JP2020111838A - Fabric and clothing excellent in heat radiation property - Google Patents
Fabric and clothing excellent in heat radiation property Download PDFInfo
- Publication number
- JP2020111838A JP2020111838A JP2019000900A JP2019000900A JP2020111838A JP 2020111838 A JP2020111838 A JP 2020111838A JP 2019000900 A JP2019000900 A JP 2019000900A JP 2019000900 A JP2019000900 A JP 2019000900A JP 2020111838 A JP2020111838 A JP 2020111838A
- Authority
- JP
- Japan
- Prior art keywords
- fabric
- far
- heat dissipation
- ceramic powder
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
Abstract
Description
本発明は、放熱性に優れた生地およびこの生地を用いた衣料、ならびにこれらの生地用いる放熱材料が分散された樹脂インクに関する。 The present invention relates to a material having excellent heat dissipation property, clothing using the material, and resin ink in which a heat dissipation material used for the material is dispersed.
衣服は不動の空気層によって外気の寒さから保温しやすくしたり、陽差しを遮り肌を守るための遮熱層を設けるなどして、自然に抗する機能によって環境に適応しやすくするものである。さらに人体自体が熱を発して汗をかくことから、夏場などの外気温が高い環境下で衣服を着用していれば、衣服に熱がこもったり、汗でべたついてしまうなどして、快適に過ごし難くなる。そこで、夏場を快適に過ごすために、従前から通気性、熱伝導性や熱拡散性による高い接触冷感性、遮熱性、汗の吸水速乾による冷却といった様々な観点から、暑さに対応するべく種々の生地や衣服の提案がなされてきている。 The immovable air layer makes it easier to keep warm from the cold of the outside air, and the heat shield layer to shield the sunlight and protect the skin is provided, making it easier to adapt to the environment by the function of naturally resisting. .. Furthermore, since the human body itself emits heat and sweats, if you wear clothes in an environment where the outside temperature is high, such as in the summer, you will feel warm and sticky due to sweat, and you will feel comfortable. It becomes difficult to spend. Therefore, in order to comfortably spend the summer, it is necessary to respond to the heat from various viewpoints such as breathability, high thermal contact feeling due to thermal conductivity and heat diffusion, heat shielding, cooling by absorbing sweat and drying quickly. Various fabrics and clothes have been proposed.
たとえば、メッシュのような通気性を確保することで放熱を促す構造が提案されている(たとえば特許文献1参照。)。たしかに熱がこもらない一方で、メッシュや鹿子のような隙間の大きな生地では、適用場面が限られやすく汎用性が確保しづらく、また隙間が大きいと遮熱には不向きとなる。 For example, a structure has been proposed that promotes heat dissipation by ensuring air permeability such as a mesh (see, for example, Patent Document 1). While it does not retain heat, it is difficult to ensure versatility for fabrics with large gaps, such as mesh and kago, and large gaps make it unsuitable for heat shielding.
また、構造的に2層以上の多層構造を有する織編物であって、いずれか1層に偏平断面繊維を含み、他の層に仮撚捲縮加工糸を含むことを特徴とする遮熱性および放熱性に優れた織編物も提案されている(たとえば特許文献2参照。)。もっとも日射等を遮熱すると内部に熱がこもりやすくなる。 In addition, a woven or knitted fabric structurally having a multilayer structure of two or more layers, wherein any one layer contains a flat cross section fiber and the other layer contains false twist crimped yarn, A woven or knitted fabric excellent in heat dissipation has also been proposed (see, for example, Patent Document 2). However, when the heat of the sun is shielded, the heat tends to stay inside.
また、着用時にヒヤリとした清涼感を与える接触冷感に着目し、接触冷感に優れる熱可塑性エラストマーを紡糸して得た繊維に、湿潤時のべたつき感を防止すること等を目的として無機フィラーを添加させた繊維が提案されている(特許文献3参照。)。
また、これとは別に高熱伝導率な超高分子量ポリエチレン繊維を用いた接触冷感素材も提案されている。これらの接触冷感は初期の熱移動を評価するものであるところ、着用中の持続的な放熱に対する配慮も望まれている。
In addition, focusing on the cool contact feeling that gives a refreshing feeling when worn, the fiber obtained by spinning a thermoplastic elastomer having an excellent cool contact feeling is an inorganic filler for the purpose of preventing a sticky feeling when wet. A fiber to which is added is proposed (see Patent Document 3).
In addition to this, a contact cooling sensation material using ultrahigh molecular weight polyethylene fibers having high thermal conductivity has also been proposed. Although these contact sensations are used to evaluate the initial heat transfer, consideration for continuous heat dissipation during wearing is also desired.
また、親水性の熱伝導性のあるエチレン−ビニルアルコール系共重合体からなる鞘成分と疎水性のポリエステルとからなる芯成分による複合繊維によって、汗の蒸発による気化熱を利用するものが提案されている(たとえば特許文献4参照。)。 Further, a composite fiber comprising a sheath component made of a hydrophilic and thermally conductive ethylene-vinyl alcohol-based copolymer and a core component made of a hydrophobic polyester is proposed to utilize heat of vaporization due to evaporation of sweat. (See, for example, Patent Document 4).
また、発汗時において効率よく汗を利用して気化熱で涼感性を得ることができるものとして、酸化アンチモンをドーピングした酸化第二スズからなる白色系微粒子、又は酸化アンチモンをドーピングした酸化第二スズを他の無機微粒子にコーティングしたものからなる白色系微粒子を0.8〜12.0質量%含有する合成繊維と、吸水拡散繊維とを含んでなり、滴下法による裏面の吸水速度が5.0秒以下であることを特徴とする涼感性布帛などが提案されている(たとえば特許文献5参照。)。もっとも、こうした発汗が前提となる技術では、空冷化された後の汗が出にくくなった状況での放熱には効果的とはいいがたい。 Further, when sweating, it is possible to efficiently use sweat to obtain coolness by heat of vaporization. Of inorganic fine particles coated with other inorganic fine particles in the amount of 0.8 to 12.0% by mass of synthetic fibers, and water-absorbing diffusion fibers. There has been proposed a cool-feeling fabric or the like which is characterized by being less than a second (for example, refer to Patent Document 5). However, it is difficult to say that such a technique that requires perspiration is effective for radiating heat when it becomes difficult for perspiration after it has been cooled by air.
その他、薬品等を付与した繊維も提案されているが、洗濯等を経ての長期的な使用には必ずしも十分ではなく、劣化や機能低下が生じやすい。 In addition, fibers provided with chemicals and the like have been proposed, but they are not always sufficient for long-term use after washing and the like, and deterioration and functional deterioration are likely to occur.
出願人らは、これまでに人工鉱石由来の遠赤外線放射物質を含有したインク材料を織物や編物にプリントすることで、着用中に遠赤外線放射による効果が持続する生地と、これらの生地を用いた衣料品の開発を試みてきている。もっとも、遠赤外線放射性物質自体には指向性がないので、これらの物質を糸に練り込んだり、繊維に付着させれば、全方向に遠赤外線を放射することとなる。たしかに遠赤外線放射物質を配した生地が一般的に想定してきたような体を暖める用途であれば、体内の発熱によって放射される遠赤外線が体表面に向かっても支障ないため、指向性の有無は問題とならない。 The applicants have used fabrics that continue to have the effect of far-infrared radiation during wear by printing ink materials containing far-infrared radiation substances derived from artificial ores on woven fabrics and knitted fabrics. I am trying to develop clothing that I had. However, since far-infrared ray emitting substances themselves have no directivity, if these substances are kneaded into threads or attached to fibers, far-infrared rays will be emitted in all directions. Certainly, if the fabric with far-infrared radiation material is used for warming the body, which is generally assumed, the far-infrared rays emitted by the heat generated inside the body will not interfere with the surface of the body. Does not matter.
他方、放熱を目的としようとする場合には、指向性がない遠赤外線の放射をそのままにすることから、体内の発熱を遠赤外線として放射しても自身の身体に向いて戻ってしまうこととなり、その分だけ放熱効率が減殺されることとなってしまう。してみると、遠赤外線放射セラミックス等を生地に配合して放熱する衣類としようとすることは、暖める用途よりもより効率化が難しいといえる。 On the other hand, when aiming for heat dissipation, the radiation of far infrared rays, which has no directivity, is left as it is, and even if the heat generated in the body is radiated as far infrared rays, it will return toward the body. However, the heat dissipation efficiency will be reduced accordingly. Therefore, it can be said that it is more difficult to mix far-infrared radiating ceramics and the like into fabrics to radiate heat, which is more efficient than heating.
このように、指向性のない遠赤外線放射物質を利用しつつも、体外への放熱効果を十分に得る生地や衣料品を得るためには、生地上に付与する遠赤外線放射物質の材料の検討や、生地上へ遠赤外線放射物質を付与する際の配置の検討などによって、発熱によって減殺されないよう冷却効率を持続的に高めることが要請されている。 In this way, in order to obtain fabrics and clothing that can obtain a sufficient heat radiation effect outside the body while using a far-infrared radiation substance that has no directivity, the material of the far-infrared radiation substance to be applied on the fabric is examined. In addition, it is required to continuously improve the cooling efficiency so as not to be extinguished by heat generation, by considering the arrangement when applying the far-infrared radiation substance onto the cloth.
そこで、本発明が解決しようとする課題は、人体の発する熱を従来よりも効率よく着衣の外へと放熱し続けることができる、持続的な放熱機能を備えた遠赤外線放射セラミックスを含有する放熱性に優れた生地、およびこれを用いた放熱性に優れた衣服と、これらの生地のプリントに適した遠赤外線放射セラミックスを含有するインク材料を提供することである。また、放熱性を確保しつつも、通気性や速乾性を阻害しにくい生地とこれを用いた衣服を提供することである。 Therefore, the problem to be solved by the present invention is to dissipate heat generated by the human body to the outside of clothes more efficiently than before, and to dissipate heat that contains far-infrared radiation ceramics with a continuous heat dissipation function. It is an object of the present invention to provide a fabric excellent in heat resistance, a garment excellent in heat dissipation using the fabric, and an ink material containing a far-infrared emitting ceramic suitable for printing these fabrics. Another object of the present invention is to provide a cloth that does not easily impair the breathability and quick-drying property while ensuring the heat dissipation, and a garment using the same.
本発明の課題を解決する第1の手段は、遠赤外線放射セラミックス粉体を含有する樹脂インク成分を裏面まで達しないように表面側から浸透させた放熱性に優れた生地である。浸透させたインク成分中の遠赤外線放射セラミックス粉体は深さ方向に分散していることが好ましく、さらにより好ましくは生地の表面側に遠赤外線放射セラミックス粉体が多く分散し深さ方向に裏面近くでは少なくなるように分散されて傾斜配分されていることである。また、浸透深さは、表面から裏面までの深さのうち、表面から90%までの深さであることが好ましく、表面から80〜90%の深さであることがより好ましい。 A first means for solving the problems of the present invention is a cloth excellent in heat dissipation, in which a resin ink component containing far-infrared emitting ceramic powder is permeated from the front surface side so as not to reach the back surface. The far-infrared emitting ceramic powder in the permeated ink component is preferably dispersed in the depth direction, and more preferably, the far-infrared emitting ceramic powder is more dispersed on the surface side of the fabric and the back surface in the depth direction. That is, the slopes are distributed and distributed so as to decrease in the vicinity. Further, the penetration depth is preferably 90% from the front surface, more preferably 80 to 90% from the front surface, of the depth from the front surface to the back surface.
第2の手段は、遠赤外線放射セラミックス粉体は、体積平均粒径が1〜5μmであること、を特徴とする第1の手段に記載の放熱性に優れた生地である。好ましくは、4μm以下、さらに好ましくは3.5μm以下である。 The second means is a cloth having excellent heat dissipation as described in the first means, characterized in that the far-infrared radiation ceramic powder has a volume average particle diameter of 1 to 5 μm. It is preferably 4 μm or less, more preferably 3.5 μm or less.
第3の手段は、遠赤外線放射セラミックス粉体は、40℃での4μmから100μmの波長における放射率が0.70〜0.95であること、を特徴とする第1又は第2の手段に記載の放熱性に優れた生地である。 The third means is the first or second means characterized in that the far-infrared emitting ceramic powder has an emissivity of 0.70 to 0.95 at a wavelength of 4 μm to 100 μm at 40° C. The material is excellent in heat dissipation as described.
第4の手段は、遠赤外線放射セラミックス粉体は、40℃での4μmから20μmの波長における放射率が0.70〜0.95であること、を特徴とする第1から第3のいずれか1の手段に記載の放熱性に優れた生地である。 A fourth means is any one of the first to the third, wherein the far-infrared emitting ceramic powder has an emissivity of 0.70 to 0.95 at a wavelength of 4 μm to 20 μm at 40° C. It is a fabric excellent in heat dissipation as described in 1).
第5の手段は、樹脂インク成分には、水溶性アクリル樹脂に対して遠赤外線放射セラミッックス粉体が1〜5質量%含有されていること、を特徴とする第1から第4のいずれか1の手段に記載の放熱性に優れた生地である。 A fifth means is any one of the first to fourth aspects, wherein the resin ink component contains 1 to 5 mass% of far-infrared radiation ceramic powder with respect to the water-soluble acrylic resin. It is a fabric excellent in heat dissipation as described in the means.
第6の手段は、表面の接触冷感値と裏面の接触冷感値の差が0.010〜0.100W/cm2であること、を特徴とする第1から第5のいずれか1の手段に記載の放熱性に優れた生地である。 A sixth means is any one of the first to fifth aspects characterized in that the difference between the contact cooling sensation value on the front surface and the contact cooling sensation value on the back surface is 0.010 to 0.100 W/cm 2 . It is a material having excellent heat dissipation described in the means.
第7の手段は、第1から第6のいずれか1の手段に記載の生地を用いた放熱性に優れた衣料である。 The seventh means is a garment excellent in heat dissipation using the cloth described in any one of the first to sixth means.
第8の手段は、水溶性アクリル樹脂に対して体積平均粒径が1〜5μmの遠赤外線放射セラミックス粉体を1〜5質量%含有し、該遠赤外線放射セラミックス粉体の40℃での4μmから100μmの波長における放射率が0.70〜0.95である、生地プリント用の樹脂インクである。 An eighth means comprises 1 to 5% by mass of far-infrared emitting ceramic powder having a volume average particle diameter of 1 to 5 μm with respect to a water-soluble acrylic resin, and the far-infrared emitting ceramic powder has 4 μm at 40° C. To 100 μm, the resin ink for fabric printing has an emissivity of 0.70 to 0.95.
本発明によると、表面がプリント加工された生地の表面から裏面まで遠赤外線放射セラミックスのインク成分が到達していないので、遠赤外線放射セラミックスからの遠赤外線の放射が生地の表面近傍に多く分散して配向されることとなることから、生地の裏面を肌側にして衣服として着用すると、体熱を効率よく放熱しつづけることができる。 According to the present invention, since the ink component of the far-infrared radiation ceramics does not reach from the front surface to the back surface of the fabric on which the printed surface is processed, a large amount of far-infrared radiation from the far-infrared radiation ceramics is dispersed near the surface of the fabric. Therefore, the body heat can be efficiently dissipated when worn as clothes, with the back surface of the cloth facing the skin.
また微細な粉末が樹脂インクによって生地の繊維に固着するだけなので、着心地を大きく損なうことがなく、洗濯しても落ちにくく、安定して持続的な放熱効果が得られる。また、表面の接触冷感値のほうが裏面よりも値が高いので、放熱性が確保されやすく、裏面まで遠赤外線放射セラミックス粉末のインク成分が浸透しておらず、効率よく裏面側の熱を放散させることができる。 Further, since the fine powder is only fixed to the fibers of the cloth by the resin ink, the comfort of wearing is not greatly impaired, it is hard to drop even after washing, and a stable and continuous heat radiation effect can be obtained. In addition, since the contact cooling sensation value on the front surface is higher than that on the back surface, it is easy to secure heat dissipation, and the ink component of the far-infrared radiation ceramic powder does not penetrate to the back surface, so the heat on the back surface side is dissipated efficiently Can be made.
また生地の全表面をインク成分で覆わずに表面の一部にインク成分をプリントしている場合には、放熱性を確保しつつも樹脂インクで覆われない部分の通気性や速乾性はそのまま維持できるので、放熱性を確保しつつも生地本来の特性も生かすことができる。 In addition, when the ink component is printed on a part of the surface without covering the entire surface of the fabric with the ink component, the breathability and quick drying property of the part not covered with the resin ink are maintained while ensuring heat dissipation. Since it can be maintained, the original characteristics of the fabric can be utilized while ensuring heat dissipation.
本発明に用いる放熱性に優れた生地に用いる樹脂インクの材料及びベース生地の素材は以下のとおりである。 The material of the resin ink and the material of the base cloth used for the cloth having excellent heat dissipation used in the present invention are as follows.
(ベース生地)
ベース生地は、一方表面に遠赤外線放射セラミックス含有インクのプリント加工が可能な生地であれば、織物、編物、不織布のいずれにも適用可能である。
以下では、ベース生地として、ナイロンベア天竺の編物を例にとって説明するが、生地の材質はナイロンの他に、接触冷感値に優れるポリエステルや、綿、綿とポリエステルの混紡などもプリント後に乾燥セットが可能であることから、好適に用いることができる。
(Base fabric)
The base fabric is applicable to any of a woven fabric, a knitted fabric, and a non-woven fabric as long as it is a fabric on which one surface can be printed with an ink containing far-infrared radiation ceramics.
In the following, as a base fabric, an explanation will be given by taking a nylon bare cloth knitted fabric as an example. In addition to nylon, the fabric material is polyester with excellent contact coolness value, cotton, or a blended fabric of cotton and polyester, which is dried and set after printing. Therefore, it can be preferably used.
(遠赤外線放射セラミックス)
本発明の遠赤外線放射セラミックスは、加熱されるとき、遠赤外線の波長域である4μmから20μmにおける電磁波を放射するセラミックスである。本発明では、遠赤外線放射セラミックスの、40℃での4μmから20μmの波長における放射率が0.70〜0.95であることが好ましい。なお、本発明は着用者の人体が遠赤外線を放射で温まることを意図したものではなく、放熱を促すために用いるためであるから、皮膚層が熱振動するといったことに目的があるわけではないので、40℃での4μmから100μmの波長における放射率が0.70〜0.95のセラミックスも好適である。
(Far infrared radiation ceramics)
The far-infrared radiation ceramics of the present invention is a ceramic which, when heated, emits an electromagnetic wave in the wavelength range of far-infrared rays of 4 μm to 20 μm. In the present invention, the far-infrared emitting ceramics preferably has an emissivity of 0.70 to 0.95 at a wavelength of 4 μm to 20 μm at 40° C. It should be noted that the present invention is not intended to warm the wearer's human body by radiating far-infrared rays, and is intended to be used for promoting heat radiation, and therefore does not have the purpose of causing thermal vibration of the skin layer. Therefore, ceramics having an emissivity of 0.70 to 0.95 at a wavelength of 4 μm to 100 μm at 40° C. are also suitable.
なお、放射率とは、放射体の放射発散度とその放射体と同温度の黒体の放射発散度との比のことであり(JIS Z8117)、ある温度の物質表面から放射するエネルギー量と、同温度の黒体(放射で与えられたエネルギーを100%吸収する仮想物体)から放射するエネルギー量との比率であるから、0〜1の間の値をとる。 The emissivity is the ratio of the radiant emittance of a radiator to the radiant emittance of a black body at the same temperature as that radiator (JIS Z8117), and is the amount of energy radiated from the surface of a substance at a certain temperature. , And the amount of energy emitted from a black body (a virtual object that absorbs 100% of the energy given by radiation) at the same temperature, and therefore takes a value between 0 and 1.
放射率は、たとえば、FT−IR分光分析器を用いて測定することで求める。(黒体を近似的に再現した)黒体炉および試料加熱炉の温度を測定したい温度に設定し、まず設定温度で安定させた黒体炉の放射エネルギーをバックグランドとして測定し、次いで試料加熱炉側に光路を切り替えて、設定温度に加熱した試料表面からの放射エネルギーを測定する。 The emissivity is obtained by measuring with an FT-IR spectroscopic analyzer, for example. Set the temperature of the black body furnace (which approximates the black body) and the sample heating furnace to the temperature you want to measure, first measure the radiant energy of the black body furnace stabilized at the set temperature as the background, and then heat the sample. The optical path is switched to the furnace side, and the radiant energy from the sample surface heated to the set temperature is measured.
遠赤外線放射セラミックスの成分としては、たとえば、SiO2、FeO、Al2O3、BaO、ZrO2、CeO2、TiO2、ThO2、MgO、や3Al2O3・2SiO2、ZrO2・SiO2、2MgO・2Al2O3・5SiO2といった複合化合物などが挙げられるが、一般的な遠赤外線放射セラミックスであればこれらに限られない。本発明では、こうした遠赤外線放射セラミックスを1種もしくは数種含有させ粉体をインク成分として用いるが、粉体には、放熱性の高い金属を混合してもよい。周波数毎に共振、干渉することで増大、減少する電磁波エネルギーに鑑みて、これらの成分の組合せを調整することで効率化をはかることもできる。 Examples of the components of the far-infrared radiation ceramics include SiO 2 , FeO, Al 2 O 3 , BaO, ZrO 2 , CeO 2 , TiO 2 , ThO 2 , MgO, 3Al 2 O 3 .2SiO 2 , ZrO 2 .SiO. 2 , a composite compound such as 2MgO.2Al 2 O 3 .5SiO 2 and the like can be mentioned, but not limited to these as long as they are general far infrared ray emitting ceramics. In the present invention, the powder is used as the ink component by containing one or more of such far infrared ray emitting ceramics, but the powder may be mixed with a metal having a high heat dissipation property. In consideration of electromagnetic wave energy that increases or decreases due to resonance or interference for each frequency, it is possible to improve efficiency by adjusting the combination of these components.
また、粉体のサイズは、体積平均粒径で1〜5μmの粒度である。平均粒径は4μm以下が好ましく、より好ましくは平均3.5μm以下の粉体である。インク成分として分散した状態が保ちやすいこと、またプリント加工で捺染したときに生地内に裏面まで到達しない範囲で浸透しうるものであること、などの加工性の観点と、放熱性に優れた衣服として素肌に触れるようにして着用される特性上、差し障りのない風合いであることの観点が相俟って、本発明で好適な遠赤外線放射セラミックス粉末は、上に挙げたような平均粒径の小さい微粉末であることが好ましい。他方、粉体サイズが大きすぎると、塗布されたことでザラザラとした風合いになってしまうので、肌着には適しにくいものとなる。 The size of the powder is a volume average particle size of 1 to 5 μm. The average particle diameter is preferably 4 μm or less, more preferably 3.5 μm or less. Clothes with excellent heat dissipation and workability, such as being able to easily maintain the state of being dispersed as an ink component, and being able to penetrate into the fabric within the range that does not reach the back side when printed by printing. As a characteristic of being worn by touching the bare skin as such, in view of the fact that there is no troublesome texture, the far-infrared radiating ceramic powder suitable in the present invention has an average particle size as listed above. It is preferably a small fine powder. On the other hand, if the powder size is too large, it will have a rough texture due to being applied, which makes it less suitable for underwear.
実施例では、たとえば、質量%でポリシリコン40%、ブラックシリカ30%、アルミナ25%、ジルコニア5%の鉱石を溶解し、冷却後にボールミル等の粉砕機で微細に粉砕した後、分級して粗大な粉末を除去し、平均粒径が3.5μmとなる粉体を得た。この粉体の成分は、質量%でSiO2が45〜60%であり、以下、5〜10%程度のFeO、Al2O3、BaO、ZrO2、CeO2、K、Ca、その他不純物からなる。この粉体は、40℃における4μmから20μmにおける放射率は、0.70〜0.90であり、4μmから100μmにおける放射率は、0.7〜0.95であり、本発明の遠赤外線放射セラミックス粉体に相当する。 In the examples, for example, 40% of polysilicon, 30% of black silica, 25% of alumina, and 5% of zirconia were dissolved in mass%, and after cooling, finely pulverized with a pulverizer such as a ball mill, and then classified and coarsened. The powder was removed to obtain a powder having an average particle size of 3.5 μm. The composition of this powder is such that SiO 2 is 45 to 60% in mass %, and from about 5 to 10% of FeO, Al 2 O 3 , BaO, ZrO 2 , CeO 2 , K, Ca, and other impurities. Become. This powder has an emissivity of 0.70 to 0.90 from 4 μm to 20 μm at 40° C. and an emissivity from 4 μm to 100 μm of 0.7 to 0.95. Corresponds to ceramic powder.
(樹脂インク)
バインダーの水溶性アクリル樹脂に対して、3.5μmの粒径の遠赤外線放射セラミックス微粉末を1〜5mass%を投入し、撹拌して樹脂インクを得た。さらに適宜少量の水を配合したり、必要に応じて架橋剤を配合したりしてもよい。5%を超えて含有させてもよいが、遠赤外線放射セラミックス粉末を配合したことによる効果は飽和していくので、大きな特性の向上は得られない。そこで、1〜5%とする。実施例では、1kgのアクリル樹脂に対して30g、あるいは50gを配合したインクをプリントに用いた。
(Resin ink)
To the water-soluble acrylic resin as the binder, 1 to 5 mass% of far-infrared emitting ceramic fine powder having a particle size of 3.5 μm was added and stirred to obtain a resin ink. Further, an appropriate amount of water may be added, or a crosslinking agent may be added if necessary. Although it may be contained in an amount of more than 5%, the effect due to the incorporation of the far-infrared emitting ceramic powder is saturated, so that a large improvement in characteristics cannot be obtained. Therefore, it is set to 1 to 5%. In the examples, an ink in which 30 g or 50 g was mixed with 1 kg of acrylic resin was used for printing.
(プリント加工)
0.3〜0.4mm厚のベース生地(2)の表面にたとえば1500メッシュのロータリースクリーン方式のプリント加工機で捺染し、表面(4)から付与したインク成分(3)が裏面(5)に達しないように塗布量を設定し、生地(2)に浸透させる。図1に示すように、8〜9割程度の浸透深さ(7)となるように、プリント時のインク塗布量を設定すると、放熱効率が向上する。プリントによる捺染では、図2(a)に示すように、表側から裏側(肌に当接する側)に向かって粉末の濃度が薄くなる。なお、図2(b)はプリントによる捺染を3回繰り返して裏面まで粉末を浸透させたものである。
(Print processing)
The surface of the base fabric (2) having a thickness of 0.3 to 0.4 mm is printed by, for example, a 1500 mesh rotary screen printing machine, and the ink component (3) applied from the front surface (4) is applied to the back surface (5). The application amount is set so that it does not reach, and the dough (2) is permeated. As shown in FIG. 1, when the ink application amount at the time of printing is set so that the penetration depth (7) is about 80 to 90%, heat dissipation efficiency is improved. In printing by printing, as shown in FIG. 2A, the concentration of the powder decreases from the front side to the back side (the side in contact with the skin). In addition, in FIG. 2B, the printing by printing is repeated three times to infiltrate the powder to the back surface.
プリントは、生地表面にインクを全面プリントとすることでも放熱性は得られるが、快適な衣料用途での実用性に鑑みて、通気性、吸熱性、速乾性も備えた生地であることが望ましいことから、表面のうちプリントする部位は、好ましくは面積率で表面の30〜70%とすることが好ましい。効率的な配分としては、生地表面の50〜60%の面積率となるようプリント柄を配することが特に好ましい。表面のプリント柄は、四角形や多角形、丸形などのインク部分とブランクとを繰り返す柄模様などを用いることができる。 Although heat dissipation can be obtained by printing ink on the entire surface of the fabric, it is desirable that the fabric also has breathability, heat absorption, and quick drying in view of its practicality for comfortable clothing applications. Therefore, the area to be printed on the surface is preferably 30 to 70% of the surface in terms of area ratio. For efficient distribution, it is particularly preferable to arrange the print pattern so that the area ratio is 50 to 60% of the surface of the cloth. As the print pattern on the surface, a pattern pattern in which an ink portion such as a quadrangle, a polygon, a circle, and the like and a blank are repeated can be used.
なお、糸に遠赤外線放射セラミックス粉末を練り込む場合には、糸の強度等に影響がでることに加え、生地の深さ方向で配合比に差をつけたり、表面の面積比をコントロールすることが容易ではない。糸全体に練り込まれると、図2(b)の状態と同様に、生地の表と裏で配合に変化をつけることが困難となるし、プリント面積を調整したような差異を設けることも、練り込まれた糸のみでは困難となる。このように糸に練りこんだ場合には、遠赤外線の放射方向に指向性を付与することがが困難となるので、プリントによる染み込みの拡がりで濃度を調整できる図1に示すような本発明の構成のほうが放熱性に優れている。 When the far-infrared radiation ceramic powder is kneaded into the yarn, in addition to affecting the strength of the yarn, it is possible to make a difference in the compounding ratio in the depth direction of the dough and control the surface area ratio. It's not easy. When kneaded into the whole yarn, it becomes difficult to change the composition between the front and back of the fabric, as in the state of FIG. 2(b), and it is also possible to provide a difference such as adjusting the print area. It is difficult only with the knitted threads. When the yarn is kneaded in this way, it becomes difficult to give directivity to the radiation direction of far infrared rays, so that the density can be adjusted by the spread of the impregnation due to the printing of the present invention as shown in FIG. The configuration has better heat dissipation.
(洗濯性)
得られたプリント物は、アクリル樹脂によって遠赤外線放射セラミックスの微粉末を繊維表面に固定されているので、洗濯等を繰り返しても容易に剥離することはほぼなかった。長期の使用を経ても、遠赤外線放射セラミックスは変質しにくいので、遠赤外線放射セラミックス微粉末の放熱性は劣化しにくく、安定した性能が確保されていることが確認された。
(Washability)
In the obtained printed matter, since the fine powder of far-infrared emitting ceramics was fixed on the fiber surface by the acrylic resin, it was hardly peeled off easily even after repeated washing. It was confirmed that the far-infrared radiating ceramics were not easily deteriorated even after long-term use, so that the heat-radiating property of the far-infrared radiating ceramics fine powder was not easily deteriorated and stable performance was secured.
(放熱性)
得られた遠赤外線放射セラミックス含有インキをプリントした生地の放熱性について、FLIR社製のサーモグラフィの測定装置を用いて撮像し、色温度として視覚化しつつ温度を測定した。実験に用いた生地は、表面全面のプリントではなく、生地に模様上にプリントされた部分的なプリントの生地である。
計測試験は、37℃に加熱したプレート上に、実施例の生地の表面を上に向けて載せ置き、比較例としてプリント未加工のナイロンベア天竺の生地を隣に載せ置き、サーモグラフィによってプレート上の生地の温度変化を観察した。なお、本発明の実施品としては、ベア天竺以外に、メッシュ生地にプリント加工したものでも計測した。
(Heat dissipation)
The heat radiation of the obtained fabric printed with the ink containing far infrared radiation ceramics was imaged using a thermographic measuring device manufactured by FLIR, and the temperature was measured while being visualized as a color temperature. The cloth used in the experiment is not a print on the entire surface but a partially printed cloth printed on the pattern.
In the measurement test, the surface of the fabric of the example was placed on the plate heated to 37° C. with the surface of the fabric facing upward, and as a comparative example, the fabric of the unprinted nylon bare cloth was placed next to it, and the plate was placed on the plate by thermography. The temperature change of the dough was observed. In addition to the bare sheet cloth, as a product embodying the present invention, measurement was also performed on a mesh cloth printed.
図3に、37℃のプレート上に載せ置いた直後と、1分経過後のサーモグラフィの結果を示す。
本発明の実施品のベア天竺は、
載置直後:平均36.8℃、
1分後:平均36.9℃、
30分後:平均36.9℃であった。
他方、未プリントの比較例のベア天竺では、
載置直後:平均36.4℃、
1分後:平均36.3℃、
30分後:平均36.3℃であった。
FIG. 3 shows the results of thermography immediately after placing on a plate at 37° C. and after 1 minute.
Bear Tenjiku of the product of the present invention,
Immediately after placing: average 36.8°C,
1 minute later: average 36.9° C.,
After 30 minutes: The average temperature was 36.9°C.
On the other hand, in the unprinted bare sheet of the comparative example,
Immediately after placing: Average 36.4°C,
1 minute later: average 36.3° C.,
After 30 minutes: The average was 36.3°C.
ベア天竺の場合、遠赤外線放射セラミックス粉末が表面にプリントされたものは、部分プリントであっても、未加工品よりも0.5〜0.6℃温度が高く、熱放出性に優れ、また、時間経過により低下しにくく放熱生が維持されていることがわかった。
また、メッシュ生地では、載置直後のみ37.0℃と熱放出性が高かったが、すぐにメッシュによる通気効果は飽和し、以降は、ベア天竺の実施品と放熱性において差異は認められなかった。
In the case of bare sheet, the far-infrared radiating ceramic powder printed on the surface has a higher temperature of 0.5 to 0.6° C. than the unprocessed product even if it is a partial print, and it has excellent heat dissipation. , It was found that the heat dissipation was maintained and did not easily decrease with the passage of time.
In addition, the mesh fabric had a high heat-releasing property of 37.0° C. just after being placed, but immediately the ventilation effect of the mesh was saturated, and thereafter, no difference was observed in the heat dissipation property with the bare Tenjiku product. It was
以上のように、放熱性に優れた生地を、肌に密着させる面を裏面、プリントされた表面を外に向けた衣料品に適用すると、体内の発熱は遠赤外線として外部に効率よく放射される。また、太陽光の赤外線と放射される遠赤外線が干渉することとなり、その分だけ遮熱されることとなる。 As described above, when applying a fabric with excellent heat dissipation properties to clothing that has the surface that adheres to the skin as the back and the printed surface that faces outward, the heat generated in the body is efficiently radiated to the outside as far infrared rays. .. Further, the infrared rays of the sunlight interfere with the emitted far infrared rays, and the heat is shielded accordingly.
衣料品として着用した場合の放熱性について、本発明の実施品の生地を用いたインナーのシャツを被験者に着せた直後の背面のサーモグライフィを計測し、その後に脱衣した直後のサーモグラフィを比較した。
着用直後:最大34.7℃
最小31.6℃
平均33.3℃
脱衣直後:最大35.3℃
最小31.9℃
平均33.6℃
インナーを着用しているほうが、未着用よりも平均0.3℃低かった。
Regarding heat dissipation when worn as clothing, the back thermogram of the subject immediately after wearing the inner shirt using the fabric of the present invention was measured, and the thermography immediately after undressing was compared. ..
Immediately after wearing: Max. 34.7°C
Minimum 31.6°C
Average 33.3°C
Immediately after undressing: maximum 35.3°C
Minimum 31.9°C
Average 33.6°C
Wearing the inner wear was 0.3°C lower on average than not wearing it.
(接触冷温感試験 Q−max)
生地の一方表面側に遠赤外線放射セラミックス粉末を含む樹脂インクをプリント加工により捺染し、裏面にはインク成分が達していないプリント物(表面プリントがなされた生地)を得た後、KES−F7サーモラボII型を用いて、表面プリントがなされた生地の表面及び裏面の接触冷温感をそれぞれ計測した。(試験環境:温度20℃,湿度65%RH、温度検出器と試験片との温度差:20℃)
(Contact cold and warm feeling test Q-max)
KES-F7 Thermo Lab after printing a resin ink containing far-infrared radiation ceramics powder on one surface side of the cloth by printing, and obtaining a printed material (surface cloth) on which the ink component has not reached the back surface. Using the type II, the contact cold and warm sensations of the front surface and the back surface of the fabric on which the front surface was printed were measured. (Test environment: temperature 20°C, humidity 65%RH, temperature difference between temperature detector and test piece: 20°C)
初期接触冷感値
[インク中に遠赤外線放射セラミックス粉末を3mass%配合した場合]
表面: 0.400W/cm2
裏面: 0.342W/cm2
表面と裏面の差分:0.058W/cm2
[インク中に遠赤外線放射セラミックス粉末を5mass%配合した場合]
表面: 0.402W/cm2
裏面: 0.332W/cm2
表面と裏面の差分:0.070W/cm2
Initial contact cooling sensation value [when 3 mass% of far-infrared emitting ceramic powder is mixed in ink]
Surface: 0.400 W/cm 2
Back side: 0.342 W/cm 2
Difference between front surface and back surface: 0.058 W/cm 2
[When 5 mass% of far-infrared emitting ceramic powder is mixed in the ink]
Surface: 0.402 W/cm 2
Back side: 0.332 W/cm 2
Difference between front surface and back surface: 0.070 W/cm 2
接触冷温感評価値Q−maxは、接触物と生地の間の瞬間的な熱の移動量を計測したものであって、値が大きいと、熱の移動量が多いことから、肌が生地に触れたときに冷たく感じることとなる。
上に示した試験では、裏面の値はナイロンのベース生地側の接触冷感であって、表面の値は遠赤外線放射物質含有インクでプリントされた面の接触冷感である。表面側の値のほうが裏面よりも大きいことから、プリントされた表面のほうが放熱性に優れた成分が配されていることが確認された。
The contact cooling/cooling sensation evaluation value Q-max is a measurement of the instantaneous amount of heat transfer between the contact object and the fabric. When the value is large, the amount of heat transfer is large, so the skin does not touch the fabric. You will feel cold when you touch it.
In the test shown above, the value on the back side is the contact cooling sensation on the side of the base fabric of nylon, and the value on the surface is the contact cooling sensation on the side printed with the ink containing the far infrared emitting substance. Since the value on the front surface side is larger than the value on the back surface, it was confirmed that the printed surface has a component excellent in heat dissipation.
そして、表面と裏面のQ−maxの値の差が十分にあれば、たとえば0.010〜0.100W/cm2あれば、裏面に到達していないことの目安となる。上に示した測定結果からは、Q−maxの値に0.050W/cm2以上の差があり、遠赤外線放射セラミックス粉末がインク中に3%や5%配合された実用範囲のインクでプリント加工した場合でも、表面と裏面の接触冷感値の差は、0.050W/cm2以上確保されており、裏面に到達しない浸透深さの放熱生地が得られることが確認された。 If the difference between the values of Q-max on the front surface and the back surface is sufficient, for example, 0.010 to 0.100 W/cm 2, it is a standard that the back surface is not reached. From the measurement results shown above, there is a difference of 0.050 W/cm 2 or more in the value of Q-max, and the far-infrared emitting ceramic powder is printed in the ink in the practical range containing 3% or 5% in the ink. Even when processed, the difference in contact cooling sensation value between the front surface and the back surface was secured at 0.050 W/cm 2 or more, and it was confirmed that a heat dissipation fabric having a penetration depth that does not reach the back surface can be obtained.
このように、0.050〜0.080W/cm2であれば、プリントによりインキ成分を生地の深さ方向に浸透させた際に、インキ成分は表面から生地の途中までに留まっており、インク成分が裏面には到達していないものといえる。 In this way, if the ink component is 0.050 to 0.080 W/cm 2 , the ink component remains from the surface to the middle of the fabric when the ink component is permeated in the depth direction of the fabric by printing. It can be said that the components did not reach the back surface.
また、0.015〜0.030W/cm2を確保すれば、厚みにかかわらず、十分に浸透して、深さ方向に80〜90%到達するので、効率のよい実用領域が安定的に確保される。 Further, if 0.015 to 0.030 W/cm 2 is ensured, it penetrates sufficiently regardless of the thickness and reaches 80 to 90% in the depth direction, so a stable and efficient practical area is secured. To be done.
他方、プリント加工された生地の接触冷感値の表面と裏面の値の差がほぼ0であれば、プリント加工面の表面からのインク成分が裏面まで到達しているものである。こうした生地の初期接触冷間値は、表面・裏面共に高い値を示すものであるが、長期的な放熱性においては、体表面に向かう遠赤外線の放射成分が多くなることからその分だけ不利なものとなっており、インク成分が裏面に到達していない本発明の実施例の生地には劣るものであった。こうしたプリント加工のインク成分の浸透具合は、Q−maxの値を目安とすることで簡易に確認することができる。そこで、Q−maxの値を目安として、インクの配合や塗布量などを調整することで浸透具合が適正な生地を安定的に得ることができる。 On the other hand, if the difference in the contact cooling sensation value of the printed fabric from the front surface and the back surface is substantially zero, the ink component from the front surface of the printed surface has reached the back surface. Although the initial contact cold value of such a fabric shows high values on both the front and back surfaces, it is disadvantageous in terms of long-term heat dissipation because the radiation component of far infrared rays toward the body surface increases. However, it was inferior to the fabric of the example of the present invention in which the ink component did not reach the back surface. The degree of permeation of the ink component in such printing can be easily confirmed by using the value of Q-max as a guide. Therefore, by adjusting the composition of the ink, the coating amount, and the like using the value of Q-max as a guide, it is possible to stably obtain a cloth having an appropriate penetration condition.
こうした表面側の接触冷温感値のほうが裏面の値よりも大きい結果は、体表面の熱が裏面側から表面側に伝わったとき、放出されやすいことを意味しており、生地の深さ方向で指向性が生じることや、サーモグラフィの計測結果は実施例の生地のほうが放熱性に優れていたこととも整合している。そこで、本発明の生地が放熱性に優れたものであることが裏付けられた。 The result that the contact cold temperature value on the front side is larger than the value on the back side means that when the heat on the body surface is transferred from the back side to the front side, it is easily released, and in the depth direction of the dough. The directivity is generated, and the measurement result of the thermography is also consistent with the fact that the fabric of the example has better heat dissipation. Therefore, it was confirmed that the fabric of the present invention has excellent heat dissipation.
1 放熱性に優れた本発明の生地
2 ベース生地
3 インク成分
4 表面
5 裏面
6 遠赤外線放射セラミックス微粉末
7 浸透深さ
1 Fabric of the present invention excellent in heat dissipation 2 Base fabric 3 Ink component 4 Front surface 5 Back surface 6 Far infrared radiating ceramic fine powder 7 Penetration depth
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019000900A JP7689815B2 (en) | 2019-01-07 | 2019-01-07 | Heat-dissipating fabrics and clothing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019000900A JP7689815B2 (en) | 2019-01-07 | 2019-01-07 | Heat-dissipating fabrics and clothing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020111838A true JP2020111838A (en) | 2020-07-27 |
JP7689815B2 JP7689815B2 (en) | 2025-06-09 |
Family
ID=71668144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019000900A Active JP7689815B2 (en) | 2019-01-07 | 2019-01-07 | Heat-dissipating fabrics and clothing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7689815B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022077682A (en) * | 2020-11-12 | 2022-05-24 | 大阪瓦斯株式会社 | Radiation cooling type air conditioning clothing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183579A (en) * | 1987-12-29 | 1989-07-21 | Takashi Yonehara | Cloth or paper product coated with ceramics |
JP2004169240A (en) * | 2002-11-22 | 2004-06-17 | Toray Ind Inc | Fiber structure |
US20130143456A1 (en) * | 2011-12-02 | 2013-06-06 | Chiem-Chung Hu | Laminated Cloth with Heat Accumulation and Temperature Maintaining Effect |
JP2014047455A (en) * | 2012-09-04 | 2014-03-17 | Gunze Ltd | Heat radiation property fabric, production method of heat radiation property fabric, and clothing using heat radiation property fabric |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004200199A (en) | 2002-12-16 | 2004-07-15 | Oki Electric Ind Co Ltd | Heat sink sheet |
JP2010098203A (en) | 2008-10-20 | 2010-04-30 | Hitachi Ltd | Cooling device for electronic equipment |
-
2019
- 2019-01-07 JP JP2019000900A patent/JP7689815B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183579A (en) * | 1987-12-29 | 1989-07-21 | Takashi Yonehara | Cloth or paper product coated with ceramics |
JP2004169240A (en) * | 2002-11-22 | 2004-06-17 | Toray Ind Inc | Fiber structure |
US20130143456A1 (en) * | 2011-12-02 | 2013-06-06 | Chiem-Chung Hu | Laminated Cloth with Heat Accumulation and Temperature Maintaining Effect |
JP2014047455A (en) * | 2012-09-04 | 2014-03-17 | Gunze Ltd | Heat radiation property fabric, production method of heat radiation property fabric, and clothing using heat radiation property fabric |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022077682A (en) * | 2020-11-12 | 2022-05-24 | 大阪瓦斯株式会社 | Radiation cooling type air conditioning clothing |
JP7527179B2 (en) | 2020-11-12 | 2024-08-02 | 大阪瓦斯株式会社 | Radiative cooling air-conditioned clothing |
Also Published As
Publication number | Publication date |
---|---|
JP7689815B2 (en) | 2025-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250116062A1 (en) | Apparel with heat retention layer and method of making the same | |
US11840782B2 (en) | Synthetic radiator fabric | |
CN110373907B (en) | Graphene constant-temperature fabric and manufacturing method thereof | |
JP2020111838A (en) | Fabric and clothing excellent in heat radiation property | |
KR20160077355A (en) | Fleece with heat-accumulating and keeping-warm property and preparation method thereof | |
JP2003096663A (en) | Heat retaining fabric | |
JP7112932B2 (en) | Heat shielding fiber fabric and clothing using it | |
JPH0641802A (en) | Underwear composed of fiber containing metal | |
JP2585166B2 (en) | Socks made of metal-containing fibers | |
JP2011099187A5 (en) | ||
KR102068528B1 (en) | Cool feeling functional composition and method for producing Cool feeling functional fabric or leather using the same | |
JP7307289B1 (en) | clothing fabric | |
CN108048937A (en) | A kind of Double-face fabric for keeping body temperature constant and its preparation process | |
JP3227753U (en) | Fiber structure | |
Gao et al. | IR selectively reflective fabric with excellent solar heat shielding ability and heat loss rate | |
US10829889B1 (en) | Thermal enhancement additives useful for fabrics | |
JP2728438B2 (en) | Insulating fabric | |
JP5561633B2 (en) | Fabric having heat insulation | |
JPH05247854A (en) | Composite sheet | |
JPS62238823A (en) | Sheath-core conjugated yarn and processing method thereof | |
KR20210047988A (en) | Manufacturing method for heat-generating fabric having excellent insulation effect | |
Kim | Thermal wear comfort characteristics of Al2O3/ATO-incorporated PET fabrics through thermal manikin and wearer trial tests | |
KR20180014965A (en) | Cool-touch high moisture transferable textile sheet | |
KR20180117859A (en) | High moisture transferable textile sheet with Enhanced cool feeling | |
KR102016132B1 (en) | Body-heat reflective textile sheet having improved warmth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221115 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230314 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230921 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20231027 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20231228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250528 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7689815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |