[go: up one dir, main page]

JP2020152763A - Polymer particle, rubber modifier, rubber composition and molding thereof - Google Patents

Polymer particle, rubber modifier, rubber composition and molding thereof Download PDF

Info

Publication number
JP2020152763A
JP2020152763A JP2019050190A JP2019050190A JP2020152763A JP 2020152763 A JP2020152763 A JP 2020152763A JP 2019050190 A JP2019050190 A JP 2019050190A JP 2019050190 A JP2019050190 A JP 2019050190A JP 2020152763 A JP2020152763 A JP 2020152763A
Authority
JP
Japan
Prior art keywords
weight
rubber
parts
polymer particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019050190A
Other languages
Japanese (ja)
Inventor
友也 真部
Yuya Manabe
友也 真部
野田 憲治
Kenji Noda
憲治 野田
亨 中島
Toru Nakajima
亨 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2019050190A priority Critical patent/JP2020152763A/en
Publication of JP2020152763A publication Critical patent/JP2020152763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a polymer particle that achieves reduced rolling resistance and improved wear resistance when mixed with a rubber material, and excellent dispersibility, and a rubber modifier, a rubber composition and a molding thereof.SOLUTION: A polymer particle has a conjugated diene monomer unit of 20 wt.% or more and 95 wt.% or less, a monomer unit having two or more radical-polymerizable reactive groups (excluding the conjugated diene monomer) of 5 wt.% or more and 40 wt.% or less, and an aromatic monoalkenyl monomer unit of 0 wt.% or more and 70 wt.% or less.SELECTED DRAWING: None

Description

本発明は、重合体粒子、それを用いたゴム用改質剤、ゴム組成物及びその成形体に関する。 The present invention relates to polymer particles, a rubber modifier using the polymer particles, a rubber composition, and a molded product thereof.

環境負荷の低減や安全性の向上を目的に自動車分野の技術開発が進んでおり、タイヤに関しても、低燃費を達成するために転がり抵抗の低減や、耐摩耗性の向上が望まれている。 Technological development in the automobile field is progressing for the purpose of reducing environmental load and improving safety, and it is desired to reduce rolling resistance and improve wear resistance of tires in order to achieve low fuel consumption.

タイヤのトレッドを構成するゴム材料としては、現在、合成ゴムであるスチレン・ブタジエンゴム(SBR)に補強材としてカーボンブラックを配合したゴム組成物が主流である。これに対し、低燃費性を有するエコタイヤにおいては、カーボンブラックに代わる補強材としてシリカを配合したゴム組成物が使用されている。しかし、シリカは親水性無機材料であるために、ゴム材料との親和性が低く、ゴム中での分散性が低いという問題がある。シリカの分散性を向上させるために、シリカをシランカップリング剤と併用することが行なわれている。 As the rubber material constituting the tread of a tire, a rubber composition in which carbon black is blended as a reinforcing material with styrene-butadiene rubber (SBR), which is a synthetic rubber, is currently the mainstream. On the other hand, in eco-tires having low fuel consumption, a rubber composition containing silica is used as a reinforcing material in place of carbon black. However, since silica is a hydrophilic inorganic material, it has a problem that it has a low affinity with a rubber material and has a low dispersibility in rubber. In order to improve the dispersibility of silica, silica is used in combination with a silane coupling agent.

一方で、架橋型ポリマーに対する補強材として有機系の材料を用いる試みも行なわれている。特許文献1では、機械的特性を損なわずに、耐摩耗性および低発熱性に優れるゴム組成物を提供することを目的に、共役ジエン単量体単位83〜98.9重量%、芳香族ビニル単量体単位16.9〜1重量%、および架橋性単量体単位0.1〜1.5重量%からなる共役ジエン系ゴムゲルと、硫黄で架橋し得るゴムとを含有するゴム組成物が開示されている。 On the other hand, attempts have been made to use an organic material as a reinforcing material for the crosslinked polymer. In Patent Document 1, for the purpose of providing a rubber composition having excellent wear resistance and low heat generation without impairing mechanical properties, a conjugated diene monomer unit of 83 to 98.9% by weight and an aromatic vinyl are used. A rubber composition containing a conjugated diene rubber gel composed of 16.9 to 1% by weight of a monomer unit and 0.1 to 1.5% by weight of a crosslinkable monomer unit and a rubber that can be crosslinked with sulfur. It is disclosed.

また、特許文献2では、共役ジエン単位39.89〜79.89重量%、芳香族ビニル単位20〜60重量%、2個以上の重合性不飽和性基を有する単量体単位0.01〜10重量%、及び重合性不飽和基とアミノ基とを有する単量体単位0.1〜30重量%を含む架橋ゴム粒子、並びに、共役ジエン/芳香族ビニル共重合ゴムを含有するゴム組成物が開示されている。この構成により、補強材としてシリカを用いた場合であっても、混練時の加工性に優れ、シートの平滑性が良好なゴム組成物が得られると記載されており、実施例では、架橋ゴム粒子の製造において1〜2重量%のジビニルベンゼンが使用されている(表1)。特許文献3でも同様の発明が記載されている。 Further, in Patent Document 2, the conjugated diene unit is 39.89 to 79.89% by weight, the aromatic vinyl unit is 20 to 60% by weight, and the monomer unit having two or more polymerizable unsaturated groups is 0.01 to. A rubber composition containing 10% by weight, crosslinked rubber particles containing 0.1 to 30% by weight of a monomer unit having a polymerizable unsaturated group and an amino group, and a conjugated diene / aromatic vinyl copolymerized rubber. Is disclosed. It is described that this configuration provides a rubber composition having excellent workability during kneading and good sheet smoothness even when silica is used as a reinforcing material. In the examples, the crosslinked rubber is described. 1-2% by weight of divinylbenzene is used in the production of particles (Table 1). A similar invention is described in Patent Document 3.

特許第4396058号公報Japanese Patent No. 4396058 特開2002−20543号公報JP-A-2002-20543 特開2002−12633号公報JP-A-2002-12633

本発明は、以上に鑑み、ゴム材料と混合したときに転がり抵抗の低減と耐摩耗性の向上を達成すると共に、分散性にも優れている重合体粒子、ゴム用改質剤、ゴム組成物及びその成形体を提供することを目的とする。 In view of the above, the present invention achieves reduction of rolling resistance and improvement of wear resistance when mixed with a rubber material, and is also excellent in dispersibility of polymer particles, a modifier for rubber, and a rubber composition. And the molded product thereof.

本発明者らは、ジエン系ゴム材料に配合する重合体粒子が特定の単量体単位から構成されるようにすることで、ジエン系ゴム材料の架橋反応に関与できる架橋点を重合体粒子に導入して、重合体粒子がゴム材料と共有結合を介して一体化できるようにすることで転がり抵抗を低減させると同時に、重合体粒子自体の架橋度を向上させることで、耐摩耗性を向上させ、かつ、粒子同士の凝集を制御し分散性も向上させ得ることを見出し、本発明を完成した。 By making the polymer particles to be blended in the diene-based rubber material composed of specific monomer units, the present inventors make the cross-linking points that can participate in the cross-linking reaction of the diene-based rubber material into the polymer particles. Introduced to reduce rolling resistance by allowing the polymer particles to integrate with the rubber material via covalent bonds, while improving wear resistance by improving the degree of cross-linking of the polymer particles themselves. The present invention has been completed by finding that it is possible to control the aggregation of particles and improve the dispersibility.

すなわち、本発明は、共役ジエン単量体単位20重量%以上95重量%以下、ラジカル重合性反応基を2以上有する単量体(ただし、前記共役ジエン単量体は除く)単位5重量%以上40重量%以下、及び、芳香族モノアルケニル単量体単位0重量%以上70重量%以下から構成される重合体粒子に関する。 That is, in the present invention, the conjugated diene monomer unit is 20% by weight or more and 95% by weight or less, and the monomer having 2 or more radically polymerizable reactive groups (however, excluding the conjugated diene monomer) is 5% by weight or more. The present invention relates to polymer particles composed of 40% by weight or less and 0% by weight or more and 70% by weight or less of an aromatic monoalkenyl monomer unit.

好ましくは、単層から構成される。好ましくは、最表面に二重結合を有する。好ましくは、前記重合体粒子の体積平均粒子径が10nm以上500nm以下である。好ましくは、前記重合体粒子が凝集して粉体の形態を有する。好ましくは、前記粉体の体積平均粒子径が10μm以上1000μm以下である。 It is preferably composed of a single layer. Preferably, it has a double bond on the outermost surface. Preferably, the volume average particle diameter of the polymer particles is 10 nm or more and 500 nm or less. Preferably, the polymer particles aggregate to have a powder form. Preferably, the volume average particle size of the powder is 10 μm or more and 1000 μm or less.

また本発明は、前記重合体粒子からなるゴム用改質剤にも関する。さらに本発明は、ジエン系ゴムと、前記ゴム用改質剤を含む、ゴム組成物、又は、該ゴム組成物から成形された成形体にも関する。好ましくは、前記ジエン系ゴムは、天然ゴム、イソプレンゴム、ブタジエンゴム、及びスチレン−ブタジエン共重合ゴムより選択される少なくとも1種である。好ましくは、前記ゴム組成物は、さらに、シリカ、及び、シランカップリング剤を含む。好ましくは、前記ゴム組成物は、さらに、カーボンブラックを含む。 The present invention also relates to a rubber modifier composed of the polymer particles. Furthermore, the present invention also relates to a rubber composition containing a diene-based rubber and the modifier for rubber, or a molded product molded from the rubber composition. Preferably, the diene-based rubber is at least one selected from natural rubber, isoprene rubber, butadiene rubber, and styrene-butadiene copolymer rubber. Preferably, the rubber composition further comprises silica and a silane coupling agent. Preferably, the rubber composition further comprises carbon black.

本発明によれば、ゴム材料と混合したときに転がり抵抗の低減と耐摩耗性の向上を達成すると共に、分散性にも優れている重合体粒子、ゴム用改質剤、ゴム組成物及びその成形体を提供することができる。 According to the present invention, a polymer particle, a rubber modifier, a rubber composition, and a rubber composition thereof, which achieve a reduction in rolling resistance and an improvement in wear resistance when mixed with a rubber material and are also excellent in dispersibility. A molded body can be provided.

以下、本発明の実施形態を詳細に説明するが、本発明はこれらの実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments.

本発明の重合体粒子は、共役ジエン単量体単位20重量%以上95重量%以下、ラジカル重合性反応基を2以上有する単量体(ただし、前記共役ジエン単量体は除く)単位5重量%以上40重量%以下、及び、任意成分である芳香族モノアルケニル単量体単位0重量%以上70重量%以下からなるものであり、これらの単量体を共重合した共重合体から構成される。 The polymer particles of the present invention have a conjugated diene monomer unit of 20% by weight or more and 95% by weight or less, and a monomer having 2 or more radically polymerizable reactive groups (however, excluding the conjugated diene monomer) by 5% by weight. It is composed of% or more and 40% by weight or less, and an aromatic monoalkenyl monomer unit which is an optional component, 0% by weight or more and 70% by weight or less, and is composed of a copolymer obtained by copolymerizing these monomers. To.

共役ジエン単量体単位とは、共役ジエン単量体を重合して得られる単量体単位のことをいい、架橋点となる二重結合を含む単量体単位である。共役ジエン単量体は、炭素−炭素二重結合を2つ有し、それら二重結合が1つの単結合によって隔てられ、共役したジエンを指す。共役ジエン単量体の具体例としては、イソプレン、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン等が挙げられる。共役ジエン単量体は1種類のみを使用してもよいし、2種以上を併用してもよい。このうち、1,3−ブタジエンが好ましい。重合体粒子が共役ジエン単量体単位を含むことで、重合体粒子が、後述するジエン系ゴムの架橋反応に関与できる架橋点を有することになる。これにより、ジエン系ゴムを架橋反応させた時に、ジエン系ゴムと重合体粒子が共有結合により一体化することで、ゴム組成物中の架橋度を向上させ、ジエン系ゴムの反発弾性が改良され、転がり抵抗を低減することが可能になる。また、重合体粒子が共役ジエン単量体単位を含むことで、ジエン系ゴムと構成単位が類似し、重合体粒子とジエン系ゴムとの親和性(相溶性)を高めることができ、ジエン系ゴム内での重合体粒子の分散性が向上する利点もある。 The conjugated diene monomer unit refers to a monomer unit obtained by polymerizing a conjugated diene monomer, and is a monomer unit containing a double bond serving as a cross-linking point. A conjugated diene monomer refers to a conjugated diene having two carbon-carbon double bonds, the double bonds separated by one single bond. Specific examples of the conjugated diene monomer include isoprene, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like. .. Only one type of conjugated diene monomer may be used, or two or more types may be used in combination. Of these, 1,3-butadiene is preferable. When the polymer particles contain the conjugated diene monomer unit, the polymer particles have a cross-linking point that can participate in the cross-linking reaction of the diene-based rubber described later. As a result, when the diene-based rubber is crosslinked, the diene-based rubber and the polymer particles are integrated by a covalent bond to improve the degree of cross-linking in the rubber composition and improve the repulsive elasticity of the diene-based rubber. , It becomes possible to reduce the rolling resistance. Further, since the polymer particles contain a conjugated diene monomer unit, the constituent unit is similar to that of the diene rubber, and the affinity (compatibility) between the polymer particles and the diene rubber can be enhanced, and the diene rubber can be enhanced. There is also an advantage that the dispersibility of the polymer particles in the rubber is improved.

共役ジエン単量体を用いた場合、一般的にラジカル重合は1,4−付加を経て、重合反応が進行する。そのため、生成する重合体粒子に二重結合が残存し、それにより、重合体粒子の最表面には二重結合を有することができる。この二重結合により、共役ジエン系ゴムと加硫反応によって共有結合を形成することができ、転がり抵抗の効果を向上させることができる。 When a conjugated diene monomer is used, the radical polymerization generally proceeds through 1,4-addition and the polymerization reaction. Therefore, a double bond remains in the produced polymer particles, so that the outermost surface of the polymer particles can have a double bond. With this double bond, a covalent bond can be formed by a vulcanization reaction with the conjugated diene rubber, and the effect of rolling resistance can be improved.

本発明の重合体粒子における共役ジエン単量体単位の含有量は、重合体粒子を構成する重合体の単量体単位の総量100重量%に対して、20重量%以上95重量%以下である。20重量%以上であると、転がり抵抗の低減効果を充分に達成することができ、95重量%以下であると、後述する多官能性単量体単位を用いる利点が得られやすくなる。共役ジエン単量体単位の含有量の上限値は、94重量%以下が好ましく、93重量%以下がより好ましく、92重量%以下がさらに好ましく、91重量%以下がよりさらに好ましく、90重量%以下が特に好ましく、89重量%以下が最も好ましい。共役ジエン単量体単位の含有量の下限値は、25重量%以上が好ましく、30重量%以上がより好ましく、35重量%以上がさらに好ましく、40重量%以上がよりさらに好ましく、45重量%以上が特に好ましい。 The content of the conjugated diene monomer unit in the polymer particles of the present invention is 20% by weight or more and 95% by weight or less with respect to 100% by weight of the total amount of the monomer units of the polymer constituting the polymer particles. .. When it is 20% by weight or more, the effect of reducing rolling resistance can be sufficiently achieved, and when it is 95% by weight or less, the advantage of using the polyfunctional monomer unit described later can be easily obtained. The upper limit of the content of the conjugated diene monomer unit is preferably 94% by weight or less, more preferably 93% by weight or less, further preferably 92% by weight or less, further preferably 91% by weight or less, and 90% by weight or less. Is particularly preferable, and 89% by weight or less is most preferable. The lower limit of the content of the conjugated diene monomer unit is preferably 25% by weight or more, more preferably 30% by weight or more, further preferably 35% by weight or more, further preferably 40% by weight or more, and 45% by weight or more. Is particularly preferable.

本発明の重合体粒子は、ラジカル重合性反応基を2以上有する単量体(本願では多官能性単量体ともいう)単位を含む。ただし、本願における多官能性単量体とは、上述した共役ジエン単量体以外のものを指す。多官能性単量体は重合反応に関与する反応基を2以上有するので、これを共役ジエン単量体と共重合することで、本発明の重合体粒子中のポリマー鎖同士を架橋させることができる。これにより重合体粒子の架橋度を向上させることで、ジエン系ゴムに配合したときの耐摩耗性を向上させることができる。さらには、架橋度の向上に伴い、重合体粒子の硬度も向上するため、重合体粒子の凝集を制御しやすくなり、重合体を粉体として取得することも容易になる。ラジカル重合性反応基とは、好ましくは、炭素−炭素二重結合である。 The polymer particles of the present invention contain a monomer (also referred to as a polyfunctional monomer in the present application) unit having two or more radically polymerizable reactive groups. However, the polyfunctional monomer in the present application refers to a monomer other than the above-mentioned conjugated diene monomer. Since the polyfunctional monomer has two or more reactive groups involved in the polymerization reaction, it is possible to crosslink the polymer chains in the polymer particles of the present invention by copolymerizing this with the conjugated diene monomer. it can. As a result, by improving the degree of cross-linking of the polymer particles, it is possible to improve the abrasion resistance when blended with the diene rubber. Furthermore, as the degree of cross-linking is improved, the hardness of the polymer particles is also improved, so that it becomes easier to control the aggregation of the polymer particles, and it becomes easier to obtain the polymer as a powder. The radically polymerizable reactive group is preferably a carbon-carbon double bond.

このようなラジカル重合性反応基を2以上有する単量体としては特に限定されないが、例えば、ジイソプロペニルベンゼン、ジビニルベンゼン等の多価ビニル芳香族化合物;アクリル酸ビニル、メタクリル酸ビニル、メタクリル酸アリル等のα,β−エチレン性不飽和カルボン酸の不飽和エステル化合物;フタル酸ジアリル、トリメリット酸トリアリル等の多価カルボン酸の不飽和エステル化合物;エチレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート等の多価アルコールの不飽和エステル化合物;シアヌル酸トリアリル等のシアヌル酸の不飽和エステル化合物;イソシアヌル酸トリアリル等のイソシアヌル酸の不飽和エステル化合物;1,2−ブタジエン、ジビニルエーテル、ジビニルスルフォン、N,N´−m−フェニレンマレイミド等が挙げられる。このような多官能性単量体は1種類のみを使用してもよいし、2種以上を併用してもよい。このうち、ラジカル重合における反応性の観点から、多価ビニル芳香族化合物、多価アルコールの不飽和エステル化合物、シアヌル酸の不飽和エステル化合物、及びイソシアヌル酸の不飽和エステル化合物が好ましく、共役ジエン単量体との共重合性の観点から、ジビニルベンゼン及びイソシアヌル酸トリアリルがより好ましい。 The monomer having two or more such radically polymerizable reactive groups is not particularly limited, but for example, a polyvalent vinyl aromatic compound such as diisopropenylbenzene or divinylbenzene; vinyl acrylate, vinyl methacrylate, methacrylic acid, etc. Unsaturated ester compounds of α, β-ethylenic unsaturated carboxylic acids such as allyl; unsaturated ester compounds of polyvalent carboxylic acids such as diallyl phthalate and triallyl trimellitic acid; ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene Unsaturated ester compounds of polyvalent alcohols such as glycol dimethacrylate; Unsaturated ester compounds of cyanulic acid such as triallyl cyanurate; Unsaturated ester compounds of isocyanuric acid such as triaryl isocyanurate; 1,2-butadiene, divinyl ether, divinyl Examples thereof include sulfone, N, N'-m-phenylene maleimide and the like. Only one kind of such a polyfunctional monomer may be used, or two or more kinds may be used in combination. Of these, from the viewpoint of reactivity in radical polymerization, polyvalent vinyl aromatic compounds, unsaturated ester compounds of polyhydric alcohols, unsaturated ester compounds of cyanuric acid, and unsaturated ester compounds of isocyanuric acid are preferable, and conjugated diene mono is preferable. From the viewpoint of copolymerizability with the compound, divinylbenzene and triaryl isocyanurate are more preferable.

本発明の重合体粒子における多官能性単量体単位の含有量は、重合体粒子を構成する重合体の単量体単位の総量100重量%に対して、5重量%以上40重量%以下である。5重量%以上では、重合体粒子における架橋度が高くなるため、耐摩耗性の向上効果を得ることができ、また、重合体粒子が比較的硬質になるため、重合体粒子間の凝集が起こりにくく、粉体として容易に取得できる。一方、40重量%以下では、加工性に優れ、重合体粒子の製造において不都合が生じにくい。多官能性単量体単位の含有量の下限値は、6重量%以上が好ましく、7重量%以上がより好ましく、8重量%以上がさらに好ましく、9重量%以上がよりさらに好ましく、10重量%以上が特に好ましく、11重量%以上が最も好ましい。多官能性単量体単位の含有量の上限値は、35重量%以下が好ましく、30重量%以下がより好ましく、25重量%以下がさらに好ましく、20重量%以下がよりさらに好ましく、15重量%以下が特に好ましい。 The content of the polyfunctional monomer unit in the polymer particles of the present invention is 5% by weight or more and 40% by weight or less with respect to 100% by weight of the total amount of the monomer units of the polymer constituting the polymer particles. is there. If it is 5% by weight or more, the degree of cross-linking in the polymer particles is high, so that an effect of improving wear resistance can be obtained, and since the polymer particles are relatively hard, aggregation between the polymer particles occurs. It is difficult and can be easily obtained as a powder. On the other hand, when it is 40% by weight or less, the processability is excellent and inconvenience is unlikely to occur in the production of polymer particles. The lower limit of the content of the polyfunctional monomer unit is preferably 6% by weight or more, more preferably 7% by weight or more, further preferably 8% by weight or more, still more preferably 9% by weight or more, and 10% by weight. The above is particularly preferable, and 11% by weight or more is most preferable. The upper limit of the content of the polyfunctional monomer unit is preferably 35% by weight or less, more preferably 30% by weight or less, further preferably 25% by weight or less, still more preferably 20% by weight or less, and 15% by weight. The following are particularly preferred.

本発明の重合体粒子を構成する重合体は、共役ジエン単量体単位と多官能性単量体単位のみから形成される重合体であってもよいが、任意の単量体単位として、芳香族モノアルケニル単量体単位を含むものであってもよい。芳香族モノアルケニル単量体単位を用いることで、重合体粒子をジエン系ゴムに配合したときの両者の親和性を高めることができる。特にジエン系ゴムがスチレン−ブタジエン共重合ゴムを含有する場合には、当該ゴム中のスチレンの含有量を考慮して、重合体粒子における芳香族モノアルケニル単量体単位の含有量を調節して、両成分の親和性を高めることができる。 The polymer constituting the polymer particles of the present invention may be a polymer formed only from a conjugated diene monomer unit and a polyfunctional monomer unit, but an aromatic monomer unit may be used as an arbitrary monomer unit. It may contain a group monoalkenyl monomer unit. By using the aromatic monoalkenyl monomer unit, it is possible to enhance the affinity between the polymer particles when they are blended with the diene rubber. In particular, when the diene rubber contains a styrene-butadiene copolymer rubber, the content of the aromatic monoalkenyl monomer unit in the polymer particles is adjusted in consideration of the content of styrene in the rubber. , The affinity between both components can be enhanced.

芳香族モノアルケニル単量体としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、o−エチルスチレン、m−エチルスチレン、p−エチルスチレン、p−t−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、p−ブロモスチレン、2−メチル−4,6−ジクロロスチレン、p−ブロモスチレン、2−メチル−4,6−ジクロロスチレン、2,4−ジブロモスチレン、ビニルナフタレン等が挙げられる。芳香族モノアルケニル単量体は1種類のみを使用してもよいし、2種以上を併用してもよい。このうち、ラジカル重合における反応性およびコストの観点から、スチレンが好ましい。 Examples of the aromatic monoalkenyl monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-ethylstyrene. , Pt-butyl styrene, α-methyl styrene, α-methyl-p-methyl styrene, o-chloro styrene, m-chloro styrene, p-chloro styrene, p-bromo styrene, 2-methyl-4,6- Examples thereof include dichlorostyrene, p-bromostyrene, 2-methyl-4,6-dichlorostyrene, 2,4-dibromostyrene, vinylnaphthalene and the like. Only one type of aromatic monoalkenyl monomer may be used, or two or more types may be used in combination. Of these, styrene is preferable from the viewpoint of reactivity and cost in radical polymerization.

本発明の重合体粒子における芳香族モノアルケニル単量体単位の含有量は、重合体粒子を構成する重合体の単量体単位の総量100重量%に対して、0重量%以上70重量%以下である。ジエン系ゴムとの親和性の観点から、上限値は、好ましくは50重量%以下であり、より好ましくは40重量%以下であり、さらに好ましくは30重量%以下である。 The content of the aromatic monoalkenyl monomer unit in the polymer particles of the present invention is 0% by weight or more and 70% by weight or less with respect to 100% by weight of the total amount of the monomer units of the polymer constituting the polymer particles. Is. From the viewpoint of affinity with the diene rubber, the upper limit value is preferably 50% by weight or less, more preferably 40% by weight or less, and further preferably 30% by weight or less.

本発明の重合体粒子は、単層から構成される重合体粒子であってもよいし、互いに単量体組成が異なる2層以上から構成される重合体粒子であってもよい。2層以上から構成される重合体粒子である場合、重合体粒子全体として、前述した各単量体の含有量の要件を満足すればよい。しかし、本発明では、製造の容易さ等の観点から、単層から構成される重合体粒子が好ましい。 The polymer particles of the present invention may be polymer particles composed of a single layer, or may be polymer particles composed of two or more layers having different monomer compositions from each other. In the case of polymer particles composed of two or more layers, the polymer particles as a whole may satisfy the above-mentioned requirements for the content of each monomer. However, in the present invention, polymer particles composed of a single layer are preferable from the viewpoint of ease of production and the like.

本発明の重合体粒子は、体積平均粒子径が10nm以上500nm以下である一次粒子から構成されることが好ましい。一次粒子の平均粒子径が10nm以上では、重合体粒子製造時の重合による発熱が少なく、また、ジエン系ゴムへの重合体粒子の分散性が良好になる。また、一次粒子の平均粒子径が500nm以下では、重合体粒子製造時の重合が比較的短時間で完了し、生産性が良好である。一次粒子の平均粒子径の下限値は、例えば、20nm以上、30nm以上、40nm以上、50nm以上、60nm以上、70nm以上、80nm以上、90nm以上、100nm以上、110nm以上、120nm以上、130nm以上、140nm以上、又は、150nm以上が好ましい。一次粒子の平均粒子径の上限値は、300nm以下がより好ましく、200nm以下がよりさらに好ましい。なお、重合体粒子における一次粒子の体積平均粒子径は、重合体粒子が水中に分散してなるラテックスの状態で、日機装株式会社製のNanotrac Waveを用いて測定することができる。 The polymer particles of the present invention are preferably composed of primary particles having a volume average particle diameter of 10 nm or more and 500 nm or less. When the average particle size of the primary particles is 10 nm or more, the heat generated by the polymerization during the production of the polymer particles is small, and the dispersibility of the polymer particles in the diene rubber is good. Further, when the average particle size of the primary particles is 500 nm or less, the polymerization at the time of producing the polymer particles is completed in a relatively short time, and the productivity is good. The lower limit of the average particle size of the primary particles is, for example, 20 nm or more, 30 nm or more, 40 nm or more, 50 nm or more, 60 nm or more, 70 nm or more, 80 nm or more, 90 nm or more, 100 nm or more, 110 nm or more, 120 nm or more, 130 nm or more, 140 nm. The above, or 150 nm or more is preferable. The upper limit of the average particle size of the primary particles is more preferably 300 nm or less, and even more preferably 200 nm or less. The volume average particle size of the primary particles in the polymer particles can be measured by using Nanotrac Wave manufactured by Nikkiso Co., Ltd. in the state of latex in which the polymer particles are dispersed in water.

本発明の重合体粒子は、常法により、乳化重合または懸濁重合により製造することができる。粒子の大きさや粒子径の均一性の観点から、乳化重合が好ましい。具体的には、攪拌機を備えた反応容器に、各単量体、ラジカル重合開始剤、乳化剤、水、さらに必要に応じて連鎖移動剤を加え、加熱攪拌することで乳化重合を実施することができる。 The polymer particles of the present invention can be produced by emulsion polymerization or suspension polymerization by a conventional method. Emulsion polymerization is preferable from the viewpoint of particle size and particle size uniformity. Specifically, emulsion polymerization can be carried out by adding each monomer, a radical polymerization initiator, an emulsifier, water, and if necessary, a chain transfer agent to a reaction vessel equipped with a stirrer and stirring by heating. it can.

ラジカル重合開始剤としては特に限定されず、公知のものを使用することができるが、例えば、2,2’−アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、過硫酸アンモニウム等の熱分解型重合開始剤を用いることができる。また、t−ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ヘキシルパーオキサイド等の有機過酸化物や、過酸化水素、過硫酸カリウム、過硫酸アンモニウム等の無機過酸化物といった過酸化物と、必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコース等の還元剤、及び必要に応じて硫酸鉄(II)等の遷移金属塩、更に必要に応じてエチレンジアミン四酢酸二ナトリウム、ピロリン酸ナトリウム等のキレート剤を併用したレドックス系触媒等を用いることもできる。ラジカル重合開始剤は、1種類のみを用いてもよいし、2種以上を併用してもよい。 The radical polymerization initiator is not particularly limited, and known ones can be used. For example, thermal decomposition of 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, ammonium persulfate and the like can be used. A type polymerization initiator can be used. In addition, organic substances such as t-butylperoxyisopropyl carbonate, paramentan hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t-hexyl peroxide are used. Oxides and peroxides such as hydrogen peroxide, potassium persulfate, and inorganic peroxides such as ammonium persulfate, and if necessary, sodium formaldehyde sulfoxylate, reducing agents such as glucose, and iron sulfate (if necessary). A redox-based catalyst or the like in which a transition metal salt such as II) and a chelating agent such as disodium ethylenediamine tetraacetate and sodium pyrophosphate are used in combination can also be used, if necessary. Only one type of radical polymerization initiator may be used, or two or more types may be used in combination.

また、tert−ドデシルメルカプタン、n−ドデシルメルカプタン等のメルカプタン類、四塩化炭素、チオグリコール類、ジテルペン、タ−ピノーレン及びγ−テルピネン類等の連鎖移動剤を併用することもできる。 In addition, mercaptans such as tert-dodecyl mercaptan and n-dodecyl mercaptan, and chain transfer agents such as carbon tetrachloride, thioglycols, diterpenes, tarpinene and γ-terpinene can also be used in combination.

乳化重合において用いられる乳化剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等が挙げられる。また、ふっ素系の界面活性剤を使用することもできる。 Examples of the emulsifier used in emulsion polymerization include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. In addition, a fluorine-based surfactant can also be used.

懸濁重合では懸濁安定剤を用いることができる。懸濁安定剤としては、ポリビニルアルコール、ポリアクリル酸ナトリウム及びヒドロキシエチルセルロース等が挙げられるが、これらに限定されない。 Suspension stabilizers can be used in suspension polymerization. Examples of the suspension stabilizer include, but are not limited to, polyvinyl alcohol, sodium polyacrylate, hydroxyethyl cellulose and the like.

乳化重合又は懸濁重合において、各々の単量体及びラジカル重合開始剤等は、反応容器に全量を投入してから重合を開始してもよいし、反応中に連続的または間欠的に添加しながら重合を行なってもよい。重合は酸素を除去した反応器を用いて0℃以上80℃以下で行うことができ、反応途中で温度または攪拌等の操作条件などを適宜調節することができる。 In emulsion polymerization or suspension polymerization, each monomer, radical polymerization initiator, etc. may be added in the reaction vessel in its entirety before the polymerization is started, or may be added continuously or intermittently during the reaction. However, polymerization may be carried out. The polymerization can be carried out at 0 ° C. or higher and 80 ° C. or lower using a reactor from which oxygen has been removed, and operating conditions such as temperature and stirring can be appropriately adjusted during the reaction.

乳化重合または懸濁重合により得られた重合体粒子ラテックスに対し、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化アルミニウム、酢酸カルシウムなどの二価以上の金属塩を添加して粒子を凝固させた後、脱水、洗浄、乾燥させることで、重合体粒子を水から分離することができる。また、前記ラテックスを噴霧凝固(スプレードライ)することによっても重合体粒子を水から分離することができる。 After adding a divalent or higher metal salt such as calcium chloride, magnesium chloride, magnesium sulfate, aluminum chloride, or calcium acetate to the polymer particle latex obtained by emulsion polymerization or suspension polymerization to coagulate the particles, Polymer particles can be separated from water by dehydration, washing and drying. The polymer particles can also be separated from water by spray-coagulating (spray-drying) the latex.

本発明の重合体粒子の形態は特に制限されず、水から分離した重合体粒子の形態を有するものであってもよいし、10nm以上500nm以下の体積平均粒子径を有する一次粒子が水などの液体に分散してなるラテックス又は分散体の形態を有するものであってもよい。また、重合体粒子のラテックスなどから液体を除去、乾燥する過程において一次粒子が凝集することで得られる二次粒子や凝集塊の形態を有するものであってもよい。二次粒子または凝集塊の形状は、粉体、顆粒、ペレット状、クラム状、ベールなどの何れでもよく、中でも取り扱い易さの観点から粉体が好ましい。 The form of the polymer particles of the present invention is not particularly limited, and may have the form of polymer particles separated from water, and the primary particles having a volume average particle diameter of 10 nm or more and 500 nm or less are water or the like. It may have the form of a latex or a dispersion dispersed in a liquid. Further, it may have the form of secondary particles or agglomerates obtained by agglutinating the primary particles in the process of removing the liquid from the latex of the polymer particles and drying. The shape of the secondary particles or agglomerates may be any of powder, granules, pellets, crumbs, veils and the like, and powder is particularly preferable from the viewpoint of ease of handling.

本発明の重合体粒子が凝集して粉体の形態を有する場合、該粉体の体積平均粒子径は、取り扱い易さや分散請性の観点から、10μm以上1000μm以下であることが好ましい。粉体の体積平均粒子径の下限値は、例えば、20μm以上、30μm以上、40μm以上、50μm以上、60μm以上、70μm以上、80μm以上、90μm以上、100μm以上、110μm以上、120μm以上、130μm以上、140μm以上、又は、150μm以上が好ましい。粉体の体積平均粒子径の上限値は800μm以下がより好ましく、700μm以下がさらに好ましく、600μm以下がよりさらに好ましい。さらに、前記粉体全体に占める粒子径が700μm以上の粉体の割合(体積%)は、20%以下であることが好ましく、10%以下であることより好ましく、5%以下であることがさらに好ましい。また、前記粉体全体に占める粒子径が1000μm以上の粉体の割合(体積%)は、20%以下であることが好ましく、10%以下であることより好ましく、5%以下であることがさらに好ましい。これら粉体の粒子径は、日機装株式会社製のマイクロトラックMT3000IIを使用して光散乱法に基づき測定することができる。 When the polymer particles of the present invention are aggregated and have a powder form, the volume average particle size of the powder is preferably 10 μm or more and 1000 μm or less from the viewpoint of ease of handling and dispersion contractability. The lower limit of the volume average particle size of the powder is, for example, 20 μm or more, 30 μm or more, 40 μm or more, 50 μm or more, 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, 100 μm or more, 110 μm or more, 120 μm or more, 130 μm or more, It is preferably 140 μm or more, or 150 μm or more. The upper limit of the volume average particle size of the powder is more preferably 800 μm or less, further preferably 700 μm or less, still more preferably 600 μm or less. Further, the proportion (volume%) of the powder having a particle size of 700 μm or more in the entire powder is preferably 20% or less, more preferably 10% or less, and further preferably 5% or less. preferable. The proportion (volume%) of the powder having a particle size of 1000 μm or more in the entire powder is preferably 20% or less, more preferably 10% or less, and further preferably 5% or less. preferable. The particle size of these powders can be measured based on the light scattering method using Microtrac MT3000II manufactured by Nikkiso Co., Ltd.

本発明の重合体粒子は、ジエン系ゴムに配合してその物性を改善するゴム用改質剤として使用することができる。 The polymer particles of the present invention can be blended with a diene-based rubber and used as a rubber modifier for improving its physical properties.

(ゴム組成物)
本発明のゴム組成物は、前記重合体粒子からなるゴム用改質剤と、ジエン系ゴムとを含有するものである。
(Rubber composition)
The rubber composition of the present invention contains a rubber modifier composed of the polymer particles and a diene-based rubber.

本発明で使用できるジエン系ゴムとは、原料モノマーとして共役ジエン単量体が使用され、主鎖に架橋点となる二重結合が導入されているゴム成分である。例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合ゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、エチレン−プロピレン−ジエン共重合ゴム(EPDM)、ブチルゴム等が挙げられるが、これらに限定されない。これらのうち1種のみを使用してもよいし、2種以上を併用してもよい。これらのゴム成分は末端に官能基を有するゴム成分であってもよい。好ましくは、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエン共重合ゴムであり、より好ましくは、ブタジエンゴム、スチレン−ブタジエン共重合ゴムである。シリカを配合した時の転がり抵抗性低減および分散性向上の観点から、末端に官能基を有するブタジエンゴム、末端に官能基を有するスチレン−ブタジエン共重合ゴムがさらに好ましい。 The diene-based rubber that can be used in the present invention is a rubber component in which a conjugated diene monomer is used as a raw material monomer and a double bond serving as a cross-linking point is introduced into the main chain. For example, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene- Examples thereof include diene copolymer rubber (EPDM) and butyl rubber, but the present invention is not limited thereto. Only one of these may be used, or two or more thereof may be used in combination. These rubber components may be rubber components having a functional group at the end. Natural rubber, isoprene rubber, butadiene rubber, and styrene-butadiene copolymer rubber are preferable, and butadiene rubber and styrene-butadiene copolymer rubber are more preferable. From the viewpoint of reducing rolling resistance and improving dispersibility when silica is blended, butadiene rubber having a functional group at the end and styrene-butadiene copolymer rubber having a functional group at the end are more preferable.

本発明の重合体粒子をジエン系ゴムに配合するときの配合量は、ジエン系ゴム100重量部に対して、2重量部以上50重量部以下であることが好ましい。このような量で本発明の重合体粒子を配合することで、ジエン系ゴムの反発弾性を改良して、転がり抵抗を低減し、また、ジエン系ゴムの耐摩耗性を向上させることができる。さらに、優れた分散性も達成することができる。配合量が2重量部以上で、転がり抵抗の低減効果及び耐摩耗性の改善効果が良好になり、50重量部以下で、優れた分散性を達成できる。配合量の下限値は3重量部以上がより好ましく、4重量部以上がさらに好ましく、5重量部以上がよりさらに好ましい。配合量の上限値は40重量部以下がより好ましく、30重量部以下がさらに好ましく、20重量部以下がよりさらに好ましい。 When the polymer particles of the present invention are blended with the diene rubber, the blending amount is preferably 2 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the diene rubber. By blending the polymer particles of the present invention in such an amount, the impact resilience of the diene rubber can be improved, the rolling resistance can be reduced, and the wear resistance of the diene rubber can be improved. In addition, excellent dispersibility can be achieved. When the blending amount is 2 parts by weight or more, the effect of reducing rolling resistance and the effect of improving wear resistance are good, and when the amount is 50 parts by weight or less, excellent dispersibility can be achieved. The lower limit of the blending amount is more preferably 3 parts by weight or more, further preferably 4 parts by weight or more, and further preferably 5 parts by weight or more. The upper limit of the blending amount is more preferably 40 parts by weight or less, further preferably 30 parts by weight or less, and further preferably 20 parts by weight or less.

本発明のゴム組成物は、補強材であるシリカと、シランカップリング剤をさらに含有することが好ましい。シリカを配合することにより、転がり抵抗をさらに低減する効果が得られ、さらにシランカップリング剤を併用することにより、親水性のシリカ表面と疎水性のゴム成分が結合して界面の安定性が向上することで、ゴム成分中でのシリカの分散性を向上させて、シリカによる転がり抵抗の低減効果を高めることができる。 The rubber composition of the present invention preferably further contains silica as a reinforcing material and a silane coupling agent. By blending silica, the effect of further reducing rolling resistance can be obtained, and by using a silane coupling agent in combination, the hydrophilic silica surface and the hydrophobic rubber component are combined to improve the stability of the interface. By doing so, the dispersibility of silica in the rubber component can be improved, and the effect of reducing the rolling resistance of silica can be enhanced.

シリカとしては特に限定されないが、例えば、乾式シリカ、湿式シリカ、コロイダルシリカ、沈降シリカ等が挙げられる。なかでも、耐摩耗性に優れ、経済性にも優れている点で、湿式シリカが好ましい。 The silica is not particularly limited, and examples thereof include dry silica, wet silica, colloidal silica, and precipitated silica. Of these, wet silica is preferable because it has excellent wear resistance and is also excellent in economy.

シリカの配合量は、シリカによる補強効果の観点から適宜決定することができ、特に限定されないが、好ましくは、ジエン系ゴム100重量部に対して0重量部以上100重量部以下である。下限値は10重量部以上がより好ましく、上限値は80重量部以下がより好ましい。 The blending amount of silica can be appropriately determined from the viewpoint of the reinforcing effect of silica, and is not particularly limited, but is preferably 0 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the diene rubber. The lower limit is more preferably 10 parts by weight or more, and the upper limit is more preferably 80 parts by weight or less.

シランカップリング剤としては特に限定されず、例えば、ビニルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン;ビス(3−(トリエトキシシリル)プロピル)テトラスルフィド、ビス(3−(トリエトキシシリル)プロピル)ジスルフィド、特開平6−248116号公報に記載されるγ−トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ−トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどのテトラスルフィド類などが挙げられる。 The silane coupling agent is not particularly limited, and for example, vinyl triethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane; Bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulfide, γ-trimethoxysilylpropyldimethylthiocarbamyltetrasulfide described in JP-A-6-248116. , Γ-Trimethoxysilylpropyl benzothiazil tetrasulfide and other tetrasulfides and the like.

シランカップリング剤は、シリカの分散性向上の観点から適宜決定することができ、特に限定されないが、好ましくは、ジエン系ゴム100重量部に対して0重量部以上20重量部以下である。下限値は1重量部以上がより好ましく、上限値は10重量部以下がより好ましい。 The silane coupling agent can be appropriately determined from the viewpoint of improving the dispersibility of silica, and is not particularly limited, but is preferably 0 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the diene rubber. The lower limit is more preferably 1 part by weight or more, and the upper limit is more preferably 10 parts by weight or less.

本発明のゴム組成物は、補強材又は着色剤として、カーボンブラックをさらに含有することもできる。カーボンブラックは、シリカ及びシランカップリング剤と併用してもよいし、併用しなくてもよい。カーボンブラックとしては特に限定されず、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等が挙げられる。カーボンブラックの配合量は、その配合目的に応じて適宜決定することができるが、例えば、ジエン系ゴム100重量部に対して0重量部以上60重量部以下が好ましい。下限値は2重量部以上がより好ましく、上限値は50重量部以下がより好ましい。 The rubber composition of the present invention may further contain carbon black as a reinforcing material or a colorant. Carbon black may or may not be used in combination with silica and a silane coupling agent. The carbon black is not particularly limited, and examples thereof include furnace black, acetylene black, thermal black, channel black, and graphite. The blending amount of carbon black can be appropriately determined according to the blending purpose, but for example, it is preferably 0 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the diene rubber. The lower limit is more preferably 2 parts by weight or more, and the upper limit is more preferably 50 parts by weight or less.

本発明のゴム組成物には、ゴム分野で一般的に使用されている、加硫剤、加硫促進剤、加硫活性化剤、充填剤、可塑剤、老化防止剤など他の配合剤を適宜配合することができる。 The rubber composition of the present invention contains other compounding agents generally used in the rubber field, such as vulcanizing agents, vulcanization accelerators, vulcanization activators, fillers, plasticizers, and antiaging agents. It can be appropriately blended.

加硫剤としては特に限定されないが、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄などのハロゲン化硫黄;ジクミルパーオキシド、ジターシャリブチルパーオキシドなどの有機過酸化物;p−キノンジオキシム、p,p’−ジベンゾイルキノンジオキシムなどのキノンジオキシム;トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、4,4’−メチレンビス−o−クロロアニリンなどの有機多価アミン化合物;メチロール基をもったアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく、粉末硫黄が特に好ましい。加硫剤は1種のみを使用してもよいし、2種以上を併用してもよい。加硫剤の配合量は適宜決定することができるが、好ましくは、ジエン系ゴム100重量部に対し0.1重量部以上15重量部以下である。下限値は0.3重量部以上がより好ましく、上限値は10重量部以下がより好ましい。 The sulfide is not particularly limited, but for example, sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halide such as sulfur monochloride and sulfur dichloride; dicumylperoxide, Organic peroxides such as ditershalibutylperoxide; quinonedioximes such as p-quinonedioxime, p, p'-dibenzoylquinonedioxime; triethylenetetramine, hexamethylenediaminecarbamate, 4,4'-methylenebis- Organic polyvalent amine compounds such as o-chloroaniline; alkylphenol resins having a methylol group and the like can be mentioned. Among these, sulfur is preferable, and powdered sulfur is particularly preferable. Only one type of vulcanizing agent may be used, or two or more types may be used in combination. The blending amount of the vulcanizing agent can be appropriately determined, but is preferably 0.1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the diene rubber. The lower limit is more preferably 0.3 parts by weight or more, and the upper limit is more preferably 10 parts by weight or less.

加硫促進剤としては特に限定されないが、例えば、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N’−ジイソプロピル−2−ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤;ジエチルチオウレアなどのチオウレア系加硫促進剤;2−メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2−メルカプトベンゾチアゾール亜鉛塩などのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸亜鉛などのジチオカルバミン酸系加硫促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛などのキサントゲン酸系加硫促進剤;ヘキサメチレンテトラミン(H)等のアミン系加硫促進剤;ブチルアルデヒドアニリン(B)、ブチルアルデヒドモノブチルアミン(833)等のアルデヒドアンモニア系加硫促進剤等が挙げられる。加硫促進剤は1種のみを使用してもよいし、2種以上を併用してもよい。加硫促進剤の配合量は適宜決定することができるが、好ましくは、ジエン系ゴム100重量部に対し0.1重量部以上15重量部以下である。下限値は0.3重量部以上がより好ましく、上限値は10重量部以下がより好ましい。 The vulcanization accelerator is not particularly limited, but for example, N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide. Sulfenamide-based vulcanization accelerators such as amides, N-oxyethylene-2-benzothiazolesulfenamides, N, N'-diisopropyl-2-benzothiazolesulfenamides; diphenylguanidine, dioltotrilguanidine, orthotri Guanidin-based vulcanization accelerators such as rubiguanidine; thiourea-based vulcanization accelerators such as diethylthiourea; thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiadyldisulfide, 2-mercaptobenzothiazole zinc salt; tetra Thiuram-based vulcanization accelerators such as methylthiuram monosulfide and tetramethylthiuram disulfide; dithiocarbamic acid-based vulcanization accelerators such as sodium dimethyldithiocarbamate and zinc diethyldithiocarbamate; sodium isopropylxanthogenate, zinc isopropylxanthogenate, butylxanthogenic acid Xanthogenic acid-based vulcanization accelerator such as zinc; amine-based vulcanization accelerator such as hexamethylenetetramine (H); aldehyde ammonia-based vulcanization accelerator such as sulfenamide aniline (B) and butulfenamide monobutylamine (833), etc. Can be mentioned. Only one type of vulcanization accelerator may be used, or two or more types may be used in combination. The blending amount of the vulcanization accelerator can be appropriately determined, but is preferably 0.1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the diene rubber. The lower limit is more preferably 0.3 parts by weight or more, and the upper limit is more preferably 10 parts by weight or less.

加硫活性化剤としては特に限定されないが、例えば、ステアリン酸などの高級脂肪酸、酸化亜鉛などが挙げられる。酸化亜鉛としては、表面活性の高い粒度5μm以下のものが好ましく、粒度が0.05μm以上0.2μm以下の活性亜鉛華および0.3μm以上1μm以下の亜鉛華がより好ましい。また、酸化亜鉛としては、アミン系の分散剤または湿潤剤で表面処理したものを用いることができる。加硫活性化剤は1種のみを使用してもよいし、2種以上を併用してもよい。加硫活性化剤の配合量は適宜決定することができるが、加硫活性化剤が高級脂肪酸である場合、その配合量は、好ましくは、ジエン系ゴム100重量部に対し0.05重量部以上15重量部以下である。下限値は0.1重量部以上がより好ましく、上限値は10重量部以下がより好ましい。加硫活性化剤が酸化亜鉛である場合、その配合量は、好ましくは、ジエン系ゴム100重量部に対し0.05重量部以上10重量部以下である。下限値は0.1重量部以上がより好ましく、上限値は5重量部以下がより好ましい。 The vulcanization activator is not particularly limited, and examples thereof include higher fatty acids such as stearic acid and zinc oxide. The zinc oxide preferably has a particle size of 5 μm or less and has a high surface activity, and more preferably active zinc oxide having a particle size of 0.05 μm or more and 0.2 μm or less and zinc oxide having a particle size of 0.3 μm or more and 1 μm or less. Further, as zinc oxide, those surface-treated with an amine-based dispersant or a wetting agent can be used. Only one type of vulcanization activator may be used, or two or more types may be used in combination. The blending amount of the vulcanization activator can be appropriately determined, but when the vulcanization activator is a higher fatty acid, the blending amount is preferably 0.05 parts by weight with respect to 100 parts by weight of the diene rubber. It is 15 parts by weight or less. The lower limit is more preferably 0.1 parts by weight or more, and the upper limit is more preferably 10 parts by weight or less. When the vulcanization activator is zinc oxide, the blending amount thereof is preferably 0.05 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the diene rubber. The lower limit is more preferably 0.1 parts by weight or more, and the upper limit is more preferably 5 parts by weight or less.

充填剤としては、前記シリカとカーボンブラック以外の充填剤が挙げられ、具体的には、クレー、タルク、マイカなどのケイ酸塩鉱物;シラス;炭酸カルシウム(例えば、膠質炭酸カルシウム、極微細炭酸カルシウム、軽微性炭酸カルシウム、重質炭酸カルシウム)、炭酸マグネシウム、炭酸カリウムなどの炭酸塩類;水酸化アルミニウム;硫酸バリウム;酸化アルミニウム、有機短繊維、(メタ)アクリル系樹脂微粒子、エポキシ樹脂微粒子、ガラス微粒子、ガラス繊維、フレークグラファイト等が挙げられる。充填剤は1種のみを使用してもよいし、2種以上を併用してもよい。 Examples of the filler include fillers other than the silica and carbon black, and specifically, silicate minerals such as clay, talc, and mica; silas; calcium carbonate (for example, glue calcium carbonate, ultrafine calcium carbonate). , Light calcium carbonate, heavy calcium carbonate), magnesium carbonate, potassium carbonate and other carbonates; aluminum hydroxide; barium sulfate; aluminum oxide, organic short fibers, (meth) acrylic resin fine particles, epoxy resin fine particles, glass fine particles , Glass fiber, flake graphite and the like. Only one type of filler may be used, or two or more types may be used in combination.

可塑剤としては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどの石油系プロセスオイル、フタル酸ジエチル、フタル酸ジオクチル、アジピン酸ジブチルなどの二塩基酸ジアルキル、液状ポリブテン、液状ポリイソプレンなどの低分子量液状ポリマー、オレンジオイル等の天然オイルが例示され、なかでも、ジエン系ゴムとの相溶性から、液状ポリブテン、液状ポリイソプレン、芳香族系プロセスオイルが好ましい。可塑剤は1種のみを使用してもよいし、2種以上を併用してもよい。 Plasticizers include petroleum-based process oils such as paraffin-based process oils, naphthen-based process oils, and aromatic process oils, dialkyl dibasic acids such as diethyl phthalate, dioctyl phthalate, and dibutyl adipate, liquid polybutene, and liquid poly. Low molecular weight liquid polymers such as isoprene and natural oils such as orange oil are exemplified. Among them, liquid polybutene, liquid polyisoprene, and aromatic process oils are preferable because of their compatibility with diene rubber. Only one type of plasticizer may be used, or two or more types may be used in combination.

本発明のゴム組成物は、ジエン系ゴム以外のゴム成分(例えば、アクリルゴム、フッ素ゴム、シリコンゴム、エチレン−プロピレンゴム、ウレタンゴムなど)や、エピクロロヒドリン、エチレンオキサイド、プロピレンオキサイドおよびアリルグリシジルエーテルからなる群より選ばれる少なくとも1つの単量体の単独重合体または共重合体などをさらに含有するものであってもよい。 The rubber composition of the present invention contains rubber components other than diene rubber (for example, acrylic rubber, fluororubber, silicon rubber, ethylene-propylene rubber, urethane rubber, etc.), epichlorohydrin, ethylene oxide, propylene oxide and allyl. It may further contain a homopolymer or a copolymer of at least one monomer selected from the group consisting of glycidyl ether.

本発明のゴム組成物は、常法に従って各成分を混練することにより得ることができ、特に限定されないが、例えば、まず、加硫剤と加硫促進剤を除く配合剤、ジエン系ゴム、および本発明の重合体粒子を、タンブラー、タンブラー、ヘンシェルミキサー、リボブレンダー等で混合した後、押出機、バンパリー、ロール等で混練する方法を採用することができる。この混練時の温度は通常50℃以上200℃以下である。下限値は80℃以上が好ましく、上限値は190℃以下が好ましい。混練に要する時間は通常30秒以上30分以下である。下限値は1分以上が好ましい。 The rubber composition of the present invention can be obtained by kneading each component according to a conventional method, and is not particularly limited. For example, first, a compounding agent excluding a vulcanizing agent and a vulcanization accelerator, a diene rubber, and A method can be adopted in which the polymer particles of the present invention are mixed with a tumbler, a tumbler, a henschel mixer, a rib blender or the like, and then kneaded with an extruder, a bumper, a roll or the like. The temperature at the time of kneading is usually 50 ° C. or higher and 200 ° C. or lower. The lower limit is preferably 80 ° C. or higher, and the upper limit is preferably 190 ° C. or lower. The time required for kneading is usually 30 seconds or more and 30 minutes or less. The lower limit is preferably 1 minute or more.

次いで、加硫剤と加硫促進剤を加えて、さらに、上記の装置を用いて混練する。この時の混練温度は加硫剤の反応を抑制する目的で80℃以上120℃以下で行なうことが好ましい。これにより、加硫剤と加硫促進剤を含有する架橋性のゴム組成物が得られる。 Then, the vulcanizing agent and the vulcanization accelerator are added, and further kneaded using the above-mentioned apparatus. The kneading temperature at this time is preferably 80 ° C. or higher and 120 ° C. or lower for the purpose of suppressing the reaction of the vulcanizing agent. As a result, a crosslinkable rubber composition containing a vulcanizing agent and a vulcanization accelerator can be obtained.

得られた架橋性のゴム組成物を架橋反応させることで、架橋した成形体を得ることができる。架橋方法は、成形体の形状や大きさなどを考慮して適宜選択することができるが、一般にはプレス機や射出成型機を使用すればよい。架橋反応時の温度や時間は特に限定されないが、温度は、好ましくは120℃以上200℃以下であり、より好ましい下限値は140℃以上、より好ましい上限値は180℃以下であり、時間は通常1分以上120分以下程度である。 By subjecting the obtained crosslinkable rubber composition to a crosslink reaction, a crosslinked molded product can be obtained. The cross-linking method can be appropriately selected in consideration of the shape and size of the molded body, but generally a press machine or an injection molding machine may be used. The temperature and time during the crosslinking reaction are not particularly limited, but the temperature is preferably 120 ° C. or higher and 200 ° C. or lower, the more preferable lower limit value is 140 ° C. or higher, the more preferable upper limit value is 180 ° C. or lower, and the time is usually It is about 1 minute or more and 120 minutes or less.

本発明の成形体は、例えば、タイヤ、ケーブル被覆剤、ホース、トランスミッションベルト、コンベアベルト、ロールカバー、靴本体または靴底、シール用リング、防振ゴムなどとして使用することができる。特に本発明の成形体は、タイヤトレッドとして好適に使用することができる。タイヤトレッドが多層構造を有する場合、その最外層を、本発明の成形体により構成することが好ましい。 The molded body of the present invention can be used as, for example, a tire, a cable coating agent, a hose, a transmission belt, a conveyor belt, a roll cover, a shoe body or a sole, a sealing ring, an anti-vibration rubber, or the like. In particular, the molded product of the present invention can be suitably used as a tire tread. When the tire tread has a multi-layer structure, it is preferable that the outermost layer thereof is composed of the molded product of the present invention.

タイヤトレッドが本発明の成形体により構成される場合、空気入りタイヤの製造方法は常法に従うことができる。例えば、未架橋の本発明のゴム組成物を、タイヤトレッドの形状にあわせて押出加工し、タイヤ成形機上にて成形したうえ、他のタイヤ部材に貼り合わせて、未架橋タイヤを形成する。この未架橋タイヤを加硫機中で加熱加圧することで、空気入りタイヤを製造することができる。この空気入りタイヤは、乗用車用タイヤ、または、トラック・バス用タイヤ(重荷重用タイヤ)として好適に用いることができる。 When the tire tread is composed of the molded product of the present invention, the method for manufacturing a pneumatic tire can follow a conventional method. For example, the uncrosslinked rubber composition of the present invention is extruded according to the shape of a tire tread, molded on a tire molding machine, and then bonded to another tire member to form an uncrosslinked tire. By heating and pressurizing this uncrosslinked tire in a vulcanizer, a pneumatic tire can be manufactured. This pneumatic tire can be suitably used as a passenger car tire or a truck / bus tire (heavy load tire).

以下、本発明を実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

(製造例1)重合体粒子(B1)の製造
水220重量部、リン酸三カリウム0.5重量部、硫酸第一鉄(FeSO・7HO)0.0021重量部、エチレンジアミン4酢酸・2Na塩0.0035重量部を撹拌翼付き耐圧重合器に仕込み、撹拌しながら45℃に昇温し、内部を窒素置換し、さらにアスピレータを用いて脱酸措置を施した。その後、ロジン酸カリウム1.99重量部、ジビニルベンゼン11.4重量部、スチレン8.6重量部、ブタジエン80重量部を添加し、さらにパラメンタンハイドロパーオキサイド0.0574重量部、ホルムアルデヒドスルフォキシル酸ナトリウム0.075重量部を添加し、重合反応を開始した。さらに2時間後、半硬化牛脂脂肪酸カリウム0.19重量部、パラメンタンハイドロパーオキサイド0.02重量部、硫酸第一鉄(FeSO・7HO)0.00033重量部、エチレンジアミン4酢酸・2Na塩0.00054重量部、ホルムアルデヒドスルフォキシル酸ナトリウム0.02重量部、さらに1.5時間後、半硬化牛脂脂肪酸カリウム0.40重量部、パラメンタンハイドロパーオキサイド0.02重量部、硫酸第一鉄(FeSO・7HO)0.00033重量部、エチレンジアミン4酢酸・2Na塩0.00054重量部、さらに1時間後、半硬化牛脂脂肪酸カリウム0.40重量部を添加し、50℃に昇温した。1.5時間後、パラメンタンハイドロパーオキサイド0.02重量部、さらに0.5時間後、パラメンタンハイドロパーオキサイド0.06重量部、硫酸第一鉄(FeSO・7HO)0.0011重量部、エチレンジアミン4酢酸・2Na塩0.0018重量部、ホルムアルデヒドスルフォキシル酸ナトリウム0.075重量部、さらに2時間おきにパラメンタンハイドロパーオキサイド0.058重量部を添加し、重合反応開始から13時間後、重合転化率97%、体積平均粒子径78nmの重合体粒子ラテックスを得た。
(Production Example 1) 220 parts by weight produced water of the polymer particles (B1), tripotassium 0.5 part by weight of phosphoric acid, (2 O FeSO 4 · 7H) 0.0021 parts by weight of ferrous sulfate, ethylenediaminetetraacetic acid, 0.0035 parts by weight of 2Na salt was charged into a pressure resistant polymer with a stirring blade, the temperature was raised to 45 ° C. while stirring, the inside was replaced with nitrogen, and deoxidization measures were taken using an aspirator. Then, 1.99 parts by weight of potassium loginate, 11.4 parts by weight of divinylbenzene, 8.6 parts by weight of styrene, and 80 parts by weight of butadiene were added, and further, 0.0574 parts by weight of paramentan hydroperoxide and 0.0574 parts by weight of formaldehyde sulfoxyl were added. 0.075 parts by weight of sodium acetate was added to initiate the polymerization reaction. After a further 2 hours, 0.19 parts by weight of potassium partially hydrogenated tallow fatty acid, 0.02 parts by weight p-menthane hydroperoxide, (2 O FeSO 4 · 7H ) 0.00033 parts of ferrous sulfate, ethylenediaminetetraacetic acid · 2Na 0.00054 parts by weight of salt, 0.02 parts by weight of sodium formaldehyde sulfoxylate, and after 1.5 hours, 0.40 parts by weight of semi-cured beef fatty acid potassium, 0.02 parts by weight of paramentan hydroperoxide, sulfate. monoferric (FeSO 4 · 7H 2 O) 0.00033 parts by weight of ethylenediamine tetraacetic acid · 2Na salt 0.00054 parts by weight, further 1 hour after, the addition of 0.40 parts by weight of potassium partially hydrogenated tallow fatty acid, in 50 ° C. The temperature was raised. After 1.5 hours, 0.02 parts by weight p-menthane hydroperoxide, further after 0.5 hours, 0.06 parts by weight p-menthane hydroperoxide, ferrous sulfate (FeSO 4 · 7H 2 O) 0.0011 From the start of the polymerization reaction, 0.0018 parts by weight of ethylenediamine tetraacetic acid / 2Na salt, 0.075 parts by weight of sodium formaldehyde sulfoxylate, and 0.058 parts by weight of paramentane hydroperoxide were added every 2 hours. After 13 hours, a polymer particle latex having a polymerization conversion rate of 97% and a volume average particle diameter of 78 nm was obtained.

水3.5重量部、ジラウリルチオジプロピオネート1.5重量部、トリエチレングリコール−ビス[3ー(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]1.5重量部、半硬化牛脂脂肪酸カリウム0.47重量部からなる混合物をホモジナイザーにより乳化した後、重合体粒子ラテックスに添加した。さらに塩化カルシウムの25%水溶液5.0重量部を添加し、重合体粒子を凝固させ、ペーパーフィルターを用いて凝固物を分取、水により洗浄した後、50℃で2日間乾燥させ、重合体粒子(B1)の凝集した粉体を得た。 3.5 parts by weight of water, 1.5 parts by weight of dilaurylthiodipropionate, 1.5 parts by weight of triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] , Semi-cured beef tallow fatty acid potassium 0.47 parts by weight was emulsified with a homogenizer and then added to the polymer particle latex. Further, 5.0 parts by weight of a 25% aqueous solution of calcium chloride was added to coagulate the polymer particles, the coagulated product was separated using a paper filter, washed with water, and then dried at 50 ° C. for 2 days to obtain the polymer. An agglomerated powder of particles (B1) was obtained.

(比較製造例1)重合体粒子(B2)の製造
水125重量部、リン酸三カリウム0.38重量部、硫酸第一鉄(FeSO・7HO)0.00088重量部、エチレンジアミン4酢酸・2Na塩0.015重量部を撹拌翼付き耐圧重合器に仕込み、撹拌しながら45℃に昇温し、内部を窒素置換し、さらにアスピレータを用いて脱酸措置を施した。その後、半硬化牛脂脂肪酸カリウム1.98重量部、スチレン20重量部、ブタジエン50重量部、パラメンタンハイドロパーオキサイド0.049重量部を添加し、ホルムアルデヒドスルフォキシル酸ナトリウム0.006重量部を添加して重合反応を開始した。重合反応開始から2時間後、パラメンタンハイドロパーオキサイド0.018重量部、ホルムアルデヒドスルフォキシル酸ナトリウム0.038重量部を添加し、さらに1時間後、55℃に昇温した。さらに2時間後、ブタジエンを30重量部、さらに1時間後、パラメンタンハイドロパーオキサイド0.018重量部、硫酸第一鉄(FeSO・7HO)0.0013重量部、エチレンジアミン4酢酸・2Na塩0.0022重量部を添加し、さらに1時間後、60℃に昇温した。昇温から1時間後、パラメンタンハイドロパーオキサイド0.019重量部を添加し、さらに2時間撹拌を続け、転化率98%、体積平均粒子径81nmの重合体粒子ラテックスを得た。
(Comparative Production Example 1) Production water 125 parts by weight of the polymer particles (B2), tripotassium 0.38 parts by weight of phosphoric acid, (2 O FeSO 4 · 7H ) 0.00088 parts of ferrous sulfate, ethylenediaminetetraacetic acid -0.015 parts by weight of 2Na salt was charged into a pressure resistant polymer with a stirring blade, the temperature was raised to 45 ° C. while stirring, the inside was replaced with nitrogen, and deoxidization measures were taken using an aspirator. Then, 1.98 parts by weight of potassium semi-cured beef tallow, 20 parts by weight of styrene, 50 parts by weight of butadiene, 0.049 parts by weight of paramentan hydroperoxide were added, and 0.006 parts by weight of sodium formaldehyde sulfoxylate was added. Then, the polymerization reaction was started. Two hours after the start of the polymerization reaction, 0.018 parts by weight of paramenthane hydroperoxide and 0.038 parts by weight of sodium formaldehyde sulfoxylate were added, and one hour later, the temperature was raised to 55 ° C. After a further 2 hours, 30 parts by weight of butadiene, after a further hour, 0.018 parts by weight p-menthane hydroperoxide, (2 O FeSO 4 · 7H ) 0.0013 parts by weight of ferrous sulfate, ethylenediaminetetraacetic acid · 2Na 0.0022 parts by weight of salt was added, and after 1 hour, the temperature was raised to 60 ° C. After 1 hour from the temperature rise, 0.019 parts by weight of paramentan hydroperoxide was added, and stirring was continued for another 2 hours to obtain a polymer particle latex having a conversion rate of 98% and a volume average particle diameter of 81 nm.

水3.5重量部、ジラウリルチオジプロピオネート1.5重量部、トリエチレングリコール−ビス[3ー(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]1.5重量部、半硬化牛脂脂肪酸カリウム0.47重量部からなる混合物をホモジナイザーにより乳化した後、重合体粒子ラテックスに添加した。さらに塩化カルシウムの25%水溶液5.0重量部を添加し、重合体粒子を凝固させ、ペーパーフィルターを用いて凝固物を分取、水により洗浄した後、50℃で2日間乾燥させ、重合体粒子(B2)の凝集した粉体を得た。 3.5 parts by weight of water, 1.5 parts by weight of dilaurylthiodipropionate, 1.5 parts by weight of triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] , Semi-cured beef tallow fatty acid potassium 0.47 parts by weight was emulsified with a homogenizer and then added to the polymer particle latex. Further, 5.0 parts by weight of a 25% aqueous solution of calcium chloride was added to coagulate the polymer particles, the coagulated product was separated using a paper filter, washed with water, and then dried at 50 ° C. for 2 days to obtain the polymer. An agglomerated powder of particles (B2) was obtained.

(比較製造例2)重合体粒子(B3)の製造
水200重量部、硫酸第一鉄(FeSO・7HO)0.0012重量部、エチレンジアミン4酢酸・2Na塩0.0020重量部を撹拌翼付き耐圧重合器に仕込み、撹拌しながら45℃に昇温し、内部を窒素置換し、さらにアスピレータを用いて脱酸措置を施した。その後、ポリオキシエチレンラウリルエーテルリン酸ナトリウム塩0.07重量部、スチレン20.0重量部、ブタジエン80.0重量部を添加し、パラメンタンハイドロパーオキサイド0.028重量部、ホルムアルデヒドスルフォキシル酸ナトリウム0.05重量部を添加し、重合反応を開始した。さらに2.5時間後、ポリオキシエチレンラウリルエーテルリン酸ナトリウム塩0.37重量部、さらに2時間後、ポリオキシエチレンラウリルエーテルリン酸ナトリウム塩0.37重量部、さらに1.5時間後、パラメンタンハイドロパーオキサイド0.014重量部、ポリオキシエチレンラウリルエーテルリン酸ナトリウム塩0.37重量部、さらに4時間後、パラメンタンハイドロパーオキサイド0.014重量部を添加し、55℃に昇温した。さらに3時間後、パラメンタンハイドロパーオキサイド0.014重量部、さらに3時間後、パラメンタンハイドロパーオキサイド0.014重量部を添加し、65℃に昇温した。さらに3時間後パラメンタンハイドロパーオキサイド0.014重量部を添加し、重合反応開始から21時間後、転化率96%、体積平均粒子径134nmの重合体粒子ラテックスを得た。
(Comparative Production Example 2) 200 parts by weight produced water of the polymer particles (B3), stirred ferrous (FeSO 4 · 7H 2 O) 0.0012 parts by weight of ethylenediamine tetraacetic acid · 2Na salt 0.0020 parts by weight of sulfuric acid It was charged in a pressure-resistant polymerizer with wings, heated to 45 ° C. with stirring, the inside was replaced with nitrogen, and deoxidized measures were taken using an aspirator. Then, 0.07 parts by weight of polyoxyethylene lauryl ether sodium phosphate, 20.0 parts by weight of styrene, and 80.0 parts by weight of butadiene were added, and 0.028 parts by weight of paramentan hydroperoxide and formaldehyde sulfoxylic acid were added. 0.05 parts by weight of sodium was added to initiate the polymerization reaction. After another 2.5 hours, 0.37 parts by weight of polyoxyethylene lauryl ether sodium phosphate salt, after another 2 hours, 0.37 parts by weight of polyoxyethylene lauryl ether sodium phosphate, and after another 1.5 hours, para 0.014 parts by weight of mentan hydroperoxide, 0.37 parts by weight of polyoxyethylene lauryl ether sodium phosphate salt, and after 4 hours, 0.014 parts by weight of paramentan hydroperoxide were added and the temperature was raised to 55 ° C. .. After 3 hours, 0.014 parts by weight of paramentan hydroperoxide was added, and after 3 hours, 0.014 parts by weight of paramentan hydroperoxide was added, and the temperature was raised to 65 ° C. After 3 hours, 0.014 parts by weight of paramentan hydroperoxide was added, and 21 hours after the start of the polymerization reaction, a polymer particle latex having a conversion rate of 96% and a volume average particle diameter of 134 nm was obtained.

水3.5重量部、ジラウリルチオジプロピオネート1.5重量部、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]1.5重量部、半硬化牛脂脂肪酸カリウム0.47重量部からなる混合物をホモジナイザーにより乳化した後、重合体粒子ラテックスに添加した。さらに塩化カルシウムの25%水溶液5.0重量部を添加し、重合体粒子を凝固させ、ペーパーフィルターを用いて凝固物を分取、水により洗浄した後、50℃で2日間乾燥させ、重合体粒子(B3)の凝集した粉体を得た。 3.5 parts by weight of water, 1.5 parts by weight of dilaurylthiodipropionate, 1.5 parts by weight of triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] , Semi-cured beef tallow fatty acid potassium 0.47 parts by weight was emulsified with a homogenizer and then added to the polymer particle latex. Further, 5.0 parts by weight of a 25% aqueous solution of calcium chloride was added to coagulate the polymer particles, the coagulated product was separated using a paper filter, washed with water, and then dried at 50 ° C. for 2 days to obtain the polymer. An agglomerated powder of particles (B3) was obtained.

(重合体粒子である一次粒子の平均粒子径の測定方法)
一次粒子の体積平均粒子径は、各製造例及び比較製造例で塩化カルシウム水溶液を添加して凝固させる前のラテックスの状態で、日機装株式会社製のNanotrac Waveを用いて測定した。
(Method of measuring the average particle size of primary particles, which are polymer particles)
The volume average particle size of the primary particles was measured using Nanotrac Wave manufactured by Nikkiso Co., Ltd. in the state of latex before adding an aqueous solution of calcium chloride to solidify in each production example and comparative production example.

(重合体粒子が凝集した粉体の平均粒子径の測定方法)
粉体の平均粒子径は、各製造例及び比較製造例で得た乾燥後の、重合体粒子の凝集した粉体について、日機装株式会社製のマイクロトラックMT3000IIを使用して光散乱法に基づき測定した。あわせて、粉体全体に占める粒子径が700μm以上の粉体の割合(体積%)、及び、粉体全体に占める粒子径が1000μm以上の粉体の割合(体積%)を測定した。
(Method of measuring the average particle size of powder in which polymer particles are aggregated)
The average particle size of the powder is measured based on the light scattering method using the Microtrac MT3000II manufactured by Nikkiso Co., Ltd. for the agglomerated powder of the polymer particles after drying obtained in each production example and the comparative production example. did. In addition, the proportion of the powder having a particle diameter of 700 μm or more in the entire powder (volume%) and the proportion of the powder having a particle diameter of 1000 μm or more in the entire powder (volume%) were measured.

(実施例1及び比較例1〜3)配合物の混練から加硫シート作製まで
実施例1及び比較例1〜3では以下の材料を使用した。
ジエン系ゴム:
スチレン−ブタジエン共重合体ゴム:JSR SL552、JSR社製(以下SBRと略す。)80重量部
ブタジエンゴム:JSR BR01、JSR社製(以下BRと略す。)20重量部
(Example 1 and Comparative Examples 1 to 3) From kneading of the compound to preparation of a vulcanized sheet In Example 1 and Comparative Examples 1 to 3, the following materials were used.
Diene rubber:
Styrene-butadiene copolymer rubber: JSR SL552, manufactured by JSR (hereinafter abbreviated as SBR) 80 parts by weight butadiene rubber: JSR BR01, manufactured by JSR (hereinafter abbreviated as BR) 20 parts by weight

ゴム用改質剤:
製造例又は比較製造例で製造した重合体粒子の凝集した粉体10重量部(比較例3では使用せず)
Rubber modifier:
10 parts by weight of agglomerated powder of polymer particles produced in Production Example or Comparative Production Example (not used in Comparative Example 3)

各種添加剤:
シリカ:Silica AQ(東ソーシリカ社製)60重量部
可塑剤(プロセスオイル):VivaTec500(H&R社製)25重量部
シランカップリング剤:KBE−846(信越シリコーン社製)4.8重量部
カーボンブラック:旭#78(旭カーボン社製)5重量部
酸化亜鉛:酸化亜鉛2種(堺化学社製)3重量部
ステアリン酸:ステアリン酸(日本精化社製)1重量部
老化防止剤:ノクラック6C(大内新興化学工業社製)2重量部
加硫剤:325メッシュ粉末硫黄(細井化学工業社製)1.4重量部
加硫促進剤(1):ノクセラーNS(大内新興化学工業社製)1.2重量部
加硫促進剤(2):ノクセラーD(大内新興化学工業社製)1.2重量部
Various additives:
Silica: Silica AQ (manufactured by Toso Silica) 60 parts by weight Plastic agent (process oil): VivaTec500 (manufactured by H & R) 25 parts by weight silane coupling agent: KBE-846 (manufactured by Shin-Etsu Silicone) 4.8 parts by weight Carbon black : Asahi # 78 (manufactured by Asahi Carbon Co., Ltd.) 5 parts by weight Zinc oxide: Zinc oxide 2 types (manufactured by Sakai Chemical Co., Ltd.) 3 parts by weight Stericic acid: Steric acid (manufactured by Nippon Seika Co., Ltd.) 1 part by weight Anti-aging agent: Nocrack 6C (Manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) 2 parts by weight vulcanizing agent: 325 mesh powder sulfur (manufactured by Hosoi Chemical Industry Co., Ltd.) 1.4 parts by weight vulcanization accelerator (1): Noxeller NS (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) ) 1.2 parts by weight Vulcanization accelerator (2): Noxeller D (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) 1.2 parts by weight

まず、ラボプラストミル(東洋精機社製)を用いて、加硫剤および加硫促進剤である325メッシュ粉末硫黄、ノクセラーNS、及びノクセラーD以外の配合剤を、100℃設定、100rpmで混練し、剪断発熱による温度上昇が140℃に到達してから更に混練を5分間継続して行った後に回転を止めて排出した。 First, using a lab plast mill (manufactured by Toyo Seiki Co., Ltd.), a compounding agent other than the vulcanizing agent and the vulcanization accelerator 325 mesh powdered sulfur, Noxeller NS, and Noxeller D is kneaded at 100 ° C. and 100 rpm. After the temperature rise due to the heat generated by shearing reached 140 ° C., kneading was continued for 5 minutes, and then the rotation was stopped and the mixture was discharged.

次に、加硫剤および加硫促進剤を追加し、30℃設定、80rpmで混練し、剪断発熱による温度上昇が90℃になったところで排出した。このようにして得られたゴム組成物を160℃で30分間圧縮成形して、ゴム組成物を架橋して、2m/m厚のシートを作製した。得られたシートを用いて、動的粘弾性、および耐摩耗性を評価した。また、加硫剤および加硫促進剤を追加する前の配合物を使用して加工性も評価した。結果を表1に示す。 Next, a vulcanizing agent and a vulcanization accelerator were added, kneaded at 30 ° C. and 80 rpm, and discharged when the temperature rise due to shear heat generation reached 90 ° C. The rubber composition thus obtained was compression molded at 160 ° C. for 30 minutes, and the rubber composition was crosslinked to prepare a sheet having a thickness of 2 m / m. The obtained sheet was used to evaluate dynamic viscoelasticity and abrasion resistance. The processability was also evaluated using the formulation before the addition of the vulcanizing agent and the vulcanization accelerator. The results are shown in Table 1.

(動的粘弾性)
各実施例及び比較例で得られたシートから切り出した15mm×15mm×2mmの試験片について、動的粘弾性測定装置ARES(TAインスツルメント社製)を用いて、JIS K−6394(加硫ゴム及び熱可塑性ゴムの動的性質試験方法)に準じて、8mmφの平行円板形治具を用いて、周波数16Hz、歪み0.1%、温度60℃、昇温速度5℃/minの条件で60℃tanδを測定した。
(Dynamic viscoelasticity)
JIS K-6394 (vulcanization) was used for a 15 mm × 15 mm × 2 mm test piece cut out from the sheets obtained in each Example and Comparative Example using a dynamic viscoelasticity measuring device ARES (manufactured by TA Instruments). Condition of frequency 16Hz, strain 0.1%, temperature 60 ° C., temperature rise rate 5 ° C./min using a parallel disk jig of 8 mmφ according to the dynamic property test method of rubber and thermoplastic rubber). 60 ° C. tan δ was measured.

60℃tanδは転がり抵抗の指標となる測定値であり、この数値が小さいほど転がり抵抗が小さく、低燃費を達成できることを示す。表1では、比較例3で得られた60℃tanδの数値を指標の100とし、実施例1及び他の比較例で得られた60℃tanδの数値を指数に換算して示した。 60 ° C. tan δ is a measured value that is an index of rolling resistance, and the smaller this value is, the smaller the rolling resistance is, and it is shown that low fuel consumption can be achieved. In Table 1, the numerical value of 60 ° C. tan δ obtained in Comparative Example 3 was set as an index of 100, and the numerical value of 60 ° C. tan δ obtained in Example 1 and other Comparative Examples was converted into an index and shown.

(耐摩耗性)
各実施例及び比較例で得られたシートについて、アクロン摩耗試験機AB203(株式会社上島製作所製)を用いて、JIS K−6264 B法に準拠して、回転数75rpm(試験片)、負荷荷重27.0N、角度15度、予備試験500回、本試験500回で摩耗試験を実施した。摩耗試験前後でシートの重量を測定して、摩耗量を算出した。
(Abrasion resistance)
For the sheets obtained in each Example and Comparative Example, the Akron wear tester AB203 (manufactured by Ueshima Seisakusho Co., Ltd.) was used, and the rotation speed was 75 rpm (test piece) and the load was applied in accordance with the JIS K-6264 B method. A wear test was carried out at 27.0 N, an angle of 15 degrees, a preliminary test of 500 times, and a main test of 500 times. The amount of wear was calculated by measuring the weight of the sheet before and after the wear test.

得られた結果を、比較例3で得られた数値を指標の100とし、実施例1及び他の比較例で得られた数値を指数に換算して表1に示した。この指数が小さいほど耐摩耗性に優れていることを示す。 The obtained results are shown in Table 1 by converting the numerical values obtained in Comparative Example 3 into an index of 100 and converting the numerical values obtained in Example 1 and other Comparative Examples into indexes. The smaller this index is, the better the wear resistance is.

(加工性)
各実施例及び比較例でラボプラストミルから排出した、加硫剤および加硫促進剤を追加する前の配合物を塊状化して、常温で3分間圧縮成形して、未加硫状態の3m/mシートを得た。得られたシート表面を目視にて観察して以下の基準に従って4段階で加工性を評価した。この加工性が良好であることは、ジエン系ゴム中での重合体粉体の分散性が良好であることを示す。
◎シート表面にブツや荒れが無く表面性が極めて良好である。
○シート表面にブツや荒れが殆ど無く表面性が良好である。
△シート表面にブツや荒れが多数点在して表面性が悪い。
×シート表面にブツや荒れを伴い表面性が悪く、かつ厚みが不均一である。
(Workability)
The formulation discharged from the lab plast mill in each Example and Comparative Example before the addition of the vulcanizing agent and the vulcanization accelerator was agglomerated, compression-molded at room temperature for 3 minutes, and 3 m / in an unvulcanized state. I got an m sheet. The surface of the obtained sheet was visually observed and the workability was evaluated in 4 steps according to the following criteria. Good processability indicates that the dispersibility of the polymer powder in the diene rubber is good.
◎ The surface of the sheet is extremely good with no bumps or roughness.
○ The surface of the sheet has good surface properties with almost no bumps or roughness.
△ The surface of the sheet is poor in surface quality with many bumps and roughness.
× The surface of the sheet is rough and rough, and the surface quality is poor and the thickness is uneven.

Figure 2020152763
Figure 2020152763

表1より、実施例1は、転がり抵抗が小さく、また、耐摩耗性にも優れており、さらに、加工性(分散性)も良好であることが分かる。
From Table 1, it can be seen that Example 1 has low rolling resistance, excellent wear resistance, and good workability (dispersibility).

Claims (12)

共役ジエン単量体単位20重量%以上95重量%以下、
ラジカル重合性反応基を2以上有する単量体(ただし、前記共役ジエン単量体は除く)単位5重量%以上40重量%以下、及び
芳香族モノアルケニル単量体単位0重量%以上70重量%以下から構成される重合体粒子。
Conjugated diene monomer unit 20% by weight or more and 95% by weight or less,
Monomer having 2 or more radically polymerizable reactive groups (excluding the conjugated diene monomer) Unit 5% by weight or more and 40% by weight or less, and aromatic monoalkenyl monomer unit 0% by weight or more and 70% by weight Polymer particles composed of the following.
単層から構成される、請求項1に記載の重合体粒子。 The polymer particle according to claim 1, which is composed of a single layer. 最表面に二重結合を有する、請求項1又は2に記載の重合体粒子。 The polymer particles according to claim 1 or 2, which have a double bond on the outermost surface. 前記重合体粒子の体積平均粒子径が10nm以上500nm以下である、請求項1〜3のいずれかに記載の重合体粒子。 The polymer particles according to any one of claims 1 to 3, wherein the volume average particle diameter of the polymer particles is 10 nm or more and 500 nm or less. 前記重合体粒子が凝集して粉体の形態を有する、請求項1〜4のいずれかに記載の重合体粒子。 The polymer particles according to any one of claims 1 to 4, wherein the polymer particles are aggregated and have a powder form. 前記粉体の体積平均粒子径が10μm以上1000μm以下である、請求項5に記載の重合体粒子。 The polymer particle according to claim 5, wherein the volume average particle diameter of the powder is 10 μm or more and 1000 μm or less. 請求項1〜6のいずれかに記載の重合体粒子からなるゴム用改質剤。 A rubber modifier comprising the polymer particles according to any one of claims 1 to 6. ジエン系ゴムと、請求項7に記載のゴム用改質剤を含む、ゴム組成物。 A rubber composition containing a diene-based rubber and the rubber modifier according to claim 7. 前記ジエン系ゴムは、天然ゴム、イソプレンゴム、ブタジエンゴム、及びスチレン−ブタジエン共重合ゴムより選択される少なくとも1種である、請求項8に記載のゴム組成物。 The rubber composition according to claim 8, wherein the diene rubber is at least one selected from natural rubber, isoprene rubber, butadiene rubber, and styrene-butadiene copolymer rubber. さらに、シリカ、及び、シランカップリング剤を含む、請求項8又は9に記載のゴム組成物。 The rubber composition according to claim 8 or 9, further comprising silica and a silane coupling agent. さらに、カーボンブラックを含む、請求項8〜10のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 8 to 10, further comprising carbon black. 請求項8〜11のいずれかに記載のゴム組成物から成形された成形体。
A molded product molded from the rubber composition according to any one of claims 8 to 11.
JP2019050190A 2019-03-18 2019-03-18 Polymer particle, rubber modifier, rubber composition and molding thereof Pending JP2020152763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050190A JP2020152763A (en) 2019-03-18 2019-03-18 Polymer particle, rubber modifier, rubber composition and molding thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050190A JP2020152763A (en) 2019-03-18 2019-03-18 Polymer particle, rubber modifier, rubber composition and molding thereof

Publications (1)

Publication Number Publication Date
JP2020152763A true JP2020152763A (en) 2020-09-24

Family

ID=72557750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050190A Pending JP2020152763A (en) 2019-03-18 2019-03-18 Polymer particle, rubber modifier, rubber composition and molding thereof

Country Status (1)

Country Link
JP (1) JP2020152763A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000779A1 (en) * 2000-06-29 2002-01-03 Jsr Corporation Rubber composition
JP2002012703A (en) * 2000-04-27 2002-01-15 Jsr Corp Rubber composition
JP2002012633A (en) * 2000-04-27 2002-01-15 Jsr Corp Crosslinked rubber particles and rubber composition
WO2002010273A1 (en) * 2000-08-01 2002-02-07 The Yokohama Rubber Co., Ltd. Rubber composition and crosslinked rubber
JP2002047305A (en) * 2000-07-31 2002-02-12 Nippon Zeon Co Ltd Method for producing conjugated diene-aromatic vinyl copolymer rubber
JP2002309107A (en) * 2001-04-13 2002-10-23 Jsr Corp Conductive rubber composition and electromagnetic wave shielding material using the same
JP2005146053A (en) * 2003-11-12 2005-06-09 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2005082995A1 (en) * 2004-02-27 2005-09-09 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using the same
JP2006257160A (en) * 2005-03-15 2006-09-28 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2006282837A (en) * 2005-03-31 2006-10-19 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2012111640A1 (en) * 2011-02-14 2012-08-23 Jsr株式会社 Rubber composition, method for producing same, and tire
JP2016533406A (en) * 2014-06-03 2016-10-27 エルジー・ケム・リミテッド Polymer particle having core-shell structure and rubber composition containing the same
JP2018525484A (en) * 2015-07-27 2018-09-06 アランセオ・ドイチュランド・ゲーエムベーハー Sealing gel, process for its production and its use in sealing compounds for self-sealing tires
JP2020507640A (en) * 2017-01-26 2020-03-12 アランセオ・ドイチュランド・ゲーエムベーハー Foam sealing compound
JP2020508361A (en) * 2017-01-26 2020-03-19 アランセオ・ドイチュランド・ゲーエムベーハー Filler-filled sealing gel, method for producing it and its use in sealing compounds for self-sealing tires

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012703A (en) * 2000-04-27 2002-01-15 Jsr Corp Rubber composition
JP2002012633A (en) * 2000-04-27 2002-01-15 Jsr Corp Crosslinked rubber particles and rubber composition
WO2002000779A1 (en) * 2000-06-29 2002-01-03 Jsr Corporation Rubber composition
JP2002047305A (en) * 2000-07-31 2002-02-12 Nippon Zeon Co Ltd Method for producing conjugated diene-aromatic vinyl copolymer rubber
WO2002010273A1 (en) * 2000-08-01 2002-02-07 The Yokohama Rubber Co., Ltd. Rubber composition and crosslinked rubber
JP2002309107A (en) * 2001-04-13 2002-10-23 Jsr Corp Conductive rubber composition and electromagnetic wave shielding material using the same
JP2005146053A (en) * 2003-11-12 2005-06-09 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2005082995A1 (en) * 2004-02-27 2005-09-09 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using the same
JP2006257160A (en) * 2005-03-15 2006-09-28 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2006282837A (en) * 2005-03-31 2006-10-19 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
WO2012111640A1 (en) * 2011-02-14 2012-08-23 Jsr株式会社 Rubber composition, method for producing same, and tire
JP2016533406A (en) * 2014-06-03 2016-10-27 エルジー・ケム・リミテッド Polymer particle having core-shell structure and rubber composition containing the same
JP2018525484A (en) * 2015-07-27 2018-09-06 アランセオ・ドイチュランド・ゲーエムベーハー Sealing gel, process for its production and its use in sealing compounds for self-sealing tires
JP2020507640A (en) * 2017-01-26 2020-03-12 アランセオ・ドイチュランド・ゲーエムベーハー Foam sealing compound
JP2020508361A (en) * 2017-01-26 2020-03-19 アランセオ・ドイチュランド・ゲーエムベーハー Filler-filled sealing gel, method for producing it and its use in sealing compounds for self-sealing tires

Similar Documents

Publication Publication Date Title
EP0849321B1 (en) Diene rubber composition
JP3736577B2 (en) Rubber composition and method for producing the same
US8662125B2 (en) Modified gel particles and rubber composition
JP5739094B2 (en) Rubber mixtures containing functionalized diene rubbers and microgels, methods for making these mixtures, and uses
US6114432A (en) Diene rubber composition
US20010053813A1 (en) Rubber compositions
EP0806452A1 (en) Rubber composition and process for preparing the same
JPH10204217A (en) Rubber mixture containing sbr rubber gel
JP6831923B2 (en) A method for producing a conjugated diene-based copolymer, a conjugated diene-based copolymer produced from the method, and a rubber composition containing the same.
EP1748056B1 (en) Tire tread containing core-shell particles
EP1081162A1 (en) Conjugated diene rubber, process for producing the same, and rubber composition
JP2002012703A (en) Rubber composition
JP2020152763A (en) Polymer particle, rubber modifier, rubber composition and molding thereof
JP7299908B2 (en) Rubber composition for tire, tire and molding
JP5319041B2 (en) Rubber composition
JP2002012633A (en) Crosslinked rubber particles and rubber composition
JP4774654B2 (en) Oil-extended rubber and rubber composition
JP7160473B2 (en) Conjugated diene-based copolymer composition, method for producing the same, and rubber composition containing the same
JP6753035B2 (en) Rubber composition
JP3216267B2 (en) Vulcanizable rubber composition
JP4670132B2 (en) Conjugated diene polymer and process for producing the same
JP3970631B2 (en) Rubber composition and pneumatic tire using the same
JP2001226529A (en) Rubber-like polymer composition
Wang Enhancing performance, durability and service life of industrial rubber products by silica and silane fillers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230620