JP2020149652A - Learning farming system for providing optimal irrigation and fertilizer for farming - Google Patents
Learning farming system for providing optimal irrigation and fertilizer for farming Download PDFInfo
- Publication number
- JP2020149652A JP2020149652A JP2019064803A JP2019064803A JP2020149652A JP 2020149652 A JP2020149652 A JP 2020149652A JP 2019064803 A JP2019064803 A JP 2019064803A JP 2019064803 A JP2019064803 A JP 2019064803A JP 2020149652 A JP2020149652 A JP 2020149652A
- Authority
- JP
- Japan
- Prior art keywords
- result
- measurement
- farming
- evaluation
- feedback system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、営農を計算機が扱える数値で表現し、さらに営農者の経験則を構造化しそれを数値化し、これらと装置による測定等に基づいたデータとを合わせ計算手順等により施水や施肥の意思決定を行う営農のための学習型フィードバックシステム構築方法、システム及び製品に関する。 In the present invention, farming is expressed by numerical values that can be handled by a computer, and the empirical rules of farmers are structured and quantified, and these and data based on measurement by an apparatus are combined and water application or fertilization is performed by a calculation procedure or the like. Learning-type feedback system construction method, system and product for farming to make decisions.
ある農業圃場を見た場合、営農者が最大の利益を得られるように農作物の選定と育成を行うように、農業が営まれている。例えば、農作物の選定では、主に農作物の経済価値等を重視し、出荷時期の調整等を考慮して、品種選定を行う。一方で、農作物の育成には、圃場の環境が大きく影響している。例えば、太陽光等の日照時間、大気中の気温、湿度や二酸化炭素濃度、土中の温度、湿度や肥料濃度等がある。そのため、環境の状態によっては、育成が困難な栽培環境や農作物も存在する。 When looking at an agricultural field, agriculture is carried out so that the farmers select and grow their crops in order to maximize their profits. For example, in the selection of agricultural products, the economic value of the agricultural products is mainly emphasized, and the varieties are selected in consideration of the adjustment of the shipping time. On the other hand, the environment of the field has a great influence on the cultivation of agricultural products. For example, there are sunshine duration such as sunlight, air temperature, humidity and carbon dioxide concentration, soil temperature, humidity and fertilizer concentration. Therefore, depending on the environmental conditions, there are some cultivation environments and crops that are difficult to grow.
栽培環境の多くを制御することが出来るハウス栽培や植物工場では、その農作物に対する育成に効果的な環境を予め調べられれば、栽培環境を制御することで営農作業が軽減され容易になる。一方最も広く行われている露地における農作物の栽培は、自然のものを利用する前提とし、栽培環境として意図的に制御出来るのは、主に施水や施肥、除草、消毒による土中の湿度、肥料濃度、衛生状態の制御に留まる。 In house cultivation and plant factories that can control most of the cultivation environment, if the environment that is effective for growing the crop can be investigated in advance, controlling the cultivation environment will reduce and facilitate farming work. On the other hand, the most widely practiced cultivation of agricultural products in open fields is based on the premise that natural crops are used, and the cultivation environment that can be intentionally controlled is mainly water, fertilizer, weeding, and humidity in the soil due to disinfection. Only control fertilizer concentration and hygiene.
同じ農作物を育成する場合でも、圃場が変わるとその環境が大きく変わり、更に、土壌の特性や変動する天候への対応は営農者の経験則による判断によって行われており、農作物の客観的かつ標準的となる一般的な育成の指針がない状態である。あったとしても、特定の環境条件に基づいた手法である。 Even when growing the same crop, the environment changes drastically when the field changes, and the characteristics of the soil and the response to fluctuating weather are judged by the farmer's empirical rules, which is an objective and standard for the crop. There is no general guideline for training. If so, it is a method based on specific environmental conditions.
これらは、一定の成果をもたらしているが、最適の営農になっているかは、多くの場合、客観的な評価はなされていない。結果として現状の営農に関する改善も経験則に依存している。 Although these have produced some results, in many cases, there is no objective evaluation as to whether or not the farming is optimal. As a result, improvements in current farming also depend on rules of thumb.
