[go: up one dir, main page]

JP2020107689A - Electrostatic chuck and manufacturing method of electrostatic chuck - Google Patents

Electrostatic chuck and manufacturing method of electrostatic chuck Download PDF

Info

Publication number
JP2020107689A
JP2020107689A JP2018243970A JP2018243970A JP2020107689A JP 2020107689 A JP2020107689 A JP 2020107689A JP 2018243970 A JP2018243970 A JP 2018243970A JP 2018243970 A JP2018243970 A JP 2018243970A JP 2020107689 A JP2020107689 A JP 2020107689A
Authority
JP
Japan
Prior art keywords
hole
base member
plate
electrostatic chuck
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018243970A
Other languages
Japanese (ja)
Other versions
JP7278072B2 (en
Inventor
翔太 齊藤
Shota Saito
翔太 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018243970A priority Critical patent/JP7278072B2/en
Publication of JP2020107689A publication Critical patent/JP2020107689A/en
Application granted granted Critical
Publication of JP7278072B2 publication Critical patent/JP7278072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide an electrostatic chuck in which temperature distribution on the first surface of a plate-like member can be controlled.SOLUTION: An electrostatic chuck includes a plate-like member having a first surface substantially orthogonal to a first direction and a second surface on the opposite side to the first surface, a base member having a third surface, and placed so that the third surface is located on the second surface side of the plate-like member, and a juncture for joining the plate-like member and the base member, and holds an object on the first surface of the plate-like member. In the base member, a first open hole penetrating in the first direction and, in the view of the first direction, located at a position overlapping the first surface of the plate-like member, a second open hole, and a cooling mechanism are formed. The juncture includes a first portion joined to the second surface of the plate-like member and the third surface of the base member, and a second portion joined to the second surface of the plate-like member and the inner surface of the base member defining the first open hole. The second surface of the plate-like member and the inner surface of the base member defining the second open hole are not joined.SELECTED DRAWING: Figure 5

Description

本明細書に開示される技術は、静電チャックに関する。 The technology disclosed in this specification relates to an electrostatic chuck.

例えば半導体を製造する際にウェハを保持するために、静電チャックが用いられる。静電チャックは、例えばセラミックス製の板状部材と、例えば金属製のベース部材と、板状部材とベース部材とを接合する接合部と、板状部材の内部に設けられたチャック電極とを備えており、チャック電極に電圧が印加されることにより発生する静電引力を利用して、板状部材の第1の表面(吸着面)にウェハを吸着して保持する。 Electrostatic chucks are used, for example, to hold wafers during semiconductor manufacturing. The electrostatic chuck includes, for example, a plate member made of ceramics, a base member made of metal, a joining portion for joining the plate member and the base member, and a chuck electrode provided inside the plate member. The electrostatic attraction generated by applying a voltage to the chuck electrode is used to attract and hold the wafer on the first surface (adsorption surface) of the plate member.

静電チャックに保持されたウェハの温度分布が不均一になると、ウェハに対する各処理(成膜、エッチング等)の精度が低下するおそれがあるため、静電チャックにはウェハの温度分布をできるだけ均一にする性能が求められる。そのため、ウェハにおける温度バラツキを低減するため、板状部材と、ベース部材と、接合部と、温度調整のための複数の調整ロッドとを備える保持装置が知られている(例えば、特許文献1参照)。当該板状部材には、厚さ方向に貫通する複数の第1の貫通孔が形成されている。また、上記接合部には、上記複数の第1の貫通孔のそれぞれと連通する複数の第2の貫通孔が形成されている。このような構成において、上記複数の調整ロッドは、接合部の熱伝導率よりも高い熱伝導率を有する材料により形成されていると共に、上記第1の貫通孔に挿入され、その先端を上記第2の貫通孔内に配置可能に支持されている。この保持装置において、板状部材の吸着面の温度を測定しながら、ベース部材の下面から調整ロッドの先端の位置を調整することにより、当該調整ロッド付近の温度を変化させる。 If the temperature distribution of the wafer held on the electrostatic chuck becomes uneven, the accuracy of each process (deposition, etching, etc.) on the wafer may decrease, so the temperature distribution of the wafer should be as uniform as possible on the electrostatic chuck. The performance to be required is required. Therefore, in order to reduce the temperature variation in the wafer, a holding device including a plate-shaped member, a base member, a joint portion, and a plurality of adjustment rods for temperature adjustment is known (for example, see Patent Document 1). ). A plurality of first through holes penetrating in the thickness direction is formed in the plate member. In addition, a plurality of second through holes that communicate with each of the plurality of first through holes are formed in the joint portion. In such a configuration, the plurality of adjusting rods are formed of a material having a higher thermal conductivity than the thermal conductivity of the joint portion, and are inserted into the first through hole, and the tips of the adjusting rods are inserted into the first through hole. It is supported so that it can be arranged in the two through holes. In this holding device, the temperature in the vicinity of the adjusting rod is changed by adjusting the position of the tip of the adjusting rod from the lower surface of the base member while measuring the temperature of the suction surface of the plate-shaped member.

特開2015−185552号公報JP, 2005-185552, A

上記従来の構成では、静電チャックが備える調整ロッドが接合部と異なる材料で形成されているため、当該調整ロッドの先端が接合部と接する場合において、接合部の面内における均一な熱伝導性を低下させるおそれがある。 In the above conventional configuration, since the adjusting rod included in the electrostatic chuck is formed of a material different from that of the joint, when the tip of the adjusting rod makes contact with the joint, uniform thermal conductivity in the plane of the joint is obtained. May decrease.

本明細書では、上述した課題を解決することが可能な技術を開示する。 This specification discloses a technique capable of solving the above-mentioned problems.

本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The technology disclosed in this specification can be implemented, for example, in the following modes.

(1)本明細書に開示される静電チャックは、第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する板状部材と、第3の表面を有し、前記第3の表面が前記板状部材の前記第2の表面側に位置するように配置されたベース部材であって、前記第1の方向に貫通し、かつ、前記第1の方向視において、前記板状部材の前記第1の表面に重なる位置に配置された第1の貫通孔と、第2の貫通孔と、冷却機構とが形成されたベース部材と、前記板状部材と前記ベース部材とを接合する接合部と、を備え、前記板状部材の前記第1の表面上に対象物を保持する静電チャックにおいて、前記接合部は、前記板状部材の前記第2の表面と、前記ベース部材の前記第3の表面と、に接合された第1の部分と、前記板状部材の前記第2の表面と、前記第1の貫通孔を画定する前記ベース部材の内面と、に接合された第2の部分と、を備え、前記板状部材の前記第2の表面と、前記第2の貫通孔を画定する前記ベース部材の内面と、は接合されていない。 (1) An electrostatic chuck disclosed in the present specification is a plate-shaped member having a first surface substantially orthogonal to a first direction and a second surface opposite to the first surface. And a base member having a third surface, the third surface being arranged so as to be located on the second surface side of the plate-shaped member, the base member penetrating in the first direction, A base member having a first through hole, a second through hole, and a cooling mechanism arranged at a position overlapping the first surface of the plate-shaped member when viewed in the first direction. And a joint portion that joins the plate member and the base member to each other, wherein the joint portion holds the object on the first surface of the plate member. A first portion joined to the second surface of the plate-shaped member and the third surface of the base member, the second surface of the plate-shaped member, and the first through hole. An inner surface of the base member defining a second portion joined to the second surface of the plate member, and an inner surface of the base member defining the second through hole, Are not joined.

このように、本静電チャックでは、第1の方向視において、板状部材の第1の表面に重なる位置に第1の貫通孔と、第2の貫通孔とが形成されている。また、第1の貫通孔については、その内面が第2の部分を介して板状部材の第2の表面と接合されている。一方、第2の貫通孔については、その内面は板状部材の第2の表面と接合されていない。すなわち、本静電チャックでは、第2の部分を備えていない第2の貫通孔の周辺と比較して、第2の部分を備えた第1の貫通孔の周辺において、板状部材とベース部材との間の伝熱が良好である。 As described above, in the present electrostatic chuck, the first through hole and the second through hole are formed at positions overlapping the first surface of the plate-shaped member in the first direction view. In addition, the inner surface of the first through hole is joined to the second surface of the plate-shaped member via the second portion. On the other hand, the inner surface of the second through hole is not joined to the second surface of the plate member. That is, in this electrostatic chuck, as compared with the periphery of the second through hole that does not include the second portion, the plate-shaped member and the base member around the first through hole that includes the second portion. The heat transfer between and is good.

静電チャックの板状部材における吸着面には、静電チャック製造時のバラツキ等に起因して、高温の温度特異点が発生することがある。本静電チャックでは、第1の貫通孔の周辺において、板状部材とベース部材との間の伝熱(熱引き)が良好となることにより、ベース部材に形成された冷却機構による冷却効率を向上させることができる。すなわち、本静電チャックでは、上記構成が採用されているため、第1の表面において、第1の方向視における第1の貫通孔に重なる領域とその付近の温度を降温調整することができる。従って、本静電チャックによれば、板状部材における第1の表面の温度分布が制御された(例えば、温度分布の均一性を向上させた)静電チャックを提供することができ、ひいては、第1の表面に保持された対象物の温度分布の制御性を向上させることができる。 A temperature singular point of high temperature may occur on the attraction surface of the plate-shaped member of the electrostatic chuck due to variations in manufacturing the electrostatic chuck. In this electrostatic chuck, the heat transfer (heat conduction) between the plate-shaped member and the base member becomes good in the vicinity of the first through hole, so that the cooling efficiency by the cooling mechanism formed in the base member is improved. Can be improved. That is, in the present electrostatic chuck, since the above-described configuration is adopted, it is possible to adjust the temperature of the region on the first surface overlapping the first through hole in the first direction and the temperature in the vicinity thereof. Therefore, according to the present electrostatic chuck, it is possible to provide an electrostatic chuck in which the temperature distribution of the first surface of the plate-shaped member is controlled (for example, the uniformity of the temperature distribution is improved). The controllability of the temperature distribution of the object held on the first surface can be improved.

(2)上記静電チャックにおいて、前記第1の部分を形成する材料と、前記第2の部分を形成する材料とは、同じである構成としてもよい。このため、本静電チャックが歪みや圧縮等の応力を受けたときに、第1の部分と第2の部分とが同様に変形することにより、当該変形に伴う応力を効果的に緩和することができる。また、本静電チャックによれば、第1の部分と第2の部分とが同じ材料により形成されていることにより、両者の親和性が良好であり、第2の部分が第1の部分から剥離することを抑制することができる。 (2) In the electrostatic chuck, the material forming the first portion and the material forming the second portion may be the same. Therefore, when the electrostatic chuck is subjected to stress such as strain or compression, the first part and the second part are similarly deformed, so that the stress associated with the deformation can be effectively relieved. You can Further, according to the present electrostatic chuck, since the first portion and the second portion are formed of the same material, the affinity between them is good, and the second portion is different from the first portion. It is possible to suppress peeling.

(3)上記静電チャックにおいて、前記板状部材の前記第1の表面は、略円形であり、前記第1の方向視において、前記板状部材の前記第1の表面の中心と前記ベース部材に形成された前記第1の貫通孔の中心との距離と、前記板状部材の前記第1の表面の中心と前記第2の貫通孔の中心との距離とは、前記第1の表面における半径の2分の1以上の長さである構成としてもよい。換言すれば、本静電チャックでは、第1の方向視において、上記第1の貫通孔および第2の貫通孔は、板状部材の第1の表面の内の外周付近に位置している。板状部材の吸着面の内の外周付近は、静電チャック製造時のバラツキ等に起因した、温度特異点が発生しやすい部分である。本静電チャックでは、上記構成が採用されているため、第1の方向視において、上記温度特異点が発生しやすい部分である第1の表面の外周付近における、第1の貫通孔および第2の貫通孔に重なる領域とその付近の温度を調整することができる。従って、本静電チャックによれば、板状部材における第1の表面の外周付近の温度分布が制御された(例えば、温度分布の均一性を向上させた)静電チャックを提供することができ、ひいては、第1の表面に保持された対象物の温度分布の制御性を向上させることができる。 (3) In the electrostatic chuck, the first surface of the plate-shaped member is substantially circular, and the center of the first surface of the plate-shaped member and the base member in the first direction view. The distance between the center of the first through hole and the distance between the center of the first surface of the plate member and the center of the second through hole formed in The length may be ½ or more of the radius. In other words, in the present electrostatic chuck, the first through hole and the second through hole are located near the outer periphery of the first surface of the plate-shaped member when viewed in the first direction. The vicinity of the outer periphery of the attraction surface of the plate-shaped member is a portion where a temperature singularity is likely to occur due to variations in manufacturing the electrostatic chuck. Since this electrostatic chuck employs the above configuration, the first through hole and the second through hole near the outer periphery of the first surface, which is a portion where the temperature singularity is likely to occur, in the first direction view. It is possible to adjust the temperature of the region overlapping with the through hole and its vicinity. Therefore, according to the present electrostatic chuck, it is possible to provide an electrostatic chuck in which the temperature distribution near the outer periphery of the first surface of the plate-shaped member is controlled (for example, the uniformity of temperature distribution is improved). As a result, the controllability of the temperature distribution of the object held on the first surface can be improved.

(4)上記静電チャックにおいて、前記接合部には、接合部貫通孔が形成されており、前記接合部貫通孔の直径は、前記接合部貫通孔に連通する前記第2の貫通孔の直径と比較して大きい構成としてもよい。換言すれば、本静電チャックにおいて、板状部材の第2の表面における接合部貫通孔への露出面の面積は、当該接合部貫通孔の直径が当該接合部貫通孔に連通する第2の貫通孔と同径である構成における接合部貫通孔への露出面の面積と比較して大きい。このため、上記接合部貫通孔の周辺では、上記第2の貫通孔と同径である接合部貫通孔の周辺と比較して、板状部材とベース部材との間の伝熱が抑制される。 (4) In the electrostatic chuck, a joining portion through hole is formed in the joining portion, and the diameter of the joining portion through hole is the diameter of the second through hole that communicates with the joining portion through hole. It may be configured to be larger than that. In other words, in this electrostatic chuck, the area of the exposed surface of the second surface of the plate-shaped member to the joint through-hole is the second area where the diameter of the joint through-hole communicates with the joint through-hole. It is larger than the area of the exposed surface of the joint through-hole in the configuration having the same diameter as the through-hole. Therefore, heat transfer between the plate-shaped member and the base member is suppressed in the vicinity of the joint through-hole, as compared with the vicinity of the joint through-hole having the same diameter as the second through-hole. ..

静電チャックの板状部材における吸着面には、静電チャック製造時のバラツキ等に起因して、低温の温度特異点が発生することがある。本静電チャックでは、第2の貫通孔の周辺において、板状部材とベース部材との間の伝熱(熱引き)が抑制されることにより、ベース部材に形成された冷却機構による冷却効率を抑制することができる。すなわち、本静電チャックでは、上記構成が採用されているため、第1の表面において、第1の方向視における第2の貫通孔に重なる領域とその付近の温度を昇温調整することができる。従って、本静電チャックによれば、板状部材における第1の表面の温度分布がより効果的に制御された(例えば、温度分布の均一性を向上させた)静電チャックを提供することができ、ひいては、第1の表面に保持された対象物の温度分布の制御性をより効果的に向上させることができる。 A low temperature singular point may occur on the attraction surface of the plate-shaped member of the electrostatic chuck due to variations in manufacturing the electrostatic chuck. In this electrostatic chuck, the heat transfer (heat transfer) between the plate member and the base member is suppressed around the second through hole, so that the cooling efficiency of the cooling mechanism formed in the base member is improved. Can be suppressed. That is, in the present electrostatic chuck, since the above-described configuration is adopted, it is possible to adjust the temperature of the region on the first surface overlapping with the second through hole in the first direction and the temperature in the vicinity thereof. .. Therefore, according to the present electrostatic chuck, it is possible to provide an electrostatic chuck in which the temperature distribution of the first surface of the plate-shaped member is more effectively controlled (for example, the uniformity of temperature distribution is improved). Therefore, the controllability of the temperature distribution of the object held on the first surface can be improved more effectively.

(5)本明細書に開示される静電チャックの製造方法は、第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する板状部材と、第3の表面を有し、前記第3の表面が前記板状部材の前記第2の表面側に位置するように配置され、かつ、冷却機構を有するベース部材と、前記板状部材と前記ベース部材とを接合する接合部と、を備え、前記板状部材の前記第1の表面上に対象物を保持する静電チャックの製造方法において、前記ベース部材に対して、前記第1の方向に貫通し、かつ、前記第1の方向視において、前記板状部材の前記第1の表面に重なる位置に第1の貫通孔と第2の貫通孔とが形成された前記ベース部材を準備する、第1の工程と、前記接合部における、前記板状部材と前記ベース部材とを接合する前の状態である第1の接合部に対して、前記第1の方向に貫通し、かつ、前記ベース部材に形成された前記第1の貫通孔と前記第2の貫通孔との内の少なくとも前記第2の貫通孔に連通する接合部貫通孔が形成された前記第1の接合部を準備する、第2の工程と、前記板状部材と前記ベース部材との間に前記第1の接合部を配置し、前記板状部材と前記ベース部材とが前記接合部によって接合された積層体を作製する、第3の工程と、前記積層体を構成する前記板状部材における前記第1の表面の温度分布を測定する、第4の工程と、前記第4の工程において、前記板状部材における前記第1の表面の温度分布の測定の結果、前記第1の表面の温度分布に高温領域の存在が示されたとき、前記第1の方向視において、前記高温領域に重なる領域に位置する前記第1の貫通孔に対して、充填部材を充填することにより、前記板状部材の前記第2の表面と、前記第1の貫通孔を画定する前記ベース部材の内面とを、連結する、第5の工程と、前記第4の工程において、前記板状部材における前記第1の表面の温度分布の測定の結果、前記第1の表面の温度分布に低温領域の存在が示されたとき、前記第1の方向視において、前記低温領域に重なる領域に位置する前記第2の貫通孔に連通する前記接合部貫通孔に対して、前記接合部貫通孔の直径が、前記接合部貫通孔に連通する前記第2の貫通孔の直径と比較して大きくなるよう、前記接合部の一部を除去する、第6の工程と、の少なくとも一方、を備える。 (5) The method of manufacturing an electrostatic chuck disclosed in the present specification has a first surface substantially orthogonal to the first direction, and a second surface opposite to the first surface. A plate-shaped member; and a base member having a third surface, the base member having a cooling mechanism, the base member being arranged such that the third surface is located on the second surface side of the plate-shaped member, In a method of manufacturing an electrostatic chuck, comprising: a joining member that joins a plate-shaped member and the base member, and holding an object on the first surface of the plate-shaped member; The base having a first through hole and a second through hole formed at a position penetrating in a first direction and overlapping the first surface of the plate-shaped member when viewed in the first direction. A first step of preparing a member and a first joining portion in a state before joining the plate member and the base member in the joining portion are penetrated in the first direction. And a first joint in which a joint portion through hole communicating with at least the second through hole of the first through hole and the second through hole formed in the base member is formed. A second step of preparing a portion, and arranging the first joint between the plate-shaped member and the base member, and joining the plate-shaped member and the base member by the joint. In the third step of producing a laminated body, in the fourth step of measuring the temperature distribution of the first surface of the plate-shaped member constituting the laminated body, and in the fourth step, the plate As a result of the measurement of the temperature distribution on the first surface of the strip-shaped member, when the presence of a high temperature region is shown in the temperature distribution on the first surface, in the first direction view, in a region overlapping the high temperature region. By filling a filling member into the first through hole located, the second surface of the plate-like member and the inner surface of the base member that defines the first through hole are connected to each other. In the fifth step and the fourth step, as a result of measuring the temperature distribution on the first surface of the plate-shaped member, the existence of a low temperature region was shown in the temperature distribution on the first surface. At this time, in the first direction view, with respect to the joint portion through hole communicating with the second through hole located in the region overlapping with the low temperature region, the diameter of the joint portion through hole is equal to the joint portion penetrating hole. At least one of a sixth step of removing a part of the joint so as to be larger than a diameter of the second through hole communicating with the hole.

このように、本静電チャックの製造方法では、予めベース部材に対して第1の貫通孔および第2の貫通孔を形成する。次いで、第1の貫通孔および第2の貫通孔が形成されたベース部材と、板状部材と、接合部とから構成される積層体を作製し、作製された積層体における板状部材の第1の表面の温度分布を測定する。当該測定の結果、第1の表面に温度分布の高温領域の存在が示されたとき、第1の方向視において、高温領域に重なる領域に位置する第1の貫通孔に対して、上記第5の工程を実行する。また、上記測定の結果、第1の表面に温度分布の低温領域の存在が示されたとき、第1の方向視において、低温領域に重なる領域に位置する第2の貫通孔に連通する接合部貫通孔に対して、上記第6の工程を実行する。 As described above, in the present electrostatic chuck manufacturing method, the first through hole and the second through hole are previously formed in the base member. Next, a laminated body composed of a base member having the first through hole and the second through hole formed therein, a plate-shaped member, and a joint portion is produced, and the first of the plate-shaped members in the produced laminated body is produced. The temperature distribution on the surface of No. 1 is measured. As a result of the measurement, when the presence of a high temperature region of the temperature distribution is shown on the first surface, in the first direction view, with respect to the first through hole located in the region overlapping the high temperature region, Perform the process of. Further, as a result of the above measurement, when the presence of the low temperature region of the temperature distribution is shown on the first surface, the joint portion communicating with the second through hole located in the region overlapping with the low temperature region in the first direction view. The sixth step is performed on the through hole.

第5の工程では、第1の貫通孔に第2の部分を充填することにより、板状部材の第2の表面と、第1の貫通孔を画定するベース部材の内面とを連結する。これにより、板状部材からベース部材への熱引きを向上させることができ、ベース部材に形成された冷却機構による冷却効率を向上させることができる。すなわち、第1の表面の内の高温領域の温度を降温させることができる。また、第6の工程では、第2の貫通孔に連通する接合部貫通孔に対して、板状部材の第2の表面の当該接合部貫通孔への露出面がより大きくなるよう、接合部(第1の部分)の一部を除去して接合部貫通孔を形成する。これにより、板状部材からベース部材への熱引きを抑制させることができ、ベース部材に形成された冷却機構による冷却効率を抑制させることができる。すなわち、第1の表面の内の低温領域の温度を昇温させることができる。従って、本静電チャックの製造方法によれば、積層体の板状部材における第1の表面の温度分布の測定結果に基づいて、板状部材における第1の表面の温度分布を制御する(例えば、温度分布の均一性を向上させる)ことができ、ひいては、第1の表面に保持された対象物の温度分布の制御性を向上させることができる。 In the fifth step, the second surface of the plate-like member and the inner surface of the base member defining the first through hole are connected by filling the second portion in the first through hole. As a result, heat transfer from the plate member to the base member can be improved, and the cooling efficiency of the cooling mechanism formed on the base member can be improved. That is, the temperature of the high temperature region of the first surface can be lowered. Further, in the sixth step, the joint portion is formed such that the exposed surface of the second surface of the plate-shaped member to the joint through hole is larger than that of the joint through hole communicating with the second through hole. A part of the (first portion) is removed to form a joint through hole. As a result, heat transfer from the plate member to the base member can be suppressed, and the cooling efficiency of the cooling mechanism formed on the base member can be suppressed. That is, the temperature of the low temperature region of the first surface can be raised. Therefore, according to the present electrostatic chuck manufacturing method, the temperature distribution of the first surface of the plate-shaped member is controlled based on the measurement result of the temperature distribution of the first surface of the plate-shaped member of the laminated body (for example, The uniformity of the temperature distribution can be improved), and by extension, the controllability of the temperature distribution of the object held on the first surface can be improved.

なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、保持装置、静電チャック、真空チャック、それらの製造方法等の形態で実現することが可能である。 The technology disclosed in the present specification can be realized in various forms, for example, a holding device, an electrostatic chuck, a vacuum chuck, a manufacturing method thereof, or the like. is there.

本実施形態における静電チャック100の外観構成を概略的に示す斜視図である。It is a perspective view which shows the external appearance structure of the electrostatic chuck 100 in this embodiment roughly. 本実施形態における静電チャック100のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the XZ cross-section structure of the electrostatic chuck 100 in this embodiment. 図2のIII−IIIの位置における静電チャック100のXY断面構成を概略的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing the XY cross-sectional configuration of the electrostatic chuck 100 at the position of III-III in FIG. 2. 図2のIV−IVの位置における静電チャック100のXY断面構成を概略的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing an XY sectional configuration of the electrostatic chuck 100 at a position IV-IV in FIG. 2. 本実施形態における静電チャック100の一部分(図2および図3のX1部)のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows schematically the XZ cross-section structure of a part (X1 part of FIG. 2 and FIG. 3) of the electrostatic chuck 100 in this embodiment. 本実施形態における静電チャック100の一部分(図2および図3のX2部)のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows schematically the XZ cross-section structure of a part (X2 part of FIG. 2 and FIG. 3) of the electrostatic chuck 100 in this embodiment. 本実施形態における静電チャック100の製造方法を示すフローチャートである。6 is a flowchart showing a method of manufacturing the electrostatic chuck 100 according to the present embodiment. 本実施形態における静電チャック100の製造方法を模式的に示す説明図である。It is explanatory drawing which shows the manufacturing method of the electrostatic chuck 100 in this embodiment typically.

A.本実施形態:
A−1.静電チャック100の構成:
図1は、本実施形態における静電チャック100の外観構成を概略的に示す斜視図であり、図2は、本実施形態における静電チャック100のXZ断面構成を概略的に示す説明図である。図3は、本実施形態における静電チャック100のXY断面構成を概略的に示す説明図であり、図4は、本実施形態における静電チャック100のXY断面構成を概略的に示す説明図である。図3には、図2のIII−IIIの位置における静電チャック100のXY断面構成が示されており、図4には、図2のIV−IVの位置における静電チャック100のXY断面構成が示されている。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック100は実際にはそのような向きとは異なる向きで設置されてもよい。
A. This embodiment:
A-1. Structure of the electrostatic chuck 100:
FIG. 1 is a perspective view schematically showing an external configuration of an electrostatic chuck 100 according to the present embodiment, and FIG. 2 is an explanatory diagram schematically showing an XZ sectional configuration of the electrostatic chuck 100 according to the present embodiment. .. FIG. 3 is an explanatory diagram schematically showing the XY sectional configuration of the electrostatic chuck 100 in the present embodiment, and FIG. 4 is an explanatory diagram schematically showing the XY sectional configuration of the electrostatic chuck 100 in the present embodiment. is there. FIG. 3 shows an XY sectional configuration of the electrostatic chuck 100 at the position III-III in FIG. 2, and FIG. 4 shows an XY sectional configuration of the electrostatic chuck 100 at the position IV-IV in FIG. It is shown. In each drawing, XYZ axes that are orthogonal to each other for specifying directions are shown. In this specification, the Z-axis positive direction is referred to as an upward direction and the Z-axis negative direction is referred to as a downward direction for convenience sake, but the electrostatic chuck 100 is actually installed in a direction different from such an orientation. May be done.

静電チャック100は、対象物(例えば半導体ウェハW)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバー内でウェハW(以下、「ウェハW」という)を固定するために使用される。静電チャック100は、所定の配列方向(本実施形態では上下方向(Z軸方向))に並べて配置された板状部材10およびベース部材20を備える。板状部材10とベース部材20とは、板状部材10の下面S2(図2参照)とベース部材20の上面S3とが、後述する接合部30を挟んで上記配列方向に対向するように配置される。すなわち、ベース部材20は、ベース部材20の上面S3が板状部材10の下面S2側に位置するように配置される。 The electrostatic chuck 100 is a device that attracts and holds an object (for example, a semiconductor wafer W) by electrostatic attraction, and fixes the wafer W (hereinafter, referred to as “wafer W”) in a vacuum chamber of a semiconductor manufacturing apparatus, for example. Used to The electrostatic chuck 100 includes a plate-shaped member 10 and a base member 20, which are arranged side by side in a predetermined arrangement direction (the vertical direction (Z-axis direction in this embodiment)). The plate-shaped member 10 and the base member 20 are arranged such that the lower surface S2 (see FIG. 2) of the plate-shaped member 10 and the upper surface S3 of the base member 20 face each other in the above-mentioned arrangement direction with a joint portion 30 described later interposed therebetween. To be done. That is, the base member 20 is arranged such that the upper surface S3 of the base member 20 is located on the lower surface S2 side of the plate member 10.

板状部材10は、上述した配列方向(Z軸方向)に略直交する略円形平面状の上面(以下、「吸着面」という)S1を有する部材であり、例えばセラミックス(例えば、アルミナや窒化アルミニウム等)により形成されている。板状部材10の直径は例えば50mm〜500mm程度(通常は200mm〜350mm程度)であり、板状部材10の厚さは例えば1mm〜10mm程度である。板状部材10の吸着面S1は、特許請求の範囲における第1の表面に相当し、板状部材10の下面S2は、特許請求の範囲における第2の表面に相当し、Z軸方向は、特許請求の範囲における第1の方向に相当する。また、本明細書では、Z軸方向に直交する方向を「面方向」ともいう。 The plate-shaped member 10 is a member having a substantially circular planar upper surface (hereinafter, referred to as “adsorption surface”) S1 that is substantially orthogonal to the array direction (Z-axis direction) described above, and is, for example, ceramics (for example, alumina or aluminum nitride). Etc.). The plate member 10 has a diameter of, for example, about 50 mm to 500 mm (usually about 200 mm to 350 mm), and the plate member 10 has a thickness of, for example, about 1 mm to 10 mm. The suction surface S1 of the plate member 10 corresponds to the first surface in the claims, the lower surface S2 of the plate member 10 corresponds to the second surface in the claims, and the Z-axis direction is It corresponds to the first direction in the claims. Further, in the present specification, the direction orthogonal to the Z-axis direction is also referred to as “plane direction”.

図2に示すように、板状部材10の内部には、導電性材料(例えば、タングステン、モリブデン、白金等)により形成されたチャック電極40が配置されている。Z軸方向視でのチャック電極40の形状は、例えば略円形である。チャック電極40に電源(図示せず)から電圧が印加されると、静電引力が発生し、この静電引力によってウェハWが板状部材10の吸着面S1に吸着固定される。 As shown in FIG. 2, inside the plate-shaped member 10, a chuck electrode 40 formed of a conductive material (for example, tungsten, molybdenum, platinum, etc.) is arranged. The shape of the chuck electrode 40 as viewed in the Z-axis direction is, for example, a substantially circular shape. When a voltage is applied to the chuck electrode 40 from a power source (not shown), electrostatic attraction is generated, and the electrostatic attraction causes the wafer W to be attracted and fixed to the attraction surface S1 of the plate-shaped member 10.

板状部材10の内部には、また、導電性材料(例えば、タングステン、モリブデン、白金等)を含む抵抗発熱体により構成されたヒータ電極50が配置されている。ヒータ電極50に電源(図示せず)から電圧が印加されると、ヒータ電極50が発熱することによって板状部材10が温められ、板状部材10の吸着面S1に保持されたウェハWが温められる。これにより、ウェハWの温度分布の制御が実現される。 Inside the plate-shaped member 10, a heater electrode 50 composed of a resistance heating element containing a conductive material (for example, tungsten, molybdenum, platinum, etc.) is also arranged. When a voltage is applied to the heater electrode 50 from a power source (not shown), the heater electrode 50 generates heat to warm the plate-shaped member 10 and warm the wafer W held on the suction surface S1 of the plate-shaped member 10. To be Thereby, control of the temperature distribution of the wafer W is realized.

ベース部材20は、例えば板状部材10と同径の、または、板状部材10より径が大きい円形平面の板状部材であり、例えば金属(アルミニウムやアルミニウム合金等)により形成されている。ベース部材20の直径は、例えば220mm〜550mm程度(通常は220mm〜350mm)であり、ベース部材20の厚さは例えば20mm〜40mm程度である。ベース部材20の上面S3は、特許請求の範囲における第3の表面に相当する。 The base member 20 is, for example, a circular flat plate member having the same diameter as the plate member 10 or a diameter larger than that of the plate member 10, and is made of, for example, metal (aluminum, aluminum alloy, or the like). The diameter of the base member 20 is, for example, about 220 mm to 550 mm (normally 220 mm to 350 mm), and the thickness of the base member 20 is, for example, about 20 mm to 40 mm. The upper surface S3 of the base member 20 corresponds to the third surface in the claims.

ベース部材20は、板状部材10の下面S2とベース部材20の上面S3との間に配置された接合部30によって、板状部材10に接合されている。接合部30は、例えばシリコーン系樹脂やアクリル系樹脂、エポキシ系樹脂等の接着材により構成されている。接合部30の厚さは、例えば0.1mm〜1mm程度である。図3に示すように、接合部30は、後述する面間接合部分31と温度調整部分33とを備えている。また、接合部30には、後述する接合部貫通孔130が形成されている。接合部30の構成については、後に詳述する。なお、面間接合部分31は、特許請求の範囲における第1の部分に相当し、温度調整部分33は、特許請求の範囲における第2の部分に相当する。 The base member 20 is joined to the plate member 10 by the joint portion 30 arranged between the lower surface S2 of the plate member 10 and the upper surface S3 of the base member 20. The joint portion 30 is made of, for example, an adhesive material such as silicone resin, acrylic resin, or epoxy resin. The thickness of the joint portion 30 is, for example, about 0.1 mm to 1 mm. As shown in FIG. 3, the joining portion 30 includes an inter-face joining portion 31 and a temperature adjusting portion 33, which will be described later. Further, the joint portion 30 has a joint portion through hole 130 described later. The configuration of the joint portion 30 will be described later in detail. The face-to-face joint portion 31 corresponds to the first portion in the claims and the temperature adjusting portion 33 corresponds to the second portion in the claims.

ベース部材20の内部には冷媒流路21が形成されている。冷媒流路21に冷媒(例えば、フッ素系不活性液体や水等)が流されると、ベース部材20が冷却され、接合部30を介したベース部材20と板状部材10との間の伝熱(熱引き)により板状部材10が冷却され、板状部材10の吸着面S1に保持されたウェハWが冷却される。これにより、ウェハWの温度分布の制御が実現される。冷媒流路21は、特許請求の範囲における冷却機構に相当する。 A coolant passage 21 is formed inside the base member 20. When a coolant (for example, a fluorine-based inert liquid, water, etc.) is flown into the coolant channel 21, the base member 20 is cooled, and heat is transferred between the base member 20 and the plate-shaped member 10 via the joint portion 30. The plate member 10 is cooled by (heat extraction), and the wafer W held on the suction surface S1 of the plate member 10 is cooled. Thereby, control of the temperature distribution of the wafer W is realized. The refrigerant passage 21 corresponds to the cooling mechanism in the claims.

また、図2に示すように、静電チャック100は、板状部材10とウェハWとの間の伝熱性を高めてウェハWの温度分布の制御性をさらに高めるため、板状部材10の吸着面S1とウェハWの表面との間に存在する空間に不活性ガス(例えば、ヘリウムガス)を供給する構成を備えている。すなわち、静電チャック100には、ベース部材20の下面S4から接合部30の上面にわたって上下方向に延びる第1のガス流路孔131と、第1のガス流路孔131に連通すると共に板状部材10の吸着面S1に開口する第2のガス流路孔132とが形成されている。第1のガス流路孔131は、ベース部材20をZ軸方向に貫通する孔25と、接合部30をZ軸方向に貫通する孔35とが互いに連通した一体の孔である。また、第2のガス流路孔132の下端部は、径が拡大された拡径部134となっており、拡径部134内には、通気性を有する充填部材(通気性プラグ)160が充填されている。また、板状部材10の内部には、第2のガス流路孔132と連通すると共に面方向に環状に延びる横流路133が形成されている。ヘリウムガス源(図示しない)から供給されたヘリウムガスが、第1のガス流路孔131内に流入すると、流入したヘリウムガスは、第1のガス流路孔131から拡径部134内に充填された通気性を有する充填部材160の内部を通過して板状部材10の内部の第2のガス流路孔132内に流入し、横流路133を介して面方向に流れつつ、吸着面S1に形成されたガス噴出孔から噴出する。このようにして、吸着面S1とウェハWの表面との間に存在する空間に、ヘリウムガスが供給される。 In addition, as shown in FIG. 2, the electrostatic chuck 100 enhances heat transfer between the plate-shaped member 10 and the wafer W to further enhance controllability of the temperature distribution of the wafer W. It has a configuration for supplying an inert gas (for example, helium gas) to the space existing between the surface S1 and the surface of the wafer W. That is, in the electrostatic chuck 100, a first gas passage hole 131 extending in the up-down direction from the lower surface S4 of the base member 20 to the upper surface of the joining portion 30, and a plate-like member that communicates with the first gas passage hole 131. A second gas passage hole 132 that opens to the adsorption surface S1 of the member 10 is formed. The first gas passage hole 131 is an integral hole in which a hole 25 penetrating the base member 20 in the Z-axis direction and a hole 35 penetrating the joint portion 30 in the Z-axis direction are in communication with each other. Further, the lower end portion of the second gas flow path hole 132 is an enlarged diameter portion 134 having an enlarged diameter, and a filling member (breathable plug) 160 having air permeability is provided in the enlarged diameter portion 134. It is filled. Further, inside the plate-shaped member 10, a lateral flow passage 133 is formed which communicates with the second gas flow passage hole 132 and extends annularly in the surface direction. When the helium gas supplied from the helium gas source (not shown) flows into the first gas passage hole 131, the inflowing helium gas is filled in the expanded diameter portion 134 from the first gas passage hole 131. The adsorbing surface S1 while passing through the inside of the filled gas-permeable filling member 160, flowing into the second gas flow path hole 132 inside the plate-shaped member 10 and flowing in the surface direction through the lateral flow path 133. It is ejected from the gas ejection hole formed in the. In this way, the helium gas is supplied to the space existing between the suction surface S1 and the surface of the wafer W.

また、図2および図4に示すように、ベース部材20には、板状部材10における吸着面S1の温度調整のために用いられるベース部材貫通孔120が形成されている。ベース部材貫通孔120は、ベース部材20の下面S4から上面S3にわたって上下方向に延びる貫通孔である。Z軸方向視において、ベース部材貫通孔120の直径Wba(図6参照)は、例えば、1mm以上、5mm以下である。また、図4に示すように、ベース部材貫通孔120は、Z軸方向視において、板状部材10の吸着面S1に重なる位置に形成されている。より詳細には、ベース部材貫通孔120は、吸着面S1の外周付近において、周方向に略等間隔に配置されている。本実施形態において、ベース部材貫通孔120は、Z軸方向視において、吸着面S1の中心POと、ベース部材貫通孔120の中心との距離Lrが、吸着面S1における半径Rの2分の1以上の長さとなる位置に配置されている。また、吸着面S1の半径Rと距離Lrとの差(すなわち、「吸着面S1の半径R−距離Lr」)は、例えば、75mm以下であることが好ましい。 Further, as shown in FIGS. 2 and 4, the base member 20 is formed with a base member through hole 120 used for adjusting the temperature of the suction surface S1 of the plate member 10. The base member through hole 120 is a through hole that extends in the vertical direction from the lower surface S4 of the base member 20 to the upper surface S3. When viewed in the Z-axis direction, the diameter Wba (see FIG. 6) of the base member through hole 120 is, for example, 1 mm or more and 5 mm or less. Further, as shown in FIG. 4, the base member through hole 120 is formed at a position overlapping the suction surface S1 of the plate member 10 when viewed in the Z-axis direction. More specifically, the base member through holes 120 are arranged at substantially equal intervals in the circumferential direction in the vicinity of the outer circumference of the suction surface S1. In the present embodiment, in the base member through hole 120, the distance Lr between the center PO of the suction surface S1 and the center of the base member through hole 120 in the Z-axis direction is one half of the radius R of the suction surface S1. It is arranged at a position having the above length. Further, the difference between the radius R of the suction surface S1 and the distance Lr (that is, “radius R of the suction surface S1−distance Lr”) is preferably, for example, 75 mm or less.

本実施形態において、ベース部材20には、8つのベース部材貫通孔120が形成されている。図2および図4に示すように、ベース部材貫通孔120の内の3つの高温時調整用ベース部材貫通孔127における孔内の一部には接合部30(後述の温度調整部分33)が充填されている。一方、高温時調整用ベース部材貫通孔127以外のベース部材貫通孔120(通常ベース部材貫通孔125および低温時調整用ベース部材貫通孔129)における孔内には接合部30(温度調整部分33)は充填されていない。また、図2、図3および図4に示すように、通常ベース部材貫通孔125および低温時調整用ベース部材貫通孔129は、それぞれ接合部30における接合部貫通孔130(後述の通常接合部貫通孔135および拡径接合部貫通孔139)に連通している。高温時調整用ベース部材貫通孔127は、特許請求の範囲における第1の貫通孔に相当し、低温時調整用ベース部材貫通孔129は、特許請求の範囲における第2の貫通孔に相当する。 In the present embodiment, the base member 20 is formed with eight base member through holes 120. As shown in FIGS. 2 and 4, a joint portion 30 (a temperature adjusting portion 33 described later) is filled in a part of the inside of the three base member through holes 120 of the base member through hole 120 in the high temperature adjusting base member through hole 127. Has been done. On the other hand, in the holes of the base member through holes 120 (the normal base member through hole 125 and the low temperature adjustment base member through hole 129) other than the high temperature adjusting base member through hole 127, the joint portion 30 (the temperature adjusting portion 33) is provided. Is not filled. In addition, as shown in FIGS. 2, 3 and 4, the normal base member through hole 125 and the low temperature adjustment base member through hole 129 are respectively connected to a joint portion through hole 130 (a normal joint portion through hole which will be described later) in the joint portion 30. It communicates with the hole 135 and the expanded diameter joint through hole 139). The high temperature adjustment base member through hole 127 corresponds to the first through hole in the claims, and the low temperature adjustment base member through hole 129 corresponds to the second through hole in the claims.

ベース部材貫通孔120は、ベース部材20に形成される上記ヘリウムガスを供給するための第1のガス流路孔131を構成する孔25の他、リフトピン挿通孔(図示せず)、端子用貫通孔(図示せず)、温度センサ用孔(図示せず)とは別に形成された孔である。なお、リフトピン挿通孔は、板状部材10の吸着面S1上に保持されたウェハWを押し上げて吸着面S1から離間させるためのリフトピン(図示せず)を挿通するための孔である。また、端子用孔は、板状部材10に配置されたチャック電極40やヒータ電極50に給電するための給電端子を収容するための孔である。また、温度センサ用孔は、板状部材10の内部温度を検知するため温度センサ(例えば、熱電対等)を収容するための孔である。 The base member through hole 120 includes a hole 25 forming a first gas passage hole 131 for supplying the helium gas, which is formed in the base member 20, a lift pin insertion hole (not shown), a terminal through hole. The holes are formed separately from the holes (not shown) and the temperature sensor holes (not shown). The lift pin insertion hole is a hole for inserting a lift pin (not shown) for pushing up the wafer W held on the suction surface S1 of the plate-shaped member 10 and separating it from the suction surface S1. The terminal hole is a hole for accommodating a power supply terminal for supplying power to the chuck electrode 40 and the heater electrode 50 arranged on the plate-shaped member 10. The temperature sensor hole is a hole for accommodating a temperature sensor (for example, a thermocouple) for detecting the internal temperature of the plate member 10.

A−2.接合部30の詳細構成:
A−2−1.接合部30全体の詳細構成:
次に、接合部30の詳細構成について説明する。図5は、本実施形態の静電チャック100の接合部30における温度調整部分33の周辺部(図2および図3におけるX1部)のXZ断面構成を拡大して示す説明図であり、図6は、本実施形態の静電チャック100の接合部30における拡径接合部貫通孔139の周辺部(図2および図3におけるX2部)のXZ断面構成を拡大して示す説明図である。
A-2. Detailed structure of the joint part 30:
A-2-1. Detailed structure of the entire joint 30:
Next, the detailed configuration of the joint portion 30 will be described. FIG. 5 is an explanatory diagram showing an enlarged XZ cross-sectional configuration of a peripheral portion (X1 portion in FIGS. 2 and 3) of the temperature adjusting portion 33 in the bonding portion 30 of the electrostatic chuck 100 of the present embodiment, and FIG. FIG. 4 is an explanatory diagram showing an enlarged XZ cross-sectional structure of a peripheral portion (X2 portion in FIGS. 2 and 3) of a diameter-increased bonding portion through hole 139 in the bonding portion 30 of the electrostatic chuck 100 of the present embodiment.

上述の通り、接合部30は、面間接合部分31と温度調整部分33とを備えている。図3および図5に示すように、面間接合部分31は、板状部材10の下面S2と、ベース部材20の上面S3とに接合された部分であり、接合部30の大部分を占める部分である。温度調整部分33は、板状部材10の下面S2と、ベース部材貫通孔120の内の高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7とに接合された部分である。本実施形態において、温度調整部分33は、接合部30の内の、Z軸方向視において、ベース部材20に形成された高温時調整用ベース部材貫通孔127に重なる部分であり、面間接合部分31は、接合部30の内のZ軸方向視において、ベース部材20に重なる部分である。換言すれば、面間接合部分31は、接合部30の内の温度調整部分33以外の部分である。温度調整部分33の周辺部分(図2および図3に示すX1部分)の詳細構成については、後に詳述する。 As described above, the joining portion 30 includes the inter-face joining portion 31 and the temperature adjusting portion 33. As shown in FIGS. 3 and 5, the face-to-face joint portion 31 is a portion joined to the lower surface S2 of the plate member 10 and the upper surface S3 of the base member 20, and a portion occupying most of the joint portion 30. Is. The temperature adjusting portion 33 is a portion joined to the lower surface S2 of the plate member 10 and the inner surface S7 of the base member 20 that defines the base member through hole 127 for high temperature adjustment in the base member through hole 120. In the present embodiment, the temperature adjustment portion 33 is a portion of the joint portion 30 that overlaps with the high temperature adjustment base member through hole 127 formed in the base member 20 when viewed in the Z-axis direction. Reference numeral 31 denotes a portion of the joint portion 30 that overlaps with the base member 20 when viewed in the Z-axis direction. In other words, the face-to-face joint portion 31 is a portion of the joint portion 30 other than the temperature adjusting portion 33. The detailed configuration of the peripheral portion (X1 portion shown in FIGS. 2 and 3) of the temperature adjusting portion 33 will be described later.

上述の通り、接合部30には、複数の接合部貫通孔130が形成されている。図3に示すように、本実施形態において、接合部30の内の面間接合部分31には、5つの接合部貫通孔130が形成されている。また、5つの接合部貫通孔130は、2つの通常接合部貫通孔135と、3つの拡径接合部貫通孔139とから構成されている。通常接合部貫通孔135は、その直径が、当該通常接合部貫通孔135に連通するベース部材20に形成されたベース部材貫通孔120(通常ベース部材貫通孔125)のZ軸方向視における直径と同等である貫通孔である。拡径接合部貫通孔139は、その直径が、当該拡径接合部貫通孔139に連通するベース部材貫通孔120(低温時調整用ベース部材貫通孔129)のZ軸方向視における直径より大きい貫通孔である。拡径接合部貫通孔139は、特許請求の範囲における接合部貫通孔に相当する。 As described above, the joint portion 30 is formed with the plurality of joint portion through holes 130. As shown in FIG. 3, in the present embodiment, five joining portion through holes 130 are formed in the inter-face joining portion 31 in the joining portion 30. Further, the five joining portion through holes 130 are composed of two normal joining portion through holes 135 and three diameter-increasing joining portion through holes 139. The diameter of the normal joining part through hole 135 is the same as the diameter of the base member through hole 120 (normal base member through hole 125) formed in the base member 20 communicating with the normal joining part through hole 135 when viewed in the Z-axis direction. It is an equivalent through hole. The diameter expansion joint through hole 139 has a diameter larger than the diameter of the base member through hole 120 (low temperature adjustment base member through hole 129) communicating with the diameter expansion joint through hole 139 in the Z-axis direction. It is a hole. The expanded-diameter joint portion through hole 139 corresponds to the joint portion through hole in the claims.

図2、図3および図6に示すように、通常接合部貫通孔135および拡径接合部貫通孔139は、接合部30を厚さ方向(上下方向)に貫通すると共に、Z軸方向視において、それぞれ、板状部材10に形成された通常ベース部材貫通孔125および低温時調整用ベース部材貫通孔129に重なるように形成されている。すなわち、通常接合部貫通孔135および拡径接合部貫通孔139は、それぞれ、通常ベース部材貫通孔125および低温時調整用ベース部材貫通孔129に連通している。 As shown in FIGS. 2, 3 and 6, the normal joint part through hole 135 and the enlarged diameter joint part through hole 139 penetrate the joint part 30 in the thickness direction (vertical direction) and when viewed in the Z-axis direction. Are formed so as to overlap the normal base member through hole 125 and the low temperature adjustment base member through hole 129 formed in the plate member 10, respectively. That is, the normal joining portion through hole 135 and the expanded diameter joining portion through hole 139 communicate with the normal base member through hole 125 and the low temperature adjustment base member through hole 129, respectively.

A−2−2.接合部30における温度調整部分33の周辺部の詳細構成:
次に、図5を用いて、接合部30における温度調整部分33の周辺部(図2および図3におけるX1部)の詳細構成について説明する。上述の通り、高温時調整用ベース部材貫通孔127には、温度調整部分33が充填されている。温度調整部分33は、上述の通り、板状部材10の下面S2と、高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7とに接合された部分である。このように、温度調整部分33が、板状部材10の下面S2とベース部材20に形成された高温時調整用ベース部材貫通孔127の内面S7との両方に接触していることにより、温度調整部分33を介した板状部材10からベース部材20への熱引きが可能となる。
A-2-2. Detailed configuration of the peripheral portion of the temperature adjusting portion 33 in the joint portion 30:
Next, a detailed configuration of the peripheral portion (X1 portion in FIGS. 2 and 3) of the temperature adjusting portion 33 in the joint portion 30 will be described with reference to FIG. As described above, the temperature adjusting portion 33 is filled in the high temperature adjusting base member through hole 127. As described above, the temperature adjusting portion 33 is a portion joined to the lower surface S2 of the plate member 10 and the inner surface S7 of the base member 20 that defines the high temperature adjusting base member through hole 127. In this way, the temperature adjusting portion 33 is in contact with both the lower surface S2 of the plate-shaped member 10 and the inner surface S7 of the high temperature adjusting base member through hole 127 formed in the base member 20, so that the temperature adjusting portion 33 is adjusted. Heat can be transferred from the plate member 10 to the base member 20 through the portion 33.

図5に示すように、温度調整部分33のZ軸方向における長さLfは、面間接合部分31の厚さより長い。また、図2に示すように、本実施形態において、ベース部材20内の冷媒流路21を流れる冷媒による、温度調整部分33への温度の影響を低減する観点から、温度調整部分33の下端面は、冷媒流路21の上端面より上側に位置している。Z軸方向における温度調整部分33の長さLfは、例えば、0.5mm以上、25mm以下であることが好ましい。このように、温度調整部分33の周辺部では、温度調整部分33と板状部材10における下面S2との接触面積と、温度調整部分33とベース部材20における内面S7との接触面積との両方を十分に確保していることにより、板状部材10からベース部材20への熱引きを確保することができる。また、本実施形態において、温度調整部分33を形成する材料は、面間接合部分31を形成する材料と同じであり、シリコーン系樹脂で形成されている。 As shown in FIG. 5, the length Lf of the temperature adjusting portion 33 in the Z-axis direction is longer than the thickness of the face-to-face joining portion 31. Further, as shown in FIG. 2, in the present embodiment, from the viewpoint of reducing the influence of the temperature on the temperature adjusting portion 33 by the refrigerant flowing through the refrigerant flow passage 21 in the base member 20, the lower end surface of the temperature adjusting portion 33. Are located above the upper end surface of the coolant channel 21. The length Lf of the temperature adjusting portion 33 in the Z-axis direction is preferably, for example, 0.5 mm or more and 25 mm or less. Thus, in the peripheral portion of the temperature adjusting portion 33, both the contact area between the temperature adjusting portion 33 and the lower surface S2 of the plate-shaped member 10 and the contact area between the temperature adjusting portion 33 and the inner surface S7 of the base member 20 are provided. By sufficiently securing the heat, it is possible to secure the heat transfer from the plate member 10 to the base member 20. Further, in the present embodiment, the material forming the temperature adjusting portion 33 is the same as the material forming the face-to-face joint portion 31, and is formed of a silicone resin.

A−2−3.接合部30における拡径接合部貫通孔139の周辺部の詳細構成:
次に、図6を用いて、接合部30における拡径接合部貫通孔139の周辺部(図2および図3におけるX2部)の詳細構成について説明する。上述の通り、Z軸方向視において、拡径接合部貫通孔139の直径Wboは、当該拡径接合部貫通孔139に連通する低温時調整用ベース部材貫通孔129の直径Wbaと比較して大きい。すなわち、本実施形態において、板状部材10の下面S2における拡径接合部貫通孔139への露出面の面積は、拡径接合部貫通孔139以外の接合部貫通孔130への露出面の面積と比較して大きい。Z軸方向視において、拡径接合部貫通孔139の直径Wboは、1mm以上、10mm以下であることが好ましい。また、拡径接合部貫通孔139の直径Wboと低温時調整用ベース部材貫通孔129の直径Wbaとの差(すなわち、Wa×2)は、0mm以上、5mm以下であることが好ましい。なお、上述の通り、拡径接合部貫通孔139には温度調整部分33は充填されていない。すなわち、板状部材10の下面S2と、低温時調整用ベース部材貫通孔129の内面S9とは、温度調整部分33によって接合されていない。このように、拡径接合部貫通孔139の周辺部では、温度調整部分33を備えておらず、また、板状部材10の下面S2における拡径接合部貫通孔139への露出面の面積が大きいことにより、板状部材10からベース部材20への熱引きを抑制することができる。
A-2-3. Detailed configuration of the peripheral portion of the expanded diameter joint through hole 139 in the joint 30:
Next, with reference to FIG. 6, a detailed configuration of the peripheral portion (X2 portion in FIGS. 2 and 3) of the enlarged diameter joint through hole 139 in the joint 30 will be described. As described above, when viewed in the Z-axis direction, the diameter Wbo of the expanded diameter joint through hole 139 is larger than the diameter Wba of the low temperature adjustment base member through hole 129 communicating with the expanded diameter joint through hole 139. .. That is, in this embodiment, the area of the exposed surface of the lower surface S2 of the plate-shaped member 10 to the expanded diameter joint through hole 139 is equal to the area of the exposed surface of the bonded portion through hole 130 other than the expanded diameter joint through hole 139. Big compared to. When viewed in the Z-axis direction, the diameter Wbo of the expanded-diameter joint through-hole 139 is preferably 1 mm or more and 10 mm or less. Further, the difference (that is, Wa×2) between the diameter Wbo of the expanded joint through hole 139 and the diameter Wba of the low temperature adjustment base member through hole 129 is preferably 0 mm or more and 5 mm or less. As described above, the temperature adjustment portion 33 is not filled in the expanded diameter joint through hole 139. That is, the lower surface S2 of the plate member 10 and the inner surface S9 of the low temperature adjustment base member through hole 129 are not joined by the temperature adjustment portion 33. As described above, the temperature adjusting portion 33 is not provided in the peripheral portion of the expanded diameter joint through hole 139, and the area of the exposed surface of the lower surface S2 of the plate member 10 to the expanded diameter joint through hole 139 is smaller. By being large, it is possible to suppress heat transfer from the plate member 10 to the base member 20.

本実施形態の静電チャック100では、接合部30を上記構成とすることにより、温度調整部分33の周辺部においては、板状部材10からベース部材20への熱引きを向上させ、拡径接合部貫通孔139の周辺部において、当該熱引きを抑制することができる。これにより、板状部材10の吸着面S1に高温または低温の温度特異点が発生することを抑制し、ひいては、吸着面S1における温度分布の均一性を向上させた静電チャック100を得ることができる。ここで、吸着面S1の温度分布が均一であるとは、吸着面S1における最高温度部分と最低温度部分との温度差Δtが例えば2℃以下であることを意味する。 In the electrostatic chuck 100 of the present embodiment, the joining portion 30 having the above-described configuration improves heat transfer from the plate-shaped member 10 to the base member 20 in the peripheral portion of the temperature adjusting portion 33, and the diameter expansion joining is performed. In the peripheral part of the part through hole 139, the heat transfer can be suppressed. As a result, it is possible to suppress the occurrence of a high temperature or a low temperature singularity on the suction surface S1 of the plate-shaped member 10, and thus obtain the electrostatic chuck 100 in which the uniformity of the temperature distribution on the suction surface S1 is improved. it can. Here, that the temperature distribution on the adsorption surface S1 is uniform means that the temperature difference Δt between the highest temperature portion and the lowest temperature portion on the adsorption surface S1 is, for example, 2° C. or less.

A−3.静電チャック100の製造方法:
図7は、本実施形態における静電チャック100の製造方法を示すフローチャートである。また、図8は、本実施形態における静電チャック100の製造方法を概略的に示す説明図である。
A-3. Manufacturing method of the electrostatic chuck 100:
FIG. 7 is a flowchart showing a method of manufacturing the electrostatic chuck 100 according to this embodiment. Further, FIG. 8 is an explanatory view schematically showing a method for manufacturing the electrostatic chuck 100 in this embodiment.

(板状部材10の準備工程)
まず、板状部材10を準備する(S100)。板状部材10は、公知の方法によって作製することができる。板状部材10は、例えば、以下の方法で作製される。すなわち、複数のセラミックスグリーンシート(例えばアルミナグリーンシート)を準備し、各セラミックスグリーンシートに、チャック電極40やヒータ電極50等を構成するためのメタライズインクの印刷等を行い、その後、複数のセラミックスグリーンシートを積層して熱圧着し、所定の円板形状にカットした上で焼成し、最後に研磨加工等を行うことにより、板状部材10が作製される。
(Preparation process of the plate member 10)
First, the plate member 10 is prepared (S100). The plate member 10 can be manufactured by a known method. The plate-shaped member 10 is manufactured by the following method, for example. That is, a plurality of ceramic green sheets (for example, alumina green sheets) are prepared, metalized ink for forming the chuck electrode 40, the heater electrode 50, and the like is printed on each ceramic green sheet, and then the plurality of ceramic green sheets are formed. The plate-shaped member 10 is manufactured by stacking the sheets, thermocompression-bonding them, cutting them into a predetermined disk shape, firing them, and finally performing polishing and the like.

(ベース部材20の準備工程)
次に、ベース部材20を準備する(S110)。ベース部材20は、公知の方法によって作製された円形平板の板状部材に対して、冷媒流路21およびZ軸方向に貫通するベース部材貫通孔120を形成することにより作製される。図4に示すように、本実施形態では、ベース部材20に対して、Z軸方向視において、板状部材10の吸着面S1に重なる位置に、8つのベース部材貫通孔120を形成している。また、上述の通り、8つのベース部材貫通孔120は、吸着面S1の外周付近において、周方向に略等間隔に形成される。ベース部材貫通孔120は、例えば、ドリル形状のツールが取り付けられたマシニングセンタを用いることによって形成することができる。なお、冷媒流路21は、公知の方法により形成することができる。ベース部材20の準備工程は、特許請求の範囲における第1の工程に相当する。
(Preparation process of the base member 20)
Next, the base member 20 is prepared (S110). The base member 20 is manufactured by forming a base member through hole 120 penetrating in the coolant flow path 21 and the Z-axis direction in a circular flat plate-shaped member manufactured by a known method. As shown in FIG. 4, in the present embodiment, eight base member through holes 120 are formed in the base member 20 at positions overlapping the suction surface S1 of the plate member 10 when viewed in the Z-axis direction. .. Further, as described above, the eight base member through holes 120 are formed in the vicinity of the outer periphery of the suction surface S1 at substantially equal intervals in the circumferential direction. The base member through hole 120 can be formed, for example, by using a machining center to which a drill-shaped tool is attached. The coolant channel 21 can be formed by a known method. The step of preparing the base member 20 corresponds to the first step in the claims.

(第1の接合部30aの準備工程)
次に、第1の接合部30aを準備する(S120)。第1の接合部30aは、静電チャック100を構成する接合部30における、板状部材10とベース部材20とを接合する前の状態である。第1の接合部30aは、公知の方法によって作製された接着剤シートに対して、例えば打ち抜き加工を行うことにより、所望の形状(例えば、略円形)とし、さらに、Z軸方向に貫通する接合部貫通孔130を形成することにより作製される。本実施形態では、第1の接合部30aに対して、ベース部材20に形成されたベース部材貫通孔120と略同径の8つの接合部貫通孔130を、それぞれベース部材貫通孔120に連通するよう形成する。すなわち、第1の接合部30aに形成された接合部貫通孔130は、Z軸方向視で、吸着面S1の外周付近において、周方向に略等間隔となるよう形成される。第1の接合部30aの準備工程は、特許請求の範囲における第2の工程に相当する。
(Preparation process of the first joint portion 30a)
Next, the first joint portion 30a is prepared (S120). The first joining portion 30 a is in a state before joining the plate-shaped member 10 and the base member 20 in the joining portion 30 forming the electrostatic chuck 100. The first bonding portion 30a has a desired shape (for example, a substantially circular shape) by, for example, punching an adhesive sheet manufactured by a known method, and further has a bonding penetrating in the Z-axis direction. It is manufactured by forming the partial through hole 130. In the present embodiment, eight joint through holes 130 having substantially the same diameter as the base member through hole 120 formed in the base member 20 are connected to the base member through hole 120 with respect to the first joint portion 30a. To form. That is, the joint portion through holes 130 formed in the first joint portion 30a are formed so as to have substantially equal intervals in the circumferential direction in the vicinity of the outer periphery of the suction surface S1 when viewed in the Z-axis direction. The step of preparing the first joint portion 30a corresponds to the second step in the claims.

(積層体100aの作製工程)
次に、板状部材10とベース部材20とが接合部30によって接合された積層体100aを作製する(S131,S133)。まず、上記準備された、板状部材10の下面S2と、ベース部材20の上面S3との間に、第1の接合部30aを配置して積層体100aの前駆体を作製する(S131)。第1の接合部30aは、Z軸方向において、接合部貫通孔130が、ベース部材20に形成されたベース部材貫通孔120に重なるように配置される。続いて、作製された積層体100aの前駆体に対して、第1の接合部30aを構成する接着剤を硬化させる硬化処理を行い、積層体100aを作製する(S133)。以上の工程により、図8の(A)欄に示すように、ベース部材20に形成されたベース部材貫通孔120と接合部30に形成された接合部貫通孔130とが連通した積層体100aを作製することができる。積層体100aの作製工程は、特許請求の範囲における第3の工程に相当する。
(Process of manufacturing laminated body 100a)
Next, the laminated body 100a in which the plate member 10 and the base member 20 are joined by the joining portion 30 is manufactured (S131, S133). First, the first bonding portion 30a is arranged between the prepared lower surface S2 of the plate-shaped member 10 and the upper surface S3 of the base member 20 to prepare a precursor of the stacked body 100a (S131). The first joint portion 30a is arranged such that the joint portion through hole 130 overlaps the base member through hole 120 formed in the base member 20 in the Z-axis direction. Then, the precursor of the manufactured laminated body 100a is subjected to a curing treatment for curing the adhesive forming the first bonding portion 30a, and the laminated body 100a is manufactured (S133). Through the above steps, as shown in the column (A) of FIG. 8, the laminated body 100a in which the base member through hole 120 formed in the base member 20 and the joint portion through hole 130 formed in the joint portion 30 communicate with each other is obtained. Can be made. The manufacturing process of the stacked body 100a corresponds to the third process in the claims.

(吸着面S1の温度分布の測定工程)
次に、上記工程で作製された積層体100aの板状部材10における吸着面S1の温度分布を測定する(S141)。なお、吸着面S1の温度分布は、吸着面S1に略平行な面方向(上下方向に略垂直な方向)における温度分布をいう。このとき、使用時の状態における板状部材10の吸着面S1の温度分布を測定することが好ましい。例えば、板状部材10に備えられたチャック電極40およびヒータ電極50に電力を供給し、かつ、ベース部材20に形成された冷媒流路21に冷媒を供給した状態で、吸着面S1の温度分布を測定する。吸着面S1の内の複数の箇所(測温箇所)において測温することにより、各測温箇所における測定温度を取得する。温度分布の測定は、熱電対付きウェハや、赤外線サーモグラフィや、赤外線放射温度計等の温度測定機器を用いて行うことができる。なお、吸着面S1の温度分布の測定工程は、特許請求の範囲における第4の工程に相当する。
(Measurement process of temperature distribution of adsorption surface S1)
Next, the temperature distribution of the adsorption surface S1 of the plate member 10 of the laminated body 100a manufactured in the above process is measured (S141). The temperature distribution of the adsorption surface S1 refers to the temperature distribution in a plane direction substantially parallel to the adsorption surface S1 (direction substantially vertical to the vertical direction). At this time, it is preferable to measure the temperature distribution of the suction surface S1 of the plate-shaped member 10 in the state of use. For example, in a state in which electric power is supplied to the chuck electrode 40 and the heater electrode 50 provided on the plate-shaped member 10 and the refrigerant is supplied to the refrigerant flow passage 21 formed in the base member 20, the temperature distribution of the adsorption surface S1. To measure. By measuring the temperature at a plurality of locations (temperature measurement locations) on the adsorption surface S1, the measured temperature at each temperature measurement location is acquired. The temperature distribution can be measured using a thermocouple-equipped wafer, infrared thermography, or a temperature measuring device such as an infrared radiation thermometer. The step of measuring the temperature distribution of the suction surface S1 corresponds to the fourth step in the claims.

(高温時調整工程)
上記ステップS141で得られた吸着面S1の温度分布の測定の結果、吸着面S1の温度分布に高温領域の存在が示されたとき(S143:高温領域あり)、ステップS151へ進む。図8の(B)欄に示すように、ステップS151では、ベース部材20に形成されたベース部材貫通孔120の内、Z軸方向視において、高温領域に重なる領域に位置する全てのベース部材貫通孔120(高温時調整用ベース部材貫通孔127)に対して、温度調整部分33を充填する。本実施形態においては、高温時調整用ベース部材貫通孔127に連通する接合部貫通孔130に対しても、温度調整部分33を充填している。温度調整部分33の充填は、例えば、注入器等を用いて、接合部30と同じ材料(接着剤)をベース部材貫通孔120および接合部貫通孔130に注入することにより実行することができる。これにより、板状部材10の下面S2と、高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7とが、温度調整部分33によって連結される。換言すれば、温度調整部分33は、板状部材10の下面S2と、高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7との両方の面に接するように充填される。温度調整部分33は、Z軸方向における長さLf(図5参照)が、面間接合部分31の厚さより長く、また、温度調整部分33の下端面が、冷媒流路21の上端面より上側に位置する(図2参照)よう充填されることが好ましい。本実施形態において、ステップS151の後、温度調整部分33を硬化させる硬化処理を行う(S153)。
(Adjustment process at high temperature)
As a result of the measurement of the temperature distribution of the adsorption surface S1 obtained in step S141 above, when the temperature distribution of the adsorption surface S1 indicates the presence of a high temperature region (S143: high temperature region exists), the process proceeds to step S151. As shown in the column (B) of FIG. 8, in step S151, among the base member through holes 120 formed in the base member 20, all the base member through holes which are located in a region overlapping with the high temperature region when viewed in the Z-axis direction are penetrated. The temperature adjusting portion 33 is filled in the hole 120 (high temperature adjusting base member through hole 127). In the present embodiment, the temperature adjusting portion 33 is also filled in the joining portion through hole 130 that communicates with the high temperature adjustment base member through hole 127. The filling of the temperature adjusting portion 33 can be performed by injecting the same material (adhesive) as that of the joint portion 30 into the base member through hole 120 and the joint portion through hole 130 using, for example, an injector. As a result, the lower surface S2 of the plate member 10 and the inner surface S7 of the base member 20 defining the high temperature adjustment base member through hole 127 are connected by the temperature adjustment portion 33. In other words, the temperature adjustment portion 33 is filled so as to be in contact with both the lower surface S2 of the plate-shaped member 10 and the inner surface S7 of the base member 20 that defines the high temperature adjustment base member through hole 127. The temperature adjustment portion 33 has a length Lf in the Z-axis direction (see FIG. 5) longer than the thickness of the inter-surface joint portion 31, and the lower end surface of the temperature adjustment portion 33 is above the upper end surface of the refrigerant flow passage 21. It is preferable to be filled so as to be located at (see FIG. 2). In the present embodiment, after step S151, a curing process for curing the temperature adjustment portion 33 is performed (S153).

このように、温度調整部分33の周辺部では、温度調整部分33と板状部材10における下面S2との接触面積と、温度調整部分33とベース部材20における内面S7との接触面積との両方を十分に確保していることにより、板状部材10からベース部材20への熱引きを確保することができる。なお、吸着面S1の温度分布における高温領域は、公知の方法によって特定することができる。例えば、吸着面S1における高温の温度特異点を中心とする所定の範囲内(例えば、直径30mmの範囲内)を高温領域と特定することができる。ここで、高温の温度特異点とは、吸着面S1における平均温度と比較して、所定の温度(例えば、2℃)以上高い部分を意味する。温度調整部分33は、特許請求の範囲における充填部材に相当し、高温時調整工程は、特許請求の範囲における第5の工程に相当する。 Thus, in the peripheral portion of the temperature adjusting portion 33, both the contact area between the temperature adjusting portion 33 and the lower surface S2 of the plate-shaped member 10 and the contact area between the temperature adjusting portion 33 and the inner surface S7 of the base member 20 are provided. By sufficiently securing the heat, it is possible to secure the heat transfer from the plate member 10 to the base member 20. The high temperature region in the temperature distribution of the suction surface S1 can be specified by a known method. For example, it is possible to specify a high temperature region within a predetermined range (for example, within a diameter of 30 mm) centered on a high temperature temperature singular point on the suction surface S1. Here, the high temperature singular point means a portion that is higher than the average temperature on the adsorption surface S1 by a predetermined temperature (for example, 2° C.) or more. The temperature adjusting portion 33 corresponds to the filling member in the claims, and the high temperature adjusting step corresponds to the fifth step in the claims.

(低温時調整工程)
上記ステップS141で得られた吸着面S1の温度分布の測定の結果、吸着面S1の温度分布に低温領域の存在が示されたとき(S143:低温領域あり)、ステップS160へ進む。図8の(C)欄に示すように、ステップS160では、ベース部材20に形成されたベース部材貫通孔120の内、Z軸方向視において、低温領域に重なる領域に位置する全てのベース部材貫通孔120(低温時調整用ベース部材貫通孔129)に連通する各接合部貫通孔130に対して、接合部30(面間接合部分31)の一部を除去して、拡径接合部貫通孔139を形成する。接合部30(面間接合部分31)の除去は、例えば、カギ型の樹脂製治具等を用いて行うことができる。これにより、拡径接合部貫通孔139の直径Wboは、拡径接合部貫通孔139に連通する低温時調整用ベース部材貫通孔129の直径Wbaと比較して大きくなる。換言すれば、本実施形態において、板状部材10の下面S2における拡径接合部貫通孔139への露出面の面積は、拡径接合部貫通孔139以外の接合部貫通孔130(通常接合部貫通孔135)への露出面の面積と比較して大きくなる。板状部材10からベース部材20への熱引きを抑制する観点から、Z軸方向視において、拡径接合部貫通孔139の直径Wboが、1mm以上、10mm以下となることが好ましい(図6参照)。また、拡径接合部貫通孔139の直径Wboと低温時調整用ベース部材貫通孔129の直径Wbaとの差(すなわち、Wa×2)が、0mm以上、5mm以下となることが好ましい。
(Adjustment process at low temperature)
As a result of the measurement of the temperature distribution of the adsorption surface S1 obtained in step S141, when the temperature distribution of the adsorption surface S1 indicates that a low temperature region exists (S143: low temperature region exists), the process proceeds to step S160. As shown in column (C) of FIG. 8, in step S160, all of the base member through holes 120 formed in the base member 20 are penetrated in the region overlapping with the low temperature region when viewed in the Z-axis direction. With respect to each joint portion through hole 130 communicating with the hole 120 (low temperature adjustment base member through hole 129), a part of the joint portion 30 (inter-surface joint portion 31) is removed to increase the diameter expanding joint portion through hole. 139 is formed. The joining portion 30 (inter-face joining portion 31) can be removed using, for example, a hook-shaped resin jig. As a result, the diameter Wbo of the expanded diameter joint through hole 139 becomes larger than the diameter Wba of the low temperature adjustment base member through hole 129 communicating with the expanded diameter joint through hole 139. In other words, in the present embodiment, the area of the exposed surface of the lower surface S2 of the plate-shaped member 10 to the expanded-diameter joining portion through hole 139 is equal to the area of the joined-part through hole 130 (normal joined portion It becomes larger than the area of the exposed surface to the through hole 135). From the viewpoint of suppressing heat transfer from the plate-shaped member 10 to the base member 20, it is preferable that the diameter Wbo of the expanded diameter joint through hole 139 is 1 mm or more and 10 mm or less when viewed in the Z-axis direction (see FIG. 6). ). Further, it is preferable that the difference (that is, Wa×2) between the diameter Wbo of the expanded diameter joint through hole 139 and the diameter Wba of the low temperature adjustment base member through hole 129 is 0 mm or more and 5 mm or less.

このように、拡径接合部貫通孔139の周辺部では、温度調整部分33を充填することなく、また、接合部30(面間接合部分31)の一部を除去することにより、板状部材10からベース部材20への熱引きを抑制することができる。なお、吸着面S1の温度分布における低温領域は、公知の方法によって特定することができる。例えば、吸着面S1における低温の温度特異点を中心とする所定の範囲内(例えば、直径30mmの範囲内)を低温領域と特定することができる。ここで、低温の温度特異点とは、吸着面S1における平均温度と比較して、所定の温度(例えば、2℃)以上低い部分を意味する。低温時調整工程は、特許請求の範囲における第6の工程に相当する。 As described above, in the peripheral portion of the expanded diameter joint through hole 139, the plate member is not filled with the temperature adjusting portion 33 and a part of the joint portion 30 (inter-surface joint portion 31) is removed. It is possible to suppress heat transfer from 10 to the base member 20. The low temperature region in the temperature distribution of the adsorption surface S1 can be specified by a known method. For example, a predetermined range centered on a low temperature singular point on the adsorption surface S1 (for example, a range of 30 mm in diameter) can be specified as the low temperature region. Here, the low temperature singular point means a portion that is lower than a predetermined temperature (for example, 2° C.) or more as compared with the average temperature on the adsorption surface S1. The low temperature adjustment step corresponds to the sixth step in the claims.

主として、以上の工程により、板状部材10の吸着面S1における温度分布の均一性を向上させた静電チャック100の製造が完了する。 The manufacturing of the electrostatic chuck 100 in which the uniformity of the temperature distribution on the suction surface S1 of the plate-shaped member 10 is improved is mainly completed through the above steps.

A−4.本実施形態の効果:
以上説明したように、本実施形態の静電チャック100は、Z軸方向に略直交する吸着面S1と、吸着面S1とは反対側の下面S2と、を有する板状部材10と、上面S3を有し、上面S3が板状部材10の下面S2側に位置するように配置されたベース部材20と、板状部材10とベース部材20とを接合する接合部30とを備え、板状部材10の吸着面S1上に対象物(例えば、ウェハW)を保持する装置である。また、本実施形態の静電チャック100では、ベース部材20には、Z軸方向に貫通し、かつ、Z軸方向視において、板状部材10の吸着面S1に重なる位置に配置された高温時調整用ベース部材貫通孔127と、低温時調整用ベース部材貫通孔129と、冷媒流路21とが形成されている。また、本実施形態の静電チャック100では、接合部30は、板状部材10の下面S2と、ベース部材20の上面S3と、に接合された面間接合部分31と、板状部材10の下面S2と、高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7と、に接合された温度調整部分33とを備えている。また、本実施形態の静電チャック100では、板状部材10の下面S2と、通常ベース部材貫通孔125を画定するベース部材20の内面とが接合されておらず、また、板状部材10の下面S2と、低温時調整用ベース部材貫通孔129を画定するベース部材20の内面S9とが接合されていない。
A-4. Effects of this embodiment:
As described above, the electrostatic chuck 100 of this embodiment has the plate-shaped member 10 having the attraction surface S1 that is substantially orthogonal to the Z-axis direction and the lower surface S2 opposite to the attraction surface S1, and the upper surface S3. And a joint portion 30 for joining the plate-shaped member 10 and the base member 20 to each other, and the plate-shaped member 10 having the upper surface S3 located on the lower surface S2 side of the plate-shaped member 10. This is a device for holding an object (for example, a wafer W) on the suction surface S1 of 10. Further, in the electrostatic chuck 100 of the present embodiment, the base member 20 is penetrated in the Z-axis direction, and when viewed in the Z-axis direction, the electrostatic chuck 100 is arranged at a position overlapping with the attraction surface S1 of the plate-shaped member 10 at a high temperature. The adjustment base member through hole 127, the low temperature adjustment base member through hole 129, and the refrigerant flow path 21 are formed. Further, in the electrostatic chuck 100 of the present embodiment, the bonding portion 30 includes the inter-surface bonding portion 31 bonded to the lower surface S2 of the plate member 10 and the upper surface S3 of the base member 20, and the plate member 10. The lower surface S2 and the inner surface S7 of the base member 20 defining the high temperature adjustment base member through hole 127 are provided with a temperature adjustment portion 33 joined to the lower surface S2. Further, in the electrostatic chuck 100 of the present embodiment, the lower surface S2 of the plate member 10 and the inner surface of the base member 20 that normally defines the base member through hole 125 are not joined, and the plate member 10 is not bonded. The lower surface S2 and the inner surface S9 of the base member 20 that defines the low temperature adjustment base member through hole 129 are not joined.

このように、本実施形態の静電チャック100では、Z軸方向視において、板状部材10の吸着面S1に重なる位置に複数のベース部材貫通孔120が形成されている。また、複数のベース部材貫通孔120の内の高温時調整用ベース部材貫通孔127については、その内面S7が温度調整部分33を介して板状部材10の下面S2と接合されている。一方、複数のベース部材貫通孔120の内の通常ベース部材貫通孔125および低温時調整用ベース部材貫通孔129については、その内面は板状部材10の下面S2と接合されていない。すなわち、本実施形態の静電チャック100では、温度調整部分33を備えていない通常ベース部材貫通孔125および低温時調整用ベース部材貫通孔129の周辺と比較して、温度調整部分33を備えた高温時調整用ベース部材貫通孔127の周辺において、板状部材10とベース部材20との間の伝熱が良好である。 As described above, in the electrostatic chuck 100 according to the present embodiment, the plurality of base member through holes 120 are formed at the position overlapping the suction surface S1 of the plate-shaped member 10 when viewed in the Z-axis direction. The inner surface S7 of the high temperature adjustment base member through hole 127 of the plurality of base member through holes 120 is joined to the lower surface S2 of the plate member 10 via the temperature adjustment portion 33. On the other hand, the inner surface of the normal base member through hole 125 and the low temperature adjustment base member through hole 129 of the plurality of base member through holes 120 is not joined to the lower surface S2 of the plate member 10. That is, in the electrostatic chuck 100 of the present embodiment, the temperature adjusting portion 33 is provided as compared with the surroundings of the normal base member through hole 125 and the low temperature adjustment base member through hole 129 which are not provided with the temperature adjusting portion 33. Good heat transfer between the plate member 10 and the base member 20 around the high temperature adjustment base member through hole 127.

静電チャックの板状部材における吸着面には、静電チャック製造時のバラツキ等に起因して、高温の温度特異点が発生することがある。本実施形態の静電チャック100では、高温時調整用ベース部材貫通孔127の周辺において、板状部材10とベース部材20との間の伝熱(熱引き)が良好となることにより、ベース部材20に形成された冷媒流路21による冷却効率を向上させることができる。すなわち、本実施形態の静電チャック100では、上記構成が採用されているため、吸着面S1において、Z軸方向視における高温時調整用ベース部材貫通孔127に重なる領域とその付近の温度を降温調整することができる。従って、本実施形態の静電チャック100によれば、板状部材10における吸着面S1の温度分布が制御された(例えば、温度分布の均一性を向上させた)静電チャック100を提供することができ、ひいては、吸着面S1に保持されたウェハWの温度分布の制御性を向上させることができる。 A temperature singular point of high temperature may occur on the attraction surface of the plate-shaped member of the electrostatic chuck due to variations in manufacturing the electrostatic chuck. In the electrostatic chuck 100 of the present embodiment, the heat transfer (heat conduction) between the plate-shaped member 10 and the base member 20 becomes good in the vicinity of the high temperature adjustment base member through hole 127, so that the base member is improved. It is possible to improve the cooling efficiency due to the coolant flow passage 21 formed in 20. That is, since the electrostatic chuck 100 according to the present embodiment employs the above-described configuration, the temperature of the suction surface S1 and the temperature in the vicinity of the region overlapping the high temperature adjustment base member through hole 127 in the Z-axis direction are lowered. Can be adjusted. Therefore, according to the electrostatic chuck 100 of the present embodiment, it is possible to provide the electrostatic chuck 100 in which the temperature distribution of the suction surface S1 of the plate-shaped member 10 is controlled (for example, the uniformity of the temperature distribution is improved). As a result, the controllability of the temperature distribution of the wafer W held on the suction surface S1 can be improved.

また、本実施形態の静電チャック100では、接合部30が備える面間接合部分31を形成する材料と、温度調整部分33を形成する材料とは、同じである。このため、本実施形態の静電チャック100が歪みや圧縮等の応力を受けたときに、面間接合部分31と温度調整部分33とが同様に変形することにより、当該変形に伴う応力を効果的に緩和することができる。また、本実施形態の静電チャック100によれば、面間接合部分31と温度調整部分33とが同じ材料により形成されていることにより、両者の親和性が良好であり、温度調整部分33が面間接合部分31から剥離することを抑制することができる。 In addition, in the electrostatic chuck 100 of the present embodiment, the material forming the inter-surface joint portion 31 included in the joint portion 30 and the material forming the temperature adjusting portion 33 are the same. Therefore, when the electrostatic chuck 100 of the present embodiment receives a stress such as a strain or a compression, the face-to-face joint portion 31 and the temperature adjusting portion 33 are similarly deformed, and the stress caused by the deformation is effective. Can be relaxed. Further, according to the electrostatic chuck 100 of the present embodiment, since the inter-surface bonding portion 31 and the temperature adjusting portion 33 are formed of the same material, the affinity between them is good, and the temperature adjusting portion 33 is It is possible to suppress peeling from the face-to-face joint portion 31.

また、本実施形態の静電チャック100では、板状部材10の吸着面S1は、略円形である。また、本実施形態の静電チャック100では、Z軸方向視において、板状部材10の吸着面S1の中心POとベース部材20に形成されたベース部材貫通孔120(通常ベース部材貫通孔125、高温時調整用ベース部材貫通孔127、低温時調整用ベース部材貫通孔129)の中心との距離Lrとは、吸着面S1における半径Rの2分の1以上の長さである。換言すれば、本実施形態の静電チャック100では、Z軸方向視において、上記複数のベース部材貫通孔120は、板状部材10の吸着面S1の内の外周付近に位置している。板状部材の吸着面の内の外周付近は、静電チャック製造時のバラツキ等に起因した、温度特異点が発生しやすい部分である。本実施形態の静電チャック100では、上記構成が採用されているため、Z軸方向視において、上記温度特異点が発生しやすい部分である吸着面S1の外周付近における、ベース部材貫通孔120に重なる領域とその付近の温度を調整することができる。従って、本実施形態の静電チャック100によれば、板状部材10における吸着面S1の外周付近の温度分布が制御された(例えば、温度分布の均一性を向上させた)静電チャック100を提供することができ、ひいては、吸着面S1に保持されたウェハWの温度分布の制御性を向上させることができる。 Further, in the electrostatic chuck 100 of this embodiment, the attraction surface S1 of the plate-shaped member 10 is substantially circular. Further, in the electrostatic chuck 100 of the present embodiment, the base member through hole 120 formed in the center PO of the attraction surface S1 of the plate member 10 and the base member 20 (normal base member through hole 125, when viewed in the Z-axis direction, The distance Lr from the centers of the high temperature adjustment base member through hole 127 and the low temperature adjustment base member through hole 129) is equal to or greater than half the radius R of the suction surface S1. In other words, in the electrostatic chuck 100 of the present embodiment, the plurality of base member through holes 120 are located near the outer periphery of the attraction surface S1 of the plate member 10 when viewed in the Z-axis direction. The vicinity of the outer periphery of the attraction surface of the plate-shaped member is a portion where a temperature singularity is likely to occur due to variations in manufacturing the electrostatic chuck. Since the electrostatic chuck 100 according to the present embodiment employs the above configuration, the base member through hole 120 is formed in the vicinity of the outer periphery of the adsorption surface S1 that is a portion where the temperature singularity is likely to occur in the Z-axis direction. The temperature of the overlapping area and its vicinity can be adjusted. Therefore, according to the electrostatic chuck 100 of the present embodiment, the electrostatic chuck 100 in which the temperature distribution near the outer periphery of the attraction surface S1 of the plate-shaped member 10 is controlled (for example, the uniformity of the temperature distribution is improved) is obtained. Therefore, the controllability of the temperature distribution of the wafer W held on the suction surface S1 can be improved.

また、本実施形態の静電チャック100では、接合部30には、接合部貫通孔130が形成されている。また、接合部貫通孔130の内の拡径接合部貫通孔139について、その直径Wboは、拡径接合部貫通孔139に連通する低温時調整用ベース部材貫通孔129の直径Wbaと比較して大きい。換言すれば、本実施形態の静電チャック100において、板状部材10の下面S2における拡径接合部貫通孔139への露出面の面積は、ベース部材貫通孔120と同径の通常接合部貫通孔135への露出面の面積と比較して大きい。このため、拡径接合部貫通孔139の周辺では、通常接合部貫通孔135の周辺と比較して、板状部材10とベース部材20との間の伝熱が抑制される。 Further, in the electrostatic chuck 100 of the present embodiment, the joint portion 30 has a joint portion through hole 130. Further, the diameter Wbo of the expanded-diameter joint through-hole 139 in the bonded-section through-hole 130 is smaller than the diameter Wba of the low temperature adjustment base member through-hole 129 communicating with the expanded-diameter joint through-hole 139. large. In other words, in the electrostatic chuck 100 of the present embodiment, the area of the exposed surface of the lower surface S2 of the plate-shaped member 10 to the expanded diameter joint through hole 139 has the same diameter as that of the base member through hole 120. It is larger than the area of the exposed surface to the hole 135. Therefore, heat transfer between the plate-shaped member 10 and the base member 20 is suppressed in the vicinity of the enlarged-diameter joint through-hole 139, as compared with the vicinity of the normal joint through-hole 135.

静電チャックの板状部材における吸着面には、静電チャック製造時のバラツキ等に起因して、低温の温度特異点が発生することがある。本実施形態の静電チャック100では、低温時調整用ベース部材貫通孔129の周辺において、板状部材10とベース部材20との間の伝熱(熱引き)が抑制されることにより、ベース部材20に形成された冷媒流路21による冷却効率を抑制することができる。すなわち、本実施形態の静電チャック100では、上記構成が採用されているため、吸着面S1において、Z軸方向視における低温時調整用ベース部材貫通孔129に重なる領域とその付近の温度を昇温調整することができる。従って、本実施形態の静電チャック100によれば、板状部材10における吸着面S1の温度分布がより効果的に制御された(例えば、温度分布の均一性を向上させた)静電チャック100を提供することができ、ひいては、吸着面S1に保持されたウェハWの温度分布の制御性をより効果的に向上させることができる。 A low temperature singular point may occur on the attraction surface of the plate-shaped member of the electrostatic chuck due to variations in manufacturing the electrostatic chuck. In the electrostatic chuck 100 of the present embodiment, the heat transfer (heat conduction) between the plate-shaped member 10 and the base member 20 is suppressed around the low temperature adjustment base member through hole 129, so that the base member is suppressed. It is possible to suppress the cooling efficiency due to the coolant flow passage 21 formed in 20. That is, since the electrostatic chuck 100 according to the present embodiment employs the above-described configuration, the temperature of the suction surface S1 and the vicinity thereof in the region overlapping the low temperature adjustment base member through hole 129 in the Z-axis direction are increased. The temperature can be adjusted. Therefore, according to the electrostatic chuck 100 of this embodiment, the temperature distribution of the suction surface S1 of the plate-shaped member 10 is more effectively controlled (for example, the uniformity of the temperature distribution is improved). Therefore, the controllability of the temperature distribution of the wafer W held on the suction surface S1 can be improved more effectively.

また、本実施形態の静電チャック100の製造方法では、まず、ベース部材20に対して、Z軸方向に貫通し、かつ、Z軸方向視において、板状部材10の吸着面S1に重なる位置にベース部材貫通孔120(通常ベース部材貫通孔125、高温時調整用ベース部材貫通孔127、低温時調整用ベース部材貫通孔129)と、冷媒流路21とが形成されたベース部材20を準備し(ベース部材20の準備工程、S110)、接合部30における、板状部材10とベース部材20とを接合する前の状態である第1の接合部30aに対して、Z軸方向に貫通し、かつ、ベース部材20に形成されたベース部材貫通孔120(通常ベース部材貫通孔125、高温時調整用ベース部材貫通孔127、低温時調整用ベース部材貫通孔129)に連通する接合部貫通孔130が形成された第1の接合部30aを準備する(第1の接合部30aの準備工程、S120)。その後、板状部材10とベース部材20との間に第1の接合部30aを配置し、板状部材10とベース部材20とが接合部30によって接合された積層体100aを作製し(積層体100aの作製工程、S131,S133)、積層体100aを構成する板状部材10における吸着面S1の温度分布を測定する(吸着面S1の温度分布の測定工程、S141)。さらに、ステップS141において、板状部材10における吸着面S1の温度分布の測定の結果、吸着面S1の温度分布に高温領域の存在が示されたとき(S143:高温領域あり)、Z軸方向視において、高温領域に重なる領域に位置するベース部材貫通孔120(高温時調整用ベース部材貫通孔127)に対して、温度調整部分33を充填することにより、板状部材10の下面S2と、高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7とを、連結し(高温時調整工程、S151,S153)、ステップ141において、板状部材10における吸着面S1の温度分布の測定の結果、吸着面S1の温度分布に低温領域の存在が示されたとき(S143:低温領域あり)、Z軸方向視において、低温領域に重なる領域に位置するベース部材貫通孔120(低温時調整用ベース部材貫通孔129)に連通する接合部貫通孔130に対して、接合部貫通孔130の直径Wboが、接合部貫通孔130に連通する低温時調整用ベース部材貫通孔129の直径Wbaと比較して大きくなるよう、接合部30(面間接合部分31)の一部を除去して、拡径接合部貫通孔139とする(低温時調整工程、S160)。 Further, in the method for manufacturing the electrostatic chuck 100 of the present embodiment, first, the base member 20 is penetrated in the Z-axis direction, and at a position overlapping the attraction surface S1 of the plate-shaped member 10 when viewed in the Z-axis direction. A base member 20 having a base member through hole 120 (normal base member through hole 125, high temperature adjusting base member through hole 127, low temperature adjusting base member through hole 129) and a coolant channel 21 is prepared. (Preparing step of the base member 20, S110), the joining portion 30 is penetrated in the Z-axis direction with respect to the first joining portion 30a in the state before joining the plate member 10 and the base member 20. Also, a joint part through hole communicating with the base member through hole 120 (normal base member through hole 125, high temperature adjusting base member through hole 127, low temperature adjusting base member through hole 129) formed in the base member 20. The 1st joined part 30a in which 130 was formed is prepared (the preparation process of the 1st joined part 30a, S120). After that, the first joint portion 30a is arranged between the plate-shaped member 10 and the base member 20, and the laminated body 100a in which the plate-shaped member 10 and the base member 20 are joined by the joint portion 30 is manufactured (a laminated body). The manufacturing process of 100a, S131, S133), and the temperature distribution of the adsorption surface S1 of the plate-shaped member 10 constituting the stacked body 100a is measured (the temperature distribution measurement process of the adsorption surface S1, S141). Further, in step S141, when the temperature distribution of the suction surface S1 of the plate-shaped member 10 is measured and the temperature distribution of the suction surface S1 indicates the presence of a high temperature region (S143: there is a high temperature region), the Z-axis direction view is performed. In the above, by filling the temperature adjusting portion 33 in the base member through hole 120 (high temperature adjusting base member through hole 127) located in the region overlapping with the high temperature region, the lower surface S2 of the plate member 10 and the high temperature The inner surface S7 of the base member 20 defining the time adjusting base member through hole 127 is connected (high temperature adjusting step, S151, S153), and in step 141, the temperature distribution of the suction surface S1 of the plate member 10 is measured. As a result, when the existence of a low temperature region is shown in the temperature distribution of the adsorption surface S1 (S143: there is a low temperature region), the base member through hole 120 (adjusted at low temperature) located in a region overlapping the low temperature region in the Z-axis direction view. For the joint portion through hole 130 communicating with the base member through hole 129), the diameter Wbo of the joint portion through hole 130 is equal to the diameter Wba of the low temperature adjustment base member through hole 129 communicating with the joint portion through hole 130. A part of the joint portion 30 (inter-face joint portion 31) is removed so as to be larger than the other, and the enlarged joint portion through hole 139 is formed (low temperature adjustment step, S160).

このように、本実施形態の静電チャック100の製造方法では、予めベース部材20に対してベース部材貫通孔120を形成する。次いで、ベース部材貫通孔120が形成されたベース部材20と、板状部材10と、第1の接合部30a(接合部30)とから構成される積層体100aを作製し、作製された積層体100aにおける板状部材10の吸着面S1の温度分布を測定する。当該測定の結果、吸着面S1に温度分布の高温領域の存在が示されたとき、Z軸方向視において、高温領域に重なる領域に位置するベース部材貫通孔120(高温時調整用ベース部材貫通孔127)に対して、上記高温時調整工程を実行する。また、上記測定の結果、吸着面S1に温度分布の低温領域の存在が示されたとき、Z軸方向視において、低温領域に重なる領域に位置するベース部材貫通孔120(低温時調整用ベース部材貫通孔129)に連通する接合部貫通孔130に対して、上記低温時調整工程を実行する。 As described above, in the method of manufacturing the electrostatic chuck 100 according to the present embodiment, the base member through hole 120 is formed in the base member 20 in advance. Next, a laminated body 100a including the base member 20 having the base member through holes 120 formed therein, the plate-shaped member 10 and the first joint portion 30a (joint portion 30) is produced, and the produced laminate body is produced. The temperature distribution of the adsorption surface S1 of the plate member 10 at 100a is measured. As a result of the measurement, when the existence of the high temperature region of the temperature distribution is shown on the adsorption surface S1, the base member through hole 120 (the high temperature adjustment base member through hole) located in the region overlapping with the high temperature region when viewed in the Z-axis direction. For 127), the high temperature adjustment step is executed. Further, as a result of the above measurement, when the existence of a low temperature region of the temperature distribution on the adsorption surface S1 is shown, the base member through hole 120 (the low temperature adjustment base member) located in the region overlapping with the low temperature region when viewed in the Z-axis direction. The above-described low temperature adjustment step is performed on the joint portion through hole 130 communicating with the through hole 129).

高温時調整工程では、高温時調整用ベース部材貫通孔127に温度調整部分33を充填することにより、板状部材10の下面S2と、高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7とを連結する。これにより、板状部材10からベース部材20への熱引きを向上させることができ、ベース部材20に形成された冷媒流路21による冷却効率を向上させることができる。すなわち、吸着面S1の内の高温領域の温度を降温させることができる。また、低温調整工程では、低温時調整用ベース部材貫通孔129に連通する接合部貫通孔130に対して、板状部材10の下面S2の当該接合部貫通孔130への露出面がより大きくなるよう、接合部30(面間接合部分31)の一部を除去して拡径接合部貫通孔139を形成する。これにより、板状部材10からベース部材20への熱引きを抑制させることができ、ベース部材20に形成された冷媒流路21による冷却効率を抑制させることができる。すなわち、吸着面S1の内の低温領域の温度を昇温させることができる。従って、本実施形態の静電チャック100の製造方法によれば、積層体100aの板状部材10における吸着面S1の温度分布の測定結果に基づいて、板状部材10における吸着面S1の温度分布を制御する(例えば、温度分布の均一性を向上させる)ことができ、ひいては、吸着面S1に保持されたウェハWの温度分布の制御性を向上させることができる。 In the high temperature adjustment step, the base member 20 defining the high temperature adjustment base member through hole 127 and the lower surface S2 of the plate member 10 is filled by filling the high temperature adjustment base member through hole 127 with the temperature adjustment portion 33. Is connected to the inner surface S7. As a result, heat transfer from the plate-shaped member 10 to the base member 20 can be improved, and the cooling efficiency by the refrigerant flow path 21 formed in the base member 20 can be improved. That is, the temperature of the high temperature region in the adsorption surface S1 can be lowered. Further, in the low temperature adjustment step, the exposed surface of the lower surface S2 of the plate member 10 to the joining portion through hole 130 becomes larger than the joining portion through hole 130 communicating with the low temperature adjustment base member through hole 129. Thus, a part of the joint portion 30 (inter-face joint portion 31) is removed to form the enlarged diameter joint portion through hole 139. Thereby, heat transfer from the plate-shaped member 10 to the base member 20 can be suppressed, and the cooling efficiency by the refrigerant flow path 21 formed in the base member 20 can be suppressed. That is, it is possible to raise the temperature of the low temperature region in the suction surface S1. Therefore, according to the method for manufacturing the electrostatic chuck 100 of the present embodiment, the temperature distribution of the attraction surface S1 of the plate member 10 is determined based on the measurement result of the temperature distribution of the attraction surface S1 of the plate member 10 of the stacked body 100a. Can be controlled (for example, the uniformity of the temperature distribution can be improved), and by extension, the controllability of the temperature distribution of the wafer W held on the suction surface S1 can be improved.

B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Modification:
The technology disclosed in the present specification is not limited to the above-described embodiment, and can be modified into various forms without departing from the gist thereof, for example, the following modifications are also possible.

上記実施形態における静電チャック100の構成は、あくまでも一例であり、種々変形可能である。例えば、板状部材10の内部に、チャック電極40およびヒータ電極50の少なくとも一方を備えない構成としてもよい。また、上記実施形態では、板状部材10の内部にヒータ電極50が配置されているが、必ずしも板状部材10の内部にヒータ電極50が配置されている必要はなく、板状部材10の表面にヒータ電極50が配置されていてもよい。また、上記各実施形態では、ベース部材20に冷媒流路21が形成されているが、必ずしもベース部材20に冷媒流路21が形成されている必要はなく、ベース部材20にペルチェ素子等の他の冷却機構が備えられていてもよい。 The configuration of the electrostatic chuck 100 in the above embodiment is merely an example, and can be variously modified. For example, at least one of the chuck electrode 40 and the heater electrode 50 may not be provided inside the plate member 10. Further, in the above embodiment, the heater electrode 50 is arranged inside the plate-shaped member 10. However, the heater electrode 50 does not necessarily have to be arranged inside the plate-shaped member 10, and the surface of the plate-shaped member 10 is not necessarily arranged. The heater electrode 50 may be disposed in the. Further, in each of the above-described embodiments, the coolant channel 21 is formed in the base member 20, but the coolant channel 21 does not necessarily have to be formed in the base member 20. The cooling mechanism may be provided.

上記実施形態における静電チャック100では、板状部材10における吸着面S1の形状を略円形平面状としているが、これに限定されない。例えば、多角形平面状や他の形状であってもよい。 In the electrostatic chuck 100 according to the above-described embodiment, the suction surface S1 of the plate member 10 has a substantially circular flat shape, but the shape is not limited to this. For example, it may be a polygonal flat surface or another shape.

上記実施形態における静電チャック100では、ベース部材20において、8つのベース部材貫通孔120が、吸着面S1の外周付近(吸着面S1における半径Rの2分の1以上の長さとなる位置)において、周方向に略等間隔に配置されるよう形成されているが、これに限定されない。例えば、ベース部材貫通孔120の数は、2以上8未満であってもよく、8を超えていてもよい。また、ベース部材貫通孔120は、吸着面S1の外周付近に形成されるものでなくてもよく、例えば、吸着面S1の全面または中央部に形成されていてもよい。また、ベース部材貫通孔120は、吸着面S1上に略等間隔に形成されるものでなくてもよく、例えば、ランダムに形成されていてもよい。 In the electrostatic chuck 100 according to the above-described embodiment, in the base member 20, the eight base member through holes 120 are provided in the vicinity of the outer periphery of the suction surface S1 (positions having a length of ½ or more of the radius R in the suction surface S1). , Are formed so as to be arranged at substantially equal intervals in the circumferential direction, but are not limited to this. For example, the number of base member through holes 120 may be two or more and less than eight, or may be more than eight. Further, the base member through hole 120 does not have to be formed in the vicinity of the outer periphery of the suction surface S1 and may be formed, for example, on the entire surface or the central portion of the suction surface S1. Further, the base member through holes 120 do not have to be formed on the suction surface S1 at substantially equal intervals, and may be formed at random, for example.

上記実施形態において、接合部30を構成する温度調整部分33は、温度調整部分33の表面の内の板状部材10の下面S2に対向する表面の全面およびベース部材20の高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7に対向する表面の全面において、板状部材10およびベース部材20と接合されているがこれに限定されない。例えば、温度調整部分33の上記各表面の内、それぞれ、板状部材10の下面S2およびベース部材20の内面S7と接合していない部分があってもよい。また、上記実施形態において、面間接合部分31と温度調整部分33とは、互いに接合されているがこれに限定されず、面間接合部分31と温度調整部分33との間に接合されていない部分があってもよい。 In the above-described embodiment, the temperature adjusting portion 33 that constitutes the joint portion 30 includes the entire surface of the surface of the temperature adjusting portion 33 that faces the lower surface S2 of the plate-shaped member 10 and the base member 20 for adjusting the base member 20 at high temperature. The entire surface of the base member 20 facing the inner surface S7 that defines the through hole 127 is joined to the plate member 10 and the base member 20, but is not limited to this. For example, among the respective surfaces of the temperature adjusting portion 33, there may be a portion which is not joined to the lower surface S2 of the plate member 10 and the inner surface S7 of the base member 20, respectively. In addition, in the above-described embodiment, the inter-face joining portion 31 and the temperature adjusting portion 33 are joined to each other, but the embodiment is not limited to this, and is not joined between the inter-face joining portion 31 and the temperature adjusting portion 33. There may be parts.

上記実施形態において、接合部30が、拡径接合部貫通孔139を備える構成を採用しているが、これに限定されず、拡径接合部貫通孔139を備えていない構成であってもよい。すなわち、接合部30が備える接合部貫通孔130が、全て通常接合部貫通孔135であってもよい。また、上記実施形態において、全ての低温時調整用ベース部材貫通孔129が、それぞれ、拡径接合部貫通孔139に連通しているが、これに限定されない。例えば、全てのまたは一部の低温時調整用ベース部材貫通孔129が、それぞれ、通常接合部貫通孔135に連通している構成であってもよい。 In the above-described embodiment, the joint portion 30 employs the configuration including the enlarged diameter joint portion through hole 139, but the present invention is not limited to this, and the joint portion 30 may not include the enlarged diameter joint portion through hole 139. .. That is, all the joining portion through holes 130 included in the joining portion 30 may be the normal joining portion through holes 135. Further, in the above embodiment, all the low temperature adjustment base member through holes 129 communicate with the expanded diameter joint through holes 139, respectively, but the present invention is not limited to this. For example, all or some of the low temperature adjustment base member through holes 129 may be in communication with the normal joint through holes 135.

上記実施形態において、接合部30に形成された拡径接合部貫通孔139および低温時調整用ベース部材貫通孔129において、さらに、温度調整部分33が備えられていてもよい。また、温度調整部分33に代えて、板状部材10の下面S2の内の拡径接合部貫通孔139へ露出する部分と、ベース部材20の上面S3の内の拡径接合部貫通孔139へ露出する部分とを接合する接合部が備えられていてもよい。 In the above-described embodiment, the expanded diameter joint portion through hole 139 and the low temperature adjustment base member through hole 129 formed in the joint portion 30 may further include a temperature adjusting portion 33. Further, instead of the temperature adjusting portion 33, the portion exposed to the expanded diameter joint through hole 139 in the lower surface S2 of the plate-shaped member 10 and the expanded diameter joint through hole 139 in the upper surface S3 of the base member 20. A joint portion that joins the exposed portion may be provided.

上記実施形態において、接合部30が備える面間接合部分31と温度調整部分33とが同じ材料である構成を採用したが、これに限定されず、面間接合部分31と温度調整部分33とが異なる材料である構成であってもよい。なお、面間接合部分31と温度調整部分33との間の剥離を抑制する観点、および、面間接合部分31と温度調整部分33との応力緩和の程度を同等とする観点から、面間接合部分31と温度調整部分33とは同じ材料であることが好ましい。 In the above-described embodiment, the configuration in which the inter-face joint portion 31 and the temperature adjusting portion 33 provided in the joint portion 30 are made of the same material is adopted, but the configuration is not limited to this, and the inter-face joint portion 31 and the temperature adjusting portion 33 are It may be a configuration of different materials. From the viewpoint of suppressing peeling between the face-to-face joint portion 31 and the temperature adjustment portion 33, and from the viewpoint of equalizing the degree of stress relaxation between the face-to-face joint portion 31 and the temperature adjustment portion 33, the face-to-face joint The part 31 and the temperature adjusting part 33 are preferably made of the same material.

上記実施形態の静電チャック100の製造方法において、第1の接合部30aの準備工程の際に、接合部貫通孔130を形成したが、これに限定されず、接合部貫通孔130を形成しないとしてもよい。この場合、上記高温時調整工程の際には、接合部30の下面の内の高温時調整用ベース部材貫通孔127へ露出する部分と高温時調整用ベース部材貫通孔127を画定するベース部材20の内面S7とが接合されるよう温度調整部分33を充填することができる。また、低温時調整工程の際には、接合部30における低温時調整用ベース部材貫通孔129の周辺部分において、板状部材10の下面S2とベース部材20の上面S3との少なくとも一方が露出するよう、接合部30の一部を除去して拡径接合部貫通孔139を形成することができる。 In the method of manufacturing the electrostatic chuck 100 according to the above-described embodiment, the joining portion through hole 130 is formed in the step of preparing the first joining portion 30a, but the present invention is not limited to this, and the joining portion through hole 130 is not formed. May be In this case, in the high temperature adjustment step, the base member 20 that defines the high temperature adjustment base member through hole 127 and the portion of the lower surface of the joint portion 30 exposed to the high temperature adjustment base member through hole 127. The temperature adjusting portion 33 can be filled so as to be bonded to the inner surface S7 of the. In the low temperature adjustment step, at least one of the lower surface S2 of the plate member 10 and the upper surface S3 of the base member 20 is exposed in the peripheral portion of the low temperature adjustment base member through hole 129 in the joint portion 30. Thus, a part of the joint portion 30 can be removed to form the expanded diameter joint portion through hole 139.

上記実施形態の静電チャック100の製造方法において、積層体100aの作製工程が、第1の接合部30aの硬化処理を含むとしているが、これに限定されない。例えば、接合部30として用いる接着剤が硬化処理を必要としない場合等には、積層体100aの作製工程に、上記硬化処理を含まなくてもよい。 In the method of manufacturing the electrostatic chuck 100 according to the above-described embodiment, the manufacturing process of the stacked body 100a includes the curing process of the first bonding portion 30a, but the manufacturing process is not limited thereto. For example, when the adhesive used as the bonding portion 30 does not require a curing treatment, the curing treatment may not be included in the manufacturing process of the laminated body 100a.

上記実施形態の静電チャック100の製造方法において、高温時調整工程および低温時調整工程の両方を実行しているが、これに限定されず、吸着面S1の温度分布の測定結果に応じて、いずれか一方の工程を行うこととしてもよい。 In the manufacturing method of the electrostatic chuck 100 of the above-described embodiment, both the high temperature adjustment step and the low temperature adjustment step are executed, but the present invention is not limited to this, and according to the measurement result of the temperature distribution of the adsorption surface S1, Either one of the steps may be performed.

上記実施形態の静電チャック100の製造方法において、高温時調整工程では、Z軸方向視において、吸着面S1の内の上記高温領域に重なる領域に位置する全てのベース部材貫通孔120に対して、温度調整部分33を充填しているが、これに限定されず、一部のベース部材貫通孔120に対して温度調整部分33を充填することとしてもよい。また、低温時調整工程においても、Z軸方向視において、吸着面S1の内の上記低温領域に重なる領域に位置する全てのベース部材貫通孔120に連通する各接合部貫通孔130に対して、拡径接合部貫通孔139とする処理を行っているが、これに限定されず、一部のベース部材貫通孔120に対して拡径接合部貫通孔139とする処理を行うこととしてもよい。 In the manufacturing method of the electrostatic chuck 100 of the above-described embodiment, in the high temperature adjustment step, with respect to all the base member through holes 120 located in the area overlapping the high temperature area of the suction surface S1 in the Z-axis direction. Although the temperature adjusting portion 33 is filled, the present invention is not limited to this, and the temperature adjusting portion 33 may be filled in some of the base member through holes 120. Also in the low temperature adjustment step, as viewed in the Z-axis direction, with respect to each joint part through hole 130 that communicates with all the base member through holes 120 that are located in the region that overlaps the low temperature region in the suction surface S1, Although the process for forming the expanded-diameter joint through hole 139 is performed, the process is not limited to this, and the process for forming the expanded-diameter joint through hole 139 may be performed for some of the base member through holes 120.

また、上記各実施形態では、板状部材10の内部に1つのチャック電極40が設けられた単極方式が採用されているが、板状部材10の内部に一対のチャック電極40が設けられた双極方式が採用されてもよい。また、上記各実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。 Further, in each of the above-described embodiments, the monopolar system in which one chuck electrode 40 is provided inside the plate member 10 is adopted, but a pair of chuck electrodes 40 is provided inside the plate member 10. A bipolar system may be adopted. Further, the material forming each member in each of the above embodiments is merely an example, and each member may be formed of another material.

本発明は、静電引力を利用してウェハWを保持する静電チャック100に限らず、板状部材と、ベース部材と、接合部とを備え、板状部材の表面上に対象物を保持する他の保持装置(例えば、真空チャック等)にも同様に適用可能である。 The present invention is not limited to the electrostatic chuck 100 that holds the wafer W by using electrostatic attraction, and includes a plate-shaped member, a base member, and a bonding portion, and holds an object on the surface of the plate-shaped member. It can be similarly applied to other holding devices (for example, a vacuum chuck etc.).

10:板状部材 20:ベース部材 21:冷媒流路 25:孔 30:接合部 30a:第1の接合部 31:面間接合部分 33:温度調整部分 35:孔 40:チャック電極 50:ヒータ電極 100:静電チャック 100a:積層体 120:ベース部材貫通孔 125:通常ベース部材貫通孔 127:高温時調整用ベース部材貫通孔 129:低温時調整用ベース部材貫通孔 130:接合部貫通孔 131:第1のガス流路孔 132:第2のガス流路孔 133:横流路 134:拡径部 135:通常接合部貫通孔 139:拡径接合部貫通孔 141:ステップ 160:充填部材(通気性プラグ) Lf:長さ Lr:距離 PO:中心 R:半径 S1:吸着面 S2:下面 S3:上面 S4:下面 S7:内面 S9:内面 W:ウェハ 10: Plate-shaped member 20: Base member 21: Refrigerant flow path 25: Hole 30: Joining part 30a: First joining part 31: Inter-face joining part 33: Temperature adjusting part 35: Hole 40: Chuck electrode 50: Heater electrode 100: Electrostatic chuck 100a: Laminated body 120: Base member through hole 125: Normal base member through hole 127: High temperature adjustment base member through hole 129: Low temperature adjustment base member through hole 130: Joined portion through hole 131: First gas passage hole 132: Second gas passage hole 133: Lateral passage 134: Expanded portion 135: Normal joint through hole 139: Expanded joint through hole 141: Step 160: Filling member (air permeability) Plug) Lf: Length Lr: Distance PO: Center R: Radius S1: Adsorption surface S2: Lower surface S3: Upper surface S4: Lower surface S7: Inner surface S9: Inner surface W: Wafer

Claims (5)

第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する板状部材と、
第3の表面を有し、前記第3の表面が前記板状部材の前記第2の表面側に位置するように配置されたベース部材であって、前記第1の方向に貫通し、かつ、前記第1の方向視において、前記板状部材の前記第1の表面に重なる位置に配置された第1の貫通孔と、第2の貫通孔と、冷却機構とが形成されたベース部材と、
前記板状部材と前記ベース部材とを接合する接合部と、
を備え、前記板状部材の前記第1の表面上に対象物を保持する静電チャックにおいて、
前記接合部は、
前記板状部材の前記第2の表面と、前記ベース部材の前記第3の表面と、に接合された第1の部分と、
前記板状部材の前記第2の表面と、前記第1の貫通孔を画定する前記ベース部材の内面と、に接合された第2の部分と、
を備え、
前記板状部材の前記第2の表面と、前記第2の貫通孔を画定する前記ベース部材の内面と、は接合されていない、
ことを特徴とする静電チャック。
A plate-shaped member having a first surface substantially orthogonal to the first direction and a second surface opposite to the first surface;
A base member having a third surface, the third surface being arranged so as to be located on the second surface side of the plate-shaped member, the base member penetrating in the first direction, and A first through hole arranged at a position overlapping the first surface of the plate-shaped member in the first direction, a second through hole, and a base member on which a cooling mechanism is formed,
A joint portion that joins the plate member and the base member,
And an electrostatic chuck for holding an object on the first surface of the plate-shaped member,
The joint is
A first portion joined to the second surface of the plate member and the third surface of the base member;
A second portion joined to the second surface of the plate-shaped member and an inner surface of the base member defining the first through hole;
Equipped with
The second surface of the plate-shaped member and the inner surface of the base member defining the second through hole are not joined,
An electrostatic chuck characterized in that
請求項1に記載の静電チャックにおいて、
前記第1の部分を形成する材料と、前記第2の部分を形成する材料とは、同じである、
ことを特徴とする静電チャック。
The electrostatic chuck according to claim 1,
The material forming the first portion and the material forming the second portion are the same,
An electrostatic chuck characterized in that
請求項1または請求項2に記載の静電チャックにおいて、
前記板状部材の前記第1の表面は、略円形であり、
前記第1の方向視において、前記板状部材の前記第1の表面の中心と前記ベース部材に形成された前記第1の貫通孔の中心との距離と、前記板状部材の前記第1の表面の中心と前記第2の貫通孔の中心との距離とは、前記第1の表面における半径の2分の1以上の長さである、
ことを特徴とする静電チャック。
The electrostatic chuck according to claim 1 or 2,
The first surface of the plate-shaped member is substantially circular,
In the first direction, the distance between the center of the first surface of the plate-shaped member and the center of the first through hole formed in the base member, and the first distance of the plate-shaped member. The distance between the center of the surface and the center of the second through hole is equal to or more than half the radius of the first surface.
An electrostatic chuck characterized in that
請求項1から請求項3までのいずれか一項に記載の静電チャックにおいて、
前記接合部には、接合部貫通孔が形成されており、
前記接合部貫通孔の直径は、前記接合部貫通孔に連通する前記第2の貫通孔の直径と比較して大きい、
ことを特徴とする静電チャック。
The electrostatic chuck according to any one of claims 1 to 3,
In the joint, a joint through hole is formed,
The diameter of the joint through-hole is larger than the diameter of the second through-hole communicating with the joint through-hole,
An electrostatic chuck characterized in that
第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する板状部材と、第3の表面を有し、前記第3の表面が前記板状部材の前記第2の表面側に位置するように配置され、かつ、冷却機構を有するベース部材と、前記板状部材と前記ベース部材とを接合する接合部と、を備え、前記板状部材の前記第1の表面上に対象物を保持する静電チャックの製造方法において、
前記ベース部材に対して、前記第1の方向に貫通し、かつ、前記第1の方向視において、前記板状部材の前記第1の表面に重なる位置に第1の貫通孔と第2の貫通孔とが形成された前記ベース部材を準備する、第1の工程と、
前記接合部における、前記板状部材と前記ベース部材とを接合する前の状態である第1の接合部に対して、前記第1の方向に貫通し、かつ、前記ベース部材に形成された前記第1の貫通孔と前記第2の貫通孔との内の少なくとも前記第2の貫通孔に連通する接合部貫通孔が形成された前記第1の接合部を準備する、第2の工程と、
前記板状部材と前記ベース部材との間に前記第1の接合部を配置し、前記板状部材と前記ベース部材とが前記接合部によって接合された積層体を作製する、第3の工程と、
前記積層体を構成する前記板状部材における前記第1の表面の温度分布を測定する、第4の工程と、
前記第4の工程において、前記板状部材における前記第1の表面の温度分布の測定の結果、前記第1の表面の温度分布に高温領域の存在が示されたとき、前記第1の方向視において、前記高温領域に重なる領域に位置する前記第1の貫通孔に対して、充填部材を充填することにより、前記板状部材の前記第2の表面と、前記第1の貫通孔を画定する前記ベース部材の内面とを、連結する、第5の工程と、前記第4の工程において、前記板状部材における前記第1の表面の温度分布の測定の結果、前記第1の表面の温度分布に低温領域の存在が示されたとき、前記第1の方向視において、前記低温領域に重なる領域に位置する前記第2の貫通孔に連通する前記接合部貫通孔に対して、前記接合部貫通孔の直径が、前記接合部貫通孔に連通する前記第2の貫通孔の直径と比較して大きくなるよう、前記接合部の一部を除去する、第6の工程と、の少なくとも一方、
を備える、
ことを特徴とする静電チャックの製造方法。
A plate-like member having a first surface substantially orthogonal to the first direction and a second surface opposite to the first surface; and a third surface, the third surface Is provided so as to be located on the side of the second surface of the plate-shaped member, and includes a base member having a cooling mechanism, and a joint portion that joins the plate-shaped member and the base member, In a method of manufacturing an electrostatic chuck for holding an object on the first surface of a plate-shaped member,
A first penetrating hole and a second penetrating hole penetrate through the base member in the first direction and overlap the first surface of the plate-shaped member in the first direction. A first step of preparing the base member having holes formed therein;
The first joining portion in the joining portion, which is in a state before joining the plate member and the base member, penetrates in the first direction and is formed on the base member. A second step of preparing the first joining portion in which a joining portion through hole communicating with at least the second through hole of the first through hole and the second through hole is prepared;
A third step of arranging the first joint between the plate-shaped member and the base member to produce a laminated body in which the plate-shaped member and the base member are joined by the joint. ,
A fourth step of measuring the temperature distribution of the first surface of the plate-shaped member constituting the laminated body,
In the fourth step, when the temperature distribution of the first surface of the plate-shaped member is measured and the presence of a high temperature region is indicated in the temperature distribution of the first surface, In, the filling member is filled in the first through hole located in the region overlapping with the high temperature region to define the second surface of the plate member and the first through hole. As a result of measuring the temperature distribution of the first surface of the plate-shaped member in the fifth step and the fourth step of connecting the inner surface of the base member, the temperature distribution of the first surface When the presence of the low temperature region is indicated in the first direction, the joint portion penetrating hole is communicated with the joint portion penetrating hole communicating with the second penetrating hole located in a region overlapping the low temperature region. At least one of a sixth step of removing a part of the joint so that the diameter of the hole is larger than the diameter of the second through hole communicating with the joint through hole,
With
A method of manufacturing an electrostatic chuck, comprising:
JP2018243970A 2018-12-27 2018-12-27 Electrostatic chuck and method for manufacturing electrostatic chuck Active JP7278072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243970A JP7278072B2 (en) 2018-12-27 2018-12-27 Electrostatic chuck and method for manufacturing electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243970A JP7278072B2 (en) 2018-12-27 2018-12-27 Electrostatic chuck and method for manufacturing electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2020107689A true JP2020107689A (en) 2020-07-09
JP7278072B2 JP7278072B2 (en) 2023-05-19

Family

ID=71449694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243970A Active JP7278072B2 (en) 2018-12-27 2018-12-27 Electrostatic chuck and method for manufacturing electrostatic chuck

Country Status (1)

Country Link
JP (1) JP7278072B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161803A (en) * 1993-12-08 1995-06-23 Tokyo Electron Ltd Method of bonding aluminum member to poly-benzimidazole member, electrode structure of electrostatic chuck and its manufacture
JPH1050813A (en) * 1996-04-26 1998-02-20 Applied Materials Inc Conduit for flow of heat transfer fluid to electrostatic chuck surface
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
US20100109263A1 (en) * 2008-11-06 2010-05-06 Seok Yul Jun Electrostatic chuck having reduced arcing
JP2013247342A (en) * 2012-05-29 2013-12-09 Shinko Electric Ind Co Ltd Electrostatic chuck and method of manufacturing electrostatic chuck
JP2015185552A (en) * 2014-03-20 2015-10-22 新光電気工業株式会社 Temperature adjustment device
JP2017143182A (en) * 2016-02-10 2017-08-17 日本特殊陶業株式会社 Holding device and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161803A (en) * 1993-12-08 1995-06-23 Tokyo Electron Ltd Method of bonding aluminum member to poly-benzimidazole member, electrode structure of electrostatic chuck and its manufacture
JPH1050813A (en) * 1996-04-26 1998-02-20 Applied Materials Inc Conduit for flow of heat transfer fluid to electrostatic chuck surface
JP2009267256A (en) * 2008-04-28 2009-11-12 Ngk Insulators Ltd Substrate retainer and method for manufacturing the same
US20100109263A1 (en) * 2008-11-06 2010-05-06 Seok Yul Jun Electrostatic chuck having reduced arcing
JP2013247342A (en) * 2012-05-29 2013-12-09 Shinko Electric Ind Co Ltd Electrostatic chuck and method of manufacturing electrostatic chuck
JP2015185552A (en) * 2014-03-20 2015-10-22 新光電気工業株式会社 Temperature adjustment device
JP2017143182A (en) * 2016-02-10 2017-08-17 日本特殊陶業株式会社 Holding device and method of manufacturing the same

Also Published As

Publication number Publication date
JP7278072B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP6634315B2 (en) Holding device and method of manufacturing holding device
JP2018101773A (en) Retainer
WO2020213368A1 (en) Production method for holding device, production method for structure for holding devices, and holding device
JP2018056332A (en) Heating apparatus
JP2018101711A (en) Electrostatic chuck
JP2019075399A (en) Holding device and manufacturing method of holding device
JP2019220496A (en) Manufacturing method of holding device
JP7283872B2 (en) holding device
JP7233160B2 (en) Retaining device and method for manufacturing the retaining device
JP2017147312A (en) Holding device and method for manufacturing holding device
JP2019062175A (en) Holding device
JP2021111662A (en) Holding device
JP7278072B2 (en) Electrostatic chuck and method for manufacturing electrostatic chuck
JP6703646B2 (en) Holding device manufacturing method
JP6703647B2 (en) HOLDING DEVICE MANUFACTURING METHOD, AND HOLDING DEVICE
JP6979375B2 (en) Holding device and manufacturing method of holding device
JP2018181866A (en) Method of manufacturing holding device
JP6633931B2 (en) Holding device and method of manufacturing holding device
JP2019212831A (en) Retainer and manufacturing method therefor
JP7240145B2 (en) electrostatic chuck
JP2020009932A (en) Retainer
JP7184578B2 (en) Manufacturing method of holding device
TW202131756A (en) Ceramic heater
JP6703645B2 (en) Holding device and method of manufacturing holding device
JP7516147B2 (en) Retaining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150