered with the diffuser sheet 4, the heating step and the cooling step may be performed.

拡散工程では、冷却工程を経た拡散材シート4及び磁石基材2を加熱することにより、重希土類元素を磁石基材2内へ拡散させる。拡散材シート4及び磁石基材2の加熱により、拡散材中の重希土類元素が磁石基材2の表面から磁石基材2の内部へ拡散する。磁石基材2の内部では、重希土類元素が粒界を介して、主相粒子の表面近傍へ拡散する。主相粒子の表面近傍において、一部の軽希土類元素(Nd等)が重希土類元素で置換される。重希土類元素が主相粒子の表面近傍及び粒界に局在することにより、異方性磁界が粒界の近傍において局所的に大きくなり、磁化反転の核が粒界の近傍において発生し難くなる。その結果、永久磁石の保磁力が増加する。 In the diffusion step, the heavy rare earth element is diffused into the magnet base material 2 by heating the diffuser sheet 4 and the magnet base material 2 that have undergone the cooling step. By heating the diffusing material sheet 4 and the magnet base material 2, the heavy rare earth elements in the diffusing material are diffused from the surface of the magnet base material 2 to the inside of the magnet base material 2. Inside the magnet base material 2, heavy rare earth elements diffuse to the vicinity of the surface of the main phase particles via grain boundaries. Some light rare earth elements (Nd, etc.) are replaced with heavy rare earth elements in the vicinity of the surface of the main phase particles. When the heavy rare earth element is localized near the surface of the main phase particles and at the grain boundaries, the anisotropic magnetic field becomes locally large near the grain boundaries, and it becomes difficult for magnetization reversal nuclei to occur near the grain boundaries. .. As a result, the coercive force of the permanent magnet increases.

仮に上記の加熱工程が実施されない場合、拡散材シート4が磁石基材2の表面に密着し難い。つまり、拡散材シート4と磁石基材2の表面との間の隙間が形成され易い。したがって、加熱工程を経ることなく拡散工程が実施された場合、拡散材シート4中の重希土類元素が磁石基材2の表面へ均一に拡散し難い。つまり、拡散材シート4の表面のうち磁石基材2の表面に接していない部分においては、重希土類元素が拡散材シート4から磁石基材2へ拡散し難い。その結果、重希土類元素が磁石基材2の内部へ十分に拡散せず、R‐T‐B系永久磁石の組成及び磁気特性がばらつき、R‐T‐B系永久磁石の保磁力が十分に向上しない。一方、本実施形態では加熱工程が実施されるので、拡散材シート4が磁石基材2の表面に均一に密着している。したがって、拡散工程において、拡散材シート4中の重希土類元素が磁石基材2の表面へ均一に拡散し易い。その結果、重希土類元素が磁石基材2の主相粒子の表面近傍及び粒界へ十分に拡散し、R‐T‐B系永久磁石の組成及び磁気特性のばらつきが抑制され、R‐T‐B系永久磁石の保磁力が十分に増加する。 If the above heating step is not performed, it is difficult for the diffuser sheet 4 to adhere to the surface of the magnet base material 2. That is, a gap between the diffuser sheet 4 and the surface of the magnet base material 2 is likely to be formed. Therefore, when the diffusion step is carried out without going through the heating step, it is difficult for the heavy rare earth elements in the diffuser sheet 4 to uniformly diffuse to the surface of the magnet base material 2. That is, it is difficult for heavy rare earth elements to diffuse from the diffusing material sheet 4 to the magnet base material 2 on the portion of the surface of the diffusing material sheet 4 that is not in contact with the surface of the magnet base material 2. As a result, the heavy rare earth elements are not sufficiently diffused into the magnet base material 2, the composition and magnetic properties of the RTB-based permanent magnets are varied, and the coercive force of the RTB-based permanent magnets is sufficient. Does not improve. On the other hand, since the heating step is carried out in this embodiment, the diffusing material sheet 4 is uniformly adhered to the surface of the magnet base material 2. Therefore, in the diffusion step, the heavy rare earth elements in the diffuser sheet 4 are likely to be uniformly diffused to the surface of the magnet base material 2. As a result, the heavy rare earth element is sufficiently diffused near the surface of the main phase particles of the magnet base material 2 and to the grain boundaries, and variations in the composition and magnetic characteristics of the RTB permanent magnet are suppressed, and the RT- The coercive force of the B-based permanent magnet is sufficiently increased.

仮に加熱工程後に冷却工程が実施されない場合、拡散材シート4が磁石基材2の表面に固定されない。その結果、加熱工程後の拡散材シート4及び磁石基材2のハンドリングに伴って、拡散材シート4の位置が所定の位置からずれたり、拡散材シート4が磁石基材2の表面から剥離したりする。これらの問題に因り、拡散工程において、拡散材シート4中の重希土類元素が磁石基材2の表面へ均一に拡散し難い。その結果、R‐T‐B系永久磁石の組成及び磁気特性がばらつき、R‐T‐B系永久磁石の保磁力が十分に向上しない。一方、本実施形態では冷却工程が実施されるので、拡散材シート4が磁石基材2の表面に密着した状態で拡散材シート4が磁石基材2の表面に固定される。したがって、冷却工程以降における拡散材シート4の位置ずれ及び剥離が抑制される。つまり、拡散工程においても拡散材シート4が所定に位置において磁石基材2の表面に均一に密着している。その結果、拡散材シート4中の重希土類元素が磁石基材2の表面へ均一に拡散し易く、R‐T‐B系永久磁石の組成及び磁気特性のばらつきが抑制され、R‐T‐B系永久磁石の保磁力が十分に増加する。 If the cooling step is not performed after the heating step, the diffuser sheet 4 is not fixed to the surface of the magnet base material 2. As a result, as the diffuser sheet 4 and the magnet base material 2 are handled after the heating step, the position of the diffuser sheet 4 shifts from a predetermined position, or the diffuser sheet 4 peels off from the surface of the magnet base material 2. Or Due to these problems, it is difficult for the heavy rare earth elements in the diffusing material sheet 4 to uniformly diffuse to the surface of the magnet base material 2 in the diffusing step. As a result, the composition and magnetic characteristics of the RTB-based permanent magnets vary, and the coercive force of the RTB-based permanent magnets is not sufficiently improved. On the other hand, since the cooling step is carried out in this embodiment, the diffuser sheet 4 is fixed to the surface of the magnet base material 2 in a state where the diffuser sheet 4 is in close contact with the surface of the magnet base material 2. Therefore, the displacement and peeling of the diffuser sheet 4 after the cooling step are suppressed. That is, even in the diffusion step, the diffusion material sheet 4 is uniformly adhered to the surface of the magnet base material 2 at a predetermined position. As a result, the heavy rare earth elements in the diffuser sheet 4 are easily diffused uniformly to the surface of the magnet base material 2, the variation in the composition and magnetic characteristics of the RTB permanent magnet is suppressed, and the RTB The coercive force of the system permanent magnet is sufficiently increased.

上述の通り、加熱工程が実施されない場合、そもそも拡散材シート4が隙間なく磁石基材2と一体化されないので、冷却工程の効果が表れない。拡散材シート4と磁石基材2との間の隙間を加熱工程によって解消した後で冷却工程を行うことにより、拡散材シート4を磁石基材2の表面に隙間なく固定することができる。つまり、加熱工程と冷却工程の相互作用によってはじめて、拡散材シート4を磁石基材2の表面に隙間なく固定することができる。 As described above, when the heating step is not carried out, the diffusing material sheet 4 is not integrated with the magnet base material 2 without any gaps, so that the effect of the cooling step is not exhibited. By eliminating the gap between the diffusing material sheet 4 and the magnet base material 2 by the heating step and then performing the cooling step, the diffusing material sheet 4 can be fixed to the surface of the magnet base material 2 without any gap. That is, the diffusing material sheet 4 can be fixed to the surface of the magnet base material 2 without a gap only by the interaction between the heating step and the cooling step.

拡散工程では、拡散材シート4及び磁石基材2が加熱炉内において加熱されてよい。拡散工程における磁石基材2の酸化を抑制するために、拡散材シート4が接着された磁石基材2が加熱炉内に設置された後、加熱炉内の雰囲気は真空又はアルゴン(Ar)等の不活性ガスになる。加熱炉内の雰囲気の制御に伴う排気及び/又は不活性ガスの導入により、加熱炉内の気圧が変化する。気圧の変化に伴って、加熱炉内には気流が生じる。仮に上記の加熱工程及び冷却工程が実施されていない場合、加熱炉内で生じた気流の影響によって、拡散材シート4が磁石基材2の表面から剥離し易い。しかし、本実施形態では加熱工程及び冷却工程が拡散工程前に実施されるので、拡散材シート4が磁石基材2の表面に均一に接着されている。その結果、気流の発生に伴う拡散材シート4の剥離が抑制され、拡散材シート4中の重希土類元素が磁石基材2の表面へ均一に拡散し易い。 In the diffusion step, the diffuser sheet 4 and the magnet base material 2 may be heated in the heating furnace. In order to suppress the oxidation of the magnet base material 2 in the diffusion step, after the magnet base material 2 to which the diffusing material sheet 4 is adhered is installed in the heating furnace, the atmosphere in the heating furnace is vacuum or argon (Ar) or the like. Becomes an inert gas. The air pressure in the heating furnace changes due to the introduction of exhaust gas and / or inert gas accompanying the control of the atmosphere in the heating furnace. An air flow is generated in the heating furnace as the air pressure changes. If the above heating step and cooling step are not performed, the diffuser sheet 4 is likely to be peeled off from the surface of the magnet base material 2 due to the influence of the air flow generated in the heating furnace. However, in the present embodiment, since the heating step and the cooling step are carried out before the diffusion step, the diffuser sheet 4 is uniformly adhered to the surface of the magnet base material 2. As a result, the peeling of the diffusing material sheet 4 due to the generation of the air flow is suppressed, and the heavy rare earth elements in the diffusing material sheet 4 are easily diffused uniformly to the surface of the magnet base material 2.

拡散工程における加熱炉内の雰囲気の温度は、例えば、800℃以上950℃以下であってよい。上記の温度において拡散材シート4及び磁石基材2が加熱される時間は、1時間以上50時間以下であってよい。上記の温度において拡散材シート及び磁石基材を加熱する前に、上記の温度よりも低温での拡散材シート4の加熱により、拡散材シート4中のバインダを焼失させてよい。つまり拡散工程の前段階として、脱バインダ処理が行われてよい。 The temperature of the atmosphere in the heating furnace in the diffusion step may be, for example, 800 ° C. or higher and 950 ° C. or lower. The time for heating the diffusing material sheet 4 and the magnet base material 2 at the above temperature may be 1 hour or more and 50 hours or less. Before heating the diffusing material sheet and the magnet base material at the above temperature, the binder in the diffusing material sheet 4 may be burnt down by heating the diffusing material sheet 4 at a temperature lower than the above temperature. That is, the binder removal treatment may be performed as a preliminary step of the diffusion step.

永久磁石の製造方法は、冷却工程後、拡散材シート4が接着された磁石基材2を加熱炉内へ搬送する搬送工程を更に備えてよい。搬送の過程において、拡散材シート4が接着された磁石基材2が、倉庫内で一時的に保管されてよい。搬送工程において拡散材シート4が他の物体と接触することにより、力が拡散材シート4に作用する可能性がある。また、搬送時の振動及び/又は加速により、力が拡散材シート4に作用する可能性もある。仮に冷却工程が実施されていない場合、搬送工程の途中で力が拡散材シート4に作用することにより、拡散材シート4の位置が所定の位置からずれたり、拡散材シート4が磁石基材2の表面から剥離したりする。しかし、加熱工程及び冷却工程が搬送工程前に実施されることにより、搬送工程における拡散材シート4の位置ずれ及び剥離が抑制される。同様の理由から、冷却工程では、拡散材シート4が冷却されながら、拡散材シート4及び磁石基材2が加熱炉内へ搬送されてよい。つまり搬送工程が冷却工程を兼ねていてよい。 The method for manufacturing a permanent magnet may further include a transfer step of transporting the magnet base material 2 to which the diffuser sheet 4 is adhered into the heating furnace after the cooling step. In the process of transportation, the magnet base material 2 to which the diffusing material sheet 4 is adhered may be temporarily stored in the warehouse. When the diffusing material sheet 4 comes into contact with another object in the transporting process, a force may act on the diffusing material sheet 4. Further, there is a possibility that a force acts on the diffusing material sheet 4 due to vibration and / or acceleration during transportation. If the cooling step is not carried out, the force acts on the diffusing material sheet 4 in the middle of the conveying process, so that the position of the diffusing material sheet 4 deviates from a predetermined position, or the diffusing material sheet 4 is the magnet base material 2. It peels off from the surface of the magnet. However, since the heating step and the cooling step are carried out before the transfer step, the misalignment and peeling of the diffuser sheet 4 in the transfer step are suppressed. For the same reason, in the cooling step, the diffuser sheet 4 and the magnet base material 2 may be conveyed into the heating furnace while the diffuser sheet 4 is being cooled. That is, the transfer process may also serve as the cooling process.

拡散材シート4は、以下の方法によって作製されてよい。以下に記載の拡散材は、少なくとも重希土類元素を含む化学物質である。拡散材は、粒子又は粉末であってよい。拡散材の粒径は、上述された粗粉砕工程及び微粉砕工程と同様の手段によって調整されてよい。拡散材のメジアン径D50は、例えば3μm以上15μm以下であってよい。 The diffuser sheet 4 may be produced by the following method. The diffusing materials described below are chemical substances containing at least heavy rare earth elements. The diffusing material may be particles or powder. The particle size of the diffusing material may be adjusted by the same means as in the coarse pulverization step and the fine pulverization step described above. The median diameter D50 of the diffusing material may be, for example, 3 μm or more and 15 μm or less.

バインダ及び有機溶剤を所定の比率で攪拌及び混合することにより、ラッカーが調製される。バインダは、熱可塑性樹脂であってよい。バインダは、例えば、エチルセルロース樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂及びアクリル樹脂からなる群より選ばれる少なくとも一種の化合物であってよい。複数種のバインダが用いられてよい。有機溶剤は、バインダが溶解する液体である限り限定されない。有機溶剤は、例えば、エタノール、ブタノール、オクタノール、メチルエチルケトン、キシレン、ブチルカルビトール、ターピネオール、及びジヒドロターピネオールならなる一種の化合物であってよい。複数種の有機溶剤が用いられてよい。拡散材をラッカーへ添加した後、これらが混合される。必要に応じて、可塑剤がラッカーへ更に添加されてよい。続いて拡散材及びラッカーの混合物の分散処理が行われる。分散処理の手段は、自転公転ミキサー、三本ロール、高圧ホモジナイザー、又は超音波ホモジナイザーであってよい。複数の手段を用いて、分散処理が行われてよい。 A lacquer is prepared by stirring and mixing the binder and the organic solvent in a predetermined ratio. The binder may be a thermoplastic resin. The binder may be, for example, at least one compound selected from the group consisting of ethyl cellulose resin, polyvinyl butyral resin, polyvinyl acetal resin and acrylic resin. Multiple types of binders may be used. The organic solvent is not limited as long as it is a liquid in which the binder dissolves. The organic solvent may be, for example, a kind of compound consisting of ethanol, butanol, octanol, methyl ethyl ketone, xylene, butyl carbitol, turpineol, and dihydro turpineol. Multiple types of organic solvents may be used. After adding the diffusing material to the lacquer, they are mixed. If necessary, a plasticizer may be further added to the lacquer. Subsequently, a dispersion treatment of the mixture of the diffusing material and the lacquer is performed. The means for the dispersion treatment may be a rotation / revolution mixer, a triple roll, a high-pressure homogenizer, or an ultrasonic homogenizer. Distributed processing may be performed using a plurality of means.

拡散材は、例えば、重希土類元素の単体、重希土類元素を含む合金、又は重希土類元素を含む化合物であってよい。重希土類元素を含む化合物は、例えば、水素化物、フッ化物及び酸化物からなる群より選ばれる少なくとも一種であってよい。重希土類元素の単体は、Tbの単体、及びDyの単体のうち一方又は両方であってよい。重希土類元素を含む合金は、Tb及びFeからなる合金、Dy及びFeからなる合金、及び、TbとDyとFeとからなる合金からなる群より選ばれる少なくとも一種であってよい。重希土類元素の水素化物は、例えば、TbH、TbH、Tb及びFeからなる合金の水素化物、DyH、DyH、Dy及びFeからなる合金の水素化物、及び、TbとDyとFeとからなる合金の水素化物ならなる群より選ばれる少なくとも一種であってよい。拡散材は、Nd、Pr及びCuからなる群より選ばれる少なくとも一種の元素を更に含んでよい。例えば、拡散材は、Ndの単体、Prの単体、Nd及びPrを含む合金、NdH、NdH、PrH、PrH、Nd及びPrを含む合金の水素化物、Cuの単体、Cuを含む合金、CuH、CuO及びCuOからなる群より選ばれる少なくとも一種を更に含んでよい。 The diffusing material may be, for example, a simple substance of a heavy rare earth element, an alloy containing a heavy rare earth element, or a compound containing a heavy rare earth element. The compound containing a heavy rare earth element may be, for example, at least one selected from the group consisting of hydrides, fluorides and oxides. The simple substance of the heavy rare earth element may be one or both of the simple substance of Tb and the simple substance of Dy. The alloy containing a heavy rare earth element may be at least one selected from the group consisting of an alloy composed of Tb and Fe, an alloy composed of Dy and Fe, and an alloy composed of Tb, Dy and Fe. The hydrides of heavy rare earth elements include, for example, hydrides of alloys consisting of TbH 2 , TbH 3 , Tb and Fe, hydrides of alloys consisting of DyH 2 , DyH 3 , Dy and Fe, and Tb, Dy and Fe. It may be at least one selected from the group consisting of hydrides of alloys consisting of. The diffusing material may further contain at least one element selected from the group consisting of Nd, Pr and Cu. For example, the diffuser contains a simple substance of Nd, a simple substance of Pr, an alloy containing Nd and Pr, a hydride of an alloy containing NdH 2 , NdH 3 , PrH 2 , PrH 3 , Nd and Pr, a simple substance of Cu, and Cu. alloy, CuH, may further comprise at least one selected from the group consisting of Cu 2 O and CuO.

以上の方法により、拡散材、バインダ及び有機溶剤を含むペーストが調製される。ペースト中の拡散材の含有量は、磁石基材2の厚み、永久磁石の設計上の組成、及びペーストの塗工性を考慮して、適宜調整されてよい。ペースト中のバインダの含有量は、ペーストの塗工性及び拡散材シート4の密着性を考慮して、適宜調整されてよい。ペーストの濾過により、粗大粒及び凝集物がペーストから除去されてよい。ペースト中の拡散材の含有量は、例えば、40質量%以上85質量%以下であってよい。ペースト中のバインダの含有量は、例えば、1質量%以上15質量%以下であってよい。ペースト中の有機溶剤の含有量は、例えば、10質量%以上59質量%以下であってよい。 By the above method, a paste containing a diffusing material, a binder and an organic solvent is prepared. The content of the diffusing material in the paste may be appropriately adjusted in consideration of the thickness of the magnet base material 2, the design composition of the permanent magnet, and the coatability of the paste. The content of the binder in the paste may be appropriately adjusted in consideration of the coatability of the paste and the adhesion of the diffusing material sheet 4. Coarse grains and agglomerates may be removed from the paste by filtering the paste. The content of the diffusing material in the paste may be, for example, 40% by mass or more and 85% by mass or less. The content of the binder in the paste may be, for example, 1% by mass or more and 15% by mass or less. The content of the organic solvent in the paste may be, for example, 10% by mass or more and 59% by mass or less.

ペーストをフィルム6の表面に塗布することにより、塗膜がフィルム6の表面に形成される。塗膜の厚みは一定であることが好ましい。フィルム6は、例えば、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、又はグラファイトからなっていてよい。ペーストが塗布されるフィルム6の表面は、予め離型剤(release agent)で覆われていてよい。ペーストの塗布方法は、塗膜の厚みを任意の値に制御し、且つ塗膜の厚みを一定に制御する方法であってよい。ペーストの塗布方法は、例えば、アプリケーター、ドクターブレード、バーコーター、インクジェットコーター、ロールコーター又はダイコーターであってよい。 By applying the paste to the surface of the film 6, a coating film is formed on the surface of the film 6. The thickness of the coating film is preferably constant. The film 6 may consist of, for example, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or graphite. The surface of the film 6 to which the paste is applied may be previously covered with a release agent. The method of applying the paste may be a method of controlling the thickness of the coating film to an arbitrary value and controlling the thickness of the coating film to be constant. The method of applying the paste may be, for example, an applicator, a doctor blade, a bar coater, an inkjet coater, a roll coater or a die coater.

上記の塗膜を乾燥して有機溶剤を塗膜から除去することにより、図1中の(a)に示される拡散材シート4が得られる。つまり、フィルム6とフィルム6に重なる拡散材シート4とを含む積層体8が得られる。拡散材シート4の第一表面4aは、積層体8においてフィルム6に接しない表面である。拡散材シート4の第二表面4bは、積層体8においてフィルム6に接する表面である。塗膜の乾燥方法は、例えば、赤外線加熱、熱風乾燥又は減圧乾燥であってよい。乾燥条件は、塗膜に含まれる有機溶剤の蒸気圧に応じて設定されてよい。有機溶剤が拡散材シート4中に残存してもよい。拡散材シート4の厚みは、例えば、5μm以上200μm以下であってよい。磁石基材2の厚みは拡散材シート4の厚みよりもはるかに大きい。磁石基材2の厚みは、例えば、0.5mm以上25mm以下であってよい。 By drying the coating film and removing the organic solvent from the coating film, the diffuser sheet 4 shown in FIG. 1A can be obtained. That is, the laminated body 8 including the film 6 and the diffuser sheet 4 overlapping the film 6 is obtained. The first surface 4a of the diffuser sheet 4 is a surface of the laminated body 8 that does not come into contact with the film 6. The second surface 4b of the diffusing material sheet 4 is the surface of the laminated body 8 in contact with the film 6. The method for drying the coating film may be, for example, infrared heating, hot air drying, or vacuum drying. The drying conditions may be set according to the vapor pressure of the organic solvent contained in the coating film. The organic solvent may remain in the diffusing material sheet 4. The thickness of the diffuser sheet 4 may be, for example, 5 μm or more and 200 μm or less. The thickness of the magnet base material 2 is much larger than the thickness of the diffuser sheet 4. The thickness of the magnet base material 2 may be, for example, 0.5 mm or more and 25 mm or less.

