JP2020099326A - Nucleic acid encoding chimeric antigen receptor protein and T lymphocyte expressing chimeric antigen receptor protein - Google Patents
Nucleic acid encoding chimeric antigen receptor protein and T lymphocyte expressing chimeric antigen receptor protein Download PDFInfo
- Publication number
- JP2020099326A JP2020099326A JP2019238469A JP2019238469A JP2020099326A JP 2020099326 A JP2020099326 A JP 2020099326A JP 2019238469 A JP2019238469 A JP 2019238469A JP 2019238469 A JP2019238469 A JP 2019238469A JP 2020099326 A JP2020099326 A JP 2020099326A
- Authority
- JP
- Japan
- Prior art keywords
- chimeric antigen
- nucleic acid
- antigen receptor
- region
- egfr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
【課題】EGFRvIIIを発現するか、EGFRを高度発現する上皮由来の腫瘍に対する遺伝子組み換えTリンパ球による治療の提供。
【解決手段】ヒトT細胞の表面に発現されるキメラ抗原受容体タンパク質をコードする核酸であって、前記キメラ抗原受容体タンパク質は順に連結した細胞外結合領域、膜貫通領域および細胞内シグナル領域を含み、中では、前記細胞外結合領域は特異的にヒト上皮成長因子受容体EGFRの287-302番目のアミノ酸エピトープを識別する一本鎖抗体scFv(EGFR)を含む核酸。
【選択図】図1PROBLEM TO BE SOLVED: To provide a treatment with a recombinant T lymphocyte for a tumor of epithelial origin that expresses EGFRvIII or highly expresses EGFR.
A nucleic acid encoding a chimeric antigen receptor protein expressed on the surface of human T cells, wherein the chimeric antigen receptor protein comprises an extracellular binding region, a transmembrane region and an intracellular signal region which are sequentially linked. Wherein the extracellular binding region specifically comprises a single chain antibody scFv(EGFR) which specifically identifies the 287-302 amino acid epitope of human epidermal growth factor receptor EGFR.
[Selection diagram] Figure 1
Description
本発明は、腫瘍細胞の治療の分野に関し、具体的には、EGFRvIIIを発現するか、EGFRを高度発現する上皮由来の腫瘍に対する遺伝子組み換えTリンパ球による治療の分野に関する。 The present invention relates to the field of treatment of tumor cells, and more particularly to the field of treatment of epithelial-derived tumors that express EGFRvIII or highly express EGFR with recombinant T lymphocytes.
上皮成長因子受容体(Epidermal Growth Factor Receptor、EGFR)は、膜貫通タンパク質で、分子量が170 KDで、癌原遺伝子C-erbB-1(HER-1)の発現産物で、幅広く人体の各組織の細胞膜に分布する[Alan Wells. Molecules in focus EGF receptor. Int J Biochem Cell Biol, 1999, 31: 637-643.]。 大半の腫瘍(たとえば非小細胞肺癌、膀胱癌、卵巣癌、乳癌、頭頚部扁平上皮癌、膠細胞腫、膵臓腺癌、食道癌、胃癌、前立腺癌など)において過剰発現および(または)突然変異が確認され、腫瘍の発生・進展、悪性転換、転移および予後と密接に関連する[Jose B. Why the epidermal growth factor receptor? The rational for cancer therapy [J]. Oncologist, 2002, 7 (4): 2-8.]。そのため、EGFRは腫瘍治療における重要な標的である。また、研究によって、EGFR287-302エピトープは、EGFRvIIIまたは過剰発現のEGFRの腫瘍のみで露出し、正常組織においては当該エピトープは隠れていることがわかった[Gan HKら Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res, 2012, 72(12):2924-2930.]。EGFR287-302エピトープはEGFRを標的とする関連腫瘍の治療の理想の部位の一つであることが示唆される。 Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with a molecular weight of 170 KD and an expression product of the protooncogene C-erbB-1 (HER-1), which is widely used in various tissues of the human body. It is distributed in the cell membrane [Alan Wells. Molecules in focus EGF receptor. Int J Biochem Cell Biol, 1999, 31: 637-643.]. Overexpression and/or mutations in most tumors (eg non-small cell lung cancer, bladder cancer, ovarian cancer, breast cancer, head and neck squamous cell carcinoma, glioma, pancreatic adenocarcinoma, esophageal cancer, gastric cancer, prostate cancer, etc.) Is closely associated with tumor development/progression, malignant transformation, metastasis and prognosis [Jose B. Why the epidermal growth factor receptor? The rational for cancer therapy [J]. Oncologist, 2002, 7 (4): 2-8.]. Therefore, EGFR is an important target in tumor therapy. In addition, studies have shown that the EGFR287-302 epitope is exposed only in EGFRvIII or overexpressed EGFR tumors, and in normal tissues the epitope is hidden [Gan HK et al. Targeting of a conformationally exposed, tumor- specific epitope of EGFR as a strategy for cancer therapy. Cancer Res, 2012, 72(12):2924-2930.]. It is suggested that the EGFR287-302 epitope is one of the ideal sites for the treatment of related tumors targeting EGFR.
EGFR287-302エピトープに対する抗体は既に開発され、優れた腫瘍特異的殺傷作用を示す。しかし、抗体治療には、抗体の体内血液循環における半減期の制限があり、一般的に、半減期は大体23日以内である。そのため、持続的投与および/または投与量の増加は腫瘍の抗体治療に必要で、これは患者の治療コストの増加に繋がり、そして一部では、治療を終えざるを得ないこともある。また、治療性抗体は、異種タンパク質として、体内でアレルギー反応を起こす可能性があり、当該治療性抗体に対する中和性抗体が生じるリスクもある。 Antibodies against the EGFR287-302 epitope have already been developed and show excellent tumor-specific killing effect. However, antibody therapy has a limited half-life of the antibody in circulating in the body and generally has a half-life of approximately 23 days or less. As such, continuous administration and/or escalation of dose is required for antibody treatment of tumors, which leads to increased treatment costs for patients and in some cases may require termination of treatment. Further, the therapeutic antibody may cause an allergic reaction in the body as a heterologous protein, and there is also a risk of producing a neutralizing antibody against the therapeutic antibody.
Tリンパ球の腫瘍の免疫応答における作用は重要視されてきた。Tリンパ球に基づいた養子免疫療法は一部の腫瘍においてある程度の効果が得られ、しかもこのような免疫治療法は抗体治療の上記欠点を克服することができるが、大半の腫瘍における治療効果は満足できるものと言えない[Grupp SAら Adoptive cellular therapy. 2011, 344:149-72.]。近年、細胞毒性Tリンパ球の標的細胞に対する識別特異性はT細胞受容体(T Cell Receptor、TCR)に依存するという発見に基づき、腫瘍細胞関連抗原に対する抗体のscFvをT細胞受容体のCD3ζまたはFcεRIγなどの細胞内シグナルの活性化モチーフと融合させてキメラ抗原受容体(Chimeric antigen receptor、CAR)とし、そしてそれをたとえばレンチウイルス感染などの方法によってT細胞の表面に遺伝子的に修飾する。このようなCAR T細胞は主要組織適合遺伝子複合体(Major Histocompatibility Complex、MHC)に制限されない様態で選択的にTリンパ球の標的を腫瘍細胞に変えて特異的に腫瘍を殺傷することができる。CAR T細胞は、腫瘍免疫治療分野における新たな免疫治療策の一つである[Schmitz Mら Chimeric antigen receptor-engineered T cells for iImmunotherapy of Cancer. J Biomed Biotechnol, 2010, doi:10.1155/2010/956304.]。 The effect of T lymphocytes on the tumor immune response has been emphasized. Adoptive immunotherapy based on T lymphocytes has some efficacy in some tumors, and while such immunotherapy can overcome the above drawbacks of antibody therapy, it has therapeutic efficacy in most tumors. Not satisfactory [Grupp SA et al. Adoptive cellular therapy. 2011, 344:149-72.]. Recently, based on the discovery that the specificity of cytotoxic T lymphocytes for target cells depends on the T cell receptor (T Cell Receptor, TCR), the scFv of an antibody against a tumor cell-associated antigen is compared with the T cell receptor CD3ζ or It is fused with an activation motif of an intracellular signal such as FcεRIγ to form a chimeric antigen receptor (CAR), which is genetically modified on the surface of T cells by a method such as lentivirus infection. Such CAR T cells can selectively kill tumors by selectively targeting T lymphocytes to tumor cells in a manner not restricted by the major histocompatibility complex (MHC). CAR T cells are one of the new immunotherapeutic measures in the field of tumor immunotherapy [Schmitz M et al. Chimeric antigen receptor-engineered T cells for iImmunotherapy of Cancer. J Biomed Biotechnol, 2010, doi:10.1155/2010/956304. ].
キメラ抗原受容体は、細胞外結合領域、膜貫通領域および細胞内シグナル領域を含む。通常、細胞外領域は腫瘍関連抗原が識別できるscFvを含み、膜貫通領域はCD8、CD28などの分子の膜貫通領域を使用し、細胞内シグナル領域は免疫受容体活性化チロシンモチーフ(immunoreceptor tyrosine-based activation motif、ITAM)、たとえばCD3ζ(すなわちCD3 zeta、Zと略す)またはFcεRIγおよび共刺激シグナル分子CD28、CD137、CD134などの細胞内シグナル領域を使用する。 The chimeric antigen receptor contains an extracellular binding region, a transmembrane region and an intracellular signal region. Usually, the extracellular region contains scFv that can identify tumor-associated antigens, the transmembrane region uses the transmembrane regions of molecules such as CD8 and CD28, and the intracellular signal region uses the immunoreceptor tyrosine-motif (immunoreceptor tyrosine- based activation motif (ITAM), eg, intracellular signal regions such as CD3ζ (ie, CD3 zeta, abbreviated as CD) or FcεRIγ and costimulatory signal molecules CD28, CD137, CD134.
細胞内シグナル領域がITAMだけを含むものは第一世代のCAR T細胞で、中では、キメラ抗原受容体の各部分はscFv-TM-CD3ζのように連結している。このようなCAR T細胞は、抗腫瘍の細胞毒性効果を起こすが、サイトカインの分泌が少なく、かつ体内において持久的な抗腫瘍効果が起こせない[Zhang T.ら Chimeric NKG2D-modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways, Cancer Res 2007, 67(22):11029-11036.]。 Those in which the intracellular signal region contains only ITAM are CAR T cells of the first generation, in which each part of the chimeric antigen receptor is linked like scFv-TM-CD3ζ. Such CAR T cells cause cytotoxic effects of antitumor, but have low cytokine secretion and cannot exert a permanent antitumor effect in the body [Zhang T. et al. Chimeric NKG2D-modified T cells inhibit systemic T -cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways, Cancer Res 2007, 67(22):11029-11036.].
その後発展してきた第二世代のCAR T細胞は、CD28またはCD137(4-1BBとも呼ばれる)の細胞内シグナル領域が入れられ、中では、キメラ抗原受容体の各部分はscFv-TM-CD28 -ITAMまたはscFv-TM-/CD137-ITAMのように連結している。細胞内シグナル領域で生じるB7/CD28または4-1BBL/CD137共刺激作用がT細胞の持続的な増殖を引き起こし、かつT細胞のIL-2およびIFN-γなどのサイトカインを分泌するレベルを上げ、同時にCAR Tの体内における生存期間および抗腫瘍効果を向上させる[Dotti G.ら CD28 costimulation improves expansion and persistence of chimeric antigen receptor modified T cells in lymphoma patients. J Clin Invest, 2011, 121(5):1822-1826.]。 The second-generation CAR T cells that have developed thereafter contain the intracellular signal region of CD28 or CD137 (also called 4-1BB), in which each part of the chimeric antigen receptor is scFv-TM-CD28 -ITAM. Or it is linked like scFv-TM-/CD137-ITAM. B7/CD28 or 4-1BBL/CD137 costimulatory action occurring in the intracellular signal region causes continuous proliferation of T cells, and raises the level of T cells that secrete cytokines such as IL-2 and IFN-γ, At the same time, it improves the in vivo survival and antitumor effects of CAR T [Dotti G. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor modified T cells in lymphoma patients. J Clin Invest, 2011, 121(5):1822- 1826.].
近年発展してきた第三世代のCAR T細胞は、中では、キメラ抗原受容体の各部分はscFv-TM-CD28-CD137-ITAMまたはscFv-TM-CD28-CD134-ITAMのように連結しており、CAR Tの体内における生存期間および抗腫瘍効果をさらに向上させる[Carpenito C.ら Control of large established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. PNAS, 2009, 106(9): 3360-3365.]。 In the third-generation CAR T cells that have been developed in recent years, inside each part of the chimeric antigen receptor is linked as scFv-TM-CD28-CD137-ITAM or scFv-TM-CD28-CD134-ITAM. , CAR T to further improve in vivo survival and antitumor effect [Carpenito C. et al. Control of large established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. PNAS, 2009, 106(9): 3360- 3365.].