経験則に基づく営農が、現在の営農環境で最適であった場合でも、客観的な解析が出来ないことで、経験則で得られる効果や意味の説明が出来ないことになる。そのため、客観的な説明に基づく、経験則の継承にも支障が現れる。 Even if farming based on empirical rules is optimal in the current farming environment, it is not possible to explain the effects and meanings obtained by empirical rules because objective analysis is not possible. Therefore, the inheritance of the rule of thumb based on the objective explanation is also hindered.
営農者にとっての価値観は、一律ではない。例えば、大量に作ることで、大きな利益を得ようと考える営農者もいるし、少量でも品質を高くすることで、大きな利益を得ようとする営農者もいる。しかしながら、多くのシステムでは、一つの価値観で最適化を図ろうとすることが多い。そのため、従来のシステムでは、営農者の多様な価値観を尊重出来ない。 Values for farmers are not uniform. For example, some farmers want to make a big profit by making a large amount, and some farmers want to make a big profit by improving the quality even in a small amount. However, in many systems, one value is often used for optimization. Therefore, the conventional system cannot respect the diverse values of farmers.
図1を用いて説明する。営農者の経験則が、測定項目、及び施水と施肥に関係し、「AならばBである」、「XとYとの関係はこのように表現出来る」と構造化することが出来る場合、命題として定義し、営農者による構造化経験則の入力情報3として入力情報とする。 This will be described with reference to FIG. When the farmer's rule of thumb is related to the measurement items and water application and fertilization, and can be structured as "A is B" and "the relationship between X and Y can be expressed in this way". , Defined as a proposition, and used as input information 3 of a structured empirical rule by a farmer.
営農者が栽培する作物に関する植物特性、品種情報、成長時間など農作物毎の公知の係数化された研究結果1と営農者の作物栽培経験則に基づく営農者が最適と考える定植時期、施水や施肥量の入力情報2および営農に必要な光熱費、人件費などの費用に関する構造化経験則の入力情報3を、システムによる入力情報の評価11を経て、システムへの入力情報とする。そうして、主に、営農者による経験則に基づく施水や施肥量の入力情報2から、日毎の計画を数値化した施水量や施肥量として、1年分、更に、時間毎に作成する。また、日毎の計画の1年分を計画表とする。次に、営農者による構造化経験則の入力情報3から、営農に関する作業日程、構造化された経験則情報を作成する。 Known coefficiented research results 1 for each crop such as plant characteristics, variety information, growth time, etc. regarding the crops cultivated by the farmer, and the planting time, watering, etc. that the farmer considers optimal based on the farmer's crop cultivation experience rules The input information 2 of the fertilizer application amount and the input information 3 of the structured empirical rule regarding the costs such as utility costs and labor costs required for farming are used as the input information to the system after the evaluation 11 of the input information by the system. Then, mainly from the input information 2 of the water application and fertilizer application amount based on the empirical rule by the farmer, the daily plan is quantified as the water application amount and fertilizer application amount for one year and further every hour. .. In addition, one year's worth of daily plans will be used as the planning table. Next, from the input information 3 of the structured rule of thumb by the farmer, the work schedule related to farming and the structured rule of thumb information are created.
これら作成された情報を管理された計画表付属情報5としてシステム上の構造化データベース(DB)に入力する。結果として、その農作物やその環境に対する計画表を用意出来る。これらを参考計画表とする。 These created information is input to the structured database (DB) on the system as the managed schedule attached
営農者の指定する農作物と環境を基に、参考計画表の基となった類似した農作物の類似した環境から、参考計画表を選び出す。そして、選び出した参考計画表を計画表として使用することで、経験則に基づいたDBへの入力が無い場合の既定値とする。 Based on the crops and environment specified by the farmer, the reference plan is selected from the similar environments of the similar crops that are the basis of the reference plan. Then, by using the selected reference plan table as the plan table, it is set as the default value when there is no input to the DB based on the empirical rule.
システムは、出来得る限りの環境の測定が行えるものとし、測定出来た項目は、栽培環境測定情報や生育実績の記録・評価情報8としてDBに保管する。 The system shall be able to measure the environment as much as possible, and the measured items are stored in the DB as cultivation environment measurement information and record / evaluation information 8 of growth results.
例えば、システムによる環境測定値例6のように、測定を行うことが出来る場合、環境測定情報のペンマン法への応用例13等を用いることが出来る。その場合、システムによる数値解析結果例7のように蒸散量の実測又は数値解析による推測が可能になる。なお、ペンマン法は、栽培環境測定情報から一般的気象情報だけを用いて植物の可能蒸発散量を計算しその量を推定する。 For example, when the measurement can be performed as in the environment measurement value example 6 by the system, the application example 13 of the environment measurement information to the Penman method can be used. In that case, the amount of transpiration can be actually measured or estimated by numerical analysis as in Example 7 of the numerical analysis result by the system. In the Penman method, the possible evapotranspiration of plants is calculated from the cultivation environment measurement information using only general meteorological information, and the amount is estimated.
DB上に管理された計画表と付属情報5に存在する情報とシステムによる数値解析結果例7を計画の測定値による補正12よって補正する。実際には、構造化された経験則と年間計画表に重点を置き、前日に消費された水分や肥料を基に、当日の計画に補正を加える。 The information existing in the plan table and the attached
計画の測定値による補正12により、その結果として、システムが当日分の実行表を作成する。また、実行表は、潅水(施水)自動制御用の命令作成と実行21と施肥推奨の実行22から出来ている。そして、当日分の実行表に従って、施水と施肥は、システム側から自動で実施したり、人への指示を行ったりする。 As a result of the
計画表は、当日の実行表が作成される前に、農産品として出荷あるいは販売する価格、作物取引相場指標、出荷金額などが営農者や外部システムによる計画表の補正情報4によって、補正されることがある。 Before the execution table of the day is created, the price, crop trading market index, shipping amount, etc. of the plan table to be shipped or sold as agricultural products are corrected by the
当日の作業として、環境測定情報や実績の記録・評価情報8により、計画の補正内容と営農に対する実績を、システムに自動的に記録する。更に、後日営農に対する数値化された評価を加え、その結果もシステムに記録する。 As the work of the day, the correction contents of the plan and the results for farming are automatically recorded in the system by the environmental measurement information and the record / evaluation information 8 of the results. In addition, a quantified evaluation of farming will be added at a later date, and the results will be recorded in the system.
環境測定情報や実績の記録・評価情報8を関数の実体としての実績による解析や学習14を経て、DB上に管理された計画表と付属情報5に反映する。
例えば、年間計画に対する補正、実績や評価を数値解析や学習型の人工知能等を利用して、翌年の年間計画に反映させる。The environmental measurement information and the record / evaluation information 8 of the actual results are reflected in the plan table and the attached
For example, corrections to the annual plan, achievements and evaluations are reflected in the next year's annual plan by using numerical analysis and learning-type artificial intelligence.
農作物に対して、営農者が能動的に関与出来る営農作業であり、農作物の生育に必要かつ不可欠である潅水と施肥の最適な量と時期を、意思決定の重点として扱える。 It is a farming work in which farmers can be actively involved in crops, and the optimum amount and timing of irrigation and fertilization, which are necessary and indispensable for the growth of crops, can be treated as the focus of decision-making.
営農者の保有する圃場である農作物を育成している場合、その営農者は、ある一定の収益を得られる施水や施肥の手法を持っている。そこで、DB上に管理された計画表と付属情報5のように、営農者により日毎の計画を1年分入力することで、潅水(施水)自動制御用の命令作成と実行21で示す、営農の一部に対してシステムによる自動化が行える。 When growing crops that are fields owned by a farmer, the farmer has a method of watering or fertilizing that can generate a certain amount of profit. Therefore, as shown in the plan table managed on the DB and the attached
営農のシステムによる自動化が行われることで、営農者の持つ経験則の全てあるいは一部が構造化されたことで、システムによって継承されたことになる。つまり、そのシステムを利用する限り、営農者が経験側を持った熟練の営農者である必要はなく、農作物の育成や経済的を評価する等の市場戦略に対し、初心者でも最適な営農が可能となる。 By automating the farming system, all or part of the farmer's rules of thumb have been structured and inherited by the system. In other words, as long as the system is used, the farmer does not have to be a skilled farmer with experience, and even beginners can perform optimal farming for market strategies such as growing crops and evaluating the economy. It becomes.
また、熟練の営農者によるシステムへの入力を期待出来ない状況の初心者であった場合、参考計画を使用することで、一定の成果を上げることが期待出来る。 In addition, if you are a beginner in a situation where you cannot expect input to the system by a skilled farmer, you can expect to achieve certain results by using the reference plan.
DB上に管理された計画表と付属情報5により、一旦数値化された計画表は、客観的な評価を行う関連要素して利用出来る。 The plan table once quantified by the plan table managed on the DB and the attached
環境測定情報や実績の記録・評価情報8で示すように、実績に数値化した評価を与えることで、客観的な評価要素として利用出来る。 As shown in the environmental measurement information and the record / evaluation information 8 of the actual results, it can be used as an objective evaluation element by giving a numerical evaluation to the actual results.
実績による解析や学習14で示すように、数値化された関連要素と評価要素を使うことで、数値解析を含み学習型の人工知能等を使った解析が可能になる。その結果を利用することで、DB上に管理された計画表と付属情報5で示す、計画表の評価と改良に使用出来る。 Analysis by achievements and learning As shown in 14, by using numerical related elements and evaluation elements, analysis using learning-type artificial intelligence including numerical analysis becomes possible. By using the result, it can be used for evaluation and improvement of the plan table managed on the DB and the plan table shown in the attached
このことは、DB上に管理された計画表と付属情報5が、当初、熟練の営農者によるシステムへの入力という経験則に依存したものであったとしても、実績による解析や学習14で示す、客観的な手法を経ることで経験則の客観的な評価が行われることになる。経験則の客観的な評価と学習による見直しを繰返せることは、このシステムが学習によるフィードバックシステムになっていることを示している。また長期間システムを使用することで、学習効果の向上を期待出来る。 This is shown in analysis and learning 14 based on actual results, even if the schedule and attached
そして、経験則の客観的な評価が出来ることで、経験則の改良が行えることが期待出来る。 And it can be expected that the rule of thumb can be improved by being able to objectively evaluate the rule of thumb.
結果として、このフィードバックシステムを利用して、栽培する作物とその時点の営農環境の下での施水と施肥の最適な時期と量を知ることが出来る。 As a result, this feedback system can be used to know the optimal timing and amount of watering and fertilization under the crops to be cultivated and the farming environment at that time.
環境測定情報や実績の記録・評価情報8で示す、評価要素は、複数あっても構わない。実績による解析や学習14で示す、解析において、出荷時期、出荷量や農作物の品質等の評価要素を経済関連項目の一つとして指定することも出来る。例えば、出荷時期を早めることで、農作物の商品価値を上げるといったことである。 There may be a plurality of evaluation elements shown in the environmental measurement information and the record / evaluation information 8 of the results. Analysis based on actual results and learning In the analysis shown in 14, evaluation factors such as shipping time, shipping amount, and quality of agricultural products can be specified as one of the economic-related items. For example, by accelerating the shipping time, the commercial value of agricultural products can be increased.
更に、解析で複数の評価要素があった場合、一般にそれぞれの評価要素に優先度(重み)を付けて解析を行うことも出来る。例えば、「費用を先ず抑えて収量を最大にする」といった主旨に沿った解析を試みるなどである。 Further, when there are a plurality of evaluation elements in the analysis, it is generally possible to give priority (weight) to each evaluation element and perform the analysis. For example, try an analysis in line with the purpose of "suppressing costs first and maximizing yield".
評価項目に優先度を付ける手法と評価項目の選択の手法は複数存在する。そのため、営農者の価値観に沿った選択を行えることが期待出来る。 There are multiple methods for prioritizing evaluation items and selecting evaluation items. Therefore, it can be expected that the selection can be made according to the values of the farmer.
システムとしては、施水と施肥に限定して構築を目指しているが、ハウス栽培や植物工場のように制御出来る環境要素が増えた場合でも応用が可能である。つまり、施水と施肥に関して、学習されたDB上に管理された計画表と付属情報5を使用することで、例えば他の制御可能な環境要素を1つに限定することで、その環境要素が与える影響を学習することが期待出来る。無論、制御可能な環境要素を複数選んでもそれらの環境要素が与える影響を学習することが期待出来る。 The system aims to be constructed only for water application and fertilization, but it can be applied even when the number of controllable environmental elements increases, such as in house cultivation and plant factories. In other words, regarding water application and fertilization, by using the plan table and attached
つまり、時間をかけて、DB上に管理された計画表と付属情報5の学習を進めることで、ハウス栽培や植物工場で必要とされる環境要素の値の解明が期待出来るということである。そして、その値に近づけるように制御可能な環境要素の制御を行うことにも期待出来る。 In other words, it can be expected that the values of environmental factors required for house cultivation and plant factories will be clarified by advancing the learning of the plan table and attached
[図1]に示す内容は、計算機上に実装可能なシステムである。 The content shown in [Fig. 1] is a system that can be implemented on a computer.
1 農作物毎の公知の係数化された研究結果
2 営農者による経験則に基づく施水や施肥量の入力情報
3 営農者による構造化経験則の入力情報
4 営農者や外部システムによる計画表の補正情報
5 DB上に管理された計画表と付属情報
6 システムによる環境測定値例
7 システムによる数値解析結果例
8 環境測定情報や実績の記録・評価情報
11 システムによる入力情報の評価
12 計画の測定値による補正
13 環境測定情報のペンマン法への応用例
14 実績による解析や学習
21 潅水(施水)自動制御用の命令作成と実行
22 施肥推奨の実行1 Known coefficientized research results for each crop 2 Input information of water application and fertilizer application amount based on empirical rules by farmers 3 Input information of structured empirical rules by
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019064803A JP2020149652A (en) | 2019-03-12 | 2019-03-12 | Learning farming system for providing optimal irrigation and fertilizer for farming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019064803A JP2020149652A (en) | 2019-03-12 | 2019-03-12 | Learning farming system for providing optimal irrigation and fertilizer for farming |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020149652A true JP2020149652A (en) | 2020-09-17 |
Family
ID=72430672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019064803A Pending JP2020149652A (en) | 2019-03-12 | 2019-03-12 | Learning farming system for providing optimal irrigation and fertilizer for farming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020149652A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115039549A (en) * | 2022-06-28 | 2022-09-13 | 安徽未来种业有限公司 | Crop planting and fertilizing information processing method and system |
JP2023147152A (en) * | 2022-03-29 | 2023-10-12 | シェルパ スペース インコーポレイテッド | Farming activity decision-making system and method based on environmental impact assessment |
CN117974348A (en) * | 2024-04-01 | 2024-05-03 | 中通服建设有限公司 | Wisdom agricultural thing networking monitoring system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000083477A (en) * | 1998-07-17 | 2000-03-28 | Satake Eng Co Ltd | How to provide rice production information |
JP2000300077A (en) * | 1998-09-09 | 2000-10-31 | Satake Eng Co Ltd | Method for determining fertilizing quantity for grain crop, method for estimating quality and yield of grain and apparatus for providing production information on grain |
US20180181893A1 (en) * | 2015-05-14 | 2018-06-28 | Board Of Trustees Of Michigan State University | Methods and systems for crop land evaluation and crop growth management |
JP2018161118A (en) * | 2017-03-24 | 2018-10-18 | 株式会社北斗技研 | Environment setting method to maximize profit of closed type plant factory |
-
2019
- 2019-03-12 JP JP2019064803A patent/JP2020149652A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000083477A (en) * | 1998-07-17 | 2000-03-28 | Satake Eng Co Ltd | How to provide rice production information |
JP2000300077A (en) * | 1998-09-09 | 2000-10-31 | Satake Eng Co Ltd | Method for determining fertilizing quantity for grain crop, method for estimating quality and yield of grain and apparatus for providing production information on grain |
US20180181893A1 (en) * | 2015-05-14 | 2018-06-28 | Board Of Trustees Of Michigan State University | Methods and systems for crop land evaluation and crop growth management |
JP2018161118A (en) * | 2017-03-24 | 2018-10-18 | 株式会社北斗技研 | Environment setting method to maximize profit of closed type plant factory |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023147152A (en) * | 2022-03-29 | 2023-10-12 | シェルパ スペース インコーポレイテッド | Farming activity decision-making system and method based on environmental impact assessment |
JP7495749B2 (en) | 2022-03-29 | 2024-06-05 | シェルパ スペース インコーポレイテッド | System and method for decision-making on agricultural activities based on environmental impact assessment |
CN115039549A (en) * | 2022-06-28 | 2022-09-13 | 安徽未来种业有限公司 | Crop planting and fertilizing information processing method and system |
CN115039549B (en) * | 2022-06-28 | 2023-03-10 | 安徽未来种业有限公司 | Crop planting and fertilizing information processing method and system |
CN117974348A (en) * | 2024-04-01 | 2024-05-03 | 中通服建设有限公司 | Wisdom agricultural thing networking monitoring system |
CN117974348B (en) * | 2024-04-01 | 2024-06-11 | 中通服建设有限公司 | Wisdom agricultural thing networking monitoring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nam et al. | Estimating transpiration rates of hydroponically-grown paprika via an artificial neural network using aerial and root-zone environments and growth factors in greenhouses | |
JP2020149652A (en) | Learning farming system for providing optimal irrigation and fertilizer for farming | |
US10064347B2 (en) | Plant cultivation system, and plant cultivation unit | |
WO2021002439A1 (en) | Plant cultivation management system and plant cultivation management device | |
KR20200044604A (en) | Smart Farm Control System Using Smart Farm Control History | |
JP2021128756A (en) | Futures Trading Information Display Program | |
Logachev et al. | Simulation model of crop yields | |
Boev et al. | Digitalization of agro-industrial complex as a basis for building organizational-economic mechanism of sustainable development: foreign experience and perspectives in Russia | |
KR102440824B1 (en) | Tomato optimal growth environment learning system and method | |
Adebola et al. | Can machines garden? systematically comparing the Alphagarden vs. professional horticulturalists | |
Petrović et al. | Financial aspects of pepper (Capsicum annuum L) production on family farms in Serbia | |
Singh et al. | Automated Production Management in Horticulture: An Industry 4.0 Perspective | |
JP7220881B1 (en) | Irrigation control system | |
Boulard et al. | Analysis of knowledge involved in greenhouse climate management-Application to the determination of daily setpoints for a tomato crop | |
Amankwaa-Yeboah et al. | Combining deficit irrigation and nutrient amendment enhances the water productivity of tomato (Solanum lycopersicum L.) in the tropics | |
Sjöberg et al. | Craft knowledge and sustainability: a case study in historical cultivation methods | |
Abele et al. | Predictive Model for Affordable Greenhouse Operations | |
Bhuvana et al. | Economic feasibility studies for Chawki rearing in sericulture | |
Cantliffe et al. | Increased net profits result from greenhouse-grown colored pepper compared to field production in Florida. | |
Goh | Indoor hydroponics farming system monitoring via internet of things (IoT) | |
BINUOMOTE | DETERMINANTS OF ADOPTION OF GREENHOUSE TECHNOLOGIES AMONG TOMATO FARMERS IN THREE SELECTED STATES OF NIGERIA | |
Dinpanah11 et al. | Influencing factors on attitude toward hydroponics cultivation viewpoint of experts | |
Singh et al. | Decision process under greenhouse. | |
Wei | Intelligent agricultural mechanization: A new era engine for agricultural development | |
Kumar | An Outlook on Precision Agriculture Role in Supervision of Small-Scale Crops |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210323 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220809 |