被覆工程において積層体8が用いられてよい。図1中の(b)に示されるように、被覆工程では、拡散材シート4が磁石基材2の表面に接するように、磁石基材2の表面の少なくとも一部が積層体8で覆われてよい。磁石基材2の表面の全体が積層体8で覆われてよい。磁石基材2の表面が積層体8で覆われた状態において、加熱工程及び冷却工程が実施されてよい。つまり、積層体8を用いた加熱工程及び冷却工程により、拡散材シート4がフィルム6から磁石基材2の表面へ転写されてよい。被覆工程において積層体8が用いられる場合、加熱工程及び冷却工程のうち少なくともいずれかにおいてフィルム6を介して拡散材シート4が加圧されてよい。磁石基材2が複数の面を有する場合、磁石基材2の一つの面のみが積層体8で覆われてもよい。磁石基材2が複数の面を有する場合、磁石基材2の複数の面が積層体8で覆われてもよい。例えば、磁石基材2の主面と主面の裏面の両面が積層体8で覆われてよい。磁石基材2が複数の面を有する場合、磁石基材2の全ての面が積層体8で覆われてもよい。 The laminate 8 may be used in the coating step. As shown in FIG. 1B, in the coating step, at least a part of the surface of the magnet base material 2 is covered with the laminate 8 so that the diffuser sheet 4 is in contact with the surface of the magnet base material 2. You can. The entire surface of the magnet base material 2 may be covered with the laminate 8. The heating step and the cooling step may be carried out in a state where the surface of the magnet base material 2 is covered with the laminate 8. That is, the diffusing material sheet 4 may be transferred from the film 6 to the surface of the magnet base material 2 by the heating step and the cooling step using the laminated body 8. When the laminate 8 is used in the coating step, the diffusing material sheet 4 may be pressurized via the film 6 in at least one of the heating step and the cooling step. When the magnet base material 2 has a plurality of surfaces, only one surface of the magnet base material 2 may be covered with the laminate 8. When the magnet base material 2 has a plurality of surfaces, the plurality of surfaces of the magnet base material 2 may be covered with the laminate 8. For example, both the main surface of the magnet base material 2 and the back surface of the main surface may be covered with the laminate 8. When the magnet base material 2 has a plurality of surfaces, all the surfaces of the magnet base material 2 may be covered with the laminate 8.

図1中の(c)に示されるように、冷却工程後、フィルム6が拡散材シート4から剥離及び除去されてよい。冷却工程後、拡散材シート4は、磁石基材2の表面に接着され、拡散材シート4及び磁石基材2が一体化される。したがって、冷却工程後にフィルム6を拡散材シート4から剥離することにより、拡散材シート4の一部が、剥離されたフィルム6の表面に残存し難い。つまり、フィルム6の剥離に伴う拡散材シート4の破損が抑制される。また冷却工程後にフィルム6を拡散材シート4から剥離することにより、フィルム6と共に拡散材シート4が磁石基材2の表面から剥離することを抑制することができる。 As shown in (c) in FIG. 1, the film 6 may be peeled off and removed from the diffuser sheet 4 after the cooling step. After the cooling step, the diffuser sheet 4 is adhered to the surface of the magnet base material 2, and the diffuser sheet 4 and the magnet base material 2 are integrated. Therefore, by peeling the film 6 from the diffuser sheet 4 after the cooling step, a part of the diffuser sheet 4 is unlikely to remain on the surface of the peeled film 6. That is, the breakage of the diffuser sheet 4 due to the peeling of the film 6 is suppressed. Further, by peeling the film 6 from the diffuser sheet 4 after the cooling step, it is possible to prevent the diffuser sheet 4 from peeling from the surface of the magnet base material 2 together with the film 6.

上記の被覆工程では磁石基材2の一面が積層体8で覆われるが、磁石基材2の二面が積層体8で覆われてもよい。例えば、磁石基材2の対向する二面が積層体8で覆われてよい。磁石基材2の異なる二面が積層体8で覆われた後、上述の加熱工程及び冷却工程が実施されてよい。磁石基材2の一面が積層体8で覆われた状態において加熱工程及び冷却工程が実施された後、さらに磁石基材2の別の面が積層体8で覆われてよい。磁石基材2の別の面が積層体8で覆われた後、加熱工程及び冷却工程が再び実施されてよい。磁石基材2の複数の面が積層体8で覆われる場合、磁石基材2の一面ごとに被覆工程、加熱工程及び冷却工程が実施されてよい。磁石基材2の二つ以上の面が同時に積層体8で覆われた後、加熱工程及び冷却工程が実施されてよい。 In the above coating step, one surface of the magnet base material 2 is covered with the laminate 8, but two surfaces of the magnet base material 2 may be covered with the laminate 8. For example, the two opposing surfaces of the magnet base material 2 may be covered with the laminate 8. After the two different surfaces of the magnet base material 2 are covered with the laminate 8, the heating step and the cooling step described above may be carried out. After the heating step and the cooling step are performed in a state where one surface of the magnet base material 2 is covered with the laminate 8, another surface of the magnet base material 2 may be further covered with the laminate 8. After the other surface of the magnet base material 2 is covered with the laminate 8, the heating step and the cooling step may be performed again. When a plurality of surfaces of the magnet base material 2 are covered with the laminate 8, a coating step, a heating step, and a cooling step may be performed for each surface of the magnet base material 2. After the two or more surfaces of the magnet base material 2 are simultaneously covered with the laminate 8, the heating step and the cooling step may be carried out.

フィルム6の除去後、拡散工程が実施されてよい。拡散工程前にフィルム6が除去されることにより、拡散工程においてフィルム6の炭化物が磁石基材2の表面に形成されない。その結果、フィルム6に由来する炭素が拡散工程において磁石基材2内へ侵入せず、過剰な炭素の含有に起因する永久磁石の磁気特性の劣化が抑制される。ただし、磁石基材2の表面の少なくとも一部が積層体8で覆われた状態において、拡散工程が実施されてもよい。つまり、フィルム6を除去することなく、拡散工程が実施されてもよい。例えば、フィルム6がグラファイトからなる場合、グラファイトは拡散工程での加熱により焼失し易いので、フィルム6を除去することなく拡散工程が実施されてよい。 After removing the film 6, a diffusion step may be performed. Since the film 6 is removed before the diffusion step, carbides of the film 6 are not formed on the surface of the magnet base material 2 in the diffusion step. As a result, the carbon derived from the film 6 does not penetrate into the magnet base material 2 in the diffusion step, and the deterioration of the magnetic properties of the permanent magnet due to the excessive carbon content is suppressed. However, the diffusion step may be carried out in a state where at least a part of the surface of the magnet base material 2 is covered with the laminate 8. That is, the diffusion step may be carried out without removing the film 6. For example, when the film 6 is made of graphite, the graphite is easily burned out by heating in the diffusion step, so that the diffusion step may be carried out without removing the film 6.

被覆工程において積層体8が用いられる場合、被覆工程前に、積層体8の寸法及び形状が、磁石基材2の表面の寸法及び形状に一致するように調整されてよい。被覆工程後(加熱工程前)に、積層体8の寸法及び形状が、磁石基材2の表面の寸法及び形状に一致するように調整されてもよい。複数の磁石基材2の表面が一つの積層体8で覆われた後、積層体8が分割されてもよい。積層体8の寸法及び形状は、積層体8の切断加工によって調整されてよい。 When the laminate 8 is used in the coating step, the dimensions and shape of the laminate 8 may be adjusted to match the dimensions and shape of the surface of the magnet base material 2 before the coating step. After the coating step (before the heating step), the dimensions and shape of the laminate 8 may be adjusted so as to match the dimensions and shape of the surface of the magnet base material 2. After the surfaces of the plurality of magnet base materials 2 are covered with one laminated body 8, the laminated body 8 may be divided. The dimensions and shape of the laminated body 8 may be adjusted by cutting the laminated body 8.

図2中の(a)に示されるように、被覆工程前に、フィルム6が拡散材シート4から剥離及び除去されてよい。図2中の(b)に示されるように、被覆工程では、拡散材シート4の第二表面4bが磁石基材2の表面に接するように、磁石基材2の表面の少なくとも一部が拡散材シート4で覆われてよい。ペーストから塗膜が形成される過程では、拡散材が自重によってフィルム6の表面へ沈降する傾向がある。その結果、拡散材シート4中の拡散材は、フィルム6に接していた第二表面4b側に偏在し易い。また、フィルム6に接していた第二表面4bは、第一表面4aよりも平坦である。したがって、拡散材シート4の第二表面4bが磁石基材2の表面に重なることにより、拡散材シート4中の拡散材が磁石基材2の表面に沿って均一に配置され易く、拡散材シート4が磁石基材2の表面に均一に密着し易い。その結果、拡散工程において拡散材が磁石基材2の表面へ均一に拡散し易い。図2中の(c)に示されるように、被覆工程では、第一表面4aが磁石基材2の表面に接するように、磁石基材2の表面の少なくとも一部が拡散材シート4で覆われてもよい。 As shown in (a) in FIG. 2, the film 6 may be peeled and removed from the diffusing material sheet 4 before the coating step. As shown in (b) in FIG. 2, in the coating step, at least a part of the surface of the magnet base material 2 is diffused so that the second surface 4b of the diffuser sheet 4 is in contact with the surface of the magnet base material 2. It may be covered with a material sheet 4. In the process of forming the coating film from the paste, the diffusing material tends to settle on the surface of the film 6 due to its own weight. As a result, the diffusing material in the diffusing material sheet 4 tends to be unevenly distributed on the second surface 4b side that was in contact with the film 6. Further, the second surface 4b in contact with the film 6 is flatter than the first surface 4a. Therefore, since the second surface 4b of the diffusing material sheet 4 overlaps the surface of the magnet base material 2, the diffusing material in the diffusing material sheet 4 is easily uniformly arranged along the surface of the magnet base material 2, and the diffusing material sheet is easily arranged. 4 easily adheres uniformly to the surface of the magnet base material 2. As a result, the diffusing material tends to diffuse uniformly to the surface of the magnet base material 2 in the diffusing step. As shown in FIG. 2C, in the coating step, at least a part of the surface of the magnet base material 2 is covered with the diffuser sheet 4 so that the first surface 4a is in contact with the surface of the magnet base material 2. You may be broken.

被覆工程前にフィルム6が拡散材シート4から剥離及び除去される場合、積層体8の寸法及び形状が、磁石基材2の表面の寸法及び形状に一致するように調整された後、フィルム6が拡散材シート4から剥離及び除去されてよい。拡散材シート4の寸法及び形状が、磁石基材2の表面の寸法及び形状に一致するように調整された後、拡散材シート4がフィルム6から剥離されてよい。フィルム6が拡散材シート4から剥離及び除去された後、拡散材シート4の寸法及び形状が、磁石基材2の表面の寸法及び形状に一致するように調整されてもよい。被覆工程後(加熱工程前)に、拡散材シート4の寸法及び形状が、磁石基材2の表面の寸法及び形状に一致するように調整されてもよい。複数の磁石基材2の表面が一つの拡散材シート4で覆われた後、拡散材シート4が分割されてもよい。拡散材シート4の寸法及び形状は、拡散材シート4の切断加工によって調整されてよい。 When the film 6 is peeled off and removed from the diffuser sheet 4 before the coating step, the size and shape of the laminate 8 are adjusted to match the size and shape of the surface of the magnet base material 2, and then the film 6 May be peeled off and removed from the diffuser sheet 4. The diffuser sheet 4 may be peeled from the film 6 after the dimensions and shape of the diffuser sheet 4 are adjusted to match the dimensions and shape of the surface of the magnet base material 2. After the film 6 is peeled off and removed from the diffuser sheet 4, the dimensions and shape of the diffuser sheet 4 may be adjusted to match the dimensions and shape of the surface of the magnet base material 2. After the coating step (before the heating step), the dimensions and shape of the diffuser sheet 4 may be adjusted to match the dimensions and shape of the surface of the magnet base material 2. After the surfaces of the plurality of magnet base materials 2 are covered with one diffuser sheet 4, the diffuser sheet 4 may be divided. The dimensions and shape of the diffuser sheet 4 may be adjusted by cutting the diffuser sheet 4.

積層体8又は拡散材シート4のハンドリングには、吸引又は磁力によって積層体8又は拡散材シート4を吸脱着する手段が用いられてよい。必要に応じて、拡散材シート4がフィルム6から別のフィルムに転写されてよい。 For handling the laminated body 8 or the diffusing material sheet 4, means for sucking and desorbing the laminated body 8 or the diffusing material sheet 4 by suction or magnetic force may be used. If necessary, the diffuser sheet 4 may be transferred from the film 6 to another film.

磁石基材2の全面を、拡散材を含む塗膜で覆うことは可能である。例えば、磁石基材2の全体を上記のペースト中に浸漬することにより、磁石基材2の全面を塗膜で覆うことができる。しかし、浸漬により形成された塗膜が重力の影響等を受けることにより、塗膜の厚みは均一になり難い。また、磁石基材2をペースト中に浸漬する場合、磁石基材2の表面の一部分のみを塗膜で覆うことは困難である。これらの問題を解決するためには、拡散材シート4が有用である。例えば、拡散材シート4の形状が磁石基材2の表面の任意の部分の形状に一致するように拡散材シート4を加工した後、磁石基材2の表面の任意の部分を拡散材シート4で覆うことにより、磁石基材2の必要な部分のみを、厚みが均一な拡散材シート4で覆うことができる。 It is possible to cover the entire surface of the magnet base material 2 with a coating film containing a diffusing material. For example, by immersing the entire magnet base material 2 in the above paste, the entire surface of the magnet base material 2 can be covered with a coating film. However, the thickness of the coating film is difficult to be uniform because the coating film formed by immersion is affected by gravity or the like. Further, when the magnet base material 2 is immersed in the paste, it is difficult to cover only a part of the surface of the magnet base material 2 with the coating film. In order to solve these problems, the diffuser sheet 4 is useful. For example, after processing the diffuser sheet 4 so that the shape of the diffuser sheet 4 matches the shape of an arbitrary portion of the surface of the magnet base material 2, the diffuser sheet 4 is formed on an arbitrary portion of the surface of the magnet base material 2. By covering with, only the necessary portion of the magnet base material 2 can be covered with the diffuser sheet 4 having a uniform thickness.

磁石基材2の拡散材シート4で覆われる表面は、曲面であってよい。従来の永久磁石の製造方法では、拡散材シート4が曲面へ均一に密着し難く、曲面において拡散材シート4の位置がずれ易く、拡散材シート4が曲面から剥離し易い。一方、本実施形態では加熱工程及び冷却工程が実施されるため、拡散材シート4が曲面へ均一に密着し易く、曲面における拡散材シート4の位置ずれが抑制され易く、曲面からの拡散材シート4の剥離が抑制され易い。 The surface of the magnet base material 2 covered with the diffuser sheet 4 may be a curved surface. In the conventional method for manufacturing a permanent magnet, it is difficult for the diffuser sheet 4 to adhere uniformly to the curved surface, the position of the diffuser sheet 4 tends to shift on the curved surface, and the diffuser sheet 4 easily peels off from the curved surface. On the other hand, in the present embodiment, since the heating step and the cooling step are carried out, the diffusing material sheet 4 easily adheres uniformly to the curved surface, the misalignment of the diffusing material sheet 4 on the curved surface is easily suppressed, and the diffusing material sheet from the curved surface is easily suppressed. The peeling of 4 is easily suppressed.

[熱処理工程]
拡散工程を経た磁石基材2は、永久磁石の完成品として用いられてよい。拡散工程の後、熱処理工程が行われてもよい。熱処理工程では、磁石基材2が450℃以上600℃以下で加熱されてよい。熱処理工程では、1時間以上10時間以下の間、磁石基材2が上記の温度で加熱されてよい。熱処理工程により、永久磁石の磁気特性(特に保磁力)が向上し易い。
[Heat treatment process]
The magnet base material 2 that has undergone the diffusion step may be used as a finished product of a permanent magnet. A heat treatment step may be performed after the diffusion step. In the heat treatment step, the magnet base material 2 may be heated at 450 ° C. or higher and 600 ° C. or lower. In the heat treatment step, the magnet base material 2 may be heated at the above temperature for 1 hour or more and 10 hours or less. The heat treatment process tends to improve the magnetic properties (particularly the coercive force) of the permanent magnet.

拡散工程又は熱処理工程の後、切削及び研磨等の加工方法により磁石基材2の寸法及び形状が調整されてよい。 After the diffusion step or the heat treatment step, the size and shape of the magnet base material 2 may be adjusted by a processing method such as cutting and polishing.

以上の方法により、永久磁石が完成される。 By the above method, the permanent magnet is completed.

磁石基材及び永久磁石其々の組成は、例えば、エネルギー分散型X線分光(EDS)法、蛍光X線(XRF)分析法、高周波誘導結合プラズマ(ICP)発光分析法、不活性ガス融解‐非分散型赤外線吸収法、酸素気流中燃焼‐赤外吸収法及び不活性ガス融解‐熱伝導度法等の分析方法によって特定されてよい。 The composition of each of the magnet base material and the permanent magnet is, for example, energy dispersive X-ray spectroscopy (EDS) method, fluorescent X-ray (XRF) analysis method, high frequency inductively coupled plasma (ICP) emission analysis method, inert gas melting- It may be specified by analytical methods such as non-dispersive infrared absorption method, combustion in oxygen stream-infrared absorption method and inert gas melting-thermal conductivity method.

永久磁石の寸法及び形状は、永久磁石の用途に応じて様々であり、特に限定されない。永久磁石の形状は、例えば、直方体、立方体、矩形(板)、多角柱、アークセグメント、扇、環状扇形(annular sector)、球、円板、円柱、リング、又はカプセルであってよい。永久磁石の断面の形状は、例えば、多角形、円弧(円弦)、弓状、アーチ、又は円であってよい。磁石基材2の寸法及び形状も、永久磁石と同様に多様であってよい。 The dimensions and shape of the permanent magnets vary depending on the use of the permanent magnets and are not particularly limited. The shape of the permanent magnet may be, for example, a rectangular parallelepiped, a cube, a rectangle (plate), a polygonal column, an arc segment, a fan, an annular sector, a sphere, a disk, a cylinder, a ring, or a capsule. The cross-sectional shape of the permanent magnet may be, for example, a polygon, an arc (bowstring), a bow, an arch, or a circle. The size and shape of the magnet base material 2 may be as diverse as the permanent magnet.

永久磁石は、ハイブリッド自動車、電気自動車、ハードディスクドライブ、磁気共鳴画像装置(MRI)、スマートフォン、デジタルカメラ、薄型TV、スキャナー、エアコン、ヒートポンプ、冷蔵庫、掃除機、洗濯乾燥機、エレベーター及び風力発電機等の様々な分野で利用されてよい。永久磁石は、モータ、発電機又はアクチュエーターを構成する材料として用いられてよい。 Permanent magnets include hybrid vehicles, electric vehicles, hard disk drives, magnetic resonance imaging (MRI), smartphones, digital cameras, flat-screen TVs, scanners, air conditioners, heat pumps, refrigerators, vacuum cleaners, washer-dryers, elevators, wind power generators, etc. It may be used in various fields of. Permanent magnets may be used as materials to make up motors, generators or actuators.

本発明は上記の実施形態に限定されるものではない。例えば、拡散工程に用いられる磁石基材は、焼結体ではなく、熱間加工磁石であってよい。熱間加工磁石は、以下のような製法によって作製されてよい。 The present invention is not limited to the above embodiments. For example, the magnet base material used in the diffusion step may be a hot-worked magnet instead of a sintered body. The hot-worked magnet may be manufactured by the following manufacturing method.

熱間加工磁石の原料は、焼結体の作製に用いられる原料合金と同様の合金であってよい。この合金を溶融し、更に急冷することにより、合金からなる薄帯が得られる。薄帯の粉砕により、フレーク状の合金粉末が得られる。合金粉末の冷間プレス(室温での成形)により、成形体が得られる。成形体の予熱後、成形体の熱間プレスにより、等方性磁石が得られる。等方性磁石の熱間塑性加工により、異方性磁石が得られる。異方性磁石の時効処理により、熱間加工磁石からなる磁石基材が得られる。熱間加工磁石からなる磁石基材は、上記の焼結体と同様に、互いに結着された多数の主相粒子を含む。 The raw material of the hot-worked magnet may be an alloy similar to the raw material alloy used for producing the sintered body. By melting this alloy and further quenching it, a thin band made of the alloy is obtained. Flake-shaped alloy powder is obtained by crushing the strip. A molded product is obtained by cold pressing (molding at room temperature) of the alloy powder. After preheating the molded product, an isotropic magnet is obtained by hot pressing the molded product. Anisotropic magnets are obtained by hot plastic working of isotropic magnets. The aging treatment of the anisotropic magnet gives a magnet substrate made of a hot-worked magnet. A magnet base material made of a hot-worked magnet contains a large number of main phase particles bonded to each other, similar to the above-mentioned sintered body.

本発明に係るR‐T‐B永久磁石の製造方法によれば、ハイブリッド車又は電気自動車に搭載されるモータ又は発電機へ適用されるR‐T‐B永久磁石が得られる。 According to the method for manufacturing an RTB permanent magnet according to the present invention, an RTB permanent magnet applied to a motor or a generator mounted on a hybrid vehicle or an electric vehicle can be obtained.

2…磁石基材、4…拡散材シート、4a…拡散材シートの第一表面、4b…拡散材シートの第二表面、6…フィルム、8…積層体。 2 ... Magnet base material, 4 ... Diffusing material sheet, 4a ... First surface of diffusing material sheet, 4b ... Second surface of diffusing material sheet, 6 ... Film, 8 ... Laminated body.

Claims (10)

磁石基材の表面の少なくとも一部を、重希土類元素及びバインダを含む拡散材シートで覆う被覆工程と、
前記磁石基材の表面の少なくとも一部を覆う前記拡散材シートを加熱することにより、前記バインダを軟化させる加熱工程と、
前記加熱工程後、前記拡散材シートを冷却することにより、前記バインダを硬化させる冷却工程と、
前記冷却工程後、前記拡散材シート及び前記磁石基材を加熱することにより、前記重希土類元素を前記磁石基材内へ拡散させる拡散工程と、
を備え、
前記磁石基材が、希土類元素R、遷移金属元素T、及びホウ素を含み、
少なくとも一部の前記希土類元素Rが、ネオジムであり、
少なくとも一部の前記遷移金属元素Tが、鉄である、
R‐T‐B系永久磁石の製造方法。
A coating process in which at least a part of the surface of the magnet base material is covered with a diffuser sheet containing a heavy rare earth element and a binder,
A heating step of softening the binder by heating the diffuser sheet that covers at least a part of the surface of the magnet base material.
After the heating step, a cooling step of curing the binder by cooling the diffuser sheet, and
After the cooling step, the diffusing material sheet and the magnet base material are heated to diffuse the heavy rare earth element into the magnet base material.
With
The magnet base material contains a rare earth element R, a transition metal element T, and boron.
At least a part of the rare earth element R is neodymium.
At least some of the transition metal elements T are iron.
A method for manufacturing an RTB-based permanent magnet.
前記冷却工程後、前記拡散材シート及び前記磁石基材を加熱炉内へ搬送する搬送工程を更に備え、
前記加熱炉内において前記拡散工程が実施される、
請求項1に記載のR‐T‐B系永久磁石の製造方法。
After the cooling step, a transport step of transporting the diffuser sheet and the magnet base material into the heating furnace is further provided.
The diffusion step is carried out in the heating furnace.
The method for manufacturing an RTB-based permanent magnet according to claim 1.
前記冷却工程では、前記拡散材シートが冷却されながら、前記拡散材シート及び前記磁石基材が加熱炉内へ搬送され、
前記加熱炉内において前記拡散工程が実施される、
請求項1に記載のR‐T‐B系永久磁石の製造方法。
In the cooling step, the diffuser sheet and the magnet base material are conveyed into the heating furnace while the diffuser sheet is cooled.
The diffusion step is carried out in the heating furnace.
The method for manufacturing an RTB-based permanent magnet according to claim 1.
前記加熱工程では、前記拡散材シート及び前記磁石基材のうち少なくとも一方を加圧することにより、前記拡散材シート及び前記磁石基材を互いに密着させる、
請求項1〜3のいずれか一項に記載のR‐T‐B系永久磁石の製造方法。
In the heating step, the diffuser sheet and the magnet base material are brought into close contact with each other by pressurizing at least one of the diffuser sheet and the magnet base material.
The method for manufacturing an RTB-based permanent magnet according to any one of claims 1 to 3.
前記冷却工程では、前記拡散材シート及び前記磁石基材のうち少なくとも一方を加圧することにより、前記拡散材シート及び前記磁石基材を互いに密着させる、
請求項1〜4のいずれか一項に記載のR‐T‐B系永久磁石の製造方法。
In the cooling step, the diffuser sheet and the magnet base material are brought into close contact with each other by pressurizing at least one of the diffuser sheet and the magnet base material.
The method for manufacturing an RTB-based permanent magnet according to any one of claims 1 to 4.
フィルムと前記フィルムに重なる前記拡散材シートとを含む積層体が用いられ、
前記被覆工程では、前記拡散材シートが前記磁石基材の表面に接するように、前記磁石基材の表面の少なくとも一部が前記積層体で覆われ、
前記磁石基材の表面の少なくとも一部が前記積層体で覆われた状態において、前記加熱工程及び前記冷却工程が実施される、
請求項1〜5のいずれか一項に記載のR‐T‐B系永久磁石の製造方法。
A laminate containing the film and the diffuser sheet that overlaps the film is used.
In the coating step, at least a part of the surface of the magnet base material is covered with the laminate so that the diffuser sheet is in contact with the surface of the magnet base material.
The heating step and the cooling step are carried out in a state where at least a part of the surface of the magnet base material is covered with the laminate.
The method for manufacturing an RTB-based permanent magnet according to any one of claims 1 to 5.
前記冷却工程後、前記フィルムが前記拡散材シートから剥離及び除去され、
前記フィルムの除去後、前記拡散工程が実施される、
請求項6に記載のR‐T‐B系永久磁石の製造方法。
After the cooling step, the film is peeled and removed from the diffuser sheet.
After removing the film, the diffusion step is carried out.
The method for manufacturing an RTB-based permanent magnet according to claim 6.
前記磁石基材の表面の少なくとも一部が前記積層体で覆われた状態において、前記拡散工程が更に実施される、
請求項6に記載のR‐T‐B系永久磁石の製造方法。
The diffusion step is further carried out in a state where at least a part of the surface of the magnet base material is covered with the laminate.
The method for manufacturing an RTB-based permanent magnet according to claim 6.
フィルムと前記フィルムに重なる前記拡散材シートとを含む積層体が用いられ、
前記拡散材シートの第一表面は、前記積層体において前記フィルムに接しない表面であり、
前記拡散材シートの第二表面は、前記積層体において前記フィルムに接する表面であり、
前記被覆工程前に、前記フィルムが前記拡散材シートから剥離及び除去され、
前記被覆工程では、前記第二表面が前記磁石基材の表面に接するように、前記磁石基材の表面の少なくとも一部が前記拡散材シートで覆われる、
請求項1〜5のいずれか一項に記載のR‐T‐B系永久磁石の製造方法。
A laminate containing the film and the diffuser sheet that overlaps the film is used.
The first surface of the diffuser sheet is a surface of the laminated body that does not come into contact with the film.
The second surface of the diffuser sheet is a surface of the laminate that is in contact with the film.
Prior to the coating step, the film was stripped and removed from the diffuser sheet.
In the coating step, at least a part of the surface of the magnet base material is covered with the diffuser sheet so that the second surface is in contact with the surface of the magnet base material.
The method for manufacturing an RTB-based permanent magnet according to any one of claims 1 to 5.
フィルムと前記フィルムに重なる前記拡散材シートとを含む積層体が用いられ、
前記拡散材シートの第一表面は、前記積層体において前記フィルムに接しない表面であり、
前記拡散材シートの第二表面は、前記積層体において前記フィルムに接する表面であり、
前記被覆工程前に、前記フィルムが前記拡散材シートから剥離及び除去され、
前記被覆工程では、前記第一表面が前記磁石基材の表面に接するように、前記磁石基材の表面の少なくとも一部が前記拡散材シートで覆われる、
請求項1〜5のいずれか一項に記載のR‐T‐B系永久磁石の製造方法。
A laminate containing the film and the diffuser sheet that overlaps the film is used.
The first surface of the diffuser sheet is a surface of the laminated body that does not come into contact with the film.
The second surface of the diffuser sheet is a surface of the laminate that is in contact with the film.
Prior to the coating step, the film was stripped and removed from the diffuser sheet.
In the coating step, at least a part of the surface of the magnet base material is covered with the diffuser sheet so that the first surface is in contact with the surface of the magnet base material.
The method for manufacturing an RTB-based permanent magnet according to any one of claims 1 to 5.
JP2019064239A 2019-03-28 2019-03-28 Manufacturing method of RTB system permanent magnet Active JP7251264B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019064239A JP7251264B2 (en) 2019-03-28 2019-03-28 Manufacturing method of RTB system permanent magnet
CN202010217235.1A CN111755235A (en) 2019-03-28 2020-03-25 Method for producing R-T-B permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064239A JP7251264B2 (en) 2019-03-28 2019-03-28 Manufacturing method of RTB system permanent magnet

Publications (2)

Publication Number Publication Date
JP2020167209A true JP2020167209A (en) 2020-10-08
JP7251264B2 JP7251264B2 (en) 2023-04-04

Family

ID=72673120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064239A Active JP7251264B2 (en) 2019-03-28 2019-03-28 Manufacturing method of RTB system permanent magnet

Country Status (2)

Country Link
JP (1) JP7251264B2 (en)
CN (1) CN111755235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744986A (en) * 2021-08-02 2021-12-03 安徽省瀚海新材料股份有限公司 Processing method for neodymium iron boron magnet after cutting
CN114464444A (en) * 2022-01-25 2022-05-10 浙江英洛华磁业有限公司 Grain boundary diffusion method for improving diffusion performance of R-T-B magnet
JP2022161809A (en) * 2021-04-09 2022-10-21 寧波科田磁業有限公司 Neodymium iron boron permanent magnetic substance having high coercivity and high resistivity and method for preparing the same
CN119314771A (en) * 2024-12-16 2025-01-14 宁波鑫其精密磁钢有限公司 A high performance NdFeB material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118280672A (en) * 2022-12-30 2024-07-02 烟台正海磁性材料股份有限公司 Large-size R-Fe-B sintered magnet and preparation method and application thereof
CN118824674B (en) * 2024-07-26 2025-05-09 绵阳巨星永磁材料有限公司 Crystal boundary diffusion composite film, rare earth permanent magnet and preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008069018A1 (en) * 2006-12-01 2010-03-18 株式会社クリエイティブ テクノロジー Concave and convex pattern forming method
JPWO2013061836A1 (en) * 2011-10-27 2015-04-02 インターメタリックス株式会社 Manufacturing method of NdFeB-based sintered magnet
JP2017135274A (en) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 Method for manufacturing rare earth magnet
JPWO2016093173A1 (en) * 2014-12-12 2017-09-21 日立金属株式会社 Method for producing RTB-based sintered magnet
JPWO2016093174A1 (en) * 2014-12-12 2017-09-21 日立金属株式会社 Method for producing RTB-based sintered magnet
JP2018101680A (en) * 2016-12-20 2018-06-28 パレス化学株式会社 Method for producing RTB-based sintered magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2547853T3 (en) * 2006-01-31 2015-10-09 Hitachi Metals, Limited R-Fe-B Rare Earth Sintered Magnet and procedure to produce the same
KR20140036996A (en) * 2011-06-24 2014-03-26 닛토덴코 가부시키가이샤 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JPWO2014148355A1 (en) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB-based sintered magnet manufacturing method and RFeB-based sintered magnet
EP2977998B1 (en) * 2013-03-18 2018-09-19 Intermetallics Co., Ltd. Rfeb-based magnet production method, and coating material for grain boundary diffusion process
JP6303356B2 (en) * 2013-09-24 2018-04-04 大同特殊鋼株式会社 Method for producing RFeB magnet
US11062844B2 (en) * 2016-08-08 2021-07-13 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet
CN107871602A (en) * 2016-09-26 2018-04-03 厦门钨业股份有限公司 The grain boundary decision method of R Fe B systems rare-earth sintered magnet a kind of, HRE diffusions source and preparation method thereof
CN108630368B (en) * 2018-06-11 2020-09-11 安徽大地熊新材料股份有限公司 Surface coating slurry for high-coercivity neodymium-iron-boron magnet and preparation method of neodymium-iron-boron magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008069018A1 (en) * 2006-12-01 2010-03-18 株式会社クリエイティブ テクノロジー Concave and convex pattern forming method
JPWO2013061836A1 (en) * 2011-10-27 2015-04-02 インターメタリックス株式会社 Manufacturing method of NdFeB-based sintered magnet
JPWO2016093173A1 (en) * 2014-12-12 2017-09-21 日立金属株式会社 Method for producing RTB-based sintered magnet
JPWO2016093174A1 (en) * 2014-12-12 2017-09-21 日立金属株式会社 Method for producing RTB-based sintered magnet
JP2017135274A (en) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 Method for manufacturing rare earth magnet
JP2018101680A (en) * 2016-12-20 2018-06-28 パレス化学株式会社 Method for producing RTB-based sintered magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022161809A (en) * 2021-04-09 2022-10-21 寧波科田磁業有限公司 Neodymium iron boron permanent magnetic substance having high coercivity and high resistivity and method for preparing the same
JP7251834B2 (en) 2021-04-09 2023-04-04 寧波科田磁業有限公司 Neodymium-iron-boron permanent magnetic material having high coercive force and high resistivity, and method for producing the same
CN113744986A (en) * 2021-08-02 2021-12-03 安徽省瀚海新材料股份有限公司 Processing method for neodymium iron boron magnet after cutting
CN113744986B (en) * 2021-08-02 2023-09-22 安徽省瀚海新材料股份有限公司 Treatment method for cut neodymium-iron-boron magnet
CN114464444A (en) * 2022-01-25 2022-05-10 浙江英洛华磁业有限公司 Grain boundary diffusion method for improving diffusion performance of R-T-B magnet
CN119314771A (en) * 2024-12-16 2025-01-14 宁波鑫其精密磁钢有限公司 A high performance NdFeB material and preparation method thereof

Also Published As

Publication number Publication date
JP7251264B2 (en) 2023-04-04
CN111755235A (en) 2020-10-09

Similar Documents

Publication Publication Date Title
JP7251264B2 (en) Manufacturing method of RTB system permanent magnet
JP7412484B2 (en) Grain boundary engineering of sintered magnetic alloys and compositions derived therefrom
CN112038080B (en) Method for manufacturing R-T-B permanent magnet
CN112136192B (en) Method for producing rare earth sintered permanent magnet
EP2237289B1 (en) Method of Producing Rare-Earth Magnet
CN111261352B (en) Method for producing R-T-B permanent magnet
JP7384016B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet manufacturing device
JP7020051B2 (en) Magnet joint
CN109872871A (en) The method for being used to prepare rare-earth permanent magnet
WO2013047467A1 (en) Rare earth permanent magnet and production method for rare earth permanent magnet
WO2011125588A1 (en) Permanent magnet and manufacturing method for permanent magnet
CN112119475B (en) Method for producing rare earth sintered permanent magnet
CN114864208A (en) Manufacturing method of rare earth magnet
JP7259651B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet manufacturing apparatus
CN111863369B (en) A kind of magnetic binder and preparation method thereof, preparation method of composite permanent magnet material
JP7524017B2 (en) Manufacturing method of rare earth magnet
CN111696742A (en) Heavy-rare-earth-free high-performance neodymium-iron-boron permanent magnet material and preparation method thereof
JP5568106B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2005116991A (en) Composite rare earth anisotropic bond magnet, compound for composite rare earth anisotropic bond magnet, and method for manufacturing them
JP7248017B2 (en) Method for producing RTB based sintered magnet
JP2022008212A (en) RTB system permanent magnets and motors
CN111724961A (en) R-T-B permanent magnet
JP7248016B2 (en) Method for producing RTB based sintered magnet
JP2010206045A (en) Magnet molding and method of making the same
JP2011159919A (en) Method of manufacturing anisotropic rare earth bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150