CAR T細胞は、腫瘍免疫治療において魅了的な将来性があるが、潜在的なリスクも考える必要がある。たとえば、ある正常組織においてCARに識別される特異的抗原が低発現されると、CAR T細胞は相応の抗原を発現する正常組織を損傷する。たとえば、腎細胞癌患者の腫瘍細胞で発現される抗原の炭酸脱水酵素IX(CAIX)は、初めて臨床に使用されるCAR T細胞の養子治療のケースで、初めてCAR細胞のオフターゲット効果が報告されたケースでもある。患者は数回のCAR T細胞の投与後レベル2〜4の肝毒性が現れる。分析したところ、原因は肝内胆管上皮細胞におけるCAIXの低発現で、その臨床試験がやむを得ず中止になったと同時に、患者の治療効果のすべての評価も排除された。[Stoter G.ら Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J clin oncol, 2006, 24(13): e20-e22.; Ngo MC.ら Ex vivo gene transfer for improved adoptive immunotherapy of cancer. Human Molecular Genetics, 2011, R1-R7]。 CAR T cells have a fascinating potential in tumor immunotherapy, but potential risks also need to be considered. For example, when a specific antigen recognized by CAR is underexpressed in a normal tissue, CAR T cells damage normal tissue expressing the corresponding antigen. For example, carbonic anhydrase IX (CAIX), an antigen expressed in tumor cells of patients with renal cell carcinoma, was first used clinically in the case of adoptive treatment of CAR T cells, and the off-target effect of CAR cells was reported for the first time. It is also a case. Patients develop level 2-4 hepatotoxicity after several doses of CAR T cells. In the analysis, the cause was low expression of CAIX in intrahepatic cholangioepithelial cells, unavoidably discontinuing the clinical trial, as well as eliminating all assessments of patient efficacy. [Stoter G. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J clin oncol, 2006, 24 (13): e20-e22.; Ngo MC. et al Ex vivo gene Transfer for improved adoptive immunotherapy of cancer. Human Molecular Genetics, 2011, R1-R7].
また、CARにおける過剰の共刺激シグナルはエフェクター細胞の活性化に必要な閾値を低下させ、遺伝子的に修飾されたT細胞が低レベルの抗原に誘導される条件または抗原による誘導のない条件でも活性化されるようにさせ、大量のサイトカインが放出されることで、いわゆる「サイトカインストーム」を引き起こす可能性がある。このようなシグナルの放出(singnal leakage)はオフターゲットの細胞毒性を起こすことで、非特異的な組織の損傷が生じる。たとえば、Her2に対する第三世代のCARによって臨床で肝臓と肺の転移のある末期結腸癌患者を治療する過程において、正常肺組織における低発現のHer2によるいわゆる「サイトカイン」によって患者が突然死した[Morgan RA.ら Report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing Erbb2. Molecular Therapy, 2010, 18 (4): 843-851.]。
そのため、本分野では、上記欠点を克服するCAR Tリンパ球による腫瘍治療方法が切望されている。
Excessive costimulatory signals in CAR also reduce the threshold required for activation of effector cells and are active under conditions in which genetically modified T cells are induced by low levels of antigen or no antigen induction. When released, a large amount of cytokine is released, which may cause a so-called “cytokine storm”. Such signal leakage causes off-target cytotoxicity, resulting in non-specific tissue damage. For example, in the course of treating a patient with end-stage colon cancer with clinical liver and lung metastases by a third-generation CAR for Her2, the patient suddenly died due to a so-called “cytokine” with low expression of Her2 in normal lung tissue [Morgan RA. et al Report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing Erbb2. Molecular Therapy, 2010, 18 (4): 843-851.].
Therefore, in the present field, a tumor treatment method using CAR T lymphocytes that overcomes the above-mentioned drawbacks has been earnestly desired.
本発明の第一は、T細胞の表面に発現されるキメラ抗原受容体タンパク質をコードする核酸に関し、前記キメラ抗原受容体タンパク質は順に連結した細胞外結合領域、膜貫通領域および細胞内シグナル領域を含み、中では、前記細胞外結合領域は特異的にヒト上皮成長因子受容体EGFRの287-302番目のアミノ酸(EGFR287-302)エピトープを識別する一本鎖抗体scFv(EGFR)を含む。上記キメラ抗原受容体タンパク質の細胞外結合領域はCD8のヒンジ領域でCD8またはCD28の膜貫通領域と連結し、膜貫通領域の次に細胞内シグナル領域が隣接する。本発明のポリヌクレオチドは、DNA形態でもRNA形態でもよい。DNA形態は、cDNA、ゲノムDNAまたは人工合成のDNAを含む。DNAは、一本鎖でも二本鎖でもよい。DNAは、コード鎖でも非コード鎖でもよい。 The first aspect of the present invention relates to a nucleic acid encoding a chimeric antigen receptor protein expressed on the surface of T cells, wherein the chimeric antigen receptor protein comprises an extracellular binding region, a transmembrane region and an intracellular signal region which are linked in order. Wherein the extracellular binding region comprises a single chain antibody scFv (EGFR) that specifically identifies the 287-302 amino acid (EGFR287-302) epitope of human epidermal growth factor receptor EGFR. The extracellular binding region of the chimeric antigen receptor protein is linked to the transmembrane region of CD8 or CD28 at the hinge region of CD8, and the intracellular signal region is adjacent to the transmembrane region. The polynucleotide of the present invention may be in DNA form or RNA form. DNA forms include cDNA, genomic DNA or artificially synthesized DNA. The DNA may be single-stranded or double-stranded. The DNA may be the coding strand or non-coding strand.
本発明のキメラ抗原受容体タンパク質のアミノ酸配列をコードする核酸コドンは縮重のものでもよく、すなわち、一つのアミノ酸配列をコードする複数種類の縮重核酸配列はいずれも本発明の範囲に含まれる。相応のアミノ酸をコードする縮重核酸コドンは本分野で公知のものである。本発明は、さらに、本発明と同じアミノ酸配列を有するポリペプチドまたはポリペプチドの断片、類似物および誘導体をコードする上記ポリヌクレオチドの変異体に関する。このポリヌクレオチドの変異体は、天然に発生した対立遺伝子変異体でも非天然に発生した変異体でもよい。これらのヌクレオチド変異体は、置換変異体、欠失変異体および挿入変異体を含む。本分野で知られているように、対立遺伝子変異体は、ポリヌクレオチドの代替形態で、1つまたは2つ以上のヌクレオチドの置換、欠失または挿入でもよいが、実質的にコードするポリペプチドの機能を変えることはない。 The nucleic acid codon encoding the amino acid sequence of the chimeric antigen receptor protein of the present invention may be degenerate, that is, multiple kinds of degenerate nucleic acid sequences encoding one amino acid sequence are all included in the scope of the present invention. .. Degenerate nucleic acid codons encoding the corresponding amino acids are known in the art. The present invention further relates to variants of the above polynucleotides which encode polypeptides or fragments, analogs and derivatives of the polypeptides having the same amino acid sequence as the present invention. Variants of this polynucleotide may be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants and insertion variants. As is known in the art, allelic variants are alternative forms of polynucleotides that may be substitutions, deletions or insertions of one or more nucleotides, but are substantially of the encoding polypeptide. It does not change its function.
本発明は、さらに、上記の配列とハイブリダイズし、かつ2つの配列の間に少なくとも50%、好ましくは少なくとも70%、より好ましくは少なくとも80%、最も好ましくは少なくとも90%または少なくとも95%の相同性を有するポリヌクレオチドに関する。本発明は、特に、厳格な条件で本発明に係るポリヌクレオチドとハイブリダイズできるポリヌクレオチドに関する。本発明において、「厳格な条件」とは、 (1)低いイオン強度および高い温度、例えば0.2×SSC、0.1%SDS、60℃でのハイブリダイズおよび溶離、あるいは(2)ハイブリダイズ時変性剤、例えば42℃で50%(v/v)ホルムアミド、0.1%ウシ胎児血清/0.1% Ficollなどを入れること、あるいは(3)2つの配列の間の相同性が少なくとも90%以上、好ましくは95%以上の時だけハイブリダイズすることである。そして、ハイブリダイズできるポリヌクレオチドがコードするポリペプチドは、配列番号2で表される成熟ポリペプチドと同じ生物学的機能および活性を有する。 The invention further comprises at least 50%, preferably at least 70%, more preferably at least 80%, most preferably at least 90% or at least 95% homology between the two sequences and the two sequences described above. A polynucleotide having a property. The present invention particularly relates to polynucleotides that can hybridize with the polynucleotides of the present invention under stringent conditions. In the present invention, “strict conditions” means (1) low ionic strength and high temperature, for example, hybridization and elution at 0.2×SSC, 0.1% SDS, 60° C., or (2) denaturing agent during hybridization, For example, add 50% (v/v) formamide, 0.1% fetal bovine serum/0.1% Ficoll, etc. at 42°C, or (3) the homology between two sequences is at least 90% or more, preferably 95% or more. Hybridize only when. The polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide represented by SEQ ID NO:2.
特異的にヒト上皮成長因子受容体EGFRの287-302番目のアミノ酸エピトープを識別するモノクローナル抗体は中国特許文献CN102405235およびCN101602808Bで公開され、ほかの既知か将来発見される当該エピトープを識別するモノクローナル抗体も本発明の核酸がコードするキメラ抗原受容体タンパク質における一本鎖抗体の製造に使用することができる。一本鎖抗体は上記文献で公開された配列に基づいて遺伝子工学方法または化学合成方法によって製造することができる。本発明で使用される用語「一本鎖抗体(scFv)断片」とは以下のように定義される抗体断片で、リンカー(linker)によって連結した重鎖可変領域(VH)と軽鎖可変領域(VL)を含む組換えタンパク質で、リンカーはこの2つのドメインを関連させて最終的に抗原結合部位を形成する。scFvの大きさは、通常、完全の抗体の1/6である。一本鎖抗体は一本のヌクレオチド鎖によってコードされる一本のアミノ酸鎖配列が好ましい。 Monoclonal antibody that specifically identifies the 287-302 amino acid epitope of human epidermal growth factor receptor EGFR is published in Chinese Patent Documents CN102405235 and CN101602808B, and other known or future discovered monoclonal antibody that identifies the epitope is also available. It can be used for producing a single chain antibody in a chimeric antigen receptor protein encoded by the nucleic acid of the present invention. Single chain antibodies can be produced by genetic engineering methods or chemical synthesis methods based on the sequences disclosed in the above-mentioned documents. The term "single chain antibody (scFv) fragment" used in the present invention is an antibody fragment defined as follows, which comprises a heavy chain variable region (VH) and a light chain variable region (VH) linked by a linker (linker). In recombinant proteins, including the VL), the linker associates the two domains and ultimately forms the antigen binding site. The size of the scFv is usually 1/6 that of a complete antibody. The single chain antibody preferably has a single amino acid chain sequence encoded by a single nucleotide chain.
本発明で使用されるモレキュラー・クローニング:研究室マニュアル本分野で既知の通常の技術、たとえばアミノ酸の欠失、挿入、置換、増加、および/または転移ならびに/あるいはほかの修飾方法を単独で使用しまたは併用し、さらに修飾してもよい。抗体のアミノ酸配列に対してそのDNA配列にこのような修飾の方法を導入するのは周知のものである。たとえば、Sambrook,モレキュラー・クローニング:研究室マニュアル,Cold Spring Harbor Laboratory(1989)N.Y.を参照する。前記の修飾は、核酸レベルで行われることが好ましい。上記一本鎖抗体は、さらに、その誘導体を含む。上記一本鎖抗体の誘導体は、たとえばWO 89/09622に記載のキメラ抗体の生成方法、EP-A10239400およびWO90/07861に記載のヒト化抗体の生成方法、WO91/10741、WO94/02602およびWO96/33735に記載の異種抗体、たとえばマウスにおけるヒト抗体を生成する方法を含むが、これらに限定されない。 Molecular Cloning Used in the Invention: Laboratory Manual Using conventional techniques known in the art, such as amino acid deletion, insertion, substitution, increase, and/or transfer and/or other modification methods alone. Alternatively, they may be used in combination and further modified. It is well known to introduce a method of such modification into the DNA sequence of an antibody amino acid sequence. See, eg, Sambrook, Molecular Cloning: Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. The modification is preferably performed at the nucleic acid level. The single chain antibody further includes a derivative thereof. The above-mentioned single chain antibody derivative is, for example, a method for producing a chimeric antibody described in WO 89/09622, a method for producing a humanized antibody described in EP-A10239400 and WO90/07861, WO91/10741, WO94/02602 and WO96/. 33735, including but not limited to methods for producing xenoantibodies, such as human antibodies in mice.
本発明の用語「特異的に識別する」とは、本発明の二重特異性抗体は目的抗原以外のいずれのポリペプチドとも交差反応が発生しないか基本的にしないという意味です。その特異性の程度は免疫学技術によって判断することができ、免疫ブロット、免疫アフィニティークロマトグラフィー、フローサイトメトリー分析などを含むが、これらに限定されない。本発明において、特異的に識別するのはフローサイトメトリー技術によって確認することが好ましいが、具体的には、特異的な識別の基準は当業者が知っている本分野の常識によって判断する。 The term "specifically discriminate" according to the present invention means that the bispecific antibody of the present invention does not or does not cross-react with any polypeptide other than the antigen of interest. Its degree of specificity can be determined by immunological techniques, including, but not limited to, immunoblot, immunoaffinity chromatography, flow cytometric analysis and the like. In the present invention, the specific identification is preferably confirmed by a flow cytometry technique, but specifically, the standard of the specific identification is determined by common knowledge in the field known to those skilled in the art.
膜貫通領域は、CD8またはCD28などのタンパク質の膜貫通領域から選ばれる。CD8またはCD28はT細胞の表面の天然標識物である。ヒトCD8タンパク質はヘテロ二量体で、αβまたはγδの二本鎖からなり、本発明の一つの実施形態において、膜貫通領域はCD8αまたはCD28の膜貫通領域から選ばれる。また、CD8αヒンジ領域(hinge)は、可撓性の領域であるため、CD8またはCD28と膜貫通領域とヒンジ領域はキメラ抗原受容体CARの標的識別ドメインscFvと細胞内シグナル領域の連結に使用することができる。 The transmembrane region is selected from the transmembrane regions of proteins such as CD8 or CD28. CD8 or CD28 are natural markers on the surface of T cells. The human CD8 protein is a heterodimer, consisting of αβ or γδ duplexes, and in one embodiment of the invention, the transmembrane region is selected from the transmembrane region of CD8α or CD28. In addition, since the CD8α hinge region (hinge) is a flexible region, CD8 or CD28, the transmembrane region and the hinge region are used to connect the target discrimination domain scFv of the chimeric antigen receptor CAR and the intracellular signal region. be able to.
細胞内シグナル領域は、CD3ζ、FcεRIγ、CD28、CD137、CD134タンパク質の細胞内シグナル領域、およびこれらの組み合わせから選ばれる。CD3分子は5つのサブユニットからなり、中では、CD3ζサブユニット(CD3 zetaとも呼ばれ、Zと略す)は3つのITAMモチーフを含み、当該モチーフはTCR-CD3複合体における重要なシグナル伝達領域である。CD3δZは突然変異のITAMモチーフを有さないCD3ζ配列で、本発明の実践において通常陰性コントロールの構築とされる。FcεRIγは主に肥満細胞および好塩基球の表面に分布し、一つのITAMモチーフを含み、構造、分布および機能ではCD3ζと類似である。また、前記のように、CD28、CD137、CD134は共刺激シグナル分子で、それぞれリガンドと結合した後その細胞内シグナル領域による共刺激作用でT細胞の持続的な増殖が生じ、かつT細胞のIL-2およびIFN-γなどのサイトカインの分泌レベルを上げると同時に、CAR T細胞の体内における生存期間および抗腫瘍効果を向上させる。 The intracellular signal region is selected from the intracellular signal regions of CD3ζ, FcεRIγ, CD28, CD137, CD134 proteins, and combinations thereof. The CD3 molecule consists of five subunits, among which the CD3ζ subunit (also called CD3 zeta, abbreviated as Z) contains three ITAM motifs, which are important signaling regions in the TCR-CD3 complex. is there. CD3δZ is a CD3ζ sequence that does not have a mutant ITAM motif and is usually the construction of a negative control in the practice of the present invention. FcεRIγ is mainly distributed on the surface of mast cells and basophils, contains one ITAM motif, and is similar to CD3ζ in structure, distribution, and function. In addition, as described above, CD28, CD137, and CD134 are costimulatory signal molecules, and after their binding with ligands, respectively, the co-stimulatory action of their intracellular signal regions causes continuous proliferation of T cells, and Increases the secretion level of cytokines such as -2 and IFN-γ, while improving the survival time and antitumor effect of CAR T cells in the body.
本発明の核酸がコードするキメラ抗原受容体タンパク質は、順に連結した細胞外結合領域、膜貫通領域および細胞内シグナル領域を含む、
scFv(EGFR)-CD8-CD3ζ、
scFv(EGFR)-CD8-CD137-CD3ζ、
scFv(EGFR)-CD28-CD28-CD3ζ、
scFv(EGFR)-CD28-CD28-CD137-CD3ζ、
およびこれらの組み合わせのようなキメラ抗原受容体タンパク質から選ばれ、ここで、関連キメラ抗原受容体タンパク質における1番目のCD28はその膜貫通領域を、2番目のCD28はその細胞内シグナル領域を表す。
The chimeric antigen receptor protein encoded by the nucleic acid of the present invention comprises an extracellular binding region, a transmembrane region and an intracellular signal region, which are sequentially linked,
scFv(EGFR)-CD8-CD3ζ,
scFv(EGFR)-CD8-CD137-CD3ζ,
scFv(EGFR)-CD28-CD28-CD3ζ,
scFv(EGFR)-CD28-CD28-CD137-CD3ζ,
And a combination thereof, wherein the first CD28 in the related chimeric antigen receptor protein represents its transmembrane region and the second CD28 represents its intracellular signal region.
本発明の一つの実施形態において、本発明の核酸は、配列番号1〜4で示される配列を有する。本発明のもう一つの実施形態において、本発明の核酸は、配列番号31〜34のいずれかを有するキメラ抗原受容体タンパク質をコードする核酸である。 In one embodiment of the invention, the nucleic acid of the invention has the sequence set forth in SEQ ID NOs: 1-4. In another embodiment of the present invention, the nucleic acid of the present invention is a nucleic acid encoding a chimeric antigen receptor protein having any of SEQ ID NOs: 31-34.
本発明の第二は、上記T細胞の表面に発現されるキメラ抗原受容体タンパク質をコードする核酸を含有するベクターを含む。一つの具体的な実施形態において、本発明で使用されるベクターは、レンチウイルスプラスミドベクターpPWT-eGFPである。当該プラスミドは、第三世代の自己不活性化レンチウイルスベクターシステムに属し、当該システムは計3つのプラスミド、すなわちタンパク質Gag/Pol、Revタンパク質をコードするパッケージングプラスミドpsPAX2、VSV-Gタンパク質をコードするエンベローププラスミドPMD2.G、および空ベクターpPWT-eGFPを有し、核酸配列への組み込み、すなわちCARの核酸配列のコーディングに使用することができる。 The second aspect of the present invention includes a vector containing a nucleic acid encoding the chimeric antigen receptor protein expressed on the surface of the T cell. In one specific embodiment, the vector used in the present invention is the lentiviral plasmid vector pPWT-eGFP. The plasmid belongs to the third generation self-inactivating lentiviral vector system, which encodes a total of three plasmids, namely the packaging plasmid psPAX2, which encodes the proteins Gag/Pol and Rev proteins, VSV-G protein. It has the envelope plasmid PMD2.G and the empty vector pPWT-eGFP and can be used for integration into the nucleic acid sequence, ie for coding the nucleic acid sequence of CAR.
空ベクターpPWT-eGFP(それ自身は後の試験におけるmockである)において、伸長因子-1 α(elongation factor-1α、EF-1α)プロモーターで強化型緑色蛍光タンパク質(enhanced green fluorescent protein、eGFP)の発現を調節する。一方、CARをコードする目的核酸配列を含む組み換え発現ベクターpWPT-eGFPは、口蹄疫ウイルス(food and mouthvires disease、FMDV)由来のリボソームスキッピング配列(ribosomal skipping sequence 2A)(F2Aと略す)によってeGFPとCARの共発現が実現される。 In the empty vector pPWT-eGFP (which itself is a mock in a later test), the enhanced green fluorescent protein (eGFP) was enhanced by the elongation factor-1α (elongation factor-1α, EF-1α) promoter. Regulates expression. On the other hand, the recombinant expression vector pWPT-eGFP containing the target nucleic acid sequence encoding CAR is a ribosomal skipping sequence 2A (f2A) derived from foot and mouth disease virus (food and mouthvires disease, FMDV). Co-expression is realized.
本発明の第三は、上記ベクターを含有するウイルスを含む。本発明のウイルスは、パッケージング後の感染力を有するウイルスを含み、感染力を有するウイルスへのパッケージングに必要な成分を含むパッケージングされるウイルスも含む。本分野で既知のほかのT細胞に形質導入するウイルスおよびそれに相応するプラスミドベクターも本発明に使用することができる。 The third aspect of the present invention includes a virus containing the above vector. The virus of the present invention includes a virus having infectivity after packaging, and also includes a packaged virus containing components necessary for packaging into a virus having infectivity. Other T-cell transducing viruses known in the art and corresponding plasmid vectors can also be used in the present invention.
本発明の一つの実施形態において、前記ウイルスは、上記pWPT-eGFP-F2A-CAR組み換えベクターを含む(すなわちscFv(EGFR)-CARを含有する)レンチウイルスである。
本発明の第四は、本発明の核酸または本発明の当該核酸を含有する上記組み換えプラスミド、あるいは当該プラスミドを含むウイルスシステムを形質導入した遺伝子組み換えTリンパ球を含む。本分野の通常の核酸形質導入方法は、非ウイルスの形質導入方法もウイルスによる形質導入方法も本発明に使用することができる。非ウイルスの形質導入方法は、エレクトロポレーション法およびトランスポゾン法を含む。最近、Amaxa社によって研究開発されたnucleofectorヌクレオフェクション装置は、直接外来遺伝子を細胞核に導入して目的遺伝子の効率的なトランスフェクションを実現することができる。
In one embodiment of the invention, the virus is a lentivirus comprising the pWPT-eGFP-F2A-CAR recombinant vector (ie containing scFv(EGFR)-CAR).
A fourth aspect of the present invention comprises a recombinant T lymphocyte transduced with the nucleic acid of the present invention or the above recombinant plasmid containing the nucleic acid of the present invention, or a viral system containing the plasmid. As a usual nucleic acid transduction method in this field, both a non-viral transduction method and a viral transduction method can be used in the present invention. Non-viral transduction methods include electroporation and transposon methods. The nucleofector nucleofection device recently researched and developed by Amaxa can directly introduce a foreign gene into the cell nucleus to achieve efficient transfection of a target gene.
さらに、眠り姫トランスポゾン(Sleeping Beauty system)またはPiggyBacトランスポゾンなどのトランスポゾンシステムのトランスフェクション効率は通常のエレクトロポレーション法よりも大幅に向上し、nucleofectorトランスフェクション装置とSB眠り姫トランスポゾンシステムの併用が既に報告され[Davies JK.ら Combining CD19 redirection and alloanergization to generate tumor-specific human T cells for allogeneic cell therapy of B-cell malignancies. Cancer Res, 2010, 70(10): OF1-10.]、当該方法は高いトランスフェクション効率も有し、目的遺伝子の部位特異的組み込みも実現できる。 In addition, transfection efficiency of transposon systems such as Sleeping Beauty system or PiggyBac transposon has been significantly improved over conventional electroporation methods, and the combination of the nucleofector transfection device and the SB Sleeping Princess transposon system has already been reported. [Davies JK. et al. Combining CD19 redirection and alloanergization to generate tumor-specific human T cells for allogeneic cell therapy of B-cell malignancies. Cancer Res, 2010, 70(10): OF1-10.] It also has a high efficiency and can realize site-specific integration of a target gene.
本発明の一つの実施形態において、キメラ抗原受容体遺伝子の修飾を実現するTリンパ球のトランスフェクション方法はウイルス、たとえばレトロウイルスまたはレンチウイルスに基づいたトランスフェクション方法である。当該方法はトランスフェクション効率が高い、外来遺伝子を安定して発現する、および体外でTリンパ球を臨床級の数に培養する時間を短縮させるなどの利点がある。当該遺伝子組み換えTリンパ球の表面では、形質導入された核酸は転写、翻訳によってその表面に発現される。 In one embodiment of the invention, the method of transfecting T lymphocytes that achieves modification of the chimeric antigen receptor gene is a viral, eg, retroviral or lentiviral, based transfection method. This method has advantages such as high transfection efficiency, stable expression of foreign genes, and reduction of the time for in vitro culture of T lymphocytes to a clinical grade number. On the surface of the gene-modified T lymphocyte, the transduced nucleic acid is expressed on the surface by transcription and translation.
様々な培養の腫瘍細胞に対して体外細胞毒性実験を行うことによって、本発明の表面にキメラ抗原受容体が発現される遺伝子組み換えTリンパ球は高度特異性の腫瘍細胞殺傷効果(細胞毒性とも呼ばれる)を有することが証明された。そのため、本発明のキメラ抗原受容体タンパク質をコードする核酸、当該核酸を含むプラスミド、当該プラスミドを含むウイルスおよび上記核酸、プラスミドまたはウイルスを形質導入した遺伝子組み換えTリンパ球は有効に腫瘍の免疫治療に使用することができる。 By carrying out in vitro cytotoxicity experiments on tumor cells in various cultures, the recombinant T lymphocytes of the present invention in which the chimeric antigen receptor is expressed on the surface of the present invention have a highly specific tumor cell killing effect (also called cytotoxicity). ) Has been proved to have. Therefore, the nucleic acid encoding the chimeric antigen receptor protein of the present invention, the plasmid containing the nucleic acid, the virus containing the plasmid, and the above nucleic acid, the plasmid or the gene-modified T lymphocyte transduced with the virus are effectively used for tumor immunotherapy. Can be used.
具体的な実施形態
以下、具体的な実施例によって、さらに本発明を説明する。これらの実施例は本発明を説明するために用いられるものだけで、本発明の範囲の制限にはならないと理解されるものである。以下の実施例で具体的な条件が示されていない実験方法は、通常の条件、例えばSambrookら、「モレキュラー・クローニング:研究室マニュアル(New York:Cold Spring Harbor laboratory Press,1989)」に記載の条件に従い、実施例で試薬の会社の説明書があると明記された場合、説明書のお薦めの条件に従う。
Specific Embodiment Hereinafter, the present invention will be further described with reference to specific examples. It is understood that these examples are used only to illustrate the invention and are not meant to limit the scope of the invention. Experimental methods for which specific conditions are not shown in the following examples are described in ordinary conditions, for example, Sambrook et al., “Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor laboratory Press, 1989)”. According to the conditions, if it is specified in the examples that there is an instruction manual of the reagent company, the recommended conditions of the instruction are followed.
実施例1. 本発明のキメラ抗原受容体を発現するレンチウイルスプラスミドの構築
下記表1は本発明で例示されたキメラ抗原受容体の各部分の連結順を示し、また当該連結は図2を参照する。
1.核酸断片の増幅
(1)Fv(EGFR)配列の増幅
scFv(EGFR)配列の増幅は、本実験室で構築した一本鎖二重機能抗体ヌクレオチド806/CD3またはhu7B3/CD3を鋳型とし、鋳型の配列はそれぞれ中国特許出願201210094008.xにおける配列番号10および11を参照する。増幅に使用されたプライマー対は、
上流プライマー5’-gacatcctgatgacccaatctccatcctc-3’(配列番号5)および下流プライマー5’- tgcagagacagtgaccagagtcccttgg-3’ (配列番号6)を806 scFv(EGFR)の増幅に、
そして上流プライマー5’-gatattcagatgacccagagcccg-3’(配列番号7)および下流プライマー5’-gctgctcacggtcaccagggtg-3’ (配列番号8)をhu7B3 scFv(EGFR)の増幅に使用した。
2つの場合とも、目的増幅バンドの大きさは720 bpである。PCR増幅条件は、前変性:94℃、4min、変性:94℃、40s、アニーリング:58℃、40s、伸長:68℃、40sで25サイクル後、68℃、10minで伸長させた。PCR増幅バンドはアガロースゲル電気泳動によって予想の断片サイズに合うことが確認された。
陰性コントロールscFv(CD19)の配列はGenBankのFMC63-28Z(HM852952.1)配列によって決められ、配列は上海鋭勁生物技術有限公司によって全遺伝子合成で得られた。
1. Amplification of nucleic acid fragment (1) Amplification of Fv(EGFR) sequence
Amplification of scFv (EGFR) sequence, single-chain dual-function antibody nucleotides 806 / CD3 or hu7B3 / CD3 constructed in this laboratory as a template, the sequence of the template is SEQ ID NO: 10 and in Chinese patent application 201210094008.x, respectively. See 11. The primer pair used for amplification is
Upstream primer 5'-gacatcctgatgacccaatctccatcctc-3' (SEQ ID NO: 5) and downstream primer 5'- tgcagagacagtgaccagagtcccttgg-3' (SEQ ID NO: 6) for amplification of 806 scFv (EGFR),
Then, the upstream primer 5'-gatattcagatgacccagagcccg-3' (SEQ ID NO: 7) and the downstream primer 5'-gctgctcacggtcaccagggtg-3' (SEQ ID NO: 8) were used for amplification of hu7B3 scFv (EGFR).
In both cases, the size of the target amplification band is 720 bp. PCR amplification conditions were pre-denaturation: 94° C., 4 min, denaturation: 94° C., 40 s, annealing: 58° C., 40 s, extension: 68° C., 40 s, 25 cycles, and extension at 68° C., 10 min. The PCR amplified band was confirmed to fit the expected fragment size by agarose gel electrophoresis.
The sequence of the negative control scFv (CD19) was determined by the FMC63-28Z (HM852952.1) sequence of GenBank, and the sequence was obtained by Shanghai Sharp Biotechnology Co., Ltd. in total gene synthesis.
(2)キメラ抗原受容体のほかの部分の核酸配列
キメラ抗原受容体タンパク質のほかの部分およびこれらの部分を連結するヒンジ領域の増幅は、1mlのTrizol(Invitrogen社)を1×107の健常者の末梢血の単核球(上海市血液中心から提供)に入れて細胞を分解させた後、フェノール-クロロホルム法で全RNAを抽出し、ImProm-II(登録商標) 逆転写キット(promaga社)逆転写でcDNAを製造した。上記で製造されたcDNAを鋳型として、それぞれ:
(2) Nucleic acid sequence of other part of chimeric antigen receptor For amplification of the other part of chimeric antigen receptor protein and the hinge region connecting these parts, 1 ml of Trizol (Invitrogen) was used for 1×10 7 healthy subjects. After decomposing the cells by putting them into peripheral blood mononuclear cells (provided by Shanghai Blood Center), total RNA was extracted by the phenol-chloroform method, and ImProm-II (registered trademark) reverse transcription kit (promaga). CDNA was produced by reverse transcription. Using the cDNA produced above as a template, respectively:
(a)上流プライマー 5’-cactgtctctgcaaccacgacgccagcg-3’ (配列番号9)および下流プライマー 5’-ggtgataaccagtgacaggag-3’ (配列番号10)で増幅してCD8αヒンジ領域-膜貫通領域を得、PCR増幅条件は、前変性:94℃、4min、変性:94℃、30s、アニーリング:58℃、30s、伸長:68℃、30sで25サイクル後、68℃、10minで伸長させた。バンドの理論上のサイズは198 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (A) Amplification with the upstream primer 5'-cactgtctctgcaaccacgacgccagcg-3' (SEQ ID NO: 9) and the downstream primer 5'-ggtgataaccagtgacaggag-3' (SEQ ID NO: 10) to obtain the CD8α hinge region-transmembrane region. Pre-denaturation: 94° C., 4 min, denaturation: 94° C., 30 s, annealing: 58° C., 30 s, extension: 68° C., 30 s, 25 cycles, followed by extension at 68° C., 10 min. The theoretical size of the band was 198 bp and the amplified product was confirmed to be in agreement with the theoretical size by agarose gel electrophoresis.
(b)上流プライマー 5’-cactgtctctgcaaccacgacgccagcg-3’ (配列番号11)および下流プライマー 5’-gaggtcgacctacgcgggggcgtctgcgctcctgctgaacttcactctggtgataaccagtg-3’ (配列番号12)で増幅してCD8αヒンジ領域-膜貫通領域-delta Z(δZ)を得、PCR増幅条件は上記と同様である。バンドの理論上のサイズは234 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (B) Amplification with the upstream primer 5'-cactgtctctgcaaccacgacgccagcg-3' (SEQ ID NO: 11) and the downstream primer 5'-gaggtcgacctacgcgggggcgtctgcgctcctgctgaacttcactctggtgataaccagtg-3' (SEQ ID NO: 12) to CD8α hinge region-transmembrane region δ-delta Z (delta Z) Obtaining and PCR amplification conditions are the same as above. The theoretical size of the band was 234 bp and the amplified product was confirmed by agarose gel electrophoresis to match the theoretical size.
(c)上流プライマー 5’-ttttgggtgctggtggtggttgg-3’ (配列番号13)および下流プライマー 5’-gctgaacttcactctggagcgataggctgcgaag-3’ (配列番号14)で増幅してCD28膜貫通領域-細胞内シグナル領域断片を得、PCR増幅条件は上記と同様で、バンドの理論上のサイズは465 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (C) Amplification with the upstream primer 5'-ttttgggtgctggtggtggttgg-3' (SEQ ID NO: 13) and the downstream primer 5'-gctgaacttcactctggagcgataggctgcgaag-3' (SEQ ID NO: 14) to obtain the CD28 transmembrane region-intracellular signal region fragment, and PCR The amplification conditions were the same as above, the theoretical size of the band was 465 bp, and it was confirmed by agarose gel electrophoresis that the amplified product was in agreement with the theoretical size.
(d)上流プライマー 5’-aaacggggcagaaagaaactc-3’ (配列番号15)および下流プライマー 5’-cagttcacatcctccttc-3’ (配列番号16)で増幅してCD137細胞内シグナル領域を得、PCR増幅条件は上記と同様で、バンドの理論上のサイズは126 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (D) Amplification with the upstream primer 5'-aaacggggcagaaagaaactc-3' (SEQ ID NO: 15) and the downstream primer 5'-cagttcacatcctccttc-3' (SEQ ID NO: 16) to obtain the CD137 intracellular signal region. Similarly, the theoretical size of the band was 126 bp, and the amplification product was confirmed to be in agreement with the theoretical size by agarose gel electrophoresis.
(e)上流プライマー 5’-cactggttatcaccagagtgaagttcagcaggagc-3’ (配列番号17)および下流プライマー 5’-cgaggtcgacctagcgagggggcagggcctgcatg-3’ (配列番号18)で増幅してCD3 zetaシグナル領域を得、PCR増幅条件は上記と同様で、バンドの理論上のサイズは339 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (E) Amplification with the upstream primer 5'-cactggttatcaccagagtgaagttcagcaggagc-3' (SEQ ID NO: 17) and the downstream primer 5'-cgaggtcgacctagcgagggggcagggcctgcatg-3' (SEQ ID NO: 18) to obtain the CD3 zeta signal region, PCR amplification conditions are the same as above The theoretical size of the band was 339 bp, and the amplified product was confirmed to be in agreement with the theoretical size by agarose gel electrophoresis.
2.核酸断片のアセンブリ
(a)上流プライマー 5’-accacgacgccagcgccg-3’ (配列番号19)および下流プライマー 5’-cacccagaaaataataaag-3’ (配列番号20)でアセンブリしてCD8αヒンジ領域-CD28膜貫通領域を得、アセンブリ条件は、CD8αヒンジ領域(50 ng)+CD28膜貫通領域(50 ng)で、前変性:94℃、4min、変性:94℃、30s、アニーリング:60℃、30s、伸長:68℃、30sで5サイクル後、68℃、10minで伸長させ、DNAポリメラーゼおよび上・下流プライマーを補充した後、PCR増幅を25サイクル行い、増幅条件は、前変性:94℃、4min、変性:94℃、30s、アニーリング:60℃、30s、伸長:68℃、30sで25サイクル後、68℃、10minで伸長させた。理論上のサイズは216 bpである。増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。
2. Assembly of nucleic acid fragments
(A) The upstream primer 5'-accacgacgccagcgccg-3' (SEQ ID NO: 19) and the downstream primer 5'-cacccagaaaataataaag-3' (SEQ ID NO: 20) were assembled to obtain the CD8α hinge region-CD28 transmembrane region. , CD8α hinge region (50 ng) + CD28 transmembrane region (50 ng), pre-denaturation: 94°C, 4 min, denaturation: 94°C, 30s, annealing: 60°C, 30s, extension: 68°C, 30s for 5 cycles After that, it was extended at 68°C for 10 min, supplemented with DNA polymerase and upstream/downstream primers, and then PCR-amplified for 25 cycles. Amplification conditions were: pre-denaturation: 94°C, 4 min, denaturation: 94°C, 30 s, annealing: Elongation at 60° C., 30 s: 68° C., 30 s, 25 cycles, and extension at 68° C., 10 min The theoretical size is 216 bp. It was confirmed by agarose gel electrophoresis that the amplified product was in agreement with the theoretical size.
(b)上流プライマー 5’-agagtgaagttcagcaggagcