[go: up one dir, main page]

JP2020123510A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2020123510A
JP2020123510A JP2019015173A JP2019015173A JP2020123510A JP 2020123510 A JP2020123510 A JP 2020123510A JP 2019015173 A JP2019015173 A JP 2019015173A JP 2019015173 A JP2019015173 A JP 2019015173A JP 2020123510 A JP2020123510 A JP 2020123510A
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
heat exchange
medium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019015173A
Other languages
Japanese (ja)
Inventor
育生 大田
Ikuo Ota
育生 大田
敦志 真鶴
Atsushi Masatsuru
敦志 真鶴
宏弥 中路
Hiroya Nakaji
宏弥 中路
敦 佐敷
Atsushi Sajiki
敦 佐敷
佑理子 高橋
Yuriko Takahashi
佑理子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019015173A priority Critical patent/JP2020123510A/en
Publication of JP2020123510A publication Critical patent/JP2020123510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To effectively use thermal energy in a fuel cell system from the viewpoint different from heat generated by the power generation of a fuel cell.SOLUTION: The fuel cell system comprises: a fuel cell that generates electricity by electrochemical reaction between hydrogen and oxygen; a hydrogen storage tank that stores hydrogen to be supplied to the fuel cell; a gas supply system that includes a gas pressure adjusting mechanism and supplies hydrogen stored in the hydrogen storage tank to the fuel cell as hydrogen gas with pressure having been adjusted by the pressure adjusting mechanism; and a heat exchange device that is connected to the pressure adjusting mechanism and exchanges heat associated with gas pressure regulation in the pressure adjusting mechanism, between the heat exchange device and the pressure adjusting mechanism.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.

燃料電池の普及が進み、燃料電池の発電運転に伴って発生する熱エネルギーを有効利用する手法が提案されている(例えば、特許文献1)。 With the spread of fuel cells, there has been proposed a method of effectively utilizing thermal energy generated by the power generation operation of the fuel cell (for example, Patent Document 1).

特開2001−135321号公報JP, 2001-135321, A

特許文献1で提案された手法による熱利用は、燃料電池の発電に伴う熱エネルギーの利用に限られるため、燃料電池システムにおいて他の観点からの熱エネルギーの有効活用の余地がある。 The use of heat by the method proposed in Patent Document 1 is limited to the use of heat energy associated with power generation of the fuel cell, and therefore there is room for effective use of heat energy from another viewpoint in the fuel cell system.

本発明は、以下の形態として実現することが可能である。 The present invention can be realized as the following modes.

(1)本発明の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、水素と酸素の電気化学反応により発電する燃料電池と、該燃料電池に供給する前記水素を貯蔵する水素貯蔵タンクと、ガスの調圧機構を含み、前記水素貯蔵タンクが貯蔵する水素を、前記調圧機構で調圧済みの水素ガスとして前記燃料電池に供給するガス供給系と、前記調圧機構と接続され、前記調圧機構でのガス調圧に伴う熱を前記調圧機構との間で熱交換する熱交換機器とを備える。この形態の燃料電池システムによれば、調圧機構でのガス調圧に伴う熱エネルギーを、燃料電池システム配設施設における空調等に有効活用できる。 (1) According to one aspect of the present invention, a fuel cell system is provided. This fuel cell system includes a fuel cell that generates electricity by an electrochemical reaction of hydrogen and oxygen, a hydrogen storage tank that stores the hydrogen supplied to the fuel cell, and a gas pressure adjusting mechanism, and the hydrogen storage tank stores the hydrogen. A gas supply system for supplying hydrogen to the fuel cell as hydrogen gas whose pressure has been adjusted by the pressure adjusting mechanism, and the pressure adjusting mechanism that is connected to the pressure adjusting mechanism to generate heat associated with the gas pressure adjusting in the pressure adjusting mechanism. And a heat exchange device that exchanges heat with the pressure mechanism. According to the fuel cell system of this aspect, the thermal energy that accompanies the gas pressure regulation in the pressure regulating mechanism can be effectively utilized for air conditioning and the like in the facility where the fuel cell system is installed.

なお、本発明は、種々の態様で実現することが可能である。例えば、燃料電池システムの運転制御方法等の形態で実現することができる。 The present invention can be implemented in various modes. For example, it can be realized in the form of an operation control method of the fuel cell system.

本発明の第1実施形態に係る燃料電池システムの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell system which concerns on 1st Embodiment of this invention. 第2実施形態に係る燃料電池システムの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell system which concerns on 2nd Embodiment. 第3実施形態に係る燃料電池システムの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell system which concerns on 3rd Embodiment.

図1は、本発明の第1実施形態に係る燃料電池システム100の概略構成を示す説明図である。燃料電池システム100は、各種施設、例えば、スーパーやコンビニ、小売店、百貨店等の店舗施設の他、市役所や学校、体育館、図書館、ホール等の公共施設・私設施設に設置され、これら各種の施設Sにおける冷気機器の冷気運転や暖気機器の暖気運転の際に、燃料電池システム100の熱エネルギーを活用する。なお、冷気機器には、冷暖房空調用のクーラーや、食料品冷蔵に用いる各種冷蔵庫などが含まれ、暖気機器には、冷暖房空調用のクーラーや、ホットコーヒー・ホットティーといった暖かい飲料を提供する給湯器や保温庫などが含まれる。 FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system 100 according to the first embodiment of the present invention. The fuel cell system 100 is installed in various facilities such as supermarkets, convenience stores, retail stores, and department stores, as well as public and private facilities such as city halls, schools, gymnasiums, libraries, and halls. The thermal energy of the fuel cell system 100 is utilized during the cold air operation of the cool air equipment and the warm up operation of the warm air equipment in S. The cool air equipment includes coolers for air conditioning and heating, and various refrigerators used for refrigerating food products.The warm air equipment includes coolers for air conditioning and heating and hot water supply that provides hot beverages such as hot coffee and hot tea. Includes containers and warm storage.

燃料電池システム100は、燃料電池10と、水素貯蔵タンク20と、ガス供給系30と、空気供給機器50と、熱交換機器60とを備える。燃料電池10は、水素ガスと空気の供給を受け、水素ガス中の水素と空気中の酸素の電気化学反応を起こして発電する。燃料電池10の発電電力は、図示しない2次電池に蓄電されたり、施設Sにおける後述のクーラー200や冷蔵庫300の他、図示しない電灯、自動ドア等の各種電気機器の駆動電力として用いられる。 The fuel cell system 100 includes a fuel cell 10, a hydrogen storage tank 20, a gas supply system 30, an air supply device 50, and a heat exchange device 60. The fuel cell 10 receives supply of hydrogen gas and air, and causes an electrochemical reaction between hydrogen in hydrogen gas and oxygen in air to generate electricity. The electric power generated by the fuel cell 10 is stored in a secondary battery (not shown) or used as driving power for various electric devices such as a lighter (not shown) and an automatic door in addition to the cooler 200 and the refrigerator 300 (described later) in the facility S.

水素貯蔵タンク20は、ステンレス鋼等の金属製タンクであり、既述した各種施設の施設外、或いは施設内の外壁近傍のタンク収容室に設置され、燃料電池10に供給する水素を、高圧の水素ガスとして貯蔵する。本実施形態の燃料電池システム100は、水素貯蔵タンク20を、水素ガスを70MPa程度で23〜47kL程度、貯蔵できるよう直径が約2mの円筒状タンクとして備える。そして、水素貯蔵タンク20は、長手方向が鉛直方向となるようにタンク収容室に設置されている。この水素貯蔵タンク20は、鉛直方向の上部に、管路開閉バルブ内蔵のタンク金具21を備え、このタンク金具21を介して、後述のガス供給系30に含まれる調圧機構40と第1ガス供給管路31により接続されている。なお、タンク金具21内蔵の管路開閉バルブは、図示しない制御装置の制御を受けて、調圧機構40へのガス導出の際に第1ガス供給管路31を開放し、タンク交換の際に第1ガス供給管路31を閉鎖する。 The hydrogen storage tank 20 is a metal tank such as stainless steel, and is installed outside the facility of the various facilities described above or in a tank housing chamber near the outer wall of the facility, and supplies hydrogen supplied to the fuel cell 10 with high pressure. Store as hydrogen gas. The fuel cell system 100 according to the present embodiment includes the hydrogen storage tank 20 as a cylindrical tank having a diameter of about 2 m so that hydrogen gas of about 23 MPa to about 23 to 47 kL can be stored. The hydrogen storage tank 20 is installed in the tank storage chamber so that the longitudinal direction is the vertical direction. This hydrogen storage tank 20 is provided with a tank fitting 21 with a built-in pipeline opening/closing valve in the upper part in the vertical direction, and through this tank fitting 21, a pressure adjusting mechanism 40 and a first gas included in a gas supply system 30 described later are connected. They are connected by a supply line 31. The conduit opening/closing valve built in the tank fitting 21 is controlled by a control device (not shown) to open the first gas supply conduit 31 when the gas is led to the pressure regulating mechanism 40, and when the tank is replaced. The first gas supply line 31 is closed.

ガス供給系30は、第1ガス供給管路31と、第2ガス供給管路32と、調圧機構40とを備える。第1ガス供給管路31は、既述したように水素貯蔵タンク20と調圧機構40とを接続するガス供給管である。第2ガス供給管路32は、調圧機構40と燃料電池10とを接続するガス供給管であり、調圧機構40で調圧済みの水素ガスを燃料電池10に供給する。第2ガス供給管路32には、図示しない流量調整バルブが組み込まれており、当該バルブにより、燃料電池10への水素ガス供給量が調整される。 The gas supply system 30 includes a first gas supply pipeline 31, a second gas supply pipeline 32, and a pressure adjusting mechanism 40. The first gas supply conduit 31 is a gas supply pipe that connects the hydrogen storage tank 20 and the pressure adjusting mechanism 40 as described above. The second gas supply conduit 32 is a gas supply pipe that connects the pressure regulating mechanism 40 and the fuel cell 10, and supplies hydrogen gas whose pressure has been regulated by the pressure regulating mechanism 40 to the fuel cell 10. A flow rate adjusting valve (not shown) is incorporated in the second gas supply pipe 32, and the valve adjusts the amount of hydrogen gas supplied to the fuel cell 10.

調圧機構40は、水素貯蔵タンク20に貯蔵された高圧(70MPa)の水素ガスを、燃料電池10の適正供給圧(例えば10〜20MPa)に調圧(減圧)する。そして、ガス供給系30は、調圧機構40で減圧済みの水素ガスを、第2ガス供給管路32を介して燃料電池10に供給する。 The pressure regulating mechanism 40 regulates (decompresses) the high-pressure (70 MPa) hydrogen gas stored in the hydrogen storage tank 20 to an appropriate supply pressure (for example, 10 to 20 MPa) of the fuel cell 10. Then, the gas supply system 30 supplies the hydrogen gas whose pressure has been reduced by the pressure adjusting mechanism 40 to the fuel cell 10 via the second gas supply pipe 32.

空気供給機器50は、図示しないコンプレッサで圧縮した空気を、空気供給管路51を経て燃料電池10に供給する。空気供給管路51には、図示しない流量調整バルブが組み込まれており、当該バルブにより、燃料電池10への空気供給量が調整される。 The air supply device 50 supplies the air compressed by a compressor (not shown) to the fuel cell 10 via the air supply pipe line 51. A flow rate adjusting valve (not shown) is incorporated in the air supply pipe line 51, and the air supply amount to the fuel cell 10 is adjusted by the valve.

熱交換機器60は、第1媒体循環管路61と、第2媒体循環管路62とを備える。第1媒体循環管路61は、第1熱交換管路部61aと第2熱交換管路部61bを備え、第2媒体循環管路62は、第1熱交換管路部62aと第2熱交換管路部62bを備える。両循環管路における第1、第2熱交換管路部は、それぞれの循環管路において離間している。熱交換機器60は、第1媒体循環管路61の第1熱交換管路部61aが調圧機構40に組み込まれることで、調圧機構40と接続されている。第1熱交換管路部61aは、調圧機構40が減圧を行う減圧機構部に配設され、調圧機構40でのガス調圧に伴う熱交換に関与する。本実施形態において、調圧機構40でのガス調圧は減圧であることから、第1媒体循環管路61を還流する媒体は第1熱交換管路部61aにおいて、調圧機構40の減圧機構部により冷却される。これにより、第1熱交換管路部61aにおいて、調圧機構40との間での熱交換が起きることになる。熱交換機器60は、第1熱交換管路部61aで冷却済み媒体を、第1媒体循環管路61に組み込んだ媒体ポンプ63により、第1媒体循環管路61において循環還流させる。熱交換機器60は、第1媒体循環管路61の第2熱交換管路部61bが第2媒体循環管路62における第1熱交換管路部62aに近接配置されることにより、第1媒体循環管路61と第2媒体循環管路62との間でも熱交換も行う。これにより、第2媒体循環管路62の媒体は、第1熱交換管路部62aにおいて冷却される。熱交換機器60は、第1熱交換管路部62aで冷却済み媒体を、第2媒体循環管路62に組み込んだ媒体ポンプ64により、第2媒体循環管路62において循環還流させる。 The heat exchange device 60 includes a first medium circulation pipeline 61 and a second medium circulation pipeline 62. The first medium circulation pipeline 61 includes a first heat exchange pipeline section 61a and a second heat exchange pipeline section 61b, and the second medium circulation pipeline 62 includes a first heat exchange pipeline section 62a and a second heat exchange pipeline section 62a. An exchange conduit 62b is provided. The first and second heat exchange conduit portions of both circulation conduits are separated from each other. The heat exchange device 60 is connected to the pressure adjusting mechanism 40 by incorporating the first heat exchange conduit portion 61 a of the first medium circulation conduit 61 into the pressure adjusting mechanism 40. The first heat exchange conduit 61a is arranged in the pressure reducing mechanism for reducing the pressure of the pressure regulating mechanism 40, and is involved in heat exchange associated with gas pressure regulation in the pressure regulating mechanism 40. In the present embodiment, since the gas pressure regulation in the pressure regulating mechanism 40 is decompression, the medium that recirculates in the first medium circulation conduit 61 is the pressure reducing mechanism of the pressure regulating mechanism 40 in the first heat exchange conduit 61a. Cooled by the section. As a result, heat is exchanged with the pressure adjusting mechanism 40 in the first heat exchange conduit 61a. The heat exchange device 60 circulates and recirculates the cooled medium in the first heat exchange conduit 61 a by the media pump 63 incorporated in the first media circulation conduit 61 in the first media circulation conduit 61. In the heat exchange device 60, the second heat exchange conduit 61b of the first medium circulation conduit 61 is arranged in the vicinity of the first heat exchange conduit 62a of the second medium circulation conduit 62, so that the first medium Heat exchange is also performed between the circulation conduit 61 and the second medium circulation conduit 62. As a result, the medium in the second medium circulation conduit 62 is cooled in the first heat exchange conduit 62a. The heat exchange device 60 circulates and recirculates the cooled medium in the first heat exchange conduit 62 a in the second medium circulation conduit 62 by the medium pump 64 incorporated in the second medium circulation conduit 62.

熱交換機器60は、施設Sの冷暖房空調用のクーラー200に至る第2媒体循環管路62を備えるほか、第2媒体循環管路62から分岐して施設Sの食料品用の冷蔵庫300に至る分岐媒体循環管路65を備える。そして、第2熱交換管路部62bは、クーラー200が有する空調機構部210の媒体滞留管路部212において、クーラー200の媒体と熱交換するよう、空調機構部210に組み込まれている。また、分岐媒体循環管路65の熱交換管路部62cは、冷蔵庫300が有する空調機構部310の媒体滞留管路部312において、冷蔵庫300の媒体と熱交換するよう、空調機構部310に組み込まれている。 The heat exchange device 60 includes a second medium circulation pipeline 62 that leads to the cooler 200 for cooling and heating and air conditioning of the facility S, and branches from the second medium circulation pipeline 62 to the food product refrigerator 300 of the facility S. A branch medium circulation line 65 is provided. The second heat exchange conduit 62b is incorporated in the air conditioning mechanism 210 so as to exchange heat with the medium of the cooler 200 in the medium retention conduit 212 of the air conditioning mechanism 210 of the cooler 200. In addition, the heat exchange conduit 62 c of the branch medium circulation conduit 65 is incorporated in the air conditioning mechanism 310 so as to exchange heat with the medium of the refrigerator 300 in the medium retention conduit 312 of the air conditioning mechanism 310 of the refrigerator 300. Has been.

クーラー200は、媒体滞留管路部212を一部管路として有する媒体循環管路214で、夏期等の冷房要請時期において媒体を循環させつつ、循環する媒体を、図示しない熱交換機構部で冷却する。空調機構部210の空気が媒体循環管路214を循環する冷却済み媒体で冷却されることにより、冷却済み空気が送風口216から吹き出される。この冷却済み空気の吹き出しにより、施設Sの冷却空調が実行される。また、クーラー200は、媒体循環管路214で、冬期等の暖房要請時期において媒体を循環させつつ、循環する媒体を、熱交換機構部で媒体を暖気する。空調機構部210の空気は、媒体循環管路214を循環する暖気済み媒体で暖気され、暖気済み空気が送風口216から吹き出されて、施設Sの暖房空調が実行される。 The cooler 200 is a medium circulation pipeline 214 having a medium retention pipeline 212 partially as a pipeline, and circulates the medium at a cooling request time such as summer, while cooling the circulating medium by a heat exchange mechanism (not shown). To do. The air in the air conditioning mechanism 210 is cooled by the cooled medium that circulates in the medium circulation conduit 214, so that the cooled air is blown out from the blower port 216. Cooling and air conditioning of the facility S is performed by blowing out the cooled air. Further, the cooler 200 circulates the medium in the medium circulation pipe 214 at the time of heating request such as winter, and warms the circulated medium by the heat exchange mechanism section. The air in the air conditioning mechanism 210 is warmed by the warmed medium that circulates in the medium circulation pipe 214, and the warmed air is blown out from the blower port 216 to perform the heating and air conditioning of the facility S.

熱交換機器60は、第2媒体循環管路62に管路開閉バブル62vを備え、この管路開閉バブル62vは、暖気要請時期には管路を閉鎖するよう駆動される。よって、既述したように第1媒体循環管路61と第2媒体循環管路62との間の熱交換により冷却された第2媒体循環管路62の冷却済み媒体は、暖気要請時期において、クーラー200に流れ込まず、分岐媒体循環管路65を循環還流する。その一方、冷房要請時期では、管路開閉バブル62vは管路を開放するよう駆動されるので、第2媒体循環管路62の冷却済み媒体は、クーラー200に流れ込み、媒体滞留管路部212において、媒体循環管路214を循環する媒体を、クーラー自体による媒体冷却とは別に、冷却する。 The heat exchange device 60 includes a conduit opening/closing bubble 62v in the second medium circulation conduit 62, and this conduit opening/closing bubble 62v is driven so as to close the conduit at the time of warming request. Therefore, as described above, the cooled medium in the second medium circulation pipeline 62 cooled by the heat exchange between the first medium circulation pipeline 61 and the second medium circulation pipeline 62 is: It does not flow into the cooler 200, but circulates and recirculates in the branch medium circulation pipeline 65. On the other hand, at the cooling request time, the pipeline opening/closing bubble 62v is driven so as to open the pipeline, so the cooled medium in the second medium circulation pipeline 62 flows into the cooler 200, and in the medium retention pipeline 212. The medium circulating in the medium circulation pipe 214 is cooled separately from the medium cooling by the cooler itself.

冷蔵庫300は、媒体滞留管路部312を一部管路として有する媒体循環管路314で、通年において冷却済み媒体を循環させつつ、循環する媒体を、図示しない熱交換機構部で冷却する。空調機構部310の空気は、媒体循環管路314を循環する冷却済み媒体で冷却され、冷却済み空気が送風口316から吹き出されて、食料品の冷却が実行される。よって、既述したように第1媒体循環管路61と第2媒体循環管路62との間の熱交換により冷却された第2媒体循環管路62の冷却済み媒体は、通年において、分岐媒体循環管路65を経て冷蔵庫300に流れ込み、媒体滞留管路部312において、媒体循環管路314を循環する媒体を、冷蔵庫自体による媒体冷却とは別に、冷却する。 In the refrigerator 300, the medium circulation pipeline 314 having the medium retention pipeline 312 as a partial pipeline circulates the cooled medium for a whole year, while cooling the circulating medium by a heat exchange mechanism unit (not shown). The air in the air conditioning mechanism 310 is cooled by the cooled medium that circulates in the medium circulation pipe 314, and the cooled air is blown out from the blower port 316 to cool the food item. Therefore, as described above, the cooled medium in the second medium circulation pipeline 62 cooled by the heat exchange between the first medium circulation pipeline 61 and the second medium circulation pipeline 62 is a branched medium throughout the year. The medium that flows into the refrigerator 300 via the circulation pipe 65 and circulates in the medium retention pipe portion 314 in the medium circulation pipe 314 is cooled separately from the medium cooling by the refrigerator itself.

以上説明したように、本実施形態の燃料電池システム100では、燃料電池10への水素ガスの供給に当たり、ガス供給に適したガス圧への調圧(減圧)が調圧機構40で行われる。そして、減圧を行う調圧機構40との間で熱交換を行う熱交換機器60により、本実施形態の燃料電池システム100では、第1媒体循環管路61および第2媒体循環管路62の媒体を冷却し、この冷却済み媒体を、クーラー200と冷蔵庫300とにおける冷媒冷却に、クーラー自体による媒体冷却、および冷蔵庫自体による冷媒冷却とは別に、利用する。この結果、本実施形態の燃料電池システム100によれば、調圧機構40での減圧に伴う熱エネルギーを、施設Sにおける冷房空調や食料品冷却に有効活用できる。 As described above, in the fuel cell system 100 of the present embodiment, when the hydrogen gas is supplied to the fuel cell 10, the pressure adjustment mechanism 40 performs pressure adjustment (pressure reduction) to a gas pressure suitable for gas supply. Then, in the fuel cell system 100 of the present embodiment, the medium of the first medium circulation pipeline 61 and the medium of the second medium circulation pipeline 62 are exchanged by the heat exchange device 60 that exchanges heat with the pressure adjusting mechanism 40 that performs pressure reduction. The cooled medium is used for cooling the refrigerant in the cooler 200 and the refrigerator 300, separately from the cooling of the medium by the cooler itself and the cooling of the refrigerant by the refrigerator itself. As a result, according to the fuel cell system 100 of the present embodiment, the thermal energy associated with the pressure reduction in the pressure adjusting mechanism 40 can be effectively utilized for the cooling and air conditioning of the facility S and the cooling of food.

本実施形態の燃料電池システム100は、暖房要請時期において、クーラー200に冷却済み媒体を送り込まないので、クーラー200による暖房空調を阻害しない。 The fuel cell system 100 of the present embodiment does not send the cooled medium to the cooler 200 at the heating request time, and therefore does not hinder the heating and air conditioning by the cooler 200.

本実施形態の燃料電池システム100は、熱交換機器60を、第1媒体循環管路61と第2媒体循環管路62を熱交換可能に有するものとし、第2媒体循環管路62の第2熱交換管路部62bを、クーラー200等の冷気機器に組み込んだ。第2媒体循環管路62は、第1媒体循環管路61と個別に管路を組めるので、第2熱交換管路部62bの配設位置の汎用性が高まり、施設Sにおける多種多様な位置の冷気機器への管路設置が容易となる。なお、第2媒体循環管路62を省略し、第1媒体循環管路61の第2熱交換管路部61bをクーラー200等の冷気機器に組み込むようにしてもよい。 In the fuel cell system 100 of the present embodiment, the heat exchange device 60 has a first medium circulation pipe line 61 and a second medium circulation pipe line 62 capable of heat exchange, and the second medium circulation pipe line 62 has a second medium circulation pipe line 62. The heat exchange conduit 62b was incorporated in a cooler device such as the cooler 200. Since the second medium circulation pipeline 62 can be formed separately from the first medium circulation pipeline 61, the versatility of the arrangement position of the second heat exchange pipeline section 62b is enhanced, and various positions in the facility S are increased. It becomes easy to install the pipeline to the cold air equipment. It should be noted that the second medium circulation pipeline 62 may be omitted and the second heat exchange pipeline 61b of the first medium circulation pipeline 61 may be incorporated into a cooler device such as the cooler 200.

図2は、第2実施形態に係る燃料電池システム100Aの概略構成を示す説明図である。第2実施形態の燃料電池システム100Aは、水素貯蔵タンク20に液体水素を貯蔵する点と、調圧機構40にてガス圧を加圧する点で、既述した第1実施形態の燃料電池システム100と相違する。以下の説明に際しては、同一の部材については、第1実施形態と同一の符合を用いる。 FIG. 2 is an explanatory diagram showing a schematic configuration of the fuel cell system 100A according to the second embodiment. The fuel cell system 100A according to the second embodiment is that the hydrogen storage tank 20 stores liquid hydrogen and that the pressure regulating mechanism 40 pressurizes the gas pressure, and thus the fuel cell system 100 according to the first embodiment described above. Is different from. In the following description, the same reference numerals as in the first embodiment are used for the same members.

水素貯蔵タンク20は、図示しない液体水素配送車等により液体水素の充填を受け、液体水素を貯蔵する。タンク金具21には、レセプタクル(図視略)が組み込まれており、液体水素配送車からは、レセプタクルを介して液体水素が充填される。 The hydrogen storage tank 20 is filled with liquid hydrogen by a liquid hydrogen delivery vehicle (not shown) or the like, and stores the liquid hydrogen. A receptacle (not shown) is incorporated in the tank fitting 21, and liquid hydrogen is loaded from the liquid hydrogen delivery vehicle through the receptacle.

水素貯蔵タンク20では、タンク内で気化した水素ガスがタンク上部に貯まり、この気化済み水素ガスは、第1ガス供給管路31を経て調圧機構40に流れ込む。タンク内の気化済み水素ガスのガス圧は、燃料電池10への供給圧より低圧である。よって、本実施形態の調圧機構40は、燃料電池10の適正供給圧(10〜20MPa)に調圧(加圧)して、加圧済み水素ガスを、第1ガス供給管路31を経て水素ガス貯蔵タンク45に送り出す。水素ガス貯蔵タンク45は、第2ガス供給管路32を介して燃料電池10と接続されており、貯蔵した水素ガスを上記した適正供給圧で燃料電池10に供給する。 In the hydrogen storage tank 20, the hydrogen gas vaporized in the tank is stored in the upper portion of the tank, and the vaporized hydrogen gas flows into the pressure adjusting mechanism 40 via the first gas supply pipeline 31. The gas pressure of the vaporized hydrogen gas in the tank is lower than the supply pressure to the fuel cell 10. Therefore, the pressure regulating mechanism 40 of the present embodiment regulates (pressurizes) the fuel cell 10 to the appropriate supply pressure (10 to 20 MPa), and the pressurized hydrogen gas is passed through the first gas supply pipeline 31. It is sent to the hydrogen gas storage tank 45. The hydrogen gas storage tank 45 is connected to the fuel cell 10 via the second gas supply pipe 32, and supplies the stored hydrogen gas to the fuel cell 10 at the above-mentioned appropriate supply pressure.

第1ガス供給管路31は、図示するように水素貯蔵タンク20のタンク金具21に対して、鉛直方向上方側から接続されている。そして、水素貯蔵タンク20内で気化した水素ガスは、図示するように水素貯蔵タンク20の鉛直方向上方側のタンク内上部領域に貯留される。よって、水素貯蔵タンク20内で気化した水素ガスは、タンク内上部領域から円滑に第1ガス供給管路31に流れ込む。第1ガス供給管路31に流れ込んだ気化済み水素ガスは、調圧機構40に達して、既述したように調圧機構40により加圧される。 The first gas supply conduit 31 is connected to the tank fitting 21 of the hydrogen storage tank 20 from above in the vertical direction as illustrated. Then, the hydrogen gas vaporized in the hydrogen storage tank 20 is stored in the tank upper region on the vertically upper side of the hydrogen storage tank 20 as illustrated. Therefore, the hydrogen gas vaporized in the hydrogen storage tank 20 smoothly flows into the first gas supply pipeline 31 from the upper region in the tank. The vaporized hydrogen gas flowing into the first gas supply pipeline 31 reaches the pressure adjusting mechanism 40 and is pressurized by the pressure adjusting mechanism 40 as described above.

第2実施形態の燃料電池システム100Aは、既述したように、熱交換機器60における第1媒体循環管路61の第1熱交換管路部61aを調圧機構40に組み込んで調圧機構40と接続させている。第1熱交換管路部61aは、調圧機構40が加圧を行う減圧機構部に配設され、調圧機構40でのガス調圧、本実施形態では加圧に伴う熱交換に関与する。調圧機構40でのガス調圧は加圧であることから、第1媒体循環管路61を還流する媒体は第1熱交換管路部61aにおいて加熱される。これにより、第1熱交換管路部61aにおいて、調圧機構40との間での熱交換が起きることになる。熱交換機器60は、第1熱交換管路部61aで冷却済み媒体を、媒体ポンプ63により、第1媒体循環管路61において循環還流させる。熱交換機器60は、第1媒体循環管路61の第2熱交換管路部61bを、第2媒体循環管路62における第1熱交換管路部62aに近接配置して、第1媒体循環管路61と第2媒体循環管路62との間でも熱交換も行い、第2媒体循環管路62の媒体は、第1熱交換管路部62aにおいて加熱される。熱交換機器60は、第1熱交換管路部62aで加熱済み媒体を、媒体ポンプ64により、第2媒体循環管路62において循環還流させる。 As described above, the fuel cell system 100A of the second embodiment incorporates the first heat exchange conduit portion 61a of the first medium circulation conduit 61 of the heat exchange device 60 into the pressure adjusting mechanism 40 to adjust the pressure. Is connected to. The first heat exchange conduit 61a is disposed in the pressure reducing mechanism for performing the pressure adjustment by the pressure adjusting mechanism 40, and is involved in the gas pressure adjustment in the pressure adjusting mechanism 40, in this embodiment, the heat exchange accompanying the pressurization. .. Since the gas pressure control in the pressure control mechanism 40 is pressurization, the medium flowing back through the first medium circulation pipe line 61 is heated in the first heat exchange pipe line portion 61a. As a result, heat is exchanged with the pressure regulating mechanism 40 in the first heat exchange conduit 61a. The heat exchange device 60 circulates and recirculates the cooled medium in the first heat exchange pipe line portion 61 a by the medium pump 63 in the first medium circulation pipe line 61. The heat exchange device 60 arranges the second heat exchange pipe line portion 61b of the first medium circulation pipe line 61 close to the first heat exchange pipe line portion 62a of the second medium circulation pipe line 62 to perform the first medium circulation. Heat exchange is also performed between the pipe line 61 and the second medium circulation pipe line 62, and the medium of the second medium circulation pipe line 62 is heated in the first heat exchange pipe line portion 62a. The heat exchange device 60 causes the medium pump 64 to circulate and recirculate the heated medium in the first heat exchange conduit 62 a in the second medium circulation conduit 62.

熱交換機器60は、第2媒体循環管路62を、施設Sの給湯器400まで延ばして備える。第2媒体循環管路62の第2熱交換管路部61bは、給湯器400が有する給湯ポット402において、ポット内の飲料用水と熱交換するよう、給湯ポット402に組み込まれている。なお、第1実施形態と同様、第2媒体循環管路62から分岐した分岐媒体循環管路65を、施設Sのクーラー200まで延ばして、暖房要請時期において、クーラー200に加熱済み媒体を送り出すようにしてもよい。 The heat exchange device 60 is provided with the second medium circulation pipe line 62 extending to the water heater 400 of the facility S. The second heat exchange conduit 61b of the second medium circulation conduit 62 is incorporated in the hot water supply pot 402 so as to exchange heat with the drinking water in the hot water supply pot 402 of the water heater 400. As in the first embodiment, the branched medium circulation pipeline 65 branched from the second medium circulation pipeline 62 is extended to the cooler 200 of the facility S so that the heated medium is sent to the cooler 200 at the heating request time. You can

給湯器400は、給湯ポット402に貯留した飲料用水を、温かいお茶やホットコーヒーに用いるよう、図示しない加熱コイル等で加熱する。よって、既述したように第1媒体循環管路61と第2媒体循環管路62との間の熱交換により加熱された第2媒体循環管路62の加熱済み媒体は、常時、給湯ポット402に配設された第2熱交換管路部62bにおいて、ポット内の飲料用水を、給湯器自体による加熱とは別に、加熱する。 The water heater 400 heats the drinking water stored in the hot water supply pot 402 with a heating coil or the like (not shown) so as to be used for hot tea or hot coffee. Therefore, as described above, the heated medium in the second medium circulation pipeline 62 heated by the heat exchange between the first medium circulation pipeline 61 and the second medium circulation pipeline 62 is always the hot water supply pot 402. In the second heat exchange pipe line portion 62b disposed in, the potable water in the pot is heated separately from the heating by the water heater itself.

以上説明した第2実施形態の燃料電池システム100Aでは、燃料電池10への水素ガスの供給に当たり、ガス供給に適したガス圧への調圧(加圧)を調圧機構40で行う。そして、加圧を行う調圧機構40との間で熱交換を行う熱交換機器60により、第2実施形態の燃料電池システム100Aでは、第1媒体循環管路61および第2媒体循環管路62の媒体を加熱し、この加熱済み媒体を、給湯器400における飲料用水加熱に、給湯器自体による飲料用水加熱とは別に、利用する。この結果、第2実施形態の燃料電池システム100Aによっても、調圧機構40での加圧に伴って発生する熱の熱エネルギーを、施設Sにおける飲料用水加熱に有効活用できる。 In the fuel cell system 100A of the second embodiment described above, when supplying hydrogen gas to the fuel cell 10, the pressure adjusting mechanism 40 performs pressure adjustment (pressurization) to a gas pressure suitable for gas supply. Then, in the fuel cell system 100A of the second embodiment, the first medium circulation pipeline 61 and the second medium circulation pipeline 62 are provided by the heat exchange device 60 that exchanges heat with the pressure adjusting mechanism 40 that performs pressurization. The medium is heated, and the heated medium is used for heating the drinking water in the water heater 400, separately from the heating of the drinking water by the water heater itself. As a result, also in the fuel cell system 100A of the second embodiment, the thermal energy of the heat generated by the pressurization in the pressure regulating mechanism 40 can be effectively utilized for heating the drinking water in the facility S.

図3は、第3実施形態に係る燃料電池システム100Bの概略構成を示す説明図である。第3実施形態の燃料電池システム100Bは、水の電気分解をして水素を生成する水素生成機500と、生成された水素を圧縮水素ガスとするガス圧縮機構600とを有する点で、既述した第1実施形態の燃料電池システム100と相違する。 FIG. 3 is an explanatory diagram showing a schematic configuration of the fuel cell system 100B according to the third embodiment. The fuel cell system 100B of the third embodiment has been described above in that it has a hydrogen generator 500 that electrolyzes water to generate hydrogen, and a gas compression mechanism 600 that uses the generated hydrogen as compressed hydrogen gas. This is different from the fuel cell system 100 of the first embodiment.

燃料電池システム100Bの水素貯蔵タンク20は、燃料電池システム100と同様、燃料電池10に供給する水素を、高圧の水素ガスとして貯蔵する。この水素貯蔵タンク20への水素ガス貯蔵に当たっては、まず、水素生成機500にて水素が生成される。生成された水素は、水素供給管601を経てガス圧縮機構600に送り込まれ、ガス圧縮機構600により高圧の水素ガスとされ、この高圧水素ガスが水素供給管601を経て充填される。なお、水素供給管601の開閉バルブ602は、ガス圧縮機構600からの水素ガス充填の際に管路開放駆動され、水素生成機500での水素生成中やガス圧縮機構600でのガス圧縮中といったガス非充填時、および水素生成機500とガス圧縮機構600の非稼働時には、管路閉鎖駆動される。 Similar to the fuel cell system 100, the hydrogen storage tank 20 of the fuel cell system 100B stores hydrogen supplied to the fuel cell 10 as high-pressure hydrogen gas. In storing hydrogen gas in the hydrogen storage tank 20, first, hydrogen is generated by the hydrogen generator 500. The generated hydrogen is sent to the gas compression mechanism 600 via the hydrogen supply pipe 601, turned into high-pressure hydrogen gas by the gas compression mechanism 600, and this high-pressure hydrogen gas is filled through the hydrogen supply pipe 601. Note that the opening/closing valve 602 of the hydrogen supply pipe 601 is driven to open the pipe when the hydrogen gas is filled from the gas compression mechanism 600, so that hydrogen is being generated in the hydrogen generator 500 or gas is being compressed in the gas compression mechanism 600. When the gas is not filled and when the hydrogen generator 500 and the gas compression mechanism 600 are not in operation, the pipeline closing drive is performed.

第3実施形態の燃料電池システム100Bでは、水素生成機500における水素生成に伴う熱エネルギーの利用を図るため、既述した熱交換機器60が水素生成機500に接続されている。より具体的には、既述した第1実施形態における調圧機構40と熱交換機器60との接続と同様、第1媒体循環管路61の第1熱交換管路部61aは、水素生成機500に組み込まれて、水素生成機500の水素生成機構部に配設される。これにより、熱交換機器60は、水素生成機500での水素生成に伴う熱交換に関与する。水素生成機500での水素生成は、水を水素と酸素とに分解する吸熱分解反応を伴うことから、第1媒体循環管路61を還流する媒体は第1熱交換管路部61aにおいて、水素生成機500の水素生成機構部により冷却される。これにより、第1熱交換管路部61aにおいて、水素生成機500との間での熱交換が起き、熱交換機器60は、第1熱交換管路部61aおよび第2媒体循環管路62で冷却済み媒体を、既述したように、クーラー200や冷蔵庫300の冷気機器自体の媒体冷却とは別に、媒体冷却に活用する。 In the fuel cell system 100B of the third embodiment, the heat exchange device 60 described above is connected to the hydrogen generator 500 in order to utilize the thermal energy associated with hydrogen generation in the hydrogen generator 500. More specifically, similar to the connection between the pressure regulating mechanism 40 and the heat exchange device 60 in the above-described first embodiment, the first heat exchange conduit 61a of the first medium circulation conduit 61 is a hydrogen generator. It is incorporated in the hydrogen generator 500 and is disposed in the hydrogen generation mechanism portion of the hydrogen generator 500. As a result, the heat exchange device 60 participates in heat exchange associated with hydrogen generation in the hydrogen generator 500. Since hydrogen generation in the hydrogen generator 500 is accompanied by an endothermic decomposition reaction that decomposes water into hydrogen and oxygen, the medium refluxing in the first medium circulation pipe 61 is hydrogen in the first heat exchange pipe 61a. It is cooled by the hydrogen generation mechanism of the generator 500. As a result, heat exchange with the hydrogen generator 500 occurs in the first heat exchange conduit 61a, and the heat exchange device 60 includes the first heat exchange conduit 61a and the second medium circulation conduit 62. As described above, the cooled medium is utilized for medium cooling separately from the medium cooling of the cool air device itself of the cooler 200 or the refrigerator 300.

また、第3実施形態の燃料電池システム100Bでは、ガス圧縮機構600におけるガス圧縮に伴う熱エネルギーの利用を図るため、既述した熱交換機器60がガス圧縮機構600に接続されている。より具体的には、既述した第1実施形態における調圧機構40と熱交換機器60との接続と同様、第1媒体循環管路61の第1熱交換管路部61aは、ガス圧縮機構600に組み込まれて、ガス圧縮機構部に配設される。これにより、熱交換機器60は、ガス圧縮機構600でのガス圧縮に伴う熱交換に関与する。ガス圧縮機構600での調圧はガス圧縮であることから、第1媒体循環管路61を還流する媒体は第1熱交換管路部61aにおいて、ガス圧縮機構600のガス圧縮機構部により加熱される。これにより、第1熱交換管路部61aにおいて、ガス圧縮機構600との間での熱交換が起き、熱交換機器60は、第1熱交換管路部61aおよび第2媒体循環管路62で加熱済み媒体を、既述したように、給湯器400といった暖気機器の飲料用水加熱や、給湯器以外の暖気機器の媒体加熱に、暖気機器自体の加熱とは別に、活用する。 Further, in the fuel cell system 100B of the third embodiment, the heat exchange device 60 described above is connected to the gas compression mechanism 600 in order to utilize the thermal energy associated with gas compression in the gas compression mechanism 600. More specifically, similar to the connection between the pressure adjusting mechanism 40 and the heat exchanging device 60 in the above-described first embodiment, the first heat exchange conduit 61a of the first medium circulation conduit 61 is a gas compression mechanism. It is incorporated into 600 and is disposed in the gas compression mechanism section. As a result, the heat exchange device 60 participates in heat exchange associated with gas compression in the gas compression mechanism 600. Since the pressure adjustment in the gas compression mechanism 600 is gas compression, the medium that recirculates in the first medium circulation pipeline 61 is heated by the gas compression mechanism section of the gas compression mechanism 600 in the first heat exchange pipeline 61a. It As a result, heat exchange occurs with the gas compression mechanism 600 in the first heat exchange conduit 61a, and the heat exchange device 60 includes the first heat exchange conduit 61a and the second medium circulation conduit 62. As described above, the heated medium is used for heating the drinking water of the warming device such as the water heater 400 and the medium of the warming device other than the water heater, separately from the heating of the warming device itself.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiments, and can be implemented with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments corresponding to the technical features in each mode described in the section of the summary of the invention are to solve some or all of the above problems, or It is possible to appropriately replace or combine them in order to achieve a part or all. If the technical features are not described as essential in the present specification, they can be deleted as appropriate.

第2実施形態の燃料電池システム100Aでは、水素貯蔵タンク20に液体水素を貯蔵し、タンク内で気化してタンク上部に貯まった気化済み水素ガスを調圧機構40に流れ込ませている。タンク内での水素気化は、断熱下で起きることから、タンク上部では、気化に伴いタンク周壁やその周辺からの吸熱が可能な状況となる。よって、液体水素を貯蔵する水素貯蔵タンク20のタンク上部のタンク壁を取り囲むよう、熱交換機器60の第1熱交換管路部61aを水素貯蔵タンク20に取り付け、熱交換機器60と水素貯蔵タンク20とを熱交換ができるようにする。こうすれば、タンク内での水素気化に伴って熱交換により、第1媒体循環管路61の循環媒体を冷却し、その冷却済みの媒体を、水素貯蔵タンク20や冷蔵庫300といった各種冷気機器自体の媒体冷却とは別に、媒体冷却に活用できる。 In the fuel cell system 100A of the second embodiment, liquid hydrogen is stored in the hydrogen storage tank 20, and vaporized hydrogen gas that is vaporized in the tank and stored in the upper portion of the tank is caused to flow into the pressure adjusting mechanism 40. Since hydrogen vaporization in the tank occurs under adiabatic condition, the upper part of the tank is in a state where heat can be absorbed from the peripheral wall of the tank and its periphery due to the vaporization. Therefore, the first heat exchange conduit 61a of the heat exchange device 60 is attached to the hydrogen storage tank 20 so as to surround the tank wall above the tank of the hydrogen storage tank 20 that stores liquid hydrogen, and the heat exchange device 60 and the hydrogen storage tank are attached. Allow heat exchange with 20. In this way, the circulation medium in the first medium circulation pipe 61 is cooled by heat exchange due to hydrogen vaporization in the tank, and the cooled medium is used as various cold air devices such as the hydrogen storage tank 20 and the refrigerator 300. In addition to the medium cooling of, it can be utilized for medium cooling.

10…燃料電池、20…水素貯蔵タンク、21…タンク金具、30…ガス供給系、31…第1ガス供給管路、32…第2ガス供給管路、40…調圧機構、45…水素ガス貯蔵タンク、50…空気供給機器、51…空気供給管路、60…熱交換機器、61…第1媒体循環管路、61a…第1熱交換管路部、61b…第2熱交換管路部、62…第2媒体循環管路、62a…第1熱交換管路部、62b…第2熱交換管路部、62c…熱交換管路部、62v…管路開閉バブル、63…媒体ポンプ、64…媒体ポンプ、65…分岐媒体循環管路、100,100A,100B…燃料電池システム、200…クーラー、210…空調機構部、212…媒体滞留管路部、214…媒体循環管路、216…送風口、300…冷蔵庫、310…空調機構部、312…媒体滞留管路部、314…媒体循環管路、316…送風口、400…給湯器、402…給湯ポット、500…水素生成機、600…ガス圧縮機構、601…水素供給管、602…開閉バルブ、S…施設 10... Fuel cell, 20... Hydrogen storage tank, 21... Tank metal fitting, 30... Gas supply system, 31... First gas supply pipeline, 32... Second gas supply pipeline, 40... Pressure adjusting mechanism, 45... Hydrogen gas Storage tank, 50... Air supply equipment, 51... Air supply pipeline, 60... Heat exchange equipment, 61... First medium circulation pipeline, 61a... First heat exchange pipeline, 61b... Second heat exchange pipeline , 62... Second medium circulation pipeline, 62a... First heat exchange pipeline, 62b... Second heat exchange pipeline, 62c... Heat exchange pipeline, 62v... Pipe opening/closing bubble, 63... Medium pump, 64... Medium pump, 65... Branched medium circulation pipeline, 100, 100A, 100B... Fuel cell system, 200... Cooler, 210... Air conditioning mechanism section, 212... Medium retention pipeline section, 214... Medium circulation pipeline, 216... Blower, 300... Refrigerator, 310... Air conditioning mechanism section, 312... Medium retention pipeline section, 314... Medium circulation pipeline, 316... Blower opening, 400... Water heater, 402... Hot water supply pot, 500... Hydrogen generator, 600 … Gas compression mechanism, 601… Hydrogen supply pipe, 602… Open/close valve, S… Facility

Claims (1)

燃料電池システムであって、
水素と酸素の電気化学反応により発電する燃料電池と、
該燃料電池に供給する前記水素を貯蔵する水素貯蔵タンクと、
ガスの調圧機構を含み、前記水素貯蔵タンクが貯蔵する水素を、前記調圧機構で調圧済みの水素ガスとして前記燃料電池に供給するガス供給系と、
前記調圧機構と接続され、前記調圧機構でのガス調圧に伴う熱を前記調圧機構との間で熱交換する熱交換機器とを備える、
燃料電池システム。
A fuel cell system,
A fuel cell that generates electricity by an electrochemical reaction of hydrogen and oxygen;
A hydrogen storage tank for storing the hydrogen supplied to the fuel cell;
A gas supply system that includes a gas pressure adjusting mechanism and supplies hydrogen stored in the hydrogen storage tank to the fuel cell as hydrogen gas whose pressure has been adjusted by the pressure adjusting mechanism.
A heat exchange device that is connected to the pressure regulating mechanism and exchanges heat associated with gas pressure regulation in the pressure regulating mechanism with the pressure regulating mechanism;
Fuel cell system.
JP2019015173A 2019-01-31 2019-01-31 Fuel cell system Pending JP2020123510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015173A JP2020123510A (en) 2019-01-31 2019-01-31 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015173A JP2020123510A (en) 2019-01-31 2019-01-31 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2020123510A true JP2020123510A (en) 2020-08-13

Family

ID=71992904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015173A Pending JP2020123510A (en) 2019-01-31 2019-01-31 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2020123510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023085805A (en) * 2021-12-09 2023-06-21 株式会社Nttファシリティーズ Air conditioners and air conditioning systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345426A (en) * 2003-05-20 2004-12-09 Denso Corp Air conditioner for fuel cell vehicle
JP2007059415A (en) * 2001-06-15 2007-03-08 Toyota Motor Corp Power output apparatus having fuel cell and method thereof
JP2011012773A (en) * 2009-07-02 2011-01-20 Toyota Motor Corp Gas supply device
JP2017117694A (en) * 2015-12-25 2017-06-29 公益財団法人鉄道総合技術研究所 Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059415A (en) * 2001-06-15 2007-03-08 Toyota Motor Corp Power output apparatus having fuel cell and method thereof
JP2004345426A (en) * 2003-05-20 2004-12-09 Denso Corp Air conditioner for fuel cell vehicle
JP2011012773A (en) * 2009-07-02 2011-01-20 Toyota Motor Corp Gas supply device
JP2017117694A (en) * 2015-12-25 2017-06-29 公益財団法人鉄道総合技術研究所 Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023085805A (en) * 2021-12-09 2023-06-21 株式会社Nttファシリティーズ Air conditioners and air conditioning systems
JP7672961B2 (en) 2021-12-09 2025-05-08 株式会社Nttファシリティーズ Air Conditioning System

Similar Documents

Publication Publication Date Title
JP5253582B2 (en) Thermal storage hot water supply air conditioner
JPH06241606A (en) Refrigerator
JP4728601B2 (en) Cooling system for superconducting power equipment
JP2014228201A (en) Ship, ship cold recovery system, and mode switching method of ship cold recovery system
KR101324958B1 (en) Heat transfer system of ship
JP2017067178A (en) Pre-cooler of hydrogen gas filling facility and pre-cooling method
JPWO2018173136A1 (en) Hydrogen gas supply apparatus and method
JPH06235566A (en) Refrigerating plant for air conditioning space
JP2020123510A (en) Fuel cell system
JP5810042B2 (en) Hot water heating system
JP2013036648A (en) Device and method for heat storage and hot-water supply
CN212538422U (en) Low temperature treatment system
CN107124894A (en) The re-liquefied system of LNG Optimal Controls of the LNG low-temperature waste heats produced for reclaiming in LNG gasification process
JP5746104B2 (en) Hot water heating system
KR20150140080A (en) Fuel supplying system
JP3106151B2 (en) Vehicle equipped with a gas engine equipped with a refrigeration system
JPH02271081A (en) Driving method, power generating method, and cool/warm water intaking method with use of refrigerant gas
JP2017137978A (en) Bog warming system for low-temperature liquefied gas
JP6369980B2 (en) Ice rink cooling equipment and cooling method
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
JP7660461B2 (en) Hydrogen and Oxygen Supply System
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
JP3749100B2 (en) Duct type cold storage system
JP2014119164A (en) Hot water supply system
JP3120121U (en) Source cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221129