JP2020140424A - Transport vehicle and steering control program for transport vehicle - Google Patents
Transport vehicle and steering control program for transport vehicle Download PDFInfo
- Publication number
- JP2020140424A JP2020140424A JP2019035251A JP2019035251A JP2020140424A JP 2020140424 A JP2020140424 A JP 2020140424A JP 2019035251 A JP2019035251 A JP 2019035251A JP 2019035251 A JP2019035251 A JP 2019035251A JP 2020140424 A JP2020140424 A JP 2020140424A
- Authority
- JP
- Japan
- Prior art keywords
- guide
- steering
- value
- vehicle
- turning center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 62
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 230000032258 transport Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Platform Screen Doors And Railroad Systems (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
本発明は、搬送車および搬送車の操舵制御プログラムに関し、特にカーブ状の走行路においても安定走行できる搬送車および搬送車の操舵制御プログラムに関するものである。 The present invention relates to an automated guided vehicle and a steering control program for an automated guided vehicle, and more particularly to an automated guided vehicle and an automated guided vehicle that can stably travel even on a curved traveling path.
特許文献1には、パレット200の下方へ進入した後、リフタ140を上昇させてパレット200を持ち上げ、パレット200と共にパレット200上に載置されたワーク280を無人で搬送する搬送車100が開示されている。搬送車100は、パレット200の下面から下方へ突き出しパレット200の中心線を貫くように延設されたブラケット230に沿って、パレット200の下方へ進入する。具体的には、搬送車100は、車体110の上面に設けられたレーザーセンサ150によりブラケット230を検出し、ブラケット230が車体110の中央に位置するように操舵制御を行って、パレット200の下方へ進入する。
かかる操舵制御は、次のように行われる(文献1の図6参照)。まずレーザーセンサ150の後方であって車体110の車幅方向中心線CL上に2つの仮想原点VP1,VP3を設定する。次に、仮想原点VP1,VP3と、レーザーセンサ150で測定された車体中心CLからブラケット230までの距離(ズレ量)LZS1,LZS3とに基づいて、車体110の旋回中心ARを算出する。この旋回中心ARと各走行装置120の回転軸とをそれぞれ結ぶ直線に直交する方向へ各回転軸を回転させることにより操舵制御を行っている。 Such steering control is performed as follows (see FIG. 6 of Reference 1). First, two virtual origins VP1 and VP3 are set behind the laser sensor 150 and on the vehicle width direction center line CL of the vehicle body 110. Next, the turning center AR of the vehicle body 110 is calculated based on the virtual origins VP1 and VP3 and the distance (deviation amount) LZS1 and LZS3 from the vehicle body center CL measured by the laser sensor 150 to the bracket 230. Steering control is performed by rotating each rotation axis in a direction orthogonal to a straight line connecting the rotation center AR and the rotation axis of each traveling device 120.
しかしながら、直線状に形成されるブラケット230に沿って搬送車100が走行するように仮想原点VP1,VP3を設定すると、直線状の走行路では安定走行できるが、カーブ状の走行路では操舵制御の追従遅れが生じ、場合によっては搬送車100が走行路から外れてしまうことがあった。操舵制御後における車体110の角度変更には、どうしても追従遅れが生じるからである。 However, if the virtual origins VP1 and VP3 are set so that the guided vehicle 100 travels along the bracket 230 formed in a straight line, stable traveling can be performed on a straight traveling road, but steering control is performed on a curved traveling road. A follow-up delay occurred, and in some cases, the transport vehicle 100 was deviated from the traveling path. This is because the follow-up delay inevitably occurs when the angle of the vehicle body 110 is changed after the steering control.
本発明は、上述した問題点を解決するためになされたものであり、カーブ状の走行路においても安定走行できる搬送車および搬送車の操舵制御プログラムを提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a transport vehicle capable of stable traveling even on a curved traveling road and a steering control program for the transport vehicle.
この目的を達成するために本発明の搬送車は、車体と、その車体に操舵自在に配設される複数の回転軸と、それら複数の回転軸をそれぞれ個別に操舵する複数の操舵手段と、前記複数の回転軸に車軸を介してそれぞれ取着される車輪と、その車輪を回転駆動させる駆動手段とを備え、更に、走行路を示すガイドを検知可能なガイドセンサと、前記搬送車を前記ガイドに沿って走行させるように、前記ガイドセンサが検出したズレ量に基づいて旋回中心を算出し、その旋回中心に基づいて前記複数の操舵手段の操舵角をそれぞれ算出して操舵制御する操舵制御手段とを備え、前記ガイドセンサは、前記車体の走行方向を車長とした場合の前後に少なくとも2か所設けられ、その前後2か所において、それぞれ前記車体の車幅中心に対する前記ガイドの位置のズレ量を検出するものであり、前記操舵制御手段は、前記旋回中心を算出するための仮想原点を、前後2か所の前記ガイドセンサ毎にそれぞれ前記車体の車幅中心線上に設けており、前記ガイドセンサに対する前記仮想原点の距離は、前記走行路が直線状の場合よりカーブ状の場合の方が短く設定される。 In order to achieve this object, the transport vehicle of the present invention includes a vehicle body, a plurality of rotating shafts rotatably arranged on the vehicle body, and a plurality of steering means for individually steering the plurality of rotating shafts. A guide sensor that includes wheels attached to the plurality of rotating shafts via axles, driving means for rotationally driving the wheels, and a guide sensor that can detect a guide indicating a traveling path, and the carrier vehicle. Steering control that calculates the turning center based on the amount of deviation detected by the guide sensor and calculates the steering angles of the plurality of steering means based on the turning center so as to travel along the guide. The guide sensors are provided at least two places in front of and behind the vehicle when the traveling direction of the vehicle body is set as the vehicle length, and the positions of the guides with respect to the vehicle width center of the vehicle body at each of the two front and rear locations. The steering control means provides virtual origins for calculating the turning center on the vehicle width center line of the vehicle body for each of the two front and rear guide sensors. The distance of the virtual origin with respect to the guide sensor is set shorter when the traveling path is curved than when it is linear.
また、前記操舵制御手段は、前記ガイドセンサが検出した前記ガイドの位置のズレ量の今回検出値と前回検出値との差分値を、前回検出時までの積算値に更に積算した積算値に基づいて前記旋回中心を算出するものである。 Further, the steering control means is based on an integrated value obtained by further integrating the difference value between the current detection value and the previous detection value of the deviation amount of the guide position detected by the guide sensor into the integrated value up to the previous detection. The turning center is calculated.
本発明の搬送車の操舵制御プログラムは、車体と、その車体に操舵自在に配設される複数の回転軸と、それら複数の回転軸をそれぞれ個別に操舵する複数の操舵手段と、その操舵手段を操舵制御するコンピュータと、前記複数の回転軸に車軸を介してそれぞれ取着される車輪と、その車輪を回転駆動させる駆動手段とを備えた搬送車に対し、前記コンピュータに前記操舵制御を実行させるものであり、前記搬送車は、走行路を示すガイドを検知可能なガイドセンサを備え、そのガイドセンサは、前記車体の走行方向を車長とした場合の前後に少なくとも2か所設けられ、その前後2か所において、それぞれ前記車体の車幅中心に対する前記ガイドの位置のズレ量を検出するものであり、前記操舵制御プログラムは、前記搬送車を前記ガイドに沿って走行させるように、前記ガイドセンサが検出したズレ量に基づいて旋回中心を算出する旋回中心算出ステップと、そのステップで算出された旋回中心に基づいて前記複数の操舵手段の操舵角をそれぞれ算出する操舵角算出ステップと、そのステップで算出された操舵角に基づいて操舵制御を実行する操舵制御ステップと、を前記コンピュータに実行させるものであり、前記旋回中心算出ステップは、前記ガイドセンサが検出した前記ガイドの位置のズレ量の今回検出値と前回検出値との差分値を、前回検出時までの積算値に更に積算した積算値に基づいて前記旋回中心を算出するものである。 The steering control program for a carrier vehicle of the present invention includes a vehicle body, a plurality of rotating shafts rotatably arranged on the vehicle body, a plurality of steering means for individually steering the plurality of rotating shafts, and the steering means thereof. The steering control is executed on the computer for a transport vehicle provided with a computer for steering and controlling the wheels, wheels attached to the plurality of rotating shafts via axles, and driving means for rotating the wheels. The transport vehicle is provided with a guide sensor capable of detecting a guide indicating a traveling path, and the guide sensor is provided at least two places before and after when the traveling direction of the vehicle body is the vehicle length. The amount of deviation of the guide position with respect to the vehicle width center of the vehicle body is detected at two locations before and after the guide, and the steering control program is such that the carrier vehicle travels along the guide. A turning center calculation step that calculates the turning center based on the amount of deviation detected by the guide sensor, and a steering angle calculation step that calculates the steering angles of the plurality of steering means based on the turning center calculated in that step. The computer is made to execute a steering control step that executes steering control based on the steering angle calculated in that step, and the turning center calculation step is a deviation of the position of the guide detected by the guide sensor. The turning center is calculated based on the integrated value obtained by further integrating the difference value between the current detection value and the previous detection value of the quantity into the integrated value up to the previous detection.
本発明の搬送車によれば、旋回中心を算出するための仮想原点は、前後2か所のガイドセンサ毎にそれぞれ車体の車幅中心線上に設けられ、ガイドセンサに対する仮想原点の距離は走行路が直線状の場合よりカーブ状の場合の方が短く設定される。ここで、仮想原点とガイドセンサとの距離が長い程、ガイドセンサにより検出されたズレ量に対する旋回中心を算出するための角度は小さくなり、旋回中心から各回転軸までの旋回半径は大きくなる。よって、仮想原点とガイドセンサとの距離が長い程、前記ズレ量が同じであっても操舵角は小さくなるので、直線状の走行路を安定走行させることができる。一方、仮想原点とガイドセンサとの距離が短い程、前記ズレ量に対する旋回中心を算出するための角度は大きくなり、旋回中心から各回転軸までの旋回半径は小さくなる。よって、仮想原点とガイドセンサとの距離が短い程、前記ズレ量が同じであっても操舵角は大きくなるので、カーブ状の走行路での追従性が向上する。従って、カーブ状の走行路においても安定走行を実現できる。 According to the automatic guided vehicle of the present invention, virtual origins for calculating the turning center are provided on the vehicle width center line of each of the two front and rear guide sensors, and the distance of the virtual origin with respect to the guide sensors is the traveling path. Is set shorter when is curved than when is linear. Here, the longer the distance between the virtual origin and the guide sensor, the smaller the angle for calculating the turning center with respect to the amount of deviation detected by the guide sensor, and the larger the turning radius from the turning center to each rotation axis. Therefore, as the distance between the virtual origin and the guide sensor becomes longer, the steering angle becomes smaller even if the deviation amount is the same, so that the linear traveling path can be stably traveled. On the other hand, the shorter the distance between the virtual origin and the guide sensor, the larger the angle for calculating the turning center with respect to the deviation amount, and the smaller the turning radius from the turning center to each rotation axis. Therefore, the shorter the distance between the virtual origin and the guide sensor, the larger the steering angle even if the amount of deviation is the same, so that the followability on a curved traveling path is improved. Therefore, stable running can be realized even on a curved running road.
ところで、旋回中心の算出を、ガイドの位置のズレ量の今回検出値だけに基づいて行う場合、ノイズなどの影響によりガイドの検出位置にばらつきが生じると、算出される旋回中心がその都度大きくばらついてしまう。すると、当然に操舵角もばらつくので、搬送車は小刻みな振動を繰り返す。即ち、安定走行ができない。かかる振動は、仮想原点とガイドセンサとの距離が短いほど顕著に現れる。仮想原点とガイドセンサとの距離が短いほど、旋回中心は車体に近づき、旋回半径は小さくなるからである。 By the way, when the calculation of the turning center is performed based only on the current detection value of the deviation amount of the guide position, if the detection position of the guide varies due to the influence of noise or the like, the calculated turning center varies greatly each time. It ends up. Then, as a matter of course, the steering angle also varies, so the guided vehicle repeats small vibrations. That is, stable running is not possible. Such vibration becomes more pronounced as the distance between the virtual origin and the guide sensor becomes shorter. This is because the shorter the distance between the virtual origin and the guide sensor, the closer the turning center is to the vehicle body and the smaller the turning radius.
これに対し、本発明の搬送車および搬送車の操舵制御プログラムによれば、ガイドセンサが検出したガイドの位置のズレ量の今回検出値と前回検出値との差分値を、前回検出時までの積算値に更に積算した積算値に基づいて旋回中心を算出する。よって、ガイドの検出位置にばらつきが生じても、算出される旋回中心のばらつきを極力抑えることができる。即ち、操舵角を安定させて搬送車をガイドに沿って安定走行させることができる。特に、かかる構成は仮想原点とガイドセンサとの距離が短い場合に有効である。 On the other hand, according to the transport vehicle and the steering control program of the transport vehicle of the present invention, the difference value between the current detection value and the previous detection value of the deviation amount of the guide position detected by the guide sensor is set up to the time of the previous detection. The turning center is calculated based on the integrated value further integrated with the integrated value. Therefore, even if the detection position of the guide varies, the calculated variation in the turning center can be suppressed as much as possible. That is, the steering angle can be stabilized and the guided vehicle can be stably driven along the guide. In particular, such a configuration is effective when the distance between the virtual origin and the guide sensor is short.
以下、本発明の好ましい実施形態について、添付図面を参照して説明する。まず、図1を参照して、本実施形態における無人搬送車1の構成を説明する。図1(a)は本発明の一実施形態における無人搬送車1の側面図であり、図1(b)は、図1(a)の矢印Ibの方向から見た無人搬送車1の上面図である。図1における矢印Fの方向は、無人搬送車1の走行方向である。無人搬送車1は、搬送物(図示せず)を載置し、走行路上に設置された磁気テープ製の磁気ガイドGに従って走行する搬送車であり、上面視長方形状の車体2と、走行装置3と、ガイドセンサ4とを備える。なお、無人搬送車1のその他の構成は、既知のため説明は省略する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, the configuration of the automatic guided
走行装置3は、無人搬送車1を走行させる装置であり、車体2の下方であって、無人搬送車1の上面視における4隅にそれぞれ配設される。各走行装置3には、車軸3aと、その車軸3aの両端に配設される一対の車輪3bと、その車軸3aと車体2とを、車体2の上面視回りに操舵自在に接続する回転軸3cとが配設される。走行装置3には更に、車輪3bを回転駆動させる回転駆動装置3d(図2参照)と、回転軸3cを操舵する操舵駆動装置3e(図2参照)とが設けられる。走行装置3毎に、無人搬送車1が磁気ガイドGに沿って走行するための操舵角θvが算出され、操舵駆動装置3eは車輪3bがその操舵角θvを向くように、回転軸3cを操舵する。
The traveling device 3 is a device for traveling the automatic guided
ガイドセンサ4は、磁気ガイドGから発する磁力を検知することで、磁気ガイドGの位置を検知する幅広のセンサであり、車体2の下部であって、無人搬送車1の上面視における長さ方向側および幅方向側の両端部中央に、それぞれ配設される。本実施形態の無人搬送車1は、車体2の長さ方向側または幅方向側のいずれかが走行方向とされ、その走行方向における前後2か所のガイドセンサ4によって、磁気ガイドGが検知される。以下、無人搬送車1の走行方向側のことを「前側」、走行方向と対向する側のことを「後側」とそれぞれ称す。
The guide sensor 4 is a wide sensor that detects the position of the magnetic guide G by detecting the magnetic force generated from the magnetic guide G, and is the lower part of the
各走行装置3の操舵角θvは、前後のガイドセンサ4で検知された、ガイドセンサ4の中心位置と磁気ガイドGとの車幅方向側の偏差であるズレ量df,drに基づいて算出される。具体的には、図1(b)に示す通り、まず、前後のガイドセンサ4の車幅方向における中心線Lc上であって、前側のガイドセンサ4の上面視における中央位置から、後方に距離Lip移動した位置に仮想原点Cfを設定し、後側のガイドセンサ4の上面視における中央位置から、後方に距離Lip移動した位置に仮想原点Crを設定する。 The steering angle θv of each traveling device 3 is calculated based on the deviation amounts df and dr, which are deviations between the center position of the guide sensor 4 and the magnetic guide G on the vehicle width direction side detected by the front and rear guide sensors 4. Rudder. Specifically, as shown in FIG. 1 (b), first, the front and rear guide sensors 4 are on the center line Lc in the vehicle width direction, and the distance from the center position in the top view of the front guide sensor 4 to the rear. The virtual origin Cf is set at the position where the Lip is moved, and the virtual origin Cr is set at the position where the guide sensor 4 on the rear side is moved by a distance Lip from the center position in the upper view.
そして、前側のガイドセンサ4における磁気ガイドGの検知位置Gf、即ち中心線Lcとのズレ量dfに応じた位置と仮想原点Cfとを結ぶ線分に直交し、なおかつ車体2の後方側に向かう直線を引き、後側のガイドセンサ4における磁気ガイドGの検知位置Gr、即ち中心線Lcとのズレ量drに応じた位置と仮想原点Crとを結ぶ線分に直交し、なおかつ車体2の前方側に向かう直線を引く。これら直線の交点が旋回中心Cとされる。
Then, it is orthogonal to the detection position Gf of the magnetic guide G on the front guide sensor 4, that is, the line segment connecting the virtual origin Cf and the position corresponding to the deviation amount df from the center line Lc, and heads toward the rear side of the
その旋回中心Cを中心とし、走行装置3の回転軸3cの中心を通る、円弧状の旋回経路Rを生成する。その旋回経路Rの、回転軸3cの中心における接線方向のうち、無人搬送車1の走行方向側の方向Vのなす角θvが、操舵角θvとされる。なお、図1(b)においては、無人搬送車1の上面視右上における走行装置3の操舵角θvのみを図示しているが、他の走行装置3の操舵角θvの算出方法も同様なので、図示は省略する。
An arcuate turning path R is generated centering on the turning center C and passing through the center of the
ところで、ガイドセンサ4は、走行装置3とは離れた位置に配設されるので、ズレ量df,dr及び仮想原点Cf,Crから操舵角θvを算出し、操舵駆動装置3eで回転軸3cを操舵しても、実際にズレ量df,drが縮小するのは無人搬送車1がしばらく走行してからとなる。かかるタイムラグによって、追従遅れが生じる虞がある。特に、カーブ状の走行路を走行する場合は、かかる追従遅れが顕著に発生し、更に走行路の曲率等によっては、幅が有限であるガイドセンサ4から磁気ガイドGが外れることで走行路を追従できなくなり、結果として走行路から外れてしまう虞がある。
By the way, since the guide sensor 4 is arranged at a position away from the traveling device 3, the steering angle θv is calculated from the deviation amounts df, dr and the virtual origins Cf, Cr, and the
ここで、仮想原点Cfと旋回中心Cとを結ぶ線分と、仮想原点Crと旋回中心Cとを結ぶ線分とのなす角は、中心線Lcと線分GfCfとのなす角θfと、中心線Lcと線分GrCrとのなす角θrとの和に等しい。従って、旋回中心Cの位置は、なす角θf,θrの大きさに応じた位置、即ちズレ量df,drの大きさと仮想原点Cf,Crの位置とに応じた位置とされる。 Here, the angle formed by the line segment connecting the virtual origin Cf and the turning center C and the line segment connecting the virtual origin Cr and the turning center C is the angle θf formed by the center line Lc and the line segment GfCf and the center. It is equal to the sum of the angle θr formed by the line Lc and the line segment GrCr. Therefore, the position of the turning center C is set to a position corresponding to the size of the angles θf and θr formed, that is, a position corresponding to the size of the deviation amounts df and dr and the positions of the virtual origins Cf and Cr.
よって、ズレ量df,drの大きさが同じであっても仮想原点Cf,Crがガイドセンサ4に近い(即ち距離Lipが小さい)程、なす角θf,θrが大きくなり、旋回中心Cが無人搬送車1に近づく。この場合、旋回中心Cと回転軸3cの中心との距離、即ち旋回経路Rの旋回半径が小さくなり、これによって、操舵角θvが大きくなる。従って、仮想原点Cf,Crがガイドセンサ4に近い程、無人搬送車1は急旋回できる。
Therefore, even if the magnitudes of the deviation amounts df and dr are the same, the closer the virtual origins Cf and Cr are to the guide sensor 4 (that is, the smaller the distance Lip), the larger the angles θf and θr formed, and the turning center C is unmanned. Approaching the
一方で、直線状の走行路において、仮想原点Cf,Crをガイドセンサ4に近づけると、ズレ量df,drの少しの変化でも、なす角θf,θr及び操舵角θvが大きく変化してしまう。即ち操舵に時間がかかるようになるため追従性が下がり、直線状の走行路を蛇行してしまう虞がある。 On the other hand, when the virtual origins Cf and Cr are brought closer to the guide sensor 4 on a straight running path, the angles θf, θr and the steering angle θv formed by even a slight change in the deviation amounts df and dr change significantly. That is, since it takes time to steer, the followability is lowered, and there is a possibility that the vehicle will meander on a straight running path.
そこで、本実施形態では、無人搬送車1がカーブ状の走行路を走行している場合に、距離Lipを直線状の走行路を走行する場合よりも小さくして、仮想原点Cf,Crをガイドセンサ4に近づけることで、操舵の追従性を向上させる。
Therefore, in the present embodiment, when the automatic guided
次に、図2を参照して、無人搬送車1の電気的構成について説明する。図2は無人搬送車1の電気的構成を示すブロック図である。無人搬送車1は、CPU10と、フラッシュROM11と、RAM12とを備え、これらはバスライン13を介して、入出力ポート14にそれぞれ接続されている。入出力ポート14には、上述したガイドセンサ4と、回転駆動装置3dと、操舵駆動装置3eとがそれぞれ接続されている。なお、ガイドセンサ4、回転駆動装置3d及び操舵駆動装置3eは、無人搬送車1に対してそれぞれ4つずつ配設されるが、図2においては、それぞれまとめて1つのガイドセンサ4、回転駆動装置3d及び操舵駆動装置3eとして表している。
Next, the electrical configuration of the automatic guided
CPU10は、バスライン13及び入出力ポート14に接続された各部を制御する演算装置である。フラッシュROM11は、書き換え可能な不揮発性のメモリであり、制御プログラム11aと、地図データ11bとが記憶される。制御プログラム11aは、CPU10に図3のメイン処理や図4のカーブ処理を実行させるプログラムである。地図データ11bは、無人搬送車1の走行路に関する情報が記憶されるデータ領域であり、走行路の地図情報と共に、地点毎の走行路の形状(直線状またはカーブ状)が記憶される。
The
RAM12は、CPU10が制御プログラム11a等の実行時に各種のワークデータやフラグ等を書き換え可能に記憶するためのメモリであり、旋回中心Cが記憶される旋回中心メモリ12aと、距離Lipが記憶される仮想原点距離メモリ12bと、ガイドセンサ4が検知したズレ量df,dr(以下「ズレ量の今回検出値」とも称す)が記憶されるズレ量今回値メモリ12cと、ズレ量df,drの前回値(以下「ズレ量の前回検出値」とも称す)が記憶されるズレ量前回値メモリ12dと、ズレ量今回値メモリ12cのズレ量の今回検出値とズレ量前回値メモリ12dのズレ量の前回検出値との差分値が記憶されるズレ量差分値メモリ12eと、ズレ量差分値メモリ12eの差分値を積算した積算値が記憶される差分積算値メモリ12fと、出力値メモリ12gとが設けられる。
The
出力値メモリ12gは、旋回中心C及び操舵角θvの算出に用いられるズレ量df,drに相当する値が、それぞれ区別可能に記憶されるメモリである。詳細は後述するが、直線状の走行路を走行している場合は、ガイドセンサ4が検知したズレ量の今回検出値に応じた値が出力値メモリ12gに記憶され、カーブ状の走行路を走行している場合は、上述した積算値に応じた値が記憶される。 The output value memory 12g is a memory in which values corresponding to the deviation amounts df and dr used for calculating the turning center C and the steering angle θv are separately stored. The details will be described later, but when traveling on a straight traveling path, a value corresponding to the current detection value of the deviation amount detected by the guide sensor 4 is stored in the output value memory 12g, and the curved traveling path is displayed. When traveling, a value corresponding to the above-mentioned integrated value is stored.
なお、ズレ量今回値メモリ12c、ズレ量前回値メモリ12d、ズレ量差分値メモリ12e、差分積算値メモリ12f及び出力値メモリ12gには、前側のガイドセンサ4に応じた値と、後側のガイドセンサ4に応じた値とがそれぞれ区別可能に記憶される。 The deviation amount current value memory 12c, the deviation amount previous value memory 12d, the deviation amount difference value memory 12e, the difference integrated value memory 12f, and the output value memory 12g are the values corresponding to the guide sensor 4 on the front side and the values on the rear side. The values corresponding to the guide sensor 4 are stored in a distinguishable manner.
次に、図3,図4を参照して、無人搬送車1のCPU10で実行される、メイン処理について説明する。図3は、メイン処理のフローチャートを示す図である。メイン処理は、無人搬送車1の電源投入直後から繰り返し実行される。
Next, the main process executed by the
メイン処理はまず、前後のガイドセンサ4から検知された検知位置Gf,Grから、ズレ量df,drをそれぞれ取得し、ズレ量今回値メモリ12cへ保存する(S1)。なお、以下の図3のメイン処理および図4のカーブ処理において、ガイドセンサ4から取得されたズレ量に関する処理は、いずれも前後のガイドセンサ4のそれぞれに対して行われるが、処理内容は前後のガイドセンサ4で同様なので、特に区別しない場合は前後のガイドセンサ4に対して行うものとする。 First, in the main process, the deviation amounts df and dr are acquired from the detection positions Gf and Gr detected from the front and rear guide sensors 4, respectively, and the deviation amount is stored in the current value memory 12c (S1). In the main processing of FIG. 3 and the curve processing of FIG. 4 below, the processing related to the amount of deviation acquired from the guide sensor 4 is performed for each of the front and rear guide sensors 4, but the processing contents are front and back. Since the same applies to the guide sensors 4 of the above, the same applies to the front and rear guide sensors 4 unless otherwise specified.
S1の処理の後、無人搬送車1に搭載される公知の位置検知装置(図示せず)によって検知された現時点の走行地点を地図データ11bで参照し、該当する走行路の形状を取得する(S2)。S2の処理の後、取得した走行路の形状がカーブ状であるかを確認する(S3)。S3の処理において、取得した走行路の形状がカーブ状である場合は(S3:Yes)、仮想原点距離メモリ12b(即ち図1の距離Lip)に「500mm」を設定し(S4)、図4で示す後述のカーブ処理を行う(S5)。
After the processing of S1, the current travel point detected by the known position detection device (not shown) mounted on the automatic guided
一方で、取得した走行路の形状がカーブ状ではない場合、即ち走行路の形状が直線状である場合(S3:No)は、まず、差分積算値メモリ12fに0を設定する(S6)。詳細は後述するが、カーブ状の走行路を走行している場合は、差分積算値メモリ12fの積算値に応じて操舵角θvが算出される。この積算値は、カーブ状の走行路を走行している場合にのみ積算されるので、直線状の走行路を走行している場合は、前回のカーブ状の走行路を走行していた時点での積算値のままである。そこで走行路が直線状である場合に、差分積算値メモリ12fの積算値を0で初期化することで、前回のカーブ状の走行路での積算値が、次のカーブ状の走行路での操舵角θvに影響しないようにする。 On the other hand, when the acquired shape of the travel path is not curved, that is, when the shape of the travel path is linear (S3: No), first, 0 is set in the difference integrated value memory 12f (S6). Although the details will be described later, when traveling on a curved traveling path, the steering angle θv is calculated according to the integrated value of the differential integrated value memory 12f. This integrated value is accumulated only when traveling on a curved traveling path, so when traveling on a straight traveling path, when traveling on the previous curved traveling path, the integrated value is accumulated. It remains the integrated value of. Therefore, when the traveling path is straight, by initializing the integrated value of the difference integrated value memory 12f to 0, the integrated value in the previous curved traveling path becomes the integrated value in the next curved traveling path. The steering angle θv is not affected.
S6の処理の後、仮想原点距離メモリ12b(即ち図1の距離Lip)に「1000mm」を設定し(S7)、ズレ量今回値メモリ12cの値に、所定のゲイン値Gpを乗じた値を出力値メモリ12gに保存する(S8)。本実施形態においてゲイン値Gpは「3.0」が例示されるが、3.0以上でも、3.0以下でも良い。
After the processing of S6, "1000 mm" is set in the virtual
即ち直線状の走行路を走行する場合の仮想原点Cr,Cfは、カーブ状の走行路を走行する場合よりもガイドセンサ4から遠ざかる。これによって、ズレ量df,drが同じであっても、後述のS10の処理で算出される旋回半径は大きくなり、更にS11の処理で算出される操舵角θvは小さくなる。よって、操舵角θvの変化量を小さくできるので、操舵が安定し、直線状の走行路を安定して走行させることができる。 That is, the virtual origins Cr and Cf when traveling on a straight traveling path are farther from the guide sensor 4 than when traveling on a curved traveling path. As a result, even if the deviation amounts df and dr are the same, the turning radius calculated in the process of S10 described later becomes large, and the steering angle θv calculated in the process of S11 becomes small. Therefore, since the amount of change in the steering angle θv can be reduced, steering is stable and a straight traveling path can be stably driven.
一方で、カーブ状の走行路を走行する場合の仮想原点Cr,Cfの位置は、直線状の走行路を走行する場合よりもガイドセンサ4に近くなる。これにより、ズレ量df,drが同じであっても、操舵角θvを大きくできる。かかる大きな操舵角θvによって、ズレ量df,drの縮小を早めることができるので、カーブ状の走行路での追従性を向上できる。これによって、カーブ状の走行路でも安定して走行させることができる。 On the other hand, the positions of the virtual origins Cr and Cf when traveling on a curved traveling path are closer to the guide sensor 4 than when traveling on a straight traveling path. As a result, the steering angle θv can be increased even if the deviation amounts df and dr are the same. Due to such a large steering angle θv, it is possible to accelerate the reduction of the deviation amounts df and dr, so that the followability on a curved traveling path can be improved. As a result, it is possible to run stably even on a curved running road.
ところで、磁気ガイドGの局所的な歪みや磁気不良等に起因するノイズによって、ズレ量の今回検出値が突発的にばらつく場合がある。カーブ状の走行路を走行する場合は、仮想原点Cr,Cfの位置がガイドセンサ4に近いので、ズレ量の今回検出値のばらつきによって、操舵角θvが大きく振動し、無人搬送車1の挙動が不安定となってしまう。
By the way, the current detection value of the deviation amount may suddenly vary due to noise caused by local distortion of the magnetic guide G, magnetic failure, or the like. When traveling on a curved traveling path, the positions of the virtual origins Cr and Cf are close to the guide sensor 4, so the steering angle θv vibrates greatly due to the variation in the detected value of the deviation amount this time, and the behavior of the automatic guided
そこで、S5のカーブ処理によって、カーブ状の走行路を走行する場合は、ズレ量の今回検出値とズレ量の前回検出値との差分値を積算した積算値を、旋回中心C及び操舵角θvの算出に用いるズレ量df、drとすることで、ズレ量df、drのばらつきを極力抑え、カーブ状の走行路を更に安定して走行させる。図4を参照して、かかるカーブ処理を説明する。 Therefore, when traveling on a curved traveling path by the curve processing of S5, the integrated value obtained by integrating the difference value between the current detection value of the deviation amount and the previous detection value of the deviation amount is the turning center C and the steering angle θv. By setting the deviation amounts df and dr used in the calculation of the above, the variation of the deviation amounts df and dr is suppressed as much as possible, and the curved traveling path is made to travel more stably. Such curve processing will be described with reference to FIG.
図4(a)は、カーブ処理のフローチャートを示す図であり、図4(b)は、差分値の積算を説明するための図である。カーブ処理はまず、ズレ量今回値メモリ12cの値と、ズレ量前回値メモリ12dの値との差分値を算出し、ズレ量差分値メモリ12eに保存する(S20)。S20の処理の後、後述のS21〜S24の処理による、差分積算値メモリ12fへの差分値の積算を行い、その差分積算値メモリ12fの積算値に、所定のゲイン値Gpを乗じた値を出力値メモリ12gに保存する(S25)。なお、S25の処理におけるゲイン値Gpは、図3のS8の処理におけるゲイン値Gpと同一であっても良いし、異なった値でも良い。 FIG. 4A is a diagram showing a flowchart of curve processing, and FIG. 4B is a diagram for explaining integration of difference values. In the curve processing, first, the difference value between the value of the deviation amount current value memory 12c and the value of the deviation amount previous value memory 12d is calculated and stored in the deviation amount difference value memory 12e (S20). After the processing of S20, the difference value is integrated into the difference integrated value memory 12f by the processing of S21 to S24 described later, and the integrated value of the difference integrated value memory 12f is multiplied by a predetermined gain value Gp. It is saved in the output value memory 12 g (S25). The gain value Gp in the processing of S25 may be the same as or different from the gain value Gp in the processing of S8 of FIG.
次にS21〜S24の処理を、図4(b),図5を参照しながら説明する。図4(b)においては、ガイドセンサ4における車幅方向側の位置関係として、中心線Lcの位置が0とされ、ガイドセンサ4の上面視における右側が正、左側が負とされる。図4(b)では、4つのズレ量の今回値とズレ量の前回値との推移の例(パターン1〜4)を示しており、ズレ量の前回値を一重の丸で表し、ズレ量の今回値を二重の丸で表している。S21〜S24の処理においては、差分積算値メモリ12fにS20の処理で算出した差分値を積算するが、その積算する条件は、ズレ量今回値メモリ12cのズレ量の今回検出値の正負と、ズレ量の今回検出値とズレ量の前回検出値との差分値の正負とに基づく。
Next, the processes of S21 to S24 will be described with reference to FIGS. 4 (b) and 5. In FIG. 4B, the position of the center line Lc is set to 0 as the positional relationship of the guide sensor 4 on the vehicle width direction side, and the right side in the top view of the guide sensor 4 is positive and the left side is negative. FIG. 4B shows an example (
具体的には、ズレ量今回値メモリ12cのズレ量の今回検出値が正で、ズレ量差分値メモリ12eの差分値も正の場合(S21:Yes、且つS22:Yes)、即ち図4(b)におけるパターン1の場合は、ズレ量が拡大していると判断され、かかる場合は、S23の処理によって、差分値を差分積算値メモリ12fに積算する。
Specifically, when the current detection value of the deviation amount memory 12c is positive and the difference value of the deviation amount difference value memory 12e is also positive (S21: Yes and S22: Yes), that is, FIG. 4 ( In the case of
また、ズレ量の今回検出値が負であり、差分値が負の場合(S21:No、且つS24:Yes)、即ち図4(b)におけるパターン3の場合は、パターン1と同様にズレ量が拡大していると判断されるので、S23の処理によって、差分値を差分積算値メモリ12fに積算する。
Further, when the current detection value of the deviation amount is negative and the difference value is negative (S21: No and S24: Yes), that is, in the case of pattern 3 in FIG. 4B, the deviation amount is the same as in
一方で、ズレ量の今回検出値が正で、差分値が負の場合(S21:Yes、且つS22:No)、即ち図4(b)におけるパターン2の場合は、ズレ量の今回検出値は正側に位置するものの、そのズレ量は縮小していると判断されるので、かかる場合は、S23の処理をスキップし、差分積算値メモリ12fの値をキープする。同様に、ズレ量の今回検出値が負で、差分値が正の場合(S21:No、且つS24:No)、即ち図4(b)におけるパターン4の場合も、ズレ量が中心線Lcに近づく方向に縮小していると判断されるので、S23の処理をスキップし、差分積算値メモリ12fの値をキープする。ここで、図5を参照して、ズレ量の今回検出値と差分積算値メモリ12fの積算値とを比較する。
On the other hand, when the current detection value of the deviation amount is positive and the difference value is negative (S21: Yes and S22: No), that is, in the case of
図5は、ズレ量の今回検出値と積算値とを比較するためのグラフである。図5において、積算値を実線で、ズレ量の今回値を破線でそれぞれ表しており、横軸は時間軸を、縦軸はズレ量の今回検出値および積算値の大きさをそれぞれ表している。 FIG. 5 is a graph for comparing the current detection value and the integrated value of the deviation amount. In FIG. 5, the integrated value is represented by a solid line, the current value of the deviation amount is represented by a broken line, the horizontal axis represents the time axis, and the vertical axis represents the magnitude of the current detection value and the integrated value of the deviation amount. ..
まず、時刻0から時刻t1にかけて、ズレ量の今回検出値が増加している。かかる場合は、ズレ量の今回検出値が正であり、差分値も正側に推移しているので、図4(b)のパターン1に該当し、積算値が積算される。
First, from
その後、時刻t1においてズレ量の今回検出値が突発的に減少される。かかる場合、ズレ量の今回検出値が正である一方で、差分値が負側に推移するので、図4(b)のパターン2に該当し、積算値がキープされる。
After that, at time t1, the current detection value of the deviation amount is suddenly reduced. In such a case, while the current detection value of the deviation amount is positive, the difference value shifts to the negative side, so that it corresponds to
時刻t1〜時刻t2にかけては、再びズレ量の今回検出値が増加することでパターン1に該当するので、積算値が積算され、時刻t2〜時刻t3にかけては、ズレ量の今回検出値が正であるのに対して、差分値が減少することで、パターン2に該当するので、積算値がキープされる。
From time t1 to time t2, the current detection value of the deviation amount increases again, which corresponds to
時刻t3において、ズレ量の今回検出値が突発的に増加する。かかる場合、ズレ量の今回検出値が正であると共に、差分値が正側に推移するので、図4(b)のパターン1に該当し、積算値が積算される。
At time t3, the current detection value of the deviation amount suddenly increases. In such a case, since the current detection value of the deviation amount is positive and the difference value shifts to the positive side, it corresponds to
時刻t4〜t5にかけては、ズレ量の今回検出値が減少することで、図4(b)のパターン3に該当するので、積算値が積算され、時刻t5〜t6にかけては、ズレ量の今回検出値が負であるのに対して、差分値が増加するので、図4(b)のパターン4に該当し、積算値がキープされる。 Since the current detection value of the deviation amount decreases from time t4 to t5, it corresponds to pattern 3 in FIG. 4B, so the integrated value is integrated, and the deviation amount is detected this time from time t5 to t6. Since the difference value increases while the value is negative, it corresponds to pattern 4 in FIG. 4B, and the integrated value is kept.
即ちズレ量が正側または負側に拡大している場合は、差分積算値メモリ12fに差分値が積算されるので、差分積算値メモリ12fの値から算出される出力値メモリ12gの値も積算され、出力値メモリ12gの値によって算出される操舵角θvも積算される。これによって、無人搬送車1はズレ量を減少させる方向に操舵されるので、カーブ状の走行路を追従させることができる。
That is, when the deviation amount is expanded to the positive side or the negative side, the difference value is integrated in the difference integrated value memory 12f, so that the value of the output value memory 12g calculated from the value of the difference integrated value memory 12f is also integrated. The steering angle θv calculated by the value of the output value memory 12g is also integrated. As a result, the automatic guided
一方でズレ量が縮小している状態では、差分積算値メモリ12fの値がキープされる。従って、ズレ量の今回検出値がノイズによって左右に振動し、ズレ量の拡大および縮小が繰り返されても、ズレ量を縮小する方向への差分積算値メモリ12fの差分値の積算が抑制される。これにより、差分積算値メモリ12fの積算値の振動が抑えられることで、操舵角θvの振動が極力抑えられ、無人搬送車1を安定して走行させることができる。
On the other hand, in the state where the deviation amount is reduced, the value of the difference integrated value memory 12f is kept. Therefore, even if the current detection value of the deviation amount vibrates left and right due to noise and the deviation amount is repeatedly expanded and contracted, the integration of the difference value of the difference integrated value memory 12f in the direction of reducing the deviation amount is suppressed. .. As a result, the vibration of the integrated value of the differential integrated value memory 12f is suppressed, so that the vibration of the steering angle θv is suppressed as much as possible, and the automatic guided
図4(a)に戻る。S25の処理の後、図3のメイン処理へ戻る。 Return to FIG. 4 (a). After the processing of S25, the process returns to the main processing of FIG.
図3に戻る。S5,S8の処理の後、ズレ量前回値メモリ12dに、ズレ量今回値メモリ12cの値を保存する(S9)。S9の処理の後、仮想原点距離メモリ12bの距離Lipに応じた仮想原点Cf,Crと、出力値メモリ12gの値をズレ量df,drに換算した値とを用いて、図1で説明した方法により旋回中心Cを算出し、旋回中心メモリ12aに保存する(S10)。
Return to FIG. After the processing of S5 and S8, the value of the deviation amount current value memory 12c is stored in the deviation amount previous value memory 12d (S9). After the processing of S9, the virtual origins Cf and Cr corresponding to the distance Lip of the virtual
S10の処理の後、旋回中心メモリ12aの旋回中心Cと、各走行装置3の回転軸3cの中心とから操舵角θvを算出し、その操舵角θvに基づいて各操舵駆動装置3eを操舵させながら、回転駆動装置3dを動作させて無人搬送車1を走行させる(S11)。S11の処理の後、S1の処理を繰り返す。
After the processing of S10, the steering angle θv is calculated from the turning center C of the
以上、実施形態に基づき本発明を説明したが、本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能であることは容易に推察できるものである。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-described embodiments, and it is easy that various improvements and changes can be made without departing from the spirit of the present invention. It can be inferred from.
上記実施形態では、搬送車の例として、無人搬送車1を用いて説明したが、必ずしもこれに限られるものではなく、例えば本発明をユニットキャリアなどに適用しても良い。
In the above embodiment, the automatic guided
上記実施形態では、制御プログラム11aをフラッシュROM11に記憶した。しかし、必ずしもこれに限られるものではなく、制御プログラム11aをRAMカード等のフラッシュROM11以外の半導体メモリや、DVD等の光ディスクや、ハードディスク・ドライブ等の磁気媒体に記憶して実行しても良いし、ネットワーク(インターネットやイントラネット等)上のサーバに制御プログラム11aを記憶し、該サーバから制御プログラム11aをダウンロードして実行しても良い。 In the above embodiment, the control program 11a is stored in the flash ROM 11. However, the present invention is not necessarily limited to this, and the control program 11a may be stored and executed in a semiconductor memory other than the flash ROM 11 such as a RAM card, an optical disk such as a DVD, or a magnetic medium such as a hard disk drive. , The control program 11a may be stored in a server on the network (Internet, intranet, etc.), and the control program 11a may be downloaded from the server and executed.
上記実施形態では、ガイドとして磁気テープ製の磁気ガイドGを走行路上に設置した。しかし、必ずしもこれに限られるものではなく、例えば、走行路の上方の天井に、走行路に沿って吊設されたブラケットをガイドとしても良いし、無人搬送車1が潜り込むパレットの天井に走行路に沿って吊設されたブラケットをガイドとしても良い。かかる場合、ガイドセンサ4の代わりに、光学式センサ(例えば、カメラや赤外線式センサ、レーザー式センサ等)を車体2の上部に設け、光学式センサによってブラケットの位置を検知すれば良い。
In the above embodiment, a magnetic guide G made of magnetic tape is installed on the traveling path as a guide. However, the present invention is not necessarily limited to this, and for example, a bracket suspended along the travel path may be used as a guide on the ceiling above the travel path, or the travel path may be placed on the ceiling of the pallet into which the automatic guided
また、走行路上に設置されるガイドは、磁気テープ製の磁気ガイドGに限られるものではなく、ガイドを走行路上に塗られた白線としても良い。かかる場合、ガイドセンサ4の代わりに車体2の下部に設けた、上述の光学式センサによって該白線の位置を検知すれば良い。
Further, the guide installed on the traveling path is not limited to the magnetic guide G made of magnetic tape, and the guide may be a white line painted on the traveling path. In such a case, the position of the white line may be detected by the above-mentioned optical sensor provided in the lower part of the
上記実施形態では、図3のS5,S6の処理によって、直線状の走行路を走行している場合に、差分積算値メモリ12fを0で初期化した。しかし、積算値の初期値は0に限られるものではなく、0以上でも、0以下でも良い。特に、差分積算値メモリ12fの初期値として、ズレ量前回値メモリ12dのズレ量の前回検出値を設定しても良い。これにより、ズレ量の前回検出値、即ちカーブ状の走行路に切り替わる直前のズレ量に対して、差分値が積算されるので、ズレ量が大きい状態で走行路がカーブ状に切り替わっても、無人搬送車1をスムーズに操舵させることができる。
In the above embodiment, the difference integrated value memory 12f is initialized to 0 when traveling on a linear traveling path by the processing of S5 and S6 of FIG. However, the initial value of the integrated value is not limited to 0, and may be 0 or more or 0 or less. In particular, as the initial value of the difference integrated value memory 12f, the previous detection value of the deviation amount of the deviation amount previous value memory 12d may be set. As a result, the difference value is added to the previously detected value of the deviation amount, that is, the deviation amount immediately before switching to the curved traveling path, so that even if the traveling path is switched to the curved path with a large deviation amount, The automatic guided
また、差分積算値メモリ12fを初期化するタイミングは、直線状の走行路を走行している場合に限られるものではなく、走行路が直線状からカーブ状に切り替わった直後に行っても良いし、直線状またはカーブ状にかかわらず、走行路の形状が切り替わった直後に行っても良い。 Further, the timing for initializing the difference integrated value memory 12f is not limited to the case of traveling on a straight traveling path, and may be performed immediately after the traveling path is switched from a straight line to a curved line. , Regardless of whether it is straight or curved, it may be performed immediately after the shape of the traveling path is changed.
上記実施形態では、図3のS3,S4,S7の処理によって、カーブ状の走行路において距離Lipを500mmに設定し、直線状の走行路では距離1000mmに設定した。しかし、必ずしもこれに限られるものではなく、カーブ状の走行路における距離Lipを500mm以上に設定しても良いし、500mm以下に設定しても良い。また、直線状の走行路における距離Lipを1000mm以上に設定しても良いし、1000mm以下に設定しても良い。更に、カーブ状の走行路での距離Lipと、直線状の走行路での距離Lipとを、同じ長さとしても良いし、カーブ状の走行路での距離Lipを直線状の走行路での距離Lipよりも長くしても良い。 In the above embodiment, the distance Lip is set to 500 mm on the curved running path and 1000 mm on the straight running path by the processing of S3, S4, and S7 of FIG. However, the distance is not necessarily limited to this, and the distance Lip on the curved traveling path may be set to 500 mm or more, or 500 mm or less. Further, the distance Lip on the straight running path may be set to 1000 mm or more, or 1000 mm or less. Further, the distance Lip on the curved running path and the distance Lip on the straight running path may be the same length, and the distance Lip on the curved running path may be the same length as the distance Lip on the straight running path. It may be longer than the distance Lip.
上記実施形態では、直線状の走行路では、S8の処理によってズレ量の今回検出値に基づいて旋回中心C及び操舵角θvを算出し、カーブ状の走行路では、S5の処理によって積算値に基づいて旋回中心C及び操舵角θvを算出した。しかし、必ずしもこれに限られるものではなく、直線状の走行路でも、S8の処理の代わりにS5のカーブ処理を実行して、積算値に基づいて旋回中心C及び操舵角θvを算出しても良いし、カーブ状の走行路でも、S5のカーブ処理の代わりにS8の処理を行い、ズレ量の今回検出値に基づいて旋回中心C及び操舵角θvを算出しても良い。 In the above embodiment, in the straight traveling path, the turning center C and the steering angle θv are calculated based on the current detection value of the deviation amount by the processing of S8, and in the curved traveling path, the integrated value is calculated by the processing of S5. Based on this, the turning center C and the steering angle θv were calculated. However, the present invention is not necessarily limited to this, and even on a straight running road, the curve processing of S5 is executed instead of the processing of S8, and the turning center C and the steering angle θv are calculated based on the integrated values. Alternatively, even on a curved traveling path, the processing of S8 may be performed instead of the curve processing of S5, and the turning center C and the steering angle θv may be calculated based on the current detection value of the deviation amount.
上記実施形態では、図4のカーブ処理において、ズレ量が拡大している場合に、差分積算値メモリ12fに差分値を積算し、ズレ量が縮小している場合に、差分積算値メモリ12fの値をキープした。しかし、必ずしもこれに限られるものではなく、S21,S22,S24の処理を省略して、ズレ量が縮小している場合でも差分積算値メモリ12fの値に差分値を積算しても良い。 In the above embodiment, in the curve processing of FIG. 4, when the deviation amount is expanding, the difference value is integrated into the difference integrated value memory 12f, and when the deviation amount is reduced, the difference integrated value memory 12f I kept the value. However, the present invention is not necessarily limited to this, and the processing of S21, S22, and S24 may be omitted, and the difference value may be integrated into the value of the difference integration value memory 12f even when the deviation amount is reduced.
1 無人搬送車(搬送車)
2 車体
3c 回転軸
3e 操舵駆動装置(操舵手段)
3b 車輪
3a 車軸
3d 回転駆動装置(駆動手段)
10 CPU(コンピュータ)
11a 制御プログラム(操舵制御プログラム)
12e ズレ量差分値メモリ(差分値)
12f 差分積算値メモリ(積算値)
C 旋回中心
Cf,Cr 仮想原点
G 磁気ガイド(ガイド)
S11 操舵制御手段、操舵制御ステップ、操舵角算出ステップ
S10 旋回中心算出ステップ
1 Automatic guided vehicle (automated guided vehicle)
2
10 CPU (computer)
11a Control program (steering control program)
12e deviation amount difference value memory (difference value)
12f Difference integrated value memory (integrated value)
C turning center Cf, Cr virtual origin G magnetic guide (guide)
S11 Steering control means, steering control step, steering angle calculation step S10 Turning center calculation step
Claims (6)
走行路を示すガイドを検知可能なガイドセンサと、
前記搬送車を前記ガイドに沿って走行させるように、前記ガイドセンサが検出したズレ量に基づいて旋回中心を算出し、その旋回中心に基づいて前記複数の操舵手段の操舵角をそれぞれ算出して操舵制御する操舵制御手段とを備え、
前記ガイドセンサは、前記車体の走行方向を車長とした場合の前後に少なくとも2か所設けられ、その前後2か所において、それぞれ前記車体の車幅中心に対する前記ガイドの位置のズレ量を検出するものであり、
前記操舵制御手段は、前記旋回中心を算出するための仮想原点を、前後2か所の前記ガイドセンサ毎にそれぞれ前記車体の車幅中心線上に設けており、前記ガイドセンサに対する前記仮想原点の距離は、前記走行路が直線状の場合よりカーブ状の場合の方が短く設定されることを特徴とする搬送車。 The vehicle body, a plurality of rotating shafts rotatably arranged on the vehicle body, a plurality of steering means for individually steering the plurality of rotating shafts, and the plurality of rotating shafts attached to the plurality of rotating shafts via axles. In a transport vehicle provided with a wheel and a driving means for rotating the wheel.
A guide sensor that can detect a guide indicating the driving path and
The turning center is calculated based on the amount of deviation detected by the guide sensor so that the guided vehicle travels along the guide, and the steering angles of the plurality of steering means are calculated based on the turning center. Equipped with a steering control means for steering control,
The guide sensors are provided at least two places in the front-rear direction when the traveling direction of the car body is the vehicle length, and detect the amount of deviation of the guide position with respect to the vehicle width center of the car body at the two places in the front-rear direction. To do
The steering control means provides virtual origins for calculating the turning center on the vehicle width center line of the vehicle body for each of the two front and rear guide sensors, and the distance of the virtual origin with respect to the guide sensors. Is a transport vehicle characterized in that the case where the traveling path is curved is set shorter than the case where the traveling path is straight.
走行路を示すガイドを検知可能なガイドセンサと、
前記搬送車を前記ガイドに沿って走行させるように、前記ガイドセンサが検出したズレ量に基づいて旋回中心を算出し、その旋回中心に基づいて前記複数の操舵手段の操舵角をそれぞれ算出して操舵制御する操舵制御手段とを備え、
前記ガイドセンサは、前記車体の走行方向を車長とした場合の前後に少なくとも2か所設けられ、その前後2か所において、それぞれ前記車体の車幅中心に対する前記ガイドの位置のズレ量を検出するものであり、
前記操舵制御手段は、前記ガイドセンサが検出した前記ガイドの位置のズレ量の今回検出値と前回検出値との差分値を、前回検出時までの積算値に更に積算した積算値に基づいて前記旋回中心を算出するものであることを特徴とする搬送車。 The vehicle body, a plurality of rotating shafts rotatably arranged on the vehicle body, a plurality of steering means for individually steering the plurality of rotating shafts, and the plurality of rotating shafts attached to the plurality of rotating shafts via axles. In a transport vehicle provided with a wheel and a driving means for rotating the wheel.
A guide sensor that can detect a guide indicating the driving path and
The turning center is calculated based on the amount of deviation detected by the guide sensor so that the guided vehicle travels along the guide, and the steering angles of the plurality of steering means are calculated based on the turning center. Equipped with a steering control means for steering control,
The guide sensors are provided at least two places in the front-rear direction when the traveling direction of the car body is the vehicle length, and detect the amount of deviation of the guide position with respect to the vehicle width center of the car body at the two places in the front-rear direction. To do
The steering control means said that the difference value between the current detection value and the previous detection value of the deviation amount of the guide position detected by the guide sensor is further integrated with the integrated value up to the previous detection, based on the integrated value. A transport vehicle characterized in that it calculates the turning center.
前記搬送車は、走行路を示すガイドを検知可能なガイドセンサを備え、そのガイドセンサは、前記車体の走行方向を車長とした場合の前後に少なくとも2か所設けられ、その前後2か所において、それぞれ前記車体の車幅中心に対する前記ガイドの位置のズレ量を検出するものであり、
前記操舵制御プログラムは、前記搬送車を前記ガイドに沿って走行させるように、
前記ガイドセンサが検出したズレ量に基づいて旋回中心を算出する旋回中心算出ステップと、
そのステップで算出された旋回中心に基づいて前記複数の操舵手段の操舵角をそれぞれ算出する操舵角算出ステップと、
そのステップで算出された操舵角に基づいて操舵制御を実行する操舵制御ステップと、を前記コンピュータに実行させるものであり、
前記旋回中心算出ステップは、前記ガイドセンサが検出した前記ガイドの位置のズレ量の今回検出値と前回検出値との差分値を、前回検出時までの積算値に更に積算した積算値に基づいて前記旋回中心を算出するものであることを特徴とする搬送車の操舵制御プログラム。 A vehicle body, a plurality of rotating shafts rotatably arranged on the vehicle body, a plurality of steering means for individually steering the plurality of rotating shafts, a computer for steering and controlling the steering means, and the plurality of rotations. In a steering control program for a transport vehicle, which causes the computer to execute the steering control for a transport vehicle provided with wheels attached to the shafts via axles and drive means for rotating the wheels.
The guided vehicle is provided with a guide sensor capable of detecting a guide indicating a traveling path, and the guide sensor is provided at least two places before and after when the traveling direction of the vehicle body is taken as the vehicle length, and two places before and after the guide sensor. In each of the above, the amount of deviation of the position of the guide with respect to the vehicle width center of the vehicle body is detected.
The steering control program is such that the guided vehicle travels along the guide.
A turning center calculation step for calculating the turning center based on the amount of deviation detected by the guide sensor, and a turning center calculation step.
A steering angle calculation step for calculating the steering angles of the plurality of steering means based on the turning center calculated in that step, and a steering angle calculation step.
The computer is made to execute a steering control step that executes steering control based on the steering angle calculated in that step.
The turning center calculation step is based on an integrated value obtained by further integrating the difference value between the current detection value and the previous detection value of the deviation amount of the guide position detected by the guide sensor into the integrated value up to the previous detection. A steering control program for a transport vehicle, which calculates the turning center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019035251A JP7256657B2 (en) | 2019-02-28 | 2019-02-28 | Vehicle and steering control program for the vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019035251A JP7256657B2 (en) | 2019-02-28 | 2019-02-28 | Vehicle and steering control program for the vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020140424A true JP2020140424A (en) | 2020-09-03 |
JP7256657B2 JP7256657B2 (en) | 2023-04-12 |
Family
ID=72264928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019035251A Active JP7256657B2 (en) | 2019-02-28 | 2019-02-28 | Vehicle and steering control program for the vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7256657B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022070513A1 (en) * | 2020-09-30 | 2022-04-07 | ||
JP2022059320A (en) * | 2020-10-01 | 2022-04-13 | 株式会社デンソー | Unmanned carrier |
WO2023073882A1 (en) * | 2021-10-28 | 2023-05-04 | マミヤ・オーピー株式会社 | Vehicle, system for steering control, method, program, recording medium storing program, and autonomous travelling system |
US11652403B2 (en) | 2020-08-21 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Switching power source device, vehicle, and control method |
WO2023095815A1 (en) * | 2021-11-29 | 2023-06-01 | 株式会社Hakobot | Four-wheel traveling device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713627A (en) * | 1993-06-25 | 1995-01-17 | Meidensha Corp | Steering control method for unmanned carrier |
JPH11134031A (en) * | 1997-10-31 | 1999-05-21 | Meidensha Corp | Track control method for mobile robot |
JP2004078386A (en) * | 2002-08-13 | 2004-03-11 | Meidensha Corp | Guided traveling method for omnidirectional traveling automated guided vehicle |
JP2015022451A (en) * | 2013-07-18 | 2015-02-02 | 株式会社豊田自動織機 | Method of detecting position of unmanned carrier |
-
2019
- 2019-02-28 JP JP2019035251A patent/JP7256657B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713627A (en) * | 1993-06-25 | 1995-01-17 | Meidensha Corp | Steering control method for unmanned carrier |
JPH11134031A (en) * | 1997-10-31 | 1999-05-21 | Meidensha Corp | Track control method for mobile robot |
JP2004078386A (en) * | 2002-08-13 | 2004-03-11 | Meidensha Corp | Guided traveling method for omnidirectional traveling automated guided vehicle |
JP2015022451A (en) * | 2013-07-18 | 2015-02-02 | 株式会社豊田自動織機 | Method of detecting position of unmanned carrier |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11652403B2 (en) | 2020-08-21 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Switching power source device, vehicle, and control method |
JPWO2022070513A1 (en) * | 2020-09-30 | 2022-04-07 | ||
WO2022070513A1 (en) * | 2020-09-30 | 2022-04-07 | ヤマハ発動機株式会社 | Traveling control system, steering device, and autonomous driving vehicle |
JP2022059320A (en) * | 2020-10-01 | 2022-04-13 | 株式会社デンソー | Unmanned carrier |
JP7405053B2 (en) | 2020-10-01 | 2023-12-26 | 株式会社デンソー | automated guided vehicle |
WO2023073882A1 (en) * | 2021-10-28 | 2023-05-04 | マミヤ・オーピー株式会社 | Vehicle, system for steering control, method, program, recording medium storing program, and autonomous travelling system |
JP7470878B2 (en) | 2021-10-28 | 2024-04-18 | マミヤ・オーピー株式会社 | Vehicle, system, method, program for steering control, recording medium having the program recorded thereon, and automatic driving system |
WO2023095815A1 (en) * | 2021-11-29 | 2023-06-01 | 株式会社Hakobot | Four-wheel traveling device |
Also Published As
Publication number | Publication date |
---|---|
JP7256657B2 (en) | 2023-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020140424A (en) | Transport vehicle and steering control program for transport vehicle | |
CN104002860B (en) | Electric power steering apparatus | |
JP6751511B2 (en) | Steering support device | |
JP5790677B2 (en) | Movement control apparatus, moving body control method, and control program | |
JP6419671B2 (en) | Vehicle steering apparatus and vehicle steering method | |
JP4984831B2 (en) | Automated guided vehicle and control method thereof | |
JP2009208601A (en) | Supporting apparatus and method for lane keeping | |
JP2006107027A (en) | Automated guided vehicle | |
JP6675354B2 (en) | Vehicle steering control device | |
JP5545625B2 (en) | Transport vehicle and program | |
JP3733642B2 (en) | Vehicle control device | |
JP3361280B2 (en) | Three-wheel steering automatic guided vehicle | |
JP2001225744A (en) | Steering control device for unmanned carrying vehicle | |
JP2002108453A (en) | Unmanned vehicle | |
JPH05333928A (en) | Back traveling control method for unmanned carrier | |
JP6865657B2 (en) | Vehicle control device and vehicle control method | |
JP2002373023A (en) | Automatically guided cargo vehicle | |
JP3166388B2 (en) | Steering force control device | |
JP5848989B2 (en) | Automatic conveyance vehicle and control method of automatic conveyance vehicle | |
JP7626945B2 (en) | Control method and control system | |
JP3166418B2 (en) | Unmanned guided vehicle steering control method | |
JP4992754B2 (en) | Inverted wheeled mobile robot and its control method | |
JP2007328442A (en) | Unmanned carrier | |
JP7317536B2 (en) | Vehicles, roadways and vehicle driving systems | |
JP2003022132A (en) | Traveling control method for unmanned carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7256657 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |