JP2020127383A - Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus - Google Patents
Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus Download PDFInfo
- Publication number
- JP2020127383A JP2020127383A JP2019021821A JP2019021821A JP2020127383A JP 2020127383 A JP2020127383 A JP 2020127383A JP 2019021821 A JP2019021821 A JP 2019021821A JP 2019021821 A JP2019021821 A JP 2019021821A JP 2020127383 A JP2020127383 A JP 2020127383A
- Authority
- JP
- Japan
- Prior art keywords
- metal element
- wastewater
- medium
- culture
- wastewater treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 59
- 238000012136 culture method Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 130
- 239000002184 metal Substances 0.000 claims abstract description 102
- 239000002351 wastewater Substances 0.000 claims abstract description 51
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 35
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000012258 culturing Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 241000894006 Bacteria Species 0.000 claims description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 230000001546 nitrifying effect Effects 0.000 claims description 11
- 239000012528 membrane Substances 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 239000002609 medium Substances 0.000 abstract description 28
- 239000001963 growth medium Substances 0.000 abstract description 7
- 230000004071 biological effect Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 27
- 230000000694 effects Effects 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 17
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 15
- 229910021529 ammonia Inorganic materials 0.000 description 8
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 230000003100 immobilizing effect Effects 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011177 media preparation Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
【課題】生物活性を向上させることができる培養方法及び装置、廃水処理方法及び装置を提供する。【解決手段】培地を用いて細胞を培養する細胞の培養方法であって、培地中に含まれる金属元素のうち、Mn、Mo及びCoの少なくとも1つの濃度が0.001mg/L以下である培養方法である。また、培地から金属元素を除去する金属元素除去部14と、金属元素除去部14で金属元素が除去された培地に、Mn、Mo及びCoを含まない金属元素を添加する金属元素添加部16と、金属元素添加部16でMn、Mo及びCoを含まない金属元素が添加された培地を用いて細胞を培養する培養部18と、を備える。さらに、金属元素を除去した水を用いた製造設備46から排出された排水に、Mn、Mo及びCoを含まない金属元素を添加し、廃水処理を行う廃水処理方法及び装置である。【選択図】図4A culture method and apparatus, and a wastewater treatment method and apparatus capable of improving biological activity are provided. A method for culturing cells using a medium, wherein the concentration of at least one of Mn, Mo and Co among metal elements contained in the medium is 0.001 mg/L or less. The method. Also, a metal element removal unit 14 for removing metal elements from the culture medium, and a metal element addition unit 16 for adding metal elements not containing Mn, Mo and Co to the culture medium from which the metal elements have been removed by the metal element removal unit 14. and a culturing unit 18 for culturing cells using a medium to which metal elements not containing Mn, Mo and Co are added in the metal element adding unit 16 . Furthermore, it is a wastewater treatment method and apparatus for adding metal elements not containing Mn, Mo and Co to wastewater discharged from the manufacturing facility 46 using water from which metal elements have been removed, and treating the wastewater. [Selection drawing] Fig. 4
Description
本発明は、培養方法、培養装置、廃水処理方法及び廃水処理装置に係り、特に、培地中又は排水中の金属元素を特定することで、細胞数の向上、各種活性を向上させることができる培養方法、培養装置、廃水処理方法及び廃水処理装置に関する。 The present invention relates to a culture method, a culture device, a wastewater treatment method and a wastewater treatment device, and in particular, by identifying a metal element in a culture medium or wastewater, it is possible to improve the number of cells and various activities of the culture. The present invention relates to a method, a culture device, a wastewater treatment method, and a wastewater treatment device.
半導体を製造する工場では、半導体表面に金属が残ると製品に悪影響を与えるため、金属元素を除去した水が用いられ、例えば、半導体のエッチング液として、金属元素を除去した水にフッ化アンモニウム(NH4F)を主成分とする薬剤が使用されている。そのため、このような設備から排出される排水中には、廃水処理に用いられる細菌を維持するために必要な金属元素が含まれておらず、廃水処理を行う前に、金属元素を添加することが行われていた。 In a factory that manufactures semiconductors, if metal remains on the surface of the semiconductor, it adversely affects the product. Therefore, water from which the metal element has been removed is used. Drugs based on NH 4 F) have been used. Therefore, the wastewater discharged from such equipment does not contain the metal elements necessary to maintain the bacteria used for wastewater treatment, so add metal elements before performing wastewater treatment. Was being done.
例えば、下記の非特許文献1には、金属元素として、Mn、Mo、Co、Fe、Se、Ni、Cu、Zn及びBを添加することが記載されている。 For example, the following Non-Patent Document 1 describes adding Mn, Mo, Co, Fe, Se, Ni, Cu, Zn and B as metal elements.
培地又は排水中に金属元素が不足する場合には、金属元素を添加することで、活性を向上させることができる。しかしながら、どの金属が培地又は排水中に含まれることで活性が向上するか、詳細な条件については検討されていなかった。また、従来は、金属成分を添加することで活性が向上することは知られていたが、制限又は排除することで、活性が向上することについては検討されていなかった。 When the metal element is insufficient in the medium or the waste water, the activity can be improved by adding the metal element. However, detailed conditions for which metal contained in the medium or the waste water to improve the activity have not been examined. Further, conventionally, it has been known that the activity is improved by adding a metal component, but it has not been examined that the activity is improved by limiting or eliminating the metal component.
本発明はこのような事情に鑑みてなされたものであり、培地又は排水中に含まれる金属元素を制限することで、生物活性を向上させることができる培養方法、培養装置、廃水処理方法及び廃水処理装置を提供することを目的とする。 The present invention has been made in view of such circumstances, by limiting the metal element contained in the medium or wastewater, a culture method, a culture device, a wastewater treatment method and wastewater that can improve biological activity. An object is to provide a processing device.
本発明の目的を達成するために、本発明に係る培養方法は、培地を用いて細胞を培養する細胞の培養方法であって、培地中に含まれる金属元素のうち、Mn、Mo及びCoの少なくとも1つの濃度が0.001mg/L以下である。 In order to achieve the object of the present invention, the culturing method according to the present invention is a cell culturing method for culturing cells using a medium, wherein, among metal elements contained in the medium, Mn, Mo and Co At least one concentration is 0.001 mg/L or less.
本発明の目的を達成するために、本発明に係る培養装置は、培地から金属元素を除去する金属元素除去部と、金属元素除去部で金属元素が除去された培地に、Mn、Mo及びCoを含まない金属元素を添加する金属元素添加部と、金属元素添加部でMn、Mo及びCoを含まない金属元素が添加された培地を用いて細胞を培養する培養部と、を備える。 In order to achieve the object of the present invention, the culturing apparatus according to the present invention provides a metal element removing unit for removing a metal element from a medium, and a medium from which the metal element has been removed by the metal element removing unit, Mn, Mo and Co. And a culture unit for culturing cells using a medium to which the metal element not containing Mn, Mo and Co is added in the metal element addition unit.
本発明の目的を達成するために、本発明に係る廃水処理方法は、金属元素を除去した水を使用した製造工程から排出された排水の廃水処理方法であって、排水に、Mn、Mo及びCoを含まない金属元素を添加する添加工程と、細菌を用いて排水の廃水処理を行う廃水処理工程と、を有する。 In order to achieve the object of the present invention, the wastewater treatment method according to the present invention is a wastewater treatment method of wastewater discharged from a manufacturing process using water from which a metal element has been removed, wherein the wastewater contains Mn, Mo and The method includes an addition step of adding a metal element not containing Co and a wastewater treatment step of treating wastewater of wastewater using bacteria.
本発明の目的を達成するために、本発明に係る廃水処理装置は、金属元素を除去した水を用いた製造設備から排出された排水の廃水処理装置であって、排水にMn、Mo及びCoを含まない金属元素を添加する金属元素添加部と、細菌を用いて、金属元素添加部でMn、Mo及びCoを含まない金属元素が添加された排水の廃水処理を行う廃水処理部と、を備える。 In order to achieve the object of the present invention, a wastewater treatment device according to the present invention is a wastewater treatment device for wastewater discharged from a manufacturing facility using water from which metal elements have been removed, and the wastewater contains Mn, Mo and Co. A metal element addition section for adding a metal element not containing, and a wastewater treatment section for treating wastewater of wastewater to which a metal element not containing Mn, Mo and Co is added in the metal element addition section using bacteria. Prepare
本発明の培養方法及び培養装置によれば、培地中に含まれる金属元素のうち、Mn、Mo及びCoの少なくとも1つの濃度を0.001mg/L以下と低濃度にすることで、細胞数を向上させることができる。また、本発明の廃水処理方法及び廃水処理装置によれば、Mn、Mo及びCoを含まない金属元素が添加された排水とすることで、廃水処理における生物活性を向上させることができる。 According to the culturing method and the culturing apparatus of the present invention, among the metal elements contained in the medium, the concentration of at least one of Mn, Mo, and Co is set to a low concentration of 0.001 mg/L or less, whereby the cell number is Can be improved. Further, according to the wastewater treatment method and the wastewater treatment apparatus of the present invention, the biological activity in the wastewater treatment can be improved by using the wastewater to which the metal element containing no Mn, Mo and Co is added.
以下、添付図面に従って、本発明に係る培養方法、培養装置、廃水処理方法及び廃水処理装置について説明する。なお、本明細書において、「〜」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。 Hereinafter, a culture method, a culture apparatus, a wastewater treatment method, and a wastewater treatment apparatus according to the present invention will be described with reference to the accompanying drawings. In addition, in this specification, "-" is used by the meaning including the numerical value described before and after that as a lower limit and an upper limit.
[培養方法]
本実施形態の培養方法は、培地中に含まれる金属元素のうち、Mn、Mo及びCoの少なくとも1つの濃度が0.001mg/L以下とする培養方法である。
[Culturing method]
The culture method of the present embodiment is a culture method in which the concentration of at least one of Mn, Mo, and Co among the metal elements contained in the medium is 0.001 mg/L or less.
<培地の調整方法>
本実施形態の培地は、供給する培地中のMn、Mo及びCoの少なくとも1つ以上の元素を0.001mg/L以下に制限し、培養を行う。Mn、Mo及びCoの少なくとも1つ以上の元素を0.001mg/L以下に制限する方法としては、Mn、Mo及びCoを選択的に吸着する吸着材などにより処理することができる。
<Medium preparation method>
In the medium of the present embodiment, at least one element of Mn, Mo and Co in the medium to be supplied is limited to 0.001 mg/L or less and culturing is performed. As a method for limiting at least one element of Mn, Mo and Co to 0.001 mg/L or less, an adsorbent that selectively adsorbs Mn, Mo and Co can be used.
また、すべての金属元素を取り除いた超純水を製造し、この超純水に必要な金属元素を添加することができる。このとき、添加する金属元素から、Mn、Mo及びCoの1つ以上を排除する。超純水を製造する方法としては、蒸留、イオン交換樹脂又は逆浸透膜などにより、金属元素を除去し、製造することができる。製造される超純水としては、電動率17MΩ・cm以上、0.058μS/cm以下のものが好ましい。この方法で培地を製造することで、必要な金属元素の添加量を管理することができる。 Further, it is possible to produce ultrapure water from which all metal elements have been removed, and to add necessary metal elements to this ultrapure water. At this time, one or more of Mn, Mo, and Co are excluded from the added metal element. As a method for producing ultrapure water, distillation, an ion exchange resin, a reverse osmosis membrane, or the like can be used to remove the metal element for production. The ultrapure water to be produced preferably has an electric conductivity of 17 MΩ·cm or more and 0.058 μS/cm or less. By producing the culture medium by this method, the required addition amount of the metal element can be controlled.
培養に必要な添加する金属元素として、Fe、Cu、Znなどの元素は、培地中に含まれないと細胞の増殖ができなくなるため、添加することが好ましい。その他、添加する金属元素としては、Al、Cr、Na、K、Mgなどが挙げられる。添加する金属元素は、大量に添加するとコストかかり、また、活性を阻害する可能性がある。また、培地が排水である場合、廃水処理後の処理水を放流する先の環境汚染も懸念される。したがって、添加する金属元素の量としては、性能を維持することができる限度の量が必要であり、0.005mg/L以上とすることが好ましく、0.02mg/L以上とすることが好ましい。 Elements such as Fe, Cu, and Zn that are added as metal elements necessary for culturing are preferably added because the cells cannot grow unless they are contained in the medium. In addition, Al, Cr, Na, K, Mg etc. are mentioned as a metal element added. The metal element to be added is costly when added in a large amount, and may possibly inhibit the activity. Further, when the medium is waste water, there is a concern about environmental pollution at the destination where the treated water after the waste water treatment is discharged. Therefore, the amount of the metal element to be added needs to be a limit amount capable of maintaining the performance, and is preferably 0.005 mg/L or more, and more preferably 0.02 mg/L or more.
<培養方法及び培養期間>
培養は、培地を連続して供給する連続培養で行うことが好ましい。また、培養期間については、特に限定されないが、1週間以上、より好ましくは1か月以上である。細胞が分裂するまでの時間によって、効果が生じるまでの時間は異なる。すなわち、細胞内に維持されている金属元素は、分裂する細胞に受け継がれるため、分裂する時間が速い細胞であれば、金属元素の要求量も多くなり、早く効果が表れる。一方、寿命の長い細胞では、一旦取り込んでしまうと、細胞内で維持されるため、効果が生じるのに時間を要する。したがって、寿命の長い細胞に対しては、長い期間培養することで、高い効果を得ることができる。なお、回分培養で培養してもよく、短期的な培養を行ってもよい。
<Culture method and culture period>
The culture is preferably performed by continuous culture in which the medium is continuously supplied. The culture period is not particularly limited, but it is 1 week or longer, more preferably 1 month or longer. The time it takes for the effect to occur depends on the time it takes for the cell to divide. That is, since the metal element maintained in the cell is inherited by the dividing cell, if the cell that divides quickly has a large amount of the required metal element, the effect can be obtained quickly. On the other hand, in a long-lived cell, once taken up, it is maintained in the cell, so it takes time for the effect to occur. Therefore, for cells having a long lifespan, high effects can be obtained by culturing for a long period of time. In addition, batch culture may be performed, or short-term culture may be performed.
<細胞>
本実施形態の培養方法で培養される細胞としては、主に、微生物細胞であるが、動物細胞にも適用することができる。特に、培地として窒素排水を用いる場合は、硝化細菌又はアナモックス細菌とすることができる。
<Cell>
The cells cultured by the culture method of the present embodiment are mainly microbial cells, but can also be applied to animal cells. In particular, when nitrogen waste water is used as the medium, nitrifying bacteria or anammox bacteria can be used.
細菌は担体に固定化された状態で培養槽(培養部)に保持されていることが好ましい。細菌を固定化する方法としては、担体表面に付着固定化させ固定化担体とする方法、及び、担体内に細菌を包摂させて固定化し包括固定化担体とする方法がある。包括固定化担体とすることで、担体の内部に細胞を維持することができるので、長期の培養を行っても細胞(細菌)が流出することを防止することができる。 Bacteria are preferably held in a culture tank (culturing section) while being immobilized on a carrier. As a method of immobilizing bacteria, there are a method of adhering and immobilizing to a carrier surface to form an immobilizing carrier, and a method of including and immobilizing bacteria in the carrier to immobilize the entrapping immobilizing carrier. By using the entrapping immobilization pellets, cells can be maintained inside the pellets, and thus cells (bacteria) can be prevented from flowing out even after long-term culture.
担体としては、例えば、ポリビニルアルコール、アルギン酸、ポリエチレングリコール、アクリルアミド等のゲル担体や、セルロース、ポリエステル、ポリプロピレン、塩化ビニル、ポリウレタン等のプラスチック担体や、活性炭、珪藻土、ゼオライト等の無機担体等が挙げられる。担体の形態は、例えば、球、円筒、円柱、立方体、直方体等の適宜の形状に成型した浮遊担体を用いる流動床、スポンジ状、不織布状、中空糸状等とした担体濾材をハニカム状、波形状、格子状、繊維状、菊花状等に配列した固定床のいずれでもよい。流動床については、浮遊担体の大きさは、1mm以上10mm以下の範囲が好ましく、その充填率は、培養槽容量に対して10体積%以上40体積%以下の範囲が好ましい。一方、固定床については、その充填率は、培養槽容量に対して見かけ上の占有容積で10体積%以上50体積%以下の範囲が好ましく、その空隙率は、80%以上であることが好ましい。 Examples of the carrier include gel carriers such as polyvinyl alcohol, alginic acid, polyethylene glycol and acrylamide, plastic carriers such as cellulose, polyester, polypropylene, vinyl chloride and polyurethane, and inorganic carriers such as activated carbon, diatomaceous earth and zeolite. .. The form of the carrier is, for example, a fluidized bed using a floating carrier molded in an appropriate shape such as a sphere, a cylinder, a cylinder, a cube, or a rectangular parallelepiped, a sponge-like, non-woven fabric-like, hollow fiber-like carrier filter medium having a honeycomb shape or a wavy shape. It may be a fixed bed arranged in a grid pattern, a fiber pattern, a chrysanthemum pattern, or the like. For the fluidized bed, the size of the floating carrier is preferably in the range of 1 mm or more and 10 mm or less, and the filling rate thereof is preferably in the range of 10% by volume or more and 40% by volume or less with respect to the capacity of the culture tank. On the other hand, with respect to the fixed bed, the filling rate is preferably in the range of 10% by volume or more and 50% by volume or less in apparent occupied volume with respect to the capacity of the culture tank, and the porosity thereof is preferably 80% or more. ..
また、細胞を担体に固定化しない場合は、培養した細胞を分離する方法として、MBR(Membrane Bio Reactor)リアクターによる膜分離が挙げられる。これにより、培養した細胞が培養槽から流出することも防止することができる。膜の素材としては、PVDF、PVC、PE等を用いることができるが、特に限定されない。膜の孔径は、分離する細胞のサイズに合わせて適切に選択する。 When the cells are not immobilized on a carrier, a method for separating the cultured cells includes membrane separation using an MBR (Membrane Bio Reactor) reactor. This can prevent the cultured cells from flowing out of the culture tank. The material of the film may be PVDF, PVC, PE or the like, but is not particularly limited. The pore size of the membrane is appropriately selected according to the size of cells to be separated.
<効果原因の推察>
近年、硝化細菌の培養の場合、硝化細菌が過酸化水素を生成するため、活性が低下し、単離培養ができないということが知られている。生成した過酸化水素は、他の細菌のもつカタラーゼなどの過酸化水素を分解する酵素により分解される。そのため、過酸化水素の生成活性を低下させることができれば、硝化細菌が自ら生成する毒物を低減することができる。過酸化水素の生成活性を低下させることで、細胞内での過酸化水素濃度を下げることができるので、活性が大幅に上昇することが期待できる。
<Inference of cause of effect>
In recent years, it has been known that in the case of culturing nitrifying bacteria, the nitrifying bacteria produce hydrogen peroxide, so that the activity is reduced and the isolated culture cannot be performed. The produced hydrogen peroxide is decomposed by an enzyme that decomposes hydrogen peroxide, such as catalase possessed by other bacteria. Therefore, if the activity of producing hydrogen peroxide can be reduced, it is possible to reduce the poisons that nitrifying bacteria produce themselves. Since the hydrogen peroxide concentration in cells can be lowered by lowering the hydrogen peroxide production activity, it can be expected that the activity is significantly increased.
上記の反応経路については特定できていないが、Mo、Mn及びCoの元素はこれらの反応に寄与し、Mo、Mn及びCoの濃度を低くすることで、過酸化水素の生成活性を低下させていると推察される。Mo、Mn及びCoの濃度は0.001mg/L以下とすることで、本発明の効果を得ることができる。一方、Feはアンモニア酸化酵素に利用されており、Feが無いと、そもそも硝化細菌は増殖することができない。これらのことから、増殖に必要な金属元素を供給し、さらに過酸化水素などの活性酸素種の毒物を除去できれば、活性が向上すると考えられる。 Although the above reaction path has not been specified, the elements of Mo, Mn and Co contribute to these reactions, and the concentration of Mo, Mn and Co is lowered to lower the hydrogen peroxide production activity. It is presumed that The effects of the present invention can be obtained by setting the concentrations of Mo, Mn, and Co to 0.001 mg/L or less. On the other hand, Fe is used for ammonia oxidase, and without Fe, nitrifying bacteria cannot grow in the first place. From these facts, it is considered that the activity will be improved if the metal elements necessary for the growth can be supplied and the poisons of the active oxygen species such as hydrogen peroxide can be removed.
<培養装置>
図1は、本実施形態の培養装置を示す装置フローである。培養装置は、金属元素除去部14、金属元素添加部16及び培養部18を備える。培地供給配管12から供給された培地は、金属元素除去部14及び金属元素添加部16で処理され、培養部18に供給される。培養部18で、培養部18内に投入された細胞が培養される。培養部18で使用された培地は培地排出配管20から排出される。
<Incubator>
FIG. 1 is an apparatus flow showing the culture apparatus of this embodiment. The culture device includes a metal element removal unit 14, a metal element addition unit 16, and a culture unit 18. The culture medium supplied from the culture medium supply pipe 12 is processed by the metal element removal unit 14 and the metal element addition unit 16 and supplied to the culture unit 18. In the culture unit 18, the cells put into the culture unit 18 are cultured. The medium used in the culture unit 18 is discharged from the medium discharge pipe 20.
金属元素除去部14は、培地供給配管12から供給された培地から金属元素を除去する。金属元素除去部14としては、蒸留装置、イオン交換樹脂、逆浸透膜などを挙げることができる。 The metal element removing unit 14 removes metal elements from the medium supplied from the medium supply pipe 12. Examples of the metal element removing unit 14 include a distillation device, an ion exchange resin, and a reverse osmosis membrane.
金属元素添加部16は、Mn、Mo及びCoを含まない金属元素を添加する。添加する金属元素としては、Fe、Cu、Zn、Al、Cr、Na、K、Mgなどを挙げることができる。金属元素の添加に用いられる装置は特に限定されない。なお、本明細書において、「Mn、Mo及びCoを含まない」とは、Mn、Mo及びCoを積極的に添加しないことをいい、コンタミネーションは含まない。具体的には、0.001mg/L以下のことをいう。 The metal element addition unit 16 adds a metal element that does not contain Mn, Mo and Co. Examples of the metal element to be added include Fe, Cu, Zn, Al, Cr, Na, K and Mg. The device used for adding the metal element is not particularly limited. In addition, in this specification, "Mn, Mo, and Co are not included" means that Mn, Mo, and Co are not positively added, and does not include contamination. Specifically, it means 0.001 mg/L or less.
培養部18は、金属元素添加部16で、Mn、Mo及びCoを含まない金属元素が添加された培地を用いて細胞の培養を行う。培養部18としては培養槽を挙げることができる。培養部18は、pHコントローラー及び温度調節手段を備え、培養部18内のpH及び温度が培養に最適な条件に適宜調節される。培養部18へは、金属元素添加部16で、金属元素が添加された培地が連続的に供給され、細胞の培養が行われる。培養部18内に投入される細胞としては、細胞をそのまま投入してもよく、細胞を担体に固定化した固定化担体又は包括固定化担体としてもよい。 The culturing unit 18 is a metal element adding unit 16 and cultures cells using a medium to which a metal element containing no Mn, Mo, and Co is added. The culture unit 18 may be a culture tank. The culturing unit 18 includes a pH controller and a temperature adjusting unit, and the pH and temperature in the culturing unit 18 are appropriately adjusted to optimum conditions for culturing. The culture medium 18 to which the metal element is added is continuously supplied to the culture unit 18 by the metal element addition unit 16, and the cells are cultured. The cells to be introduced into the culture unit 18 may be cells as they are, or may be an immobilization carrier in which the cells are immobilized on a carrier or an entrapping immobilization carrier.
<廃水処理方法及び廃水処理装置>
上述した培養方法及び培養装置は、廃水処理方法及び廃水処理装置に適用することができる。図2は、本実施形態の廃水処理装置を含む装置を示す装置フローである。図2に示す装置は、金属元素除去部44、製造設備46、金属元素添加部48及び廃水処理部50を備える。なお、本実施形態の廃水処理装置は、金属元素添加部48及び廃水処理部50に相当する。
<Wastewater treatment method and wastewater treatment device>
The culturing method and culturing apparatus described above can be applied to a wastewater treatment method and a wastewater treatment apparatus. FIG. 2 is an apparatus flow showing an apparatus including the wastewater treatment apparatus of this embodiment. The apparatus shown in FIG. 2 includes a metal element removal unit 44, a manufacturing facility 46, a metal element addition unit 48, and a wastewater treatment unit 50. The wastewater treatment device of this embodiment corresponds to the metal element addition unit 48 and the wastewater treatment unit 50.
金属元素除去部44は、原水配管42から供給された原水から金属元素を除去する。金属元素除去部44としては、蒸留装置、イオン交換樹脂、逆浸透膜などを挙げることができる。 The metal element removing unit 44 removes the metal element from the raw water supplied from the raw water pipe 42. Examples of the metal element removing unit 44 include a distillation device, an ion exchange resin, a reverse osmosis membrane, and the like.
金属元素除去部44で金属元素が除去された水は、製造設備46に送られ、製造に用いられる(製造工程)。製造設備46は、金属元素が除去された水を用いる設備であり、例えば、半導体のエッチング処理を行う設備を挙げることができる。エッチング液には、フッ化アンモニウムを主成分とする薬剤が使用されており、エッチング処理を行う設備からは排水として、窒素排水が排出される。 The water from which the metal element has been removed by the metal element removal unit 44 is sent to the manufacturing facility 46 and used for manufacturing (manufacturing process). The manufacturing facility 46 is a facility that uses water from which metal elements have been removed, and may be, for example, a facility that performs a semiconductor etching process. A chemical containing ammonium fluoride as a main component is used as the etching liquid, and nitrogen wastewater is discharged as wastewater from the equipment for performing the etching process.
金属元素添加部48は、Mn、Mo及びCoを含まない金属元素を添加する(金属元素添加工程)。添加する金属元素としては、Fe、Cu、Zn、Al、Cr、Na、K、Mgなどを挙げることができる。金属元素の添加に用いられる装置は特に限定されない。 The metal element addition unit 48 adds a metal element that does not contain Mn, Mo, and Co (metal element addition step). Examples of the metal element to be added include Fe, Cu, Zn, Al, Cr, Na, K and Mg. The device used for adding the metal element is not particularly limited.
廃水処理部50は、金属元素添加部48で、Mn、Mo及びCoを含まない金属元素が添加された排水を、細菌を用いて廃水処理を行う(廃水処理工程)。廃水処理部50としては硝化槽及び脱窒槽を挙げることができる。廃水処理部50は、pHコントローラー及び温度調節手段を備え、廃水処理部50内のpH及び温度が廃水処理に最適な条件に適宜調節される。廃水処理部50へは、金属元素添加部48で、金属元素が添加された排水が連続的に供給され、廃水処理が行われる。廃水処理部50内に投入される細菌としては、細菌をそのまま投入してもよく、細菌を担体に固定化した固定化担体又は包括固定化担体としてもよい。また、細菌としては、排水が窒素排水である場合は、硝化細菌又はアナモックス細菌を用いることができる。細菌は、処理する排水に含まれる成分に応じて、適宜選択することができる。廃水処理部50で処理された処理水は、処理水排出配管52から排出される。 The wastewater treatment unit 50 treats the wastewater, to which the metal element containing no Mn, Mo, and Co is added by the metal element addition unit 48, with bacteria (wastewater treatment step). Examples of the wastewater treatment unit 50 include a nitrification tank and a denitrification tank. The wastewater treatment unit 50 includes a pH controller and temperature adjusting means, and the pH and temperature in the wastewater treatment unit 50 are appropriately adjusted to optimum conditions for wastewater treatment. To the wastewater treatment unit 50, the metal element addition unit 48 continuously supplies the wastewater to which the metal element is added, and the wastewater treatment is performed. As the bacterium to be put into the wastewater treatment unit 50, the bacterium may be put as it is, or may be an immobilization carrier in which the bacterium is immobilized on a carrier or an entrapping immobilization carrier. Further, as the bacteria, nitrifying bacteria or anammox bacteria can be used when the drainage is nitrogen drainage. Bacteria can be appropriately selected according to the components contained in the wastewater to be treated. The treated water treated by the wastewater treatment unit 50 is discharged from the treated water discharge pipe 52.
本実施形態の廃水処理方法及び廃水処理装置によれば、排水中に含まれるMn、Mo及びCoの少なくとも1つの濃度を低くすることができるので、細菌の生物活性を向上させることができ、廃水処理能力を向上させることができる。また、金属元素を除去した水を用いた製造設備からの排水に使用するため、排水に対して金属元素の除去を行う必要がなく、作業を効率化できる。 According to the wastewater treatment method and the wastewater treatment apparatus of the present embodiment, the concentration of at least one of Mn, Mo, and Co contained in the wastewater can be lowered, so that the biological activity of bacteria can be improved and the wastewater. The processing capacity can be improved. Further, since it is used for drainage from a manufacturing facility using water from which the metal element has been removed, it is not necessary to remove the metal element from the drainage, and work can be made efficient.
また、本実施形態の培養方法、培養装置、廃水処理方法及び廃水処理装置は、アナモックス反応の前処理工程となる、半量を亜硝酸に酸化する部分亜硝酸型硝化工程において好適に用いることができる。アナモックス反応を用いた窒素排水処理では、硝化工程での活性維持が極めて重要である。アナモックス反応は、アンモニアと亜硝酸を、窒素ガスへと変換する反応である。排水中には、通常、アンモニアしかはいっていないので、アンモニアの半量を亜硝酸に酸化する工程が必要である。 Further, the culture method, the culture apparatus, the wastewater treatment method and the wastewater treatment apparatus of the present embodiment can be preferably used in the partial nitrite type nitrification step of oxidizing half of nitrite, which is the pretreatment step of the anammox reaction. .. In nitrogen wastewater treatment using the anammox reaction, maintaining activity in the nitrification process is extremely important. The anammox reaction is a reaction for converting ammonia and nitrous acid into nitrogen gas. Since only ammonia is usually contained in the waste water, a step of oxidizing half of the ammonia to nitrous acid is necessary.
後述する実施例で示す通り、処理水のアンモニアと亜硝酸がほぼ等量に含まれており、半量硝化ができていることがわかる。この性能を維持するためには、金属元素の添加が必須である。アナモックス反応では、アンモニアと亜硝酸の比率がずれ、どちらかが多くなりすぎると、処理水に残留して、性能が悪化することから、アナモックス反応の前処理工程となる、半量を亜硝酸に酸化する部分亜硝酸型硝化工程では、特に、硝化性能の維持が重要である。 As will be shown in Examples described later, it can be seen that ammonia and nitrous acid in the treated water are contained in approximately equal amounts, and a half amount of nitrification is completed. In order to maintain this performance, addition of a metal element is essential. In the anammox reaction, the ratio of ammonia and nitrous acid shifts, and if either one becomes too large, it will remain in the treated water and the performance will deteriorate, so half of the amount, which is the pretreatment step of the anammox reaction, is oxidized to nitrous acid. In the partial nitrite type nitrification process, it is particularly important to maintain the nitrification performance.
以下に実施例を挙げ、本発明をより詳細に説明する。ただし、本発明はこの実施例に限定されるものではなく、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this embodiment, and can be appropriately modified without departing from the spirit of the present invention.
(実施例1)<Mn制限試験>
図3に使用した実験装置100の図を示す。容積を1.44Lとした円筒型の反応槽110を用いて実験を行った。空気を供給できるようにガラス製の空気供給管102を取り付け,空気を、流量計104を用いて調整後、反応槽110に供給し、曝気させ,反応槽110内の担体106の流動と酸素供給を行った。曝気量は流量計104を用いて調整を行なった。また,原水は原水貯留槽108からポンプ(ペリスタポンプ)112を用いて、原水供給管114を通り供給した。反応槽110内のpH調整は、pHセンサー116により反応槽110内のpHを測定し、pHコントローラー118を用いてポンプ120を制御し、アルカリ溶液貯留槽122内の1N NaOH溶液の供給量を制御した。1N NaOH溶液は、アルカリ溶液供給管124を通り、反応槽110内に供給され、pH7.5となるよう調整した。
(Example 1) <Mn restriction test>
FIG. 3 shows a diagram of the experimental apparatus 100 used. An experiment was conducted using a cylindrical reaction tank 110 having a volume of 1.44 L. An air supply pipe 102 made of glass is attached so that air can be supplied, the air is adjusted using a flow meter 104, and then the air is supplied to the reaction tank 110 and aerated, and the carrier 106 in the reaction tank 110 flows and oxygen is supplied. I went. The aeration amount was adjusted using the flow meter 104. The raw water was supplied from the raw water storage tank 108 through a raw water supply pipe 114 by using a pump (perista pump) 112. To adjust the pH in the reaction tank 110, the pH sensor 116 measures the pH in the reaction tank 110, the pH controller 118 is used to control the pump 120, and the supply amount of the 1N NaOH solution in the alkaline solution storage tank 122 is controlled. did. The 1N NaOH solution was supplied into the reaction tank 110 through the alkali solution supply pipe 124 and adjusted to have a pH of 7.5.
≪基本排水≫
実験は、まず立上げ運転を行った。すなわち、金属元素制限を行わないで立上げ(培養)し、処理水中のアンモニア性窒素と亜硝酸性窒素がほぼ等量となり、定常状態になった後から、制限試験を行った。
≪Basic drainage≫
In the experiment, first, the startup operation was performed. That is, after starting up (culturing) without restricting metal elements, ammonia nitrogen and nitrite nitrogen in the treated water became almost equal in quantity, and after reaching a steady state, a restriction test was conducted.
基本排水(基本培地)を以下に示す。原水(供試排水)としては,超純水に表1に示すアンモニア合成排水を調整し、その後、表2に示す金属元素および表3のFe溶液を、1/1000となるよう廃水に添加した。 The basic wastewater (basic medium) is shown below. As raw water (test wastewater), the ammonia synthesis wastewater shown in Table 1 was adjusted to ultrapure water, and then the metal elements shown in Table 2 and the Fe solution shown in Table 3 were added to the wastewater to be 1/1000. ..
≪Mn制限試験排水≫
Mn2+を排除することで、亜硝酸型硝化反応が活性化するか検討するため、Mn2+添加濃度を制限し,その硝化性能を評価した。金属元素添加条件を表2から表4に示すものとした。この金属元素溶液を1/1000となるよう排水に添加した。
<<Mn limited test drainage>>
By eliminating the Mn 2+, since the nitrite-type nitrification reaction is examined whether activation, limiting the Mn 2+ addition concentration, and evaluated the nitrification performance. The metal element addition conditions are shown in Tables 2 to 4. This metal element solution was added to the wastewater so that the solution became 1/1000.
≪供試担体≫
硝化菌を含む活性汚泥をポリエチレングリコール系のゲルで包括固定化し、約4mmの球体に整形した。
≪Test carrier≫
Activated sludge containing nitrifying bacteria was entrapped and immobilized with a polyethylene glycol-based gel and shaped into spheres of about 4 mm.
担体の作成には,表5に示す混合液[1](アルギン酸ナトリウム、ポリエチレングリコール(PEG)、N,N,N’,N’−テトラメチルエチレンジアミン(TMED)、純水、活性汚泥)を、表6に示す混合液[2](CaCl2・2H2O、ペルオキソ二硫酸カリウム(KPS))に滴下し,アルギン酸で被膜を作ることにより、球形に整形し、その後PEGを重合させることで硝化菌を包括固定化した。 To prepare the carrier, the mixed solution [1] shown in Table 5 (sodium alginate, polyethylene glycol (PEG), N,N,N',N'-tetramethylethylenediamine (TMED), pure water, activated sludge) was used. The mixture solution [2] shown in Table 6 (CaCl 2 .2H 2 O, potassium peroxodisulfate (KPS)) was added dropwise to form a film with alginic acid to form a spherical shape, and then PEG was polymerized to nitrify. The bacteria were entrapped and immobilized.
処理水中のアンモニアと、亜硝酸の経過日変化の結果を図4に示す。35日目までは、基本排水を供給し処理を行い、35日目以降は、Mn制限試験排水を供給し、処理を行った。硝化活性を示す処理水中の亜硝酸が上昇していることが確認でき、35日目の亜硝酸濃度は232mg/Lであったが、64日目には280mg/Lまで上昇した。これらのことからMnを削除することで硝化活性が上昇することが確認された。 FIG. 4 shows the results of the changes with time of ammonia and nitrous acid in the treated water. Until the 35th day, basic wastewater was supplied and treated, and after the 35th day, Mn-limited test wastewater was supplied and treated. It was confirmed that the nitrite concentration in the treated water exhibiting nitrification activity was increased, and the nitrite concentration on day 35 was 232 mg/L, but it increased to 280 mg/L on day 64. From these results, it was confirmed that nitrification activity was increased by removing Mn.
(実施例2)<Mo制限試験>
実施例1の金属元素添加条件を変更して同様に試験を行った。立ち上げ運転は、実施例1の基本排水を用いて行い、定常状態になった後、表2に示す金属元素濃縮液を表7に示す金属元素濃縮液に変更し、試験を行った。なお、表7の金属元素濃縮溶液を1/1000となるように添加した。
(Example 2) <Mo restriction test>
The same test was performed by changing the conditions for adding the metal element in Example 1. The start-up operation was performed using the basic drainage of Example 1, and after reaching a steady state, the metal element concentrates shown in Table 2 were changed to the metal element concentrates shown in Table 7 and tests were conducted. The concentrated metal element solutions in Table 7 were added so as to be 1/1000.
結果を図5に示す。実施例2においては、65日目までは、基本排水を供給し処理を行い、65日目以降は、Mo制限試験排水を供給し、処理を行った。処理水の亜硝酸性窒素濃度は、65日目に278mg/Lであったが、85日目には348mg/Lに上昇した。Moを削除することで硝化活性が上昇することが確認された。 Results are shown in FIG. In Example 2, the basic wastewater was supplied and treated until the 65th day, and the Mo-limited test wastewater was supplied and treated after the 65th day. The nitrite nitrogen concentration of the treated water was 278 mg/L on the 65th day, but increased to 348 mg/L on the 85th day. It was confirmed that the nitrification activity was increased by removing Mo.
(実施例3)<Co制限試験>
実施例1の金属元素添加条件を変更して同様に試験を行った。立ち上げ運転は、実施例1の基本排水を用いて行い、定常状態になった後、表2に示す金属元素濃縮液を表8に示す金属元素濃縮液に切り替えることで、Co制限試験を行った。なお、表8の金属元素濃縮溶液を1/1000となるように添加した。
(Example 3) <Co restriction test>
The same test was performed by changing the conditions for adding the metal element in Example 1. The start-up operation was performed using the basic drainage of Example 1, and after reaching a steady state, the Co element limiting test was performed by switching the metal element concentrates shown in Table 2 to the metal element concentrates shown in Table 8. It was The concentrated metal element solution in Table 8 was added to be 1/1000.
その結果、処理水の亜硝酸濃度が249mg/Lから289mg/Lへ活性が上昇する傾向を確認が確認できた。 As a result, it was confirmed that the nitrite concentration of the treated water tended to increase from 249 mg/L to 289 mg/L.
(実施例4)<Ni制限試験>
実施例1の金属元素添加条件を変更して同様に試験を行った。立ち上げ運転は、実施例1の基本排水を用いて行い、定常状態になった後、表2に示す金属元素濃縮液を表9に示す金属元素濃縮液に切り替えることで、Ni制限試験を行った。なお、表9の金属元素濃縮溶液を1/1000となるように添加した。
(Example 4) <Ni restriction test>
The same test was performed by changing the conditions for adding the metal element in Example 1. The start-up operation was performed using the basic drainage of Example 1, and after reaching a steady state, the metal element concentrated solution shown in Table 2 was switched to the metal element concentrated solution shown in Table 9 to perform the Ni restriction test. It was The concentrated metal element solution in Table 9 was added to be 1/1000.
結果を図6に示す。Niのみを制限した実施例4については、処理水中のNO2濃度は極めて安定しており、Niを制限することによる活性の影響が現れなかった。 Results are shown in FIG. Regarding Example 4 in which only Ni was restricted, the NO 2 concentration in the treated water was extremely stable, and the effect of activity due to the restriction of Ni did not appear.
(実施例5)<Zn制限試験>
Znの影響を確認するため、表2に示す金属元素濃縮液を表10に示す金属元素濃縮液に切り替えることで、Znを制限した。濃縮液は1/1000となるよう添加した。なお、制限確認後、回復性能を見る時は、適宜、Zn溶液を所定濃度となるよう添加した。
(Example 5) <Zn restriction test>
In order to confirm the influence of Zn, Zn was limited by switching the metal element concentrated solution shown in Table 2 to the metal element concentrated solution shown in Table 10. The concentrated solution was added so as to be 1/1000. In addition, after checking the limitation, when looking at the recovery performance, a Zn solution was appropriately added so as to have a predetermined concentration.
処理水質の経日変化を図7及び図8に示す。また、表11に排水中のZn2+濃度に対するNO2 −−N濃度を示す。制限前の処理水中のNO2 −−N濃度は平均250mgL−1であったが、Zn2+添加を停止すると21日後には175mgL−1にまで低下した。これらの結果からZn2+は硝化反応において必須金属元素であることが示された(図7)。 The daily changes in the quality of treated water are shown in FIGS. 7 and 8. Further, NO 2 for Zn 2+ concentration in the waste water in Table 11 - shows the -N concentration. NO 2 limits prior to treatment water - -N concentration was averaged 250MgL -1, but after 21 days when stopping the Zn 2+ added was reduced to 175mgL -1. From these results, it was shown that Zn 2+ is an essential metal element in the nitrification reaction (FIG. 7).
次に、金属元素の添加量を検討するために、Znを添加し、回復試験を実施した。Zn濃度を0.05mg/L添加しても、性能は回復せず、その後,Zn2+添加濃度を0.02mgL−1とすると,処理水中のNO2 −−N濃度は257mgL−1まで上昇し,活性が完全に回復した(図8)。 Next, in order to examine the addition amount of the metal element, Zn was added and a recovery test was performed. Even when the Zn concentration 0.05 mg / L was added, the performance did not recover, then when the Zn 2+ doping concentration and 0.02MgL -1, the treated water NO 2 - -N concentration was raised to 257MgL -1 , The activity was completely restored (Fig. 8).
これらのことから金属元素の制限効果が確認されるには、各元素の濃度を0.02mg/L以下とすることがこのましく、より好ましくは0.005mg/L以下、さらにこのましくは0.001mg/L以下に制限することが好ましい。 From these facts, in order to confirm the limiting effect of the metal element, it is preferable to set the concentration of each element to 0.02 mg/L or less, more preferably 0.005 mg/L or less, and further preferably It is preferable to limit the amount to 0.001 mg/L or less.
12…培地供給配管、14…金属元素除去部、16…金属元素添加部、18…培養部、20…培地排出配管、42…原水配管、44…金属元素除去部、46…製造設備、50…廃水処理部、52…処理水排出配管、100…実験装置、102…空気供給管、104…流量計、106…担体、108…原水貯留槽、110…反応槽、112…ポンプ、114…原水供給管、116…pHセンサー、118…pHコントローラー、120…ポンプ、122…、124…アルカリ溶液貯留槽、126…アルカリ溶液供給管 12... Medium supply pipe, 14... Metal element removal part, 16... Metal element addition part, 18... Culture part, 20... Medium discharge pipe, 42... Raw water pipe, 44... Metal element removal part, 46... Manufacturing equipment, 50... Waste water treatment part, 52... Treated water discharge pipe, 100... Experimental device, 102... Air supply pipe, 104... Flow meter, 106... Carrier, 108... Raw water storage tank, 110... Reaction tank, 112... Pump, 114... Raw water supply Pipe, 116... pH sensor, 118... pH controller, 120... Pump, 122..., 124... Alkaline solution storage tank, 126... Alkaline solution supply pipe
Claims (18)
前記培地中に含まれる金属元素のうち、Mn、Mo及びCoの少なくとも1つの濃度が0.001mg/L以下である培養方法。 A method of culturing cells, which comprises culturing cells using a medium,
Among the metallic elements contained in the medium, the culture method wherein the concentration of at least one of Mn, Mo and Co is 0.001 mg/L or less.
前記金属元素除去部で前記金属元素が除去された培地に、Mn、Mo及びCoを含まない金属元素を添加する金属元素添加部と、
前記金属元素添加部で前記Mn、Mo及びCoを含まない金属元素が添加された培地を用いて細胞を培養する培養部と、を備える培養装置。 A metal element removing section for removing metal elements from the medium,
In the medium from which the metal element has been removed by the metal element removal unit, a metal element addition unit that adds a metal element that does not contain Mn, Mo and Co,
And a culture unit for culturing cells using a medium to which the metal element containing no Mn, Mo, and Co is added in the metal element addition unit.
前記排水に、Mn、Mo及びCoを含まない金属元素を添加する添加工程と、
細菌を用いて前記排水の廃水処理を行う廃水処理工程と、を有する廃水処理方法。 A wastewater treatment method for wastewater discharged from a manufacturing process using water from which metal elements have been removed,
An adding step of adding a metal element containing no Mn, Mo and Co to the waste water;
A wastewater treatment step of treating the wastewater of the wastewater with bacteria.
前記排水にMn、Mo及びCoを含まない金属元素を添加する金属元素添加部と、
細菌を用いて、前記金属元素添加部で前記Mn、Mo及びCoを含まない金属元素が添加された排水の廃水処理を行う廃水処理部と、を備える廃水処理装置。 A wastewater treatment device for wastewater discharged from a manufacturing facility using water from which metal elements have been removed,
A metal element addition part for adding a metal element not containing Mn, Mo and Co to the waste water,
A wastewater treatment apparatus comprising: a wastewater treatment unit that uses wastewater to treat wastewater to which the metal element containing no Mn, Mo, and Co is added in the metal element addition unit using bacteria.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019021821A JP2020127383A (en) | 2019-02-08 | 2019-02-08 | Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019021821A JP2020127383A (en) | 2019-02-08 | 2019-02-08 | Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020127383A true JP2020127383A (en) | 2020-08-27 |
Family
ID=72174071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019021821A Pending JP2020127383A (en) | 2019-02-08 | 2019-02-08 | Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020127383A (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691293A (en) * | 1992-09-16 | 1994-04-05 | Meidensha Corp | Control method of aerobic-anaerobic active sludge process |
JPH1085790A (en) * | 1996-09-11 | 1998-04-07 | Kurita Water Ind Ltd | Wastewater biological nitrogen removal equipment |
JP2005505240A (en) * | 2001-02-15 | 2005-02-24 | セントカー・インコーポレーテツド | Chemically synthesized medium for cultured mammalian cells |
JP2006508643A (en) * | 2002-07-01 | 2006-03-16 | アーキオン ライフ サイエンシーズ エルエルシー ディー/ビー/エー バイオ−テクニカル リソーセズ ディビジョン | Processes and materials for the production of glucosamine and N-acetylglucosamine |
JP2006158388A (en) * | 2004-11-10 | 2006-06-22 | Kinousei Peptide Kenkyusho:Kk | Completely synthetic medium for mammalian fibroblasts |
JP2006272287A (en) * | 2005-03-30 | 2006-10-12 | Aw Service:Kk | Waste water treatment method |
JP2012115250A (en) * | 2010-11-29 | 2012-06-21 | Yoichi Kadokami | Method for transporting live fish by use of nitrification bacteria |
JP2012232262A (en) * | 2011-05-02 | 2012-11-29 | Hitachi Plant Technologies Ltd | Method for treating wastewater |
CN102851227A (en) * | 2012-04-17 | 2013-01-02 | 西安建筑科技大学 | Method for screening heterotrophic nitrification bacteria for treating slightly-polluted water |
JP2015517807A (en) * | 2012-04-05 | 2015-06-25 | シージェー チェイルジェダン コーポレーション | Newly isolated Bacillus licheniformis and probiotics using the same |
JP2016059843A (en) * | 2014-09-16 | 2016-04-25 | 栗田工業株式会社 | Method and apparatus for biological treatment |
JP2018094455A (en) * | 2016-12-08 | 2018-06-21 | 大成建設株式会社 | Method for biological decomposition treatment of cyclic ether |
-
2019
- 2019-02-08 JP JP2019021821A patent/JP2020127383A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691293A (en) * | 1992-09-16 | 1994-04-05 | Meidensha Corp | Control method of aerobic-anaerobic active sludge process |
JPH1085790A (en) * | 1996-09-11 | 1998-04-07 | Kurita Water Ind Ltd | Wastewater biological nitrogen removal equipment |
JP2005505240A (en) * | 2001-02-15 | 2005-02-24 | セントカー・インコーポレーテツド | Chemically synthesized medium for cultured mammalian cells |
JP2006508643A (en) * | 2002-07-01 | 2006-03-16 | アーキオン ライフ サイエンシーズ エルエルシー ディー/ビー/エー バイオ−テクニカル リソーセズ ディビジョン | Processes and materials for the production of glucosamine and N-acetylglucosamine |
JP2006158388A (en) * | 2004-11-10 | 2006-06-22 | Kinousei Peptide Kenkyusho:Kk | Completely synthetic medium for mammalian fibroblasts |
JP2006272287A (en) * | 2005-03-30 | 2006-10-12 | Aw Service:Kk | Waste water treatment method |
JP2012115250A (en) * | 2010-11-29 | 2012-06-21 | Yoichi Kadokami | Method for transporting live fish by use of nitrification bacteria |
JP2012232262A (en) * | 2011-05-02 | 2012-11-29 | Hitachi Plant Technologies Ltd | Method for treating wastewater |
JP2015517807A (en) * | 2012-04-05 | 2015-06-25 | シージェー チェイルジェダン コーポレーション | Newly isolated Bacillus licheniformis and probiotics using the same |
CN102851227A (en) * | 2012-04-17 | 2013-01-02 | 西安建筑科技大学 | Method for screening heterotrophic nitrification bacteria for treating slightly-polluted water |
JP2016059843A (en) * | 2014-09-16 | 2016-04-25 | 栗田工業株式会社 | Method and apparatus for biological treatment |
JP2018094455A (en) * | 2016-12-08 | 2018-06-21 | 大成建設株式会社 | Method for biological decomposition treatment of cyclic ether |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7897375B2 (en) | Method and apparatus for collecting and acclimatizing anaerobic ammonium oxidizing bacteria, and denitrifying water | |
EP1607374B1 (en) | Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment | |
JP5150993B2 (en) | Denitrification method and apparatus | |
JP4224951B2 (en) | Denitrification method | |
KR20150083435A (en) | Operating method for wastewater treatment apparatus | |
JP2014097478A (en) | Effluent treatment method and effluent treatment apparatus | |
JP5306296B2 (en) | Waste water treatment apparatus and waste water treatment method | |
TW201002629A (en) | Denitrifying method and denitrifying device | |
JP2007075817A (en) | Operating method of anaerobic ammonia oxidation tank | |
JP2019217482A (en) | Water treatment method and water treatment apparatus | |
JPH10263594A (en) | Removing method and device of nitrate ion in waste water | |
JP2020127383A (en) | Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus | |
JP4993109B2 (en) | Cultivation method and apparatus, and wastewater treatment method and apparatus | |
JP5240465B2 (en) | Storage system and storage method for anaerobic microorganism-immobilized carrier | |
JP4838872B2 (en) | Water treatment apparatus and water treatment method | |
JP7268860B2 (en) | Culture method, culture device, wastewater treatment method and wastewater treatment device | |
Foglar et al. | Continuous-flow biological denitrification with zeolite as support for bacterial growth | |
JP4945891B2 (en) | Operation method of anaerobic ammonia oxidation equipment | |
JP2023023108A (en) | Wastewater treatment method, wastewater treatment equipment and carrier for wastewater treatment | |
JP2017087184A (en) | Water treatment apparatus, ultrapure water production apparatus and water treatment method | |
JP2002346592A (en) | Low temperature denitrification material and denitrification method using the same | |
JP6911582B2 (en) | Treatment method of low pH microalgae culture water | |
JP2006088057A (en) | Method for treating ammonia-containing water | |
JP2019010625A (en) | PROCESSING METHOD OF LOW-pH STRAIN-KJ CULTURE WATER | |
Mohammadi et al. | Drinking water denitrification with autotrophic denitrifying bacteria in a fluidized bed bioreactor (FBBR) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240227 |