JP2020132504A - Purification method and purification device of carbon nanotube - Google Patents
Purification method and purification device of carbon nanotube Download PDFInfo
- Publication number
- JP2020132504A JP2020132504A JP2019032470A JP2019032470A JP2020132504A JP 2020132504 A JP2020132504 A JP 2020132504A JP 2019032470 A JP2019032470 A JP 2019032470A JP 2019032470 A JP2019032470 A JP 2019032470A JP 2020132504 A JP2020132504 A JP 2020132504A
- Authority
- JP
- Japan
- Prior art keywords
- purification
- catalyst metal
- metal
- carbon nanotubes
- cnt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 183
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 159
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 94
- 238000000746 purification Methods 0.000 title abstract description 190
- 238000005530 etching Methods 0.000 claims abstract description 123
- 229910052751 metal Inorganic materials 0.000 claims abstract description 119
- 239000002184 metal Substances 0.000 claims abstract description 119
- 239000003054 catalyst Substances 0.000 claims abstract description 106
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 44
- 150000005309 metal halides Chemical class 0.000 claims abstract description 44
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 34
- 239000007787 solid Substances 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims description 61
- 230000003197 catalytic effect Effects 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 12
- 150000004820 halides Chemical class 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 238000001241 arc-discharge method Methods 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 238000001308 synthesis method Methods 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 2
- 238000007670 refining Methods 0.000 claims 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 47
- 239000000843 powder Substances 0.000 abstract description 11
- 239000007788 liquid Substances 0.000 abstract description 4
- 230000001376 precipitating effect Effects 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- 238000002411 thermogravimetry Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 14
- 238000001069 Raman spectroscopy Methods 0.000 description 13
- 238000003917 TEM image Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000004611 spectroscopical analysis Methods 0.000 description 10
- 230000004580 weight loss Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 239000010949 copper Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 210000002268 wool Anatomy 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910016292 BiF 5 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001509 metal bromide Inorganic materials 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/159—Carbon nanotubes single-walled
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/17—Purification
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明はカーボンナノチューブの精製方法および精製装置に関する。 The present invention relates to a method and an apparatus for purifying carbon nanotubes.
カーボンナノチューブ(以下、CNTともいう)は、特異な1次元ナノ構造と、優れた熱的、電気的および機械的性質とにより、電池の電極やキャパシタ、トランジスタ、および、ポリマー等との混合による高強度材料など、各種応用が期待されている。固体炭素を昇華した後、冷却してCNTを合成する物理蒸着(PVD)法と、炭化水素等を熱分解してCNTを合成する化学気相成長(CVD)法とが知られるが、何れの方法でも金属ナノ粒子を触媒に用いる。通常、合成したCNTの生成物には、合成に用いた触媒金属が、不純物として数〜数十wt%混入している。触媒金属が含まれたままであると、ナノ材料としての物性の低下や重量の増加が起こるため、精製処理等による触媒金属の除去が重要となる。 Carbon nanotubes (hereinafter, also referred to as CNTs) have a unique one-dimensional nanostructure and excellent thermal, electrical, and mechanical properties, so that they can be mixed with battery electrodes, capacitors, transistors, polymers, etc. Various applications such as strength materials are expected. There are known physical vapor deposition (PVD) methods in which solid carbon is sublimated and then cooled to synthesize CNTs, and chemical vapor deposition (CVD) methods in which hydrocarbons and the like are thermally decomposed to synthesize CNTs. The method also uses metal nanoparticles as a catalyst. Usually, the synthesized CNT product contains several to several tens of wt% of the catalyst metal used for the synthesis as an impurity. If the catalyst metal is still contained, the physical properties of the nanomaterial will decrease and the weight will increase. Therefore, it is important to remove the catalyst metal by a purification treatment or the like.
不純物としての触媒金属の多くはグラファイトカーボンや非晶質炭素等の炭素殻に覆われた状態で混入しているため、従来、炭素殻を酸化してその全部または一部を除去する工程と金属を酸で溶解する酸溶解工程とを繰り返す精製方法が一般的である。しかし、これらの工程を繰り返す過程で、CNTが損傷することに加え、酸による処理の際に溶液に浸すため、精製後の乾燥時に溶液の表面張力によりCNTが緻密に凝集し、再分散が困難になるなど、多くの課題を抱えている。 Since most of the catalytic metals as impurities are mixed in a state of being covered with a carbon shell such as graphite carbon or amorphous carbon, conventionally, the process of oxidizing the carbon shell to remove all or part of it and the metal A purification method in which the acid dissolution step of dissolving the above-mentioned carbon is repeated is common. However, in the process of repeating these steps, in addition to damaging the CNT, it is immersed in the solution during the treatment with acid, so that the CNT is densely aggregated due to the surface tension of the solution during drying after purification, and redispersion is difficult. It has many problems such as becoming.
近年、触媒金属を含有する触媒金属含有カーボンナノチューブを乾燥状態のまま加熱し、塩素ガス(Cl2ガス)と接触させることで、触媒金属を金属塩化物として除去するCNTの精製方法が提案されている(例えば特許文献1)。 In recent years, a method for purifying CNTs has been proposed in which catalyst metal-containing carbon nanotubes containing a catalyst metal are heated in a dry state and brought into contact with chlorine gas (Cl 2 gas) to remove the catalyst metal as a metal chloride. (For example, Patent Document 1).
さらに、本発明者らは、常温常圧(25℃、1気圧)で液体である臭素(Br2)を用いたCNTの精製方法を開発した(例えば特許文献2)。当該方法は、触媒金属を含有する触媒金属含有カーボンナノチューブを乾燥状態のまま加熱し、Br2ガスと接触させることで、触媒金属を金属臭化物として除去する精製方法である。 Furthermore, the present inventors have developed a method for purifying CNTs using bromine (Br 2 ), which is a liquid at normal temperature and pressure (25 ° C., 1 atm) (for example, Patent Document 2). This method is a purification method for removing a catalyst metal as a metal bromide by heating the catalyst metal-containing carbon nanotubes containing the catalyst metal in a dry state and bringing them into contact with Br 2 gas.
特許文献1に開示されるCl2ガスによるCNTの精製方法では、Cl2ガスの毒性が高いため、設備が煩雑になりコストが増大したり、Cl2ガスが漏洩した場合には重大な事故につながる虞があるなど、特に設備および運用の安全面から、量産設備の実用化には課題があった。 In the method for purifying CNT with Cl 2 gas disclosed in Patent Document 1, since the toxicity of Cl 2 gas is high, the equipment becomes complicated and the cost increases, or if Cl 2 gas leaks, a serious accident occurs. There was a problem in putting mass-produced equipment into practical use, especially from the viewpoint of equipment and operational safety, such as the possibility of connection.
特許文献2に開示されるBr2ガスによるCNTの精製方法では、Br2は常温常圧で液体であるため、常温常圧で気体であるCl2に比べて漏洩時の対応がしやすいが、Br2は常温25℃でも30.4kPaと蒸気圧が高く、漏洩時に蒸気が拡散される虞があり、より安全な精製方法が望まれていた。 In the method for purifying CNT with Br 2 gas disclosed in Patent Document 2, since Br 2 is a liquid at normal temperature and pressure, it is easier to deal with leakage than Cl 2 which is a gas at normal temperature and pressure. Br 2 has a high vapor pressure of 30.4 kPa even at room temperature of 25 ° C., and there is a risk that vapor may be diffused at the time of leakage, and a safer purification method has been desired.
本発明は、このような事情に鑑みてなされたものであり、エッチング剤の蒸気圧が常温25℃で100Pa未満と低く、万一エッチング剤が漏洩しても液滴または固体粉末として沈降させることにより、事故のリスクを大幅に低減できるカーボンナノチューブの精製方法および精製装置を提供することを課題とする。 The present invention has been made in view of such circumstances, and the vapor pressure of the etching agent is as low as less than 100 Pa at room temperature of 25 ° C., and even if the etching agent leaks, it is precipitated as droplets or solid powder. Therefore, it is an object of the present invention to provide a purification method and a purification apparatus for carbon nanotubes, which can significantly reduce the risk of accidents.
本発明はかかる課題を解決するため、カーボンナノチューブの精製方法であって、触媒金属を用いて合成された触媒金属含有カーボンナノチューブ、および、金属ハロゲン化物を加熱し、前記金属ハロゲン化物の蒸気を前記触媒金属含有カーボンナノチューブと接触させて、前記触媒金属を除去するエッチング工程を含む方法を提供する。 In order to solve such a problem, the present invention is a method for purifying carbon nanotubes, wherein a catalyst metal-containing carbon nanotube synthesized by using a catalyst metal and a metal halide are heated, and the vapor of the metal halide is heated. Provided is a method including an etching step of removing the catalyst metal by contacting the carbon nanotubes containing a catalyst metal.
本発明に係る精製方法は、前記ハロゲン化物の蒸気圧が25℃で100Pa未満である場合がある。 In the purification method according to the present invention, the vapor pressure of the halide may be less than 100 Pa at 25 ° C.
本発明に係る精製方法は、前記ハロゲン化物が常温常圧で固体である場合がある。 In the purification method according to the present invention, the halide may be a solid at normal temperature and pressure.
本発明に係る精製方法は、前記エッチング工程により精製したカーボンナノチューブを真空状態で加熱する真空加熱工程をさらに含む場合がある。 The purification method according to the present invention may further include a vacuum heating step of heating the carbon nanotubes purified by the etching step in a vacuum state.
本発明に係る精製方法は、前記金属ハロゲン化物が、Fe、Ti、Cu、Zr、W、Si、Ge、SnおよびBiのうち1つ以上を含む場合がある。 In the purification method according to the present invention, the metal halide may contain one or more of Fe, Ti, Cu, Zr, W, Si, Ge, Sn and Bi.
本発明に係る精製方法は、前記金属ハロゲン化物が、フッ化物、塩化物、臭化物またはヨウ化物、および、これらの混合物からなる群から選択される場合がある。 In the purification method according to the present invention, the metal halide may be selected from the group consisting of fluorides, chlorides, bromides or iodides, and mixtures thereof.
本発明に係る精製方法は、前記触媒金属含有カーボンナノチューブが、火炎合成法、アーク放電法または化学気相成長(CVD)法により合成される場合がある。 In the purification method according to the present invention, the catalytic metal-containing carbon nanotubes may be synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition (CVD) method.
本発明は、反応器と、触媒金属を用いて合成された触媒金属含有カーボンナノチューブを、前記反応器内に供給するカーボンナノチューブ供給手段と、金属ハロゲン化物を、前記反応器内に供給するエッチング剤供給手段と、前記触媒金属含有カーボンナノチューブ、および、前記金属ハロゲン化物を加熱する加熱手段と、を備え、前記反応器内で、加熱された前記触媒金属含有カーボンナノチューブおよび前記金属ハロゲン化物の蒸気を接触させて、前記触媒金属を除去するカーボンナノチューブの精製装置を提供する。 In the present invention, a reactor, a carbon nanotube supply means for supplying a catalyst metal-containing carbon nanotube synthesized using a catalyst metal into the reactor, and an etching agent for supplying a metal halide into the reactor. The reactor includes a supply means, the catalyst metal-containing carbon nanotube, and a heating means for heating the metal halide, and the steam of the catalyst metal-containing carbon nanotube and the metal halide heated in the reactor is provided. Provided is a carbon nanotube purification apparatus which is brought into contact with each other to remove the catalyst metal.
本発明に係る精製装置は、加熱された前記触媒金属含有カーボンナノチューブおよび前記金属ハロゲン化物の蒸気を接触させて精製されたカーボンナノチューブを真空状態で加熱する真空加熱手段をさらに備える場合がある。 The purification apparatus according to the present invention may further include a vacuum heating means for heating the purified carbon nanotubes in contact with the heated catalyst metal-containing carbon nanotubes and the vapors of the metal halide in a vacuum state.
本発明は、25℃において蒸気圧が100Pa未満であるエッチング剤を用い、加熱状態でその蒸気を触媒金属含有カーボンナノチューブと接触させることにより、万一エッチング剤が漏洩しても、それを液滴または固体粉末として沈降させることで事故のリスクを大幅に低減でき、且つ、触媒金属の除去率が高く、結晶性に優れた良質なカーボンナノチューブが得られるカーボンナノチューブの精製方法および精製装置を提供することができる。 In the present invention, an etching agent having a vapor pressure of less than 100 Pa at 25 ° C. is used, and the vapor is brought into contact with carbon nanotubes containing a catalytic metal in a heated state. Therefore, even if the etching agent leaks, it is dropleted. Alternatively, provide a method and apparatus for purifying carbon nanotubes, which can significantly reduce the risk of accidents by precipitating as a solid powder, have a high removal rate of catalytic metal, and can obtain high-quality carbon nanotubes having excellent crystallinity. be able to.
以下、本発明のカーボンナノチューブ(以下、CNTともいう)の精製方法および精製装置の好ましい実施形態について、図面および実施例に基づいて説明する。 Hereinafter, preferred embodiments of the method for purifying carbon nanotubes (hereinafter, also referred to as CNT) and the purification apparatus of the present invention will be described with reference to the drawings and examples.
本実施形態において、触媒金属含有カーボンナノチューブは、本発明の精製方法による精製処理を行う前のCNTであって、例えばCNTの合成の際に使用された原料に由来する触媒金属を不純物として含む。図1に示すように、触媒金属2は、そのほとんどが炭素殻3に覆われた状態で存在する。触媒金属含有カーボンナノチューブ1は、末端6の炭素殻3内に触媒金属2が除去されずに残存したCNT5、触媒金属2が炭素殻3に覆われた粒子であってCNT5に付着した粒子7、および、触媒金属2が炭素殻3に覆われた粒子であってCNT5から離れて存在する粒子8を含む。炭素殻3は、単層であってもよいし、複層であってもよい。CNT5は、独立で存在するものもあれば、複数のCNT5が絡み合ったり、あるいは束状になったりして存在するものもある。また、触媒金属含有カーボンナノチューブ1は、不純物として、炭素殻3に覆われた触媒金属2の他、例えば炭素殻3に覆われていない触媒金属2や、CNTの合成時に未分解であった炭素源、同じくCNTの合成時に未分解であった触媒源等を含む場合もある。 In the present embodiment, the catalyst metal-containing carbon nanotube is a CNT before the purification treatment by the purification method of the present invention, and contains, for example, a catalyst metal derived from a raw material used in the synthesis of the CNT as an impurity. As shown in FIG. 1, most of the catalyst metal 2 exists in a state of being covered with the carbon shell 3. The catalyst metal-containing carbon nanotubes 1 include CNTs 5 in which the catalyst metal 2 remains in the carbon shell 3 at the end 6 without removing the catalyst metal 2, particles 7 in which the catalyst metal 2 is covered with the carbon shell 3 and adheres to the CNTs 5. In addition, the catalyst metal 2 includes particles 8 that are covered with a carbon shell 3 and exist apart from the CNT 5. The carbon shell 3 may be a single layer or a multi-layer. Some CNTs 5 exist independently, while others exist as a plurality of CNTs 5 intertwined or bundled. Further, as impurities, the catalyst metal-containing carbon nanotube 1 includes a catalyst metal 2 covered with a carbon shell 3, a catalyst metal 2 not covered with a carbon shell 3, and carbon that has not been decomposed during the synthesis of CNT. It may also include a source, a catalyst source that was also undecomposed during the synthesis of CNTs, and the like.
本実施形態に係るカーボンナノチューブの精製方法は、触媒金属含有カーボンナノチューブ1から触媒金属2を除去するエッチング工程(図1〜図3を参照)を有する。エッチング工程では、まず、触媒金属2を用いて合成された触媒金属含有カーボンナノチューブ1、および、25℃において蒸気圧が100Pa未満であるエッチング剤としての金属ハロゲン化物15(図4を参照)を加熱する。安全性の観点からは、エッチング剤としての金属ハロゲン化物の25℃での蒸気圧が10Pa未満であることが好ましく、1Pa未満であることがさらに好ましい。触媒金属含有カーボンナノチューブ1が加熱された状態で、金属ハロゲン化物15の蒸気を触媒金属含有カーボンナノチューブ1と接触させる。後述する化学反応により、エッチング生成物が生成され、触媒金属2が除去される。 The method for purifying carbon nanotubes according to the present embodiment includes an etching step (see FIGS. 1 to 3) for removing the catalyst metal 2 from the catalyst metal-containing carbon nanotubes 1. In the etching step, first, the catalyst metal-containing carbon nanotube 1 synthesized using the catalyst metal 2 and the metal halide 15 as an etching agent having a vapor pressure of less than 100 Pa at 25 ° C. (see FIG. 4) are heated. To do. From the viewpoint of safety, the vapor pressure of the metal halide as an etching agent at 25 ° C. is preferably less than 10 Pa, and more preferably less than 1 Pa. While the catalytic metal-containing carbon nanotube 1 is heated, the vapor of the metal halide 15 is brought into contact with the catalytic metal-containing carbon nanotube 1. An etching product is produced by a chemical reaction described later, and the catalyst metal 2 is removed.
触媒金属含有カーボンナノチューブ1、および、25℃において蒸気圧が100Pa未満である金属ハロゲン化物15を加熱する精製処理温度は、温度が高いほど精製が進行する。精製処理温度は、例えば、塩化鉄(FeCl3)をエッチング剤として使用するとき、600℃以上であることが好ましく、800℃以上であることがより好ましく、1000℃以上であることがさらに好ましい。精製処理温度が600℃以上であれば、エッチング剤と触媒金属との反応が進み、1000℃以上であれば、当該反応がより進行する。 As for the purification treatment temperature for heating the catalyst metal-containing carbon nanotube 1 and the metal halide 15 having a vapor pressure of less than 100 Pa at 25 ° C., the higher the temperature, the more the purification proceeds. When iron chloride (FeCl 3 ) is used as an etching agent, the purification treatment temperature is preferably 600 ° C. or higher, more preferably 800 ° C. or higher, and even more preferably 1000 ° C. or higher. When the purification treatment temperature is 600 ° C. or higher, the reaction between the etching agent and the catalyst metal proceeds, and when the purification treatment temperature is 1000 ° C. or higher, the reaction proceeds further.
本実施形態に係るカーボンナノチューブの精製方法は、エッチング工程後に、エッチング工程により精製したカーボンナノチューブ110(図5を参照)を真空状態で加熱する真空加熱工程をさらに含むことができる。真空加熱工程による精製処理を行うことにより、エッチング工程による精製処理後のCNT110に残留するハロゲン元素および触媒金属元素の含有率をさらに低減することができる。 The method for purifying carbon nanotubes according to the present embodiment can further include a vacuum heating step of heating the carbon nanotubes 110 (see FIG. 5) purified by the etching step in a vacuum state after the etching step. By performing the purification treatment by the vacuum heating step, the content of the halogen element and the catalytic metal element remaining in the CNT 110 after the purification treatment by the etching step can be further reduced.
本実施形態のエッチング工程により触媒金属2がエッチングされる原理を図1〜図3を参照して説明する。図1は、触媒金属2が炭素殻3に覆われた触媒金属含有カーボンナノチューブ1の様子を示す概念図である。触媒金属含有カーボンナノチューブ1が加熱されて温度が上昇すると、触媒金属原子、炭素原子、およびエッチング分子の運動が盛んになり、触媒金属2の粒子を覆う炭素殻3を通して原子および分子が拡散できるようになる。例えば触媒金属2がFeの場合、25℃において蒸気圧が100Pa未満であり常温常圧で固体である例えばFeの塩化物15(FeCl3)をエッチング剤として用いることで、触媒金属2のFeとエッチング剤15のFeCl3が反応して、エッチング生成物のFeCl2が生成される(図2)。FeCl2は高温場では蒸気圧が高いため、蒸気として触媒金属含有カーボンナノチューブ1から離れていく結果、触媒金属含有カーボンナノチューブ1中の触媒金属2のFeが除去され、中空構造の炭素殻3を有するCNT25、中空構造の炭素殻3を有する粒子であってCNT25に付着した粒子27、および、中空構造の炭素殻3を有する粒子であってCNT25から離れて存在する粒子28を含む、CNT4が形成される(図3)。この場合、触媒金属2であるFeと、エッチング剤であるFeの塩化物15(FeCl3)の反応式は下記式(1)で表される。エッチング生成物であるFeCl2は、25℃で無視できるほど蒸気圧が小さく、また常温常圧で固体である。 The principle of etching the catalyst metal 2 by the etching step of the present embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a conceptual diagram showing a state of the catalyst metal-containing carbon nanotube 1 in which the catalyst metal 2 is covered with a carbon shell 3. When the catalyst metal-containing carbon nanotube 1 is heated and the temperature rises, the movement of the catalyst metal atom, the carbon atom, and the etching molecule becomes active so that the atom and the molecule can diffuse through the carbon shell 3 covering the particles of the catalyst metal 2. become. For example, when the catalyst metal 2 is Fe, the vapor pressure at 25 ° C. is less than 100 Pa, and the chloride 15 (FeCl 3 ) of Fe, which is solid at normal temperature and pressure, is used as an etching agent to obtain Fe of the catalyst metal 2. FeCl 3 of the etching agent 15 reacts to produce FeCl 2 as an etching product (FIG. 2). Since FeCl 2 has a high vapor pressure in a high temperature field, it separates from the catalyst metal-containing carbon nanotube 1 as steam, and as a result, Fe of the catalyst metal 2 in the catalyst metal-containing carbon nanotube 1 is removed, and the carbon shell 3 having a hollow structure is formed. A CNT 4 is formed, which includes a CNT 25 having a CNT 25, a particle 27 having a hollow structure carbon shell 3 attached to the CNT 25, and a particle 28 having a hollow structure carbon shell 3 and existing apart from the CNT 25. (Fig. 3). In this case, the reaction formula between Fe, which is the catalyst metal 2, and chloride 15 (FeCl 3 ) of Fe, which is the etching agent, is represented by the following formula (1). FeCl 2 , which is an etching product, has a negligibly low vapor pressure at 25 ° C. and is a solid at normal temperature and pressure.
触媒金属2としては、例えば、Fe、Co、Ni、Y、Cr、Mo、Nb、Cu、Ag、Au、および、これらの合金が挙げられる。 Examples of the catalyst metal 2 include Fe, Co, Ni, Y, Cr, Mo, Nb, Cu, Ag, Au, and alloys thereof.
金属ハロゲン化物15の金属は、除去対象である触媒金属2と同種であっても異なるものであってもよく、特に限定されないが、例えば、Fe、Ti、Cu、Zr、W、Si、Ge、SnおよびBiが挙げられる。 The metal of the metal halide 15 may be the same as or different from the catalyst metal 2 to be removed, and is not particularly limited. For example, Fe, Ti, Cu, Zr, W, Si, Ge, etc. Examples include Sn and Bi.
エッチング剤としての金属ハロゲン化物15は、複数の価数をとる金属のハロゲン化物であり、25℃において蒸気圧が100Pa未満であればよい。エッチング剤としての金属ハロゲン化物15は特に、常温常圧で固体であるとよく、且つ、加熱状態で蒸気圧が高い(例えば600℃以上で100Pa以上)ことが好ましい。エッチング剤としての金属ハロゲン化物15は、25℃において蒸気圧が100Pa未満であるフッ化物、塩化物、臭化物またはヨウ化物、および、これらの混合物であり、具体的には、例えば、FeCl3やFeBr3、TiI4、CuCl2、ZrI4、WCl5、SiI4、GeI4、SnBr4、BiF5、BiCl3、BiBr3およびBiI3が挙げられる。これらのハロゲン化物は、触媒金属2と反応してより価数の低いハロゲン化物に変わり、触媒金属2はハロゲン化物としてエッチングされる。また、エッチング後のエッチング生成物としての金属ハロゲン化物も、25℃において蒸気圧が100Pa未満と低く、特に常温常圧で固体の金属ハロゲン化物から選択することができ、その場合、常温で蒸気圧が低く(例えば1Pa以下)、且つ、加熱状態で蒸気圧が高い(例えば600℃以上で100Pa以上)ことが好ましい。 The metal halide 15 as an etching agent is a halide of a metal having a plurality of valences, and may have a vapor pressure of less than 100 Pa at 25 ° C. The metal halide 15 as an etching agent is particularly preferably solid at normal temperature and pressure, and has a high vapor pressure in a heated state (for example, 100 Pa or more at 600 ° C. or higher). The metal halide 15 as an etching agent is a fluoride, chloride, bromide or iodide having a vapor pressure of less than 100 Pa at 25 ° C., and a mixture thereof. Specifically, for example, FeCl 3 or FeBr. 3, TiI 4, CuCl 2, ZrI 4, WCl 5, SiI 4, GeI 4, SnBr 4, BiF 5, include BiCl 3, BiBr 3 and BiI 3. These halides react with the catalyst metal 2 to change to lower valence halides, and the catalyst metal 2 is etched as a halide. Further, the metal halide as an etching product after etching also has a low vapor pressure of less than 100 Pa at 25 ° C., and can be particularly selected from solid metal halides at normal temperature and pressure. In that case, the vapor pressure at normal temperature is high. Is low (for example, 1 Pa or less) and the vapor pressure is high in the heated state (for example, 100 Pa or more at 600 ° C. or higher).
触媒金属含有カーボンナノチューブ1は、火炎合成法、アーク放電法または化学気相成長(CVD)法により合成することができるが、特にこれらの製法に限定されるものではない。 The catalyst metal-containing carbon nanotube 1 can be synthesized by a flame synthesis method, an arc discharge method, or a chemical vapor deposition (CVD) method, but is not particularly limited to these manufacturing methods.
図4に、本発明に係るカーボンナノチューブの精製装置10の好適な一実施形態を示す。図4は、本実施形態のカーボンナノチューブの精製方法により触媒金属含有カーボンナノチューブ1から触媒金属2を除去する機能を有する装置の一例として、簡易的な精製装置を示す概略図である。尚、本発明のカーボンナノチューブの精製装置10は、触媒金属含有カーボンナノチューブ1、および、金属ハロゲン化物15を加熱し、当該ハロゲン化物15の蒸気を触媒金属含有カーボンナノチューブ1と接触させることができれば、図4の構成に限定されるものではない。 FIG. 4 shows a preferred embodiment of the carbon nanotube purification apparatus 10 according to the present invention. FIG. 4 is a schematic view showing a simple purification apparatus as an example of an apparatus having a function of removing the catalyst metal 2 from the catalyst metal-containing carbon nanotubes 1 by the carbon nanotube purification method of the present embodiment. If the carbon nanotube purification apparatus 10 of the present invention can heat the catalyst metal-containing carbon nanotube 1 and the metal halide 15 and bring the vapor of the halide 15 into contact with the catalyst metal-containing carbon nanotube 1. The configuration is not limited to that shown in FIG.
反応器11内には、精製処理の対象である、触媒金属2を用いて合成された触媒金属含有カーボンナノチューブ1を供給するカーボンナノチューブ供給手段13が設置される。反応器11内にはさらに、エッチング剤としての金属ハロゲン化物15を供給するエッチング剤供給手段16が設置される。 In the reactor 11, a carbon nanotube supply means 13 for supplying the catalyst metal-containing carbon nanotube 1 synthesized by using the catalyst metal 2, which is the target of the purification treatment, is installed. Further, an etching agent supply means 16 for supplying a metal halide 15 as an etching agent is installed in the reactor 11.
カーボンナノチューブ供給手段13は、図4のように反応器11内で触媒金属含有カーボンナノチューブ1を供給するものであってもよいし、反応器11の外部から反応器11内に触媒金属含有カーボンナノチューブ1を供給するように構成してもよい。同様に、エッチング剤供給手段16は、図4のように反応器11内で金属ハロゲン化物15を供給するものであってもよいし、反応器11の外部から反応器11内に金属ハロゲン化物15を供給するように構成してもよい。 The carbon nanotube supply means 13 may supply the catalyst metal-containing carbon nanotubes 1 in the reactor 11 as shown in FIG. 4, or the catalyst metal-containing carbon nanotubes 1 may be supplied into the reactor 11 from the outside of the reactor 11. It may be configured to supply 1. Similarly, the etching agent supply means 16 may supply the metal halide 15 in the reactor 11 as shown in FIG. 4, or the metal halide 15 may be supplied into the reactor 11 from the outside of the reactor 11. May be configured to supply.
反応器11内において、カーボンナノチューブ供給手段13およびエッチング剤供給手段1と開口部19との間に、例えば耐熱性ウール18を配置してもよい。金属ハロゲン化物15の蒸気が反応器11の外に流出しないよう、蒸気の流れを整流して、熱対流を抑制する。この整流により、反応器11内での気体の流れが制限され、金属ハロゲン化物15の蒸気を効率よく触媒金属含有カーボンナノチューブ1に接触させ、CNTの精製の効率を高めることができる。 In the reactor 11, for example, heat-resistant wool 18 may be arranged between the carbon nanotube supply means 13 and the etching agent supply means 1 and the opening 19. The steam flow is rectified to suppress thermal convection so that the vapor of the metal halide 15 does not flow out of the reactor 11. By this rectification, the flow of gas in the reactor 11 is restricted, the vapor of the metal halide 15 is efficiently brought into contact with the catalyst metal-containing carbon nanotube 1, and the efficiency of CNT purification can be improved.
加熱手段20は、触媒金属含有カーボンナノチューブ1、および、金属ハロゲン化物15を加熱する。加熱手段20は、触媒金属含有カーボンナノチューブ1、および、金属ハロゲン化物15を加熱することができれば、その方法および構成は特に限定されない。 The heating means 20 heats the catalyst metal-containing carbon nanotube 1 and the metal halide 15. The method and configuration of the heating means 20 are not particularly limited as long as the catalyst metal-containing carbon nanotube 1 and the metal halide 15 can be heated.
エッチング剤としての金属ハロゲン化物15は、25℃において蒸気圧が100Pa未満であるため、エッチング剤が万一精製処理中に反応器11内から漏洩したとしても、液滴または固体粉末として沈降させることができる。例えばさらに、加熱された触媒金属含有カーボンナノチューブ1および金属ハロゲン化物15の蒸気を反応器11内で接触させることにより生成されるエッチング生成物も25℃における蒸気圧が100Pa未満と低ければ、エッチング生成物が万一精製処理中に反応器11内から漏洩したとしても、それもまた液滴または固体粉末として沈降させることができる。さらに、エッチング剤が常温常圧で固体であれば、エッチング剤が万一精製処理中に反応器11内から漏洩したとしても、固体粉末として沈降させることができる。さらに加えて、エッチング生成物も常温常圧で固体であれば 、エッチング生成物が万一精製処理中に反応器11内から漏洩したとしても、それもまた固体粉末として沈降させることができる。したがって、本実施形態のカーボンナノチューブの精製方法および精製装置によれば、人が漏洩ガスを吸引するリスクがなくなるので、従来のCl2ガスやBr2ガスを使用した精製方法に比べ、漏洩による事故の被害及びそのリスクを格段に低減することができる。 Since the vapor pressure of the metal halide 15 as an etching agent is less than 100 Pa at 25 ° C., even if the etching agent leaks from the inside of the reactor 11 during the purification process, it should be precipitated as droplets or solid powder. Can be done. For example, further, the etching product produced by bringing the steam of the heated catalytic metal-containing carbon nanotube 1 and the metal halide 15 into contact with each other in the reactor 11 is also etched if the vapor pressure at 25 ° C. is as low as less than 100 Pa. Should a material leak out of the reactor 11 during the purification process, it can also be precipitated as droplets or solid powder. Further, if the etching agent is a solid at normal temperature and pressure, even if the etching agent leaks from the inside of the reactor 11 during the purification process, it can be precipitated as a solid powder. Furthermore, if the etching product is also solid at normal temperature and pressure, even if the etching product leaks from the reactor 11 during the purification process, it can also be precipitated as a solid powder. Therefore, according to the carbon nanotube purification method and purification apparatus of the present embodiment, there is no risk of a person inhaling the leaked gas, so that an accident due to leakage is eliminated as compared with the conventional purification method using Cl 2 gas or Br 2 gas. Damage and its risk can be significantly reduced.
図5に示す真空加熱手段100としての装置は、加熱された触媒金属含有カーボンナノチューブ1と、金属ハロゲン化物15の蒸気とを接触させて精製されたCNT110を、反応器111内で、真空状態で加熱する。CNT供給手段113はCNT110を供給する。反応器111の開口部119を真空引き手段としての真空ポンプ(図示せず)に接続し、真空ポンプを動作させることにより、石英ガラス管112内を真空状態にすることができる。さらに、反応器111内のCNT110を加熱する加熱手段120を備えることで、真空加熱手段100が構成される。真空加熱手段100により真空状態でCNT110を加熱することで、CNT110に残留するハロゲン元素および触媒金属元素の含有率をさらに低減することができる。 In the device as the vacuum heating means 100 shown in FIG. 5, the heated catalytic metal-containing carbon nanotube 1 and the vapor of the metal halide 15 are brought into contact with each other to purify the CNT 110 in a vacuum state in the reactor 111. Heat. The CNT supply means 113 supplies the CNT 110. By connecting the opening 119 of the reactor 111 to a vacuum pump (not shown) as a vacuuming means and operating the vacuum pump, the inside of the quartz glass tube 112 can be evacuated. Further, the vacuum heating means 100 is configured by providing the heating means 120 for heating the CNT 110 in the reactor 111. By heating the CNT 110 in a vacuum state by the vacuum heating means 100, the contents of the halogen element and the catalytic metal element remaining in the CNT 110 can be further reduced.
CNT中に残留する各元素の含有率は、例えば走査型電子顕微鏡(SEM)に付属したエネルギー分散X線分析(EDX)装置を使用して組成を分析することにより測定することができる。 The content of each element remaining in the CNT can be measured, for example, by analyzing the composition using an energy dispersive X-ray analysis (EDX) apparatus attached to a scanning electron microscope (SEM).
CNTの結晶性は、例えばレーザー顕微ラマン分光分析により分析することができる。レーザー顕微ラマン分光分析において、1590 cm-1付近に現れるピークは、G-bandと呼ばれ、六員環構造を有する炭素原子の面内方向の伸縮振動に由来するものである。また、1350 cm-1付近に現れるピークは、D-bandと呼ばれ、六員環構造に欠陥があると現れやすくなる。相対的なCNTの結晶性は、D-bandに対するG-bandのピーク強度比IG/ID(G/D比)によって評価することができる。G/D比が高いほど結晶性の高いCNTであるといえる。200 cm-1付近に現れるピークは、RBM(Radial Breathing Mode)と呼ばれる単層CNTに特有のもので、チューブの直径方向に振動するモードである。 The crystallinity of CNTs can be analyzed, for example, by laser microscopic Raman spectroscopy. In laser microscopic Raman spectroscopy, the peak that appears near 1590 cm -1 is called the G-band and is derived from the in-plane stretching vibration of a carbon atom having a six-membered ring structure. In addition, the peak that appears near 1350 cm -1 is called D-band, and it is more likely to appear if the six-membered ring structure is defective. The relative crystallinity of CNTs can be evaluated by the peak intensity ratio of G-band to D-band, I G / I D (G / D ratio). It can be said that the higher the G / D ratio, the higher the crystallinity of CNT. The peak that appears around 200 cm -1 is peculiar to single-walled CNT called RBM (Radial Breathing Mode), and is a mode that vibrates in the diameter direction of the tube.
本実施形態のエッチング工程による精製後のCNT110は精製前の触媒金属含有カーボンナノチューブ1に比べると、CNTにおける触媒金属2の金属含有率が大幅に減少する。しかも、炭素殻3を残したまま触媒金属2を除去するように精製することで、CNTの表面積に加え、炭素殻3の表面積も有効利用でき、表面積を利用する応用デバイスではその性能を向上させる効果を有する。表面積を利用する応用には、電気二重層キャパシタや、各種のガスおよびイオン吸着剤、ガスおよびバイオセンサー材料等があり、例えば電気二重層キャパシタの場合、その容量を増やすことができる。 The metal content of the catalyst metal 2 in the CNT is significantly reduced in the CNT 110 after purification by the etching step of the present embodiment as compared with the catalyst metal-containing carbon nanotube 1 before purification. Moreover, by purifying so as to remove the catalyst metal 2 while leaving the carbon shell 3, the surface area of the carbon shell 3 can be effectively used in addition to the surface area of the CNT, and the performance is improved in the application device using the surface area. Has an effect. Applications that utilize the surface area include electric double layer capacitors, various gas and ion adsorbents, gas and biosensor materials, and for example, in the case of electric double layer capacitors, their capacities can be increased.
以上のように本発明は、エッチング剤の蒸気圧が25℃で100Pa未満であり、万一エッチング剤が漏洩しても、それは液滴または固体粉末として沈降するので、事故のリスクを大幅に低減することができる。また、炭素殻3を破壊せずに残したまま触媒金属2を除去するので、CNTの損傷を減らすことができる。さらに、CNTを液体で濡らす湿式工程を有さないので、CNTが緻密化することがなく、CNTを低密度の分散容易な状態に保つことができる。 As described above, in the present invention, the vapor pressure of the etching agent is less than 100 Pa at 25 ° C., and even if the etching agent leaks, it will settle as droplets or solid powder, so that the risk of accident is greatly reduced. can do. Further, since the catalyst metal 2 is removed without destroying the carbon shell 3, damage to the CNTs can be reduced. Furthermore, since there is no wet step of wetting the CNTs with a liquid, the CNTs do not become densified, and the CNTs can be kept in a low-density and easily dispersed state.
本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。ここに記述される実施例は本発明の実施形態を例示するものであり、本発明の範囲を限定するものとして解釈されるべきではない。 All references referred to herein are incorporated herein by reference in their entirety. The examples described herein illustrate embodiments of the invention and should not be construed as limiting the scope of the invention.
実施例1〜3において、合成方法の異なるCNTに対し、本実施形態に係るカーボンナノチューブの精製方法および精製装置で、精製処理を行った。精製装置の詳細、精製処理の条件、および、評価結果について以下に説明する。 In Examples 1 to 3, CNTs having different synthesis methods were purified by the carbon nanotube purification method and purification apparatus according to the present embodiment. The details of the purification apparatus, the conditions of the purification process, and the evaluation results will be described below.
実施例において使用したカーボンナノチューブの精製装置について、図4および図5を参照しながら説明する。 The carbon nanotube purification apparatus used in the examples will be described with reference to FIGS. 4 and 5.
反応器11として、図4に示すような石英ガラス管12で構成される横置き管を用いた。カーボンナノチューブ供給手段13として、シリカとアルミナで作製されたセラミック製のボート形状の容器であるCNT容器14を用いた。 As the reactor 11, a horizontal tube composed of a quartz glass tube 12 as shown in FIG. 4 was used. As the carbon nanotube supply means 13, a CNT container 14 which is a ceramic boat-shaped container made of silica and alumina was used.
蒸気圧が25℃で100Pa未満である金属ハロゲン化物15としてFeCl3を用いた。FeCl3は常温常圧で固体である。FeCl3は、石英ガラス管12内に設けられたエッチング剤供給手段16としての石英板17の上に直接載置した。CNT容器14も石英板17の上に載置した。耐熱性ウール18として、アルミとシリカで作製されたセラミックウールを用いた。 FeCl 3 was used as the metal halide 15 having a vapor pressure of less than 100 Pa at 25 ° C. FeCl 3 is a solid at normal temperature and pressure. FeCl 3 was placed directly on the quartz plate 17 as the etching agent supply means 16 provided in the quartz glass tube 12. The CNT container 14 was also placed on the quartz plate 17. As the heat-resistant wool 18, ceramic wool made of aluminum and silica was used.
加熱手段20として、石英ガラス管12の外周に電気炉21を用い、石英ガラス管12内を加熱して、触媒金属含有カーボンナノチューブ1、および、金属ハロゲン化物15の温度を上昇させた。 As the heating means 20, an electric furnace 21 was used on the outer periphery of the quartz glass tube 12, and the inside of the quartz glass tube 12 was heated to raise the temperatures of the catalyst metal-containing carbon nanotube 1 and the metal halide 15.
さらなる精製のための真空加熱手段100としての装置では、図5に示すように、図4のCNTの精製装置10と同様の構成の石英ガラス管112、CNT供給手段113としてのCNT容器114、および、石英板117を用いた。石英ガラス管112の開口部119を真空引き手段としての真空ポンプ(図示せず)に接続した。さらに、石英ガラス管12の外周に加熱手段120としての電気炉121を配置した。 In the apparatus as the vacuum heating means 100 for further purification, as shown in FIG. 5, a quartz glass tube 112 having the same configuration as the CNT purification apparatus 10 of FIG. 4, a CNT container 114 as the CNT supply means 113, and an apparatus , Quartz plate 117 was used. The opening 119 of the quartz glass tube 112 was connected to a vacuum pump (not shown) as a vacuuming means. Further, an electric furnace 121 as a heating means 120 was arranged on the outer circumference of the quartz glass tube 12.
以下の方法でCNT中の各元素の含有率の測定、および、レーザー顕微ラマン分光分析を行い、実施例1〜3において評価した。 The content of each element in the CNT was measured by the following method and laser microscopic Raman spectroscopic analysis was performed, and the evaluation was performed in Examples 1 to 3.
(含有率測定)
CNT中の各元素の含有率は、走査型電子顕微鏡(SEM)(型番:S−4800、日立ハイテクノロジーズ社製)−エネルギー分散X線分析(EDX)装置(型番:EDAX Genesis、AMETEK社製)を用いて測定した。下地の影響を少なくするため、実施例1および2では、CNTを2枚の銅板に挟んで上下方向から圧力を加え、銅板に付着させた後、一方の銅板を取り外し、他方の銅板上にCNTが付着した状態で測定を行った。実施例3では、CNTをTiメッシュで挟んだうえでプレスし、Tiメッシュの隙間から測定した。加速電圧20 kV、倍率300倍(実施例1および2)〜500倍(実施例3)でSEM−EDX分析を行い、各元素の元素組成を評価した。観察箇所は、所定の点で観察した後、1.5〜2mm程度離れた箇所でも測定を行い、これを繰り返して実施例1では15点の、実施例2および3では5点の箇所で測定を行った。
(Content rate measurement)
The content of each element in CNT is determined by scanning electron microscope (SEM) (model number: S-4800, manufactured by Hitachi High-Technologies Corporation) -energy dispersive X-ray analysis (EDX) device (model number: EDAX Genesis, manufactured by AMETEK). Was measured using. In order to reduce the influence of the substrate, in Examples 1 and 2, CNTs are sandwiched between two copper plates, pressure is applied from above and below to attach them to the copper plates, one copper plate is removed, and CNTs are placed on the other copper plate. The measurement was carried out in a state where. In Example 3, the CNTs were sandwiched between Ti meshes, pressed, and measured through the gaps in the Ti meshes. SEM-EDX analysis was performed at an accelerating voltage of 20 kV and a magnification of 300 times (Examples 1 and 2) to 500 times (Example 3) to evaluate the elemental composition of each element. After observing at a predetermined point, the observation points are measured at a distance of about 1.5 to 2 mm, and this is repeated to measure at 15 points in Example 1 and 5 points in Examples 2 and 3. It was.
(レーザー顕微ラマン分光分析)
レーザー顕微ラマン分光計(型番:HR−800、堀場製作所社製)にCNT粉末試料を設置し、488 nmのレーザー波長を用いて、レーザー顕微ラマン分光分析を行った。CNTをシリコン基板上に載置し、その上に2〜3滴のエタノールを滴下する。その後、ホットプレート上でエタノールを乾燥させ、シリコン基板上にCNTを密着させた。CNTのレーザー顕微ラマン分光分析ではCNTの測定箇所によってばらつきが生じることがあるため、10点の箇所を測定し、各箇所でのG/D比およびRBMの測定を行った。G/D比については、10点の箇所でのIG/IDの値の総加平均をとって評価を行った。
(Laser microscopic Raman spectroscopic analysis)
A CNT powder sample was placed on a laser microscopic Raman spectrometer (model number: HR-800, manufactured by Horiba Seisakusho), and laser microscopic Raman spectroscopic analysis was performed using a laser wavelength of 488 nm. The CNT is placed on a silicon substrate, and 2-3 drops of ethanol are dropped on the CNT. Then, ethanol was dried on a hot plate, and CNT was brought into close contact with the silicon substrate. In the laser microscopic Raman spectroscopic analysis of CNT, variations may occur depending on the measurement points of CNT, so 10 points were measured, and the G / D ratio and RBM were measured at each point. The G / D ratio was evaluated by taking the total sum of the I G / I D values at 10 points.
(熱重量分析)
エッチング工程前のCNT粉末試料およびエッチング工程後のCNT粉末試料について、熱分析装置(型番:TGB210、リガク製)を用いて熱重量分析(TG)を行い、空気流通下、昇温速度5 ℃/minで炭素の燃焼による重量減少率を測定した。
(Thermogravimetric analysis)
Thermogravimetric analysis (TG) was performed on the CNT powder sample before the etching process and the CNT powder sample after the etching process using a thermal analyzer (model number: TGB210, manufactured by Rigaku), and the temperature rise rate was 5 ° C / under air flow. The weight loss rate due to carbon combustion was measured in min.
(実施例1)TUBALL(登録商標)単層カーボンナノチューブの精製処理
1.エッチング処理
TUBALL(登録商標)単層カーボンナノチューブ(OCSiAl社)を試料に用いてエッチング工程の精製処理を行った。当該カーボンナノチューブは、直径1.6±0.4 nmである。本実施例ではまず、5 mgのCNTをCNT容器内に入れ、当該CNT容器と100 mgのFeCl3を石英板の上に載置した。図6に示すように、石英ガラス管内を真空に吸引後、Arガスで10分間置換することにより、石英ガラス管内の酸素を排出した。次に、電気炉により石英ガラス管内を加熱して200℃まで昇温し、減圧状態で5分間保持して石英ガラス管内の水のみを蒸発させ、石英ガラス管内の水を除去した。石英ガラス管内の水を除去することにより、水とFeCl3との反応によるFeの酸化物の生成を防ぐことができる。そして、Arガスによる10分間の置換を2回行い、常圧(760 Torr)のArを満たした状態で15分かけて1000℃まで昇温した。昇温後、常圧(760 Torr)で石英ガラス管内を1000℃に保持し、60分間、FeCl3によるエッチング処理を行った。その後、常圧(760 Torr)で15分かけて室温まで冷却し、最後に真空に吸引後、Arガスによる10分間の置換を2回行った。
(Example 1) Purification treatment of TUBALL (registered trademark) single-walled carbon nanotubes 1. Etching Treatment A purification treatment of the etching process was performed using TUBALL (registered trademark) single-walled carbon nanotubes (OCSiAl) as a sample. The carbon nanotubes have a diameter of 1.6 ± 0.4 nm. In this example, first, 5 mg of CNT was placed in a CNT container, and the CNT container and 100 mg of FeCl 3 were placed on a quartz plate. As shown in FIG. 6, the inside of the quartz glass tube was sucked into a vacuum and then replaced with Ar gas for 10 minutes to discharge the oxygen in the quartz glass tube. Next, the inside of the quartz glass tube was heated by an electric furnace to raise the temperature to 200 ° C., and the temperature was kept under reduced pressure for 5 minutes to evaporate only the water in the quartz glass tube, and the water in the quartz glass tube was removed. By removing the water in the quartz glass tube, it is possible to prevent the formation of Fe oxide due to the reaction between water and FeCl 3 . Then, the replacement with Ar gas for 10 minutes was performed twice, and the temperature was raised to 1000 ° C. over 15 minutes while satisfying Ar at normal pressure (760 Torr). After the temperature was raised, the inside of the quartz glass tube was maintained at 1000 ° C. under normal pressure (760 Torr), and etching treatment with FeCl 3 was performed for 60 minutes. Then, the mixture was cooled to room temperature at normal pressure (760 Torr) for 15 minutes, finally sucked into vacuum, and then replaced with Ar gas for 10 minutes twice.
表1に、上記エッチング工程による精製処理を行う前のCNT、および、上記エッチング工程による精製処理を行った後のCNT中のC、O、ClおよびFeの含有率の測定結果を示す。図7は、これらの測定結果中、Feの含有率の測定結果を示すグラフである。CNT中に残留するエッチング工程による精製処理後のFeの含有率は3.3 wt%であり、エッチング工程による精製処理前の13.5 wt%に対して76%減少した。 Table 1 shows the measurement results of the content of C, O, Cl and Fe in the CNTs before the purification treatment by the etching step and the CNTs after the purification treatment by the etching step. FIG. 7 is a graph showing the measurement results of the Fe content among these measurement results. The content of Fe remaining in the CNT after the purification treatment by the etching step was 3.3 wt%, which was 76% less than 13.5 wt% before the purification treatment by the etching step.
図8は、上記のエッチング工程による精製処理を行う前の、レーザー顕微ラマン分光分析の結果を示すグラフである。図9は、上記の真空加熱工程による精製処理を行った後の、レーザー顕微ラマン分光分析の結果を示すグラフである。10点の箇所におけるG/D比であるIG/IDの値の総加平均は、精製処理前が25.4、精製処理後が37.0であり、エッチング工程による精製処理を行った結果、IG/ID値が46%上昇し、CNTの結晶性は低下せず、CNTは損傷されなかった。 FIG. 8 is a graph showing the results of laser microscopic Raman spectroscopic analysis before the purification process by the above etching step. FIG. 9 is a graph showing the results of laser microscopic Raman spectroscopic analysis after the purification process by the above vacuum heating step. The total added average of the I G / I D values, which are the G / D ratios at 10 points, was 25.4 before the purification treatment and 37.0 after the purification treatment. As a result of the purification treatment by the etching process, I G The / ID value increased by 46%, the crystallinity of the CNT did not decrease, and the CNT was not damaged.
図10は、図8のグラフにおける、200 cm-1近傍の拡大図である。当該グラフから、10点の箇所すべてにおいてRBMが確認され、TUBALL(登録商標)が単層CNTであることが分かる。また、TUBALL(登録商標)のRBMは、広い波数範囲に現れ、TUBALL(登録商標)のCNTの直径の分布が大きいことが分かる。図11は、図9のグラフにおける、200 cm-1近傍の拡大図である。CNTを1600℃以上の高温下で処理すると、単層CNTの直径が大きくなり、最終的には多層CNTに変化してしまう場合がある。図11のグラフから、10点の箇所すべてにおいてRBMが確認され、エッチング工程による精製処理後も、CNTが多層CNTに変化していないことが分かる。また、図10のRBMと比較しても、ピークの位置等にほとんど変化は見られないことから、エッチング工程による精製処理後も、CNTの直径はほとんど変化していないことが分かる。 FIG. 10 is an enlarged view of the vicinity of 200 cm -1 in the graph of FIG. From the graph, RBM is confirmed at all 10 points, and it can be seen that TUBALL (registered trademark) is a single-walled CNT. Further, it can be seen that the RBM of TUBALL (registered trademark) appears in a wide wave number range, and the distribution of the diameter of the CNT of TUBALL (registered trademark) is large. FIG. 11 is an enlarged view of the vicinity of 200 cm -1 in the graph of FIG. When the CNTs are treated at a high temperature of 1600 ° C. or higher, the diameter of the single-walled CNTs becomes large, and the CNTs may eventually change to multi-walled CNTs. From the graph of FIG. 11, RBM was confirmed at all 10 points, and it can be seen that the CNTs did not change to multi-walled CNTs even after the purification treatment by the etching step. Further, as compared with the RBM of FIG. 10, almost no change is observed in the peak position and the like, so that it can be seen that the diameter of the CNT is hardly changed even after the purification treatment by the etching step.
図12は、上記のエッチング工程による精製処理を行う前(破線)、および、エッチング工程による精製処理を行った後(実線)のCNTの熱重量分析(TG)結果を示す。エッチング工程による精製処理を行う前のCNTの重量減少率は83.75%、残渣量は16.25%であった。エッチング工程による精製処理を行った後のCNTの重量減少率は96.84%、残渣量は3.16%であった。熱重量分析(TG)の結果から、エッチング工程により残渣の原因となるCNT中の触媒残留量が1/5以下に低減したことが分かる。 FIG. 12 shows the results of thermogravimetric analysis (TG) of CNTs before the purification treatment by the etching step (broken line) and after the purification treatment by the etching step (solid line). The weight loss rate of CNTs before the purification treatment by the etching step was 83.75%, and the residual amount was 16.25%. The weight loss rate of CNTs after the purification treatment by the etching step was 96.84%, and the residual amount was 3.16%. From the result of thermogravimetric analysis (TG), it can be seen that the residual amount of catalyst in CNT, which causes residue, was reduced to 1/5 or less by the etching process.
2.エッチング処理後の精製処理
上記エッチング工程による精製処理後のCNTを用いて、真空加熱工程による精製処理を行った。まず、エッチング工程による精製処理を行ったCNTをCNT容器内に入れ、CNT容器を石英板の上に載置した。図13に示すように、石英ガラス管内を真空に吸引後Arガスによる10分間の置換を2回行い、石英ガラス管内の酸素を排出した。その後、真空状態で電気炉により石英ガラス管内を加熱し、15分かけて1000℃まで昇温した。昇温後、真空状態で石英ガラス管内を1000℃に60分間保持した。その後、真空状態で15分かけて室温まで冷却し、最後にArガスによる10分間の置換を2回行った。
2. 2. Purification treatment after etching treatment Using the CNTs after the purification treatment by the above etching step, the purification treatment by the vacuum heating step was performed. First, the CNTs purified by the etching process were placed in a CNT container, and the CNT container was placed on a quartz plate. As shown in FIG. 13, after sucking the inside of the quartz glass tube into a vacuum, replacement with Ar gas was performed twice for 10 minutes, and oxygen in the quartz glass tube was discharged. Then, the inside of the quartz glass tube was heated in a vacuum state by an electric furnace, and the temperature was raised to 1000 ° C. over 15 minutes. After the temperature was raised, the inside of the quartz glass tube was kept at 1000 ° C. for 60 minutes in a vacuum state. Then, the mixture was cooled to room temperature in a vacuum state for 15 minutes, and finally replaced with Ar gas for 10 minutes twice.
表2に、上記真空加熱工程による精製処理を行う前のCNT、および、上記真空加熱工程による精製処理を行った後のCNT中のC、O、ClおよびFeの含有率の測定結果を示す。図14は、これらの測定結果中、Clの含有率の測定結果を示すグラフであり、図15は、Feの含有率の測定結果を示すグラフである。CNT中に残留する真空加熱工程による精製処理後のClの含有率は0.6 wt%であり、真空加熱工程による精製処理前の2.2 wt%に対して73%減少した。CNT中に残留する真空加熱工程による精製処理後のFeの含有率は1.8 wt%であり、真空加熱工程による精製処理前の3.3 wt%に対して45%減少した。エッチング工程および真空加熱工程による精製処理を行った最終的な結果として、CNT中に残留する当該精製処理後のFeの含有率は、エッチング工程による精製処理前の13.5 wt%に対して87%減少した。 Table 2 shows the measurement results of the contents of C, O, Cl and Fe in the CNTs before the purification treatment by the vacuum heating step and the CNTs after the purification treatment by the vacuum heating step. FIG. 14 is a graph showing the measurement result of the Cl content among these measurement results, and FIG. 15 is a graph showing the measurement result of the Fe content. The content of Cl remaining in the CNT after the purification treatment by the vacuum heating step was 0.6 wt%, which was 73% lower than the 2.2 wt% before the purification treatment by the vacuum heating step. The content of Fe remaining in the CNT after the purification treatment by the vacuum heating step was 1.8 wt%, which was 45% less than 3.3 wt% before the purification treatment by the vacuum heating step. As a result of the purification treatment by the etching step and the vacuum heating step, the content of Fe remaining in the CNT after the purification treatment is reduced by 87% from 13.5 wt% before the purification treatment by the etching step. did.
図16は、透過電子顕微鏡(TEM)により撮影した、上記精製処理を行う前のCNTのTEM画像写真である。矢印で示すように、炭素殻内に触媒金属の粒子が残存していることが確認できる。図17は、上記エッチン工程および真空加熱工程による精製処理を行った後のCNTのTEM画像写真である。矢印で示すように、炭素殻内の触媒金属が除去された中空構造の炭素殻が確認できる。 FIG. 16 is a TEM image photograph of the CNT before the purification process, which was taken with a transmission electron microscope (TEM). As shown by the arrow, it can be confirmed that the particles of the catalyst metal remain in the carbon shell. FIG. 17 is a TEM image photograph of the CNT after the purification treatment by the etching step and the vacuum heating step. As shown by the arrow, a hollow carbon shell from which the catalyst metal in the carbon shell has been removed can be confirmed.
3.実施例1のまとめ
以上のことから、FeCl3をエッチング剤として使用したエッチング工程による精製処理により、TUBALL(登録商標)のCNT中から触媒金属を除去することができ、CNTに直径の拡大や多層化等のダメージを与えることなく結晶性を高めることができることが確認された。さらに、真空加熱工程による精製処理により、触媒金属をさらに除去するとともに、Clの含有率も低減することができることが確認された。
3. 3. Summary of Example 1 From the above, the catalyst metal can be removed from the CNTs of TUBALL (registered trademark) by the purification process by the etching process using FeCl 3 as an etching agent, and the diameter of the CNTs can be increased or the number of layers can be increased. It was confirmed that the crystallinity can be enhanced without causing damage such as conversion. Furthermore, it was confirmed that the catalyst metal can be further removed and the Cl content can be reduced by the purification treatment by the vacuum heating step.
(実施例2)アーク放電法により合成したカーボンナノチューブの精製処理
1.エッチング処理
アーク放電法により合成した単層カーボンナノチューブを試料に用いてエッチング工程の精製処理を行った。当該カーボンナノチューブは、直径1〜2 nmである。本実施例では、5 mgのCNTと、100 mgのFeCl3とを使用し、実施例1と同様の精製装置を用いて、実施例1と同様の精製処理条件で精製処理を行った。
(Example 2) Purification treatment of carbon nanotubes synthesized by the arc discharge method 1. Etching process A single-walled carbon nanotube synthesized by the arc discharge method was used as a sample to purify the etching process. The carbon nanotubes have a diameter of 1 to 2 nm. In this example, 5 mg of CNT and 100 mg of FeCl 3 were used, and the purification treatment was carried out under the same purification treatment conditions as in Example 1 using the same purification equipment as in Example 1.
表3に、上記エッチング工程による精製処理を行う前のCNT、および、上記エッチング工程による精製処理を行った後のCNT中のC、O、Y、S、Cl、FeおよびNiの含有率の測定結果を示す。CNT中に残留するエッチング工程による精製処理後のNiの含有率は6.9 wt%であり、エッチング工程による精製処理前の38.5 wt%に対して82%減少した。 Table 3 shows the measurement of the contents of C, O, Y, S, Cl, Fe and Ni in the CNTs before the purification treatment by the etching step and the CNTs after the purification treatment by the etching step. The result is shown. The content of Ni remaining in the CNT after the purification treatment by the etching step was 6.9 wt%, which was 82% lower than the 38.5 wt% before the purification treatment by the etching step.
図18は、上記のエッチング工程による精製処理を行う前(破線)、および、エッチング工程による精製処理を行った後(実線)のCNTの熱重量分析(TG)結果を示す。エッチング工程による精製処理を行う前のCNTの重量減少率は34.86%、残渣量は65.14%であった。エッチング工程による精製処理を行った後のCNTの重量減少率は75.59%、残渣量は24.41%であった。熱重量分析(TG)の結果から、エッチング工程により残渣の原因となるCNT中の触媒残留量が約1/3に低減したことが分かる。 FIG. 18 shows the results of thermogravimetric analysis (TG) of CNTs before the purification treatment by the etching step (broken line) and after the purification treatment by the etching step (solid line). The weight loss rate of CNTs before the purification treatment by the etching step was 34.86%, and the residual amount was 65.14%. The weight loss rate of CNTs after the purification treatment by the etching step was 75.59%, and the residual amount was 24.41%. From the results of thermogravimetric analysis (TG), it can be seen that the amount of catalyst residue in CNTs, which causes residues, was reduced to about 1/3 by the etching process.
2.エッチング処理後の精製処理
上記エッチング工程による精製処理後のCNTを用いて、真空加熱工程による精製処理を行った。実施例1と同様の精製装置を用いて、実施例1と同様の精製処理条件で精製処理を行った。
2. 2. Purification treatment after etching treatment Using the CNTs after the purification treatment by the above etching step, the purification treatment by the vacuum heating step was performed. The purification treatment was carried out under the same purification treatment conditions as in Example 1 using the same purification equipment as in Example 1.
図19は、透過電子顕微鏡(TEM)により撮影した、上記精製処理を行う前のCNTのTEM画像写真である。矢印で示すように、炭素殻内に触媒金属の粒子が残存していることが確認できる。図20は、上記エッチン工程および真空加熱工程による精製処理を行った後のCNTのTEM画像写真である。矢印で示すように、炭素殻内の触媒金属が除去された中空構造の炭素殻が確認できる。 FIG. 19 is a TEM image photograph of the CNT before the purification process, which was taken with a transmission electron microscope (TEM). As shown by the arrow, it can be confirmed that the particles of the catalyst metal remain in the carbon shell. FIG. 20 is a TEM image photograph of the CNT after the purification treatment by the etching step and the vacuum heating step. As shown by the arrow, a hollow carbon shell from which the catalyst metal in the carbon shell has been removed can be confirmed.
3.実施例2のまとめ
以上のことから、FeCl3をエッチング剤として使用したエッチング工程による精製処理、および、真空加熱工程による精製処理により、アーク放電法により合成したCNT中から触媒金属を除去することができることが確認された。
3. 3. Summary of Example 2 From the above, it is possible to remove the catalyst metal from the CNT synthesized by the arc discharge method by the purification treatment by the etching process using FeCl 3 as an etching agent and the purification treatment by the vacuum heating step. It was confirmed that it could be done.
(実施例3)化学気相成長(CVD)法により合成したカーボンナノチューブの精製処理
1.エッチング処理
CVD法により合成した多層カーボンナノチューブを試料に用いてエッチング工程の精製処理を行った。当該カーボンナノチューブは、直径10〜30 nm、平均直径約20 nmである。本実施例では、5 mgのCNTと、100 mgのFeCl3とを使用し、実施例1と同様の精製装置を用いて、実施例1と同様の精製処理条件で精製処理を行った。
(Example 3) Purification treatment of carbon nanotubes synthesized by chemical vapor deposition (CVD) method 1. Etching treatment The multi-walled carbon nanotubes synthesized by the CVD method were used as samples to purify the etching process. The carbon nanotubes have a diameter of 10 to 30 nm and an average diameter of about 20 nm. In this example, 5 mg of CNT and 100 mg of FeCl 3 were used, and the purification treatment was carried out under the same purification treatment conditions as in Example 1 using the same purification equipment as in Example 1.
表4に、上記エッチング工程による精製処理を行う前のCNT、および、上記エッチング工程による精製処理を行った後のCNT中のC、O、Mg、Al、ClおよびFeの含有率の測定結果を示す。CNT中に残留するエッチング工程による精製処理後のFeの含有率は0.1 wt%であり、エッチング工程による精製処理前の7.2 wt%に対して99%減少した。 Table 4 shows the measurement results of the contents of C, O, Mg, Al, Cl and Fe in the CNTs before the purification treatment by the etching step and the CNTs after the purification treatment by the etching step. Shown. The content of Fe remaining in the CNT after the purification treatment by the etching step was 0.1 wt%, which was 99% less than 7.2 wt% before the purification treatment by the etching step.
図21は、上記のエッチング工程による精製処理を行う前(破線)、および、エッチング工程による精製処理を行った後(実線)のCNTの熱重量分析(TG)結果を示す。エッチング工程による精製処理を行う前のCNTの重量減少率は89.01%、残渣量は10.99%である。エッチング工程による精製処理を行った後のCNTの重量減少率は96.12%、残渣量は3.88%であった。熱重量分析(TG)の結果から、エッチング工程により残渣の原因となるCNT中の触媒残留量が1/2以下に低減したことが分かる。 FIG. 21 shows the thermogravimetric analysis (TG) results of CNTs before the purification treatment by the etching step (broken line) and after the purification treatment by the etching step (solid line). The weight loss rate of CNTs before the purification treatment by the etching step is 89.01%, and the residual amount is 10.99%. The weight loss rate of CNTs after the purification treatment by the etching step was 96.12%, and the residual amount was 3.88%. From the results of thermogravimetric analysis (TG), it can be seen that the amount of catalyst residue in CNTs, which causes residues, was reduced to 1/2 or less by the etching process.
2.エッチング処理後の精製処理
上記エッチング工程による精製処理後のCNTを用いて、真空加熱工程による精製処理を行った。実施例1と同様の精製装置を用いて、実施例1と同様の精製処理条件で精製処理を行った。
2. 2. Purification treatment after etching treatment Using the CNTs after the purification treatment by the above etching step, the purification treatment by the vacuum heating step was performed. The purification treatment was carried out under the same purification treatment conditions as in Example 1 using the same purification equipment as in Example 1.
図22は、透過電子顕微鏡(TEM)により撮影した、上記精製処理を行う前のCNTのTEM画像写真である。矢印で示すように、炭素殻内に触媒金属の粒子が残存していることが確認できる。図23は、上記エッチン工程および真空加熱工程による精製処理を行った後のCNTのTEM画像写真である。矢印で示すように、炭素殻内の触媒金属が除去された中空構造の炭素殻が確認できる。 FIG. 22 is a TEM image photograph of the CNT before the purification process, which was taken with a transmission electron microscope (TEM). As shown by the arrow, it can be confirmed that the particles of the catalyst metal remain in the carbon shell. FIG. 23 is a TEM image photograph of the CNT after the purification treatment by the etching step and the vacuum heating step. As shown by the arrow, a hollow carbon shell from which the catalyst metal in the carbon shell has been removed can be confirmed.
3.実施例3のまとめ
以上のことから、FeCl3をエッチング剤として使用したエッチング工程による精製処理、および、真空加熱工程による精製処理により、CVD法により合成したCNT中から触媒金属を除去することができることが確認された。
3. 3. Summary of Example 3 From the above, the catalyst metal can be removed from the CNT synthesized by the CVD method by the purification treatment by the etching process using FeCl 3 as an etching agent and the purification treatment by the vacuum heating step. Was confirmed.
以上、本発明を実施形態および実施例に基づいて説明したが、本発明は種々の変形実施をすることができる。例えば、加熱手段20は、触媒金属含有カーボンナノチューブ1を加熱するCNT加熱手段(図示せず)と、金属ハロゲン化物15を加熱するハロゲン化物加熱手段(図示せず)とを別個に備えてもよい。 Although the present invention has been described above based on the embodiments and examples, the present invention can be modified in various ways. For example, the heating means 20 may separately include a CNT heating means (not shown) for heating the catalyst metal-containing carbon nanotube 1 and a halide heating means (not shown) for heating the metal halide 15. ..
1 触媒金属含有カーボンナノチューブ
2 触媒金属
3 炭素殻
4 中空構造の炭素殻を有するCNT
5 CNT
6 末端
7 触媒金属が炭素殻に覆われた粒子であってCNTに付着した粒子
8 触媒金属が炭素殻に覆われた粒子であってCNTから離れて存在する粒子
10 カーボンナノチューブの精製装置
11 反応器
12 石英ガラス管
13 カーボンナノチューブ供給手段
14 CNT容器
15 金属ハロゲン化物
16 エッチング剤供給手段
17 石英板
18 耐熱性ウール
20 加熱手段
21 電気炉
25 中空構造の炭素殻を有するCNT
27 中空構造の炭素殻を有する粒子であってCNTに付着した粒子
28 中空構造の炭素殻を有する粒子であってCNTから離れて存在する粒子
100 真空加熱装置
112 石英ガラス管
113 カーボンナノチューブ供給手段
114 CNT容器
117 石英板
120 加熱手段
121 電気炉
1 Catalytic metal-containing carbon nanotube 2 Catalytic metal 3 Carbon shell 4 CNT having a hollow carbon shell
5 CNT
6 End 7 Particles whose catalyst metal is covered with carbon shells and adhered to CNTs 8 Particles whose catalyst metal is covered with carbon shells and exists away from CNTs
10 Carbon nanotube purification equipment
11 Reactor
12 Quartz glass tube
13 Carbon nanotube supply means
14 CNT container
15 Metal halides
16 Etching agent supply means
17 Quartz plate
18 Heat resistant wool
20 Heating means
21 electric furnace
25 CNTs with hollow carbon shells
27 Particles with a hollow carbon shell and attached to CNTs
28 Particles with a hollow carbon shell that exist apart from CNTs
100 vacuum heating device
112 Quartz glass tube
113 Carbon nanotube supply means
114 CNT container
117 Quartz plate
120 Heating means
121 electric furnace
Claims (9)
触媒金属を用いて合成された触媒金属含有カーボンナノチューブを、前記反応器内に供給するカーボンナノチューブ供給手段と、
金属ハロゲン化物を、前記反応器内に供給するエッチング剤供給手段と、
前記触媒金属含有カーボンナノチューブ、および、前記金属ハロゲン化物を加熱する加熱手段と、を備え、
前記反応器内で、加熱された前記触媒金属含有カーボンナノチューブおよび前記金属ハロゲン化物の蒸気を接触させて、前記触媒金属を除去する、カーボンナノチューブの精製装置。 Reactor and
A carbon nanotube supply means for supplying the catalyst metal-containing carbon nanotubes synthesized using the catalyst metal into the reactor, and
An etching agent supply means for supplying a metal halide into the reactor, and
The catalyst metal-containing carbon nanotube and a heating means for heating the metal halide are provided.
A carbon nanotube refining apparatus for removing the catalytic metal by bringing the heated catalyst metal-containing carbon nanotube and the vapor of the metal halide into contact with each other in the reactor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019032470A JP7278539B2 (en) | 2019-02-26 | 2019-02-26 | Carbon nanotube purification method and purification apparatus |
PCT/JP2020/007390 WO2020175450A1 (en) | 2019-02-26 | 2020-02-25 | Method and device for purifying carbon nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019032470A JP7278539B2 (en) | 2019-02-26 | 2019-02-26 | Carbon nanotube purification method and purification apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020132504A true JP2020132504A (en) | 2020-08-31 |
JP7278539B2 JP7278539B2 (en) | 2023-05-22 |
Family
ID=72239275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019032470A Active JP7278539B2 (en) | 2019-02-26 | 2019-02-26 | Carbon nanotube purification method and purification apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7278539B2 (en) |
WO (1) | WO2020175450A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113181856A (en) * | 2021-05-08 | 2021-07-30 | 东南大学 | Device and method for synthesizing nano particles by simulating zero-microgravity flame with assistance of magnetic field |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003063814A (en) * | 2001-08-24 | 2003-03-05 | Kokusai Kiban Zairyo Kenkyusho:Kk | Method for modifying carbon nanotube, carbon nanotube and electron emission source |
JP2005306681A (en) * | 2004-04-22 | 2005-11-04 | Toyota Motor Corp | Method for removing catalytic metal |
JP2006306636A (en) * | 2005-04-26 | 2006-11-09 | Mitsubishi Heavy Ind Ltd | Method for refining nanocarbon material and nanocarbon material |
WO2007063579A1 (en) * | 2005-11-29 | 2007-06-07 | Meijo University | Method for production of carbon nanotube and method for purification of the same |
WO2008126534A1 (en) * | 2007-03-13 | 2008-10-23 | Toyo Tanso Co., Ltd. | Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source material, conductive assistant for electrode, catalyst supporting member and conductive film, each using the carbon material |
JP2008266133A (en) * | 2007-03-28 | 2008-11-06 | Toray Ind Inc | Method for producing carbon nanotube |
WO2017146218A1 (en) * | 2016-02-26 | 2017-08-31 | 学校法人早稲田大学 | Removal method and removal device for removing metal particles from carbon nanotube mixture containing metal particles, and composite of hollow carbon particles and carbon nanotubes obtained thereby |
-
2019
- 2019-02-26 JP JP2019032470A patent/JP7278539B2/en active Active
-
2020
- 2020-02-25 WO PCT/JP2020/007390 patent/WO2020175450A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003063814A (en) * | 2001-08-24 | 2003-03-05 | Kokusai Kiban Zairyo Kenkyusho:Kk | Method for modifying carbon nanotube, carbon nanotube and electron emission source |
JP2005306681A (en) * | 2004-04-22 | 2005-11-04 | Toyota Motor Corp | Method for removing catalytic metal |
JP2006306636A (en) * | 2005-04-26 | 2006-11-09 | Mitsubishi Heavy Ind Ltd | Method for refining nanocarbon material and nanocarbon material |
WO2007063579A1 (en) * | 2005-11-29 | 2007-06-07 | Meijo University | Method for production of carbon nanotube and method for purification of the same |
WO2008126534A1 (en) * | 2007-03-13 | 2008-10-23 | Toyo Tanso Co., Ltd. | Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source material, conductive assistant for electrode, catalyst supporting member and conductive film, each using the carbon material |
JP2008266133A (en) * | 2007-03-28 | 2008-11-06 | Toray Ind Inc | Method for producing carbon nanotube |
WO2017146218A1 (en) * | 2016-02-26 | 2017-08-31 | 学校法人早稲田大学 | Removal method and removal device for removing metal particles from carbon nanotube mixture containing metal particles, and composite of hollow carbon particles and carbon nanotubes obtained thereby |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113181856A (en) * | 2021-05-08 | 2021-07-30 | 东南大学 | Device and method for synthesizing nano particles by simulating zero-microgravity flame with assistance of magnetic field |
CN113181856B (en) * | 2021-05-08 | 2022-04-29 | 东南大学 | Apparatus and method for synthesizing nanoparticles by magnetic field-assisted simulation of zero-microgravity flame |
US11786882B2 (en) | 2021-05-08 | 2023-10-17 | Southeast University | Device and method for magnetic field-assisted simulation of zero-microgravity fame synthesis of nanoparticles |
Also Published As
Publication number | Publication date |
---|---|
JP7278539B2 (en) | 2023-05-22 |
WO2020175450A1 (en) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shanov et al. | Synthesis and characterization of carbon nanotube materials | |
JP7193212B2 (en) | CARBON NANOTUBES, MANUFACTURING METHOD THEREOF, AND CARBON NANOTUBE DISPERSION | |
JP4811712B2 (en) | Carbon nanotube bulk structure and manufacturing method thereof | |
TWI444328B (en) | A carbon material of carbon nanotubes and a carbon material obtained by the purification method, and a resin molded body using the carbon material, a fiber, a heat sink, a sliding material, an electric field source material of the electric field, a conductive material Of the electrode Agent, catalyst carrier and conductive film | |
JP4621896B2 (en) | Single-walled carbon nanotube and method for producing the same | |
JP5647435B2 (en) | Carbon nanotube and method for producing the same | |
JP6969938B2 (en) | Method for purifying carbon nanotubes | |
Maselugbo et al. | Boron nitride nanotubes: a review of recent progress on purification methods and techniques | |
WO2017146218A1 (en) | Removal method and removal device for removing metal particles from carbon nanotube mixture containing metal particles, and composite of hollow carbon particles and carbon nanotubes obtained thereby | |
JP4035619B2 (en) | CNT surface modification method | |
JP2013536797A (en) | Metal substrate for growing carbon nanotube and method of manufacturing the same | |
JP2006335604A (en) | Coaxial carbon nanotube sheet and manufacturing method thereof | |
Sridhar et al. | Direct growth of carbon nanofiber forest on nickel foam without any external catalyst | |
JP2010064925A (en) | Conductive material and method for producing the same | |
JP7278539B2 (en) | Carbon nanotube purification method and purification apparatus | |
Pilatos et al. | Graphene by one-step chemical vapor deposition from ferrocene vapors: Properties and electrochemical evaluation | |
Yaya et al. | Purification of single-walled carbon nanotubes | |
JP4255033B2 (en) | Carbon nanotube production method and purification method | |
WO2012056184A2 (en) | Method of purifying carbon nanotubes | |
RU2430879C2 (en) | Method of cleaning multilayer carbon tubes | |
Desforges et al. | Improvement of carbon nanotube stability by high temperature oxygen/chlorine gas treatment | |
JP5330035B2 (en) | Carbon nanotube and method for producing the same | |
JP2009132605A (en) | Method for processing carbon nanotube, carbon nanotube and carbon nanotube device | |
JP4696598B2 (en) | carbon nanotube | |
JP2019116398A (en) | Method for producing carbon nanotube-containing composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200121 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200720 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7278539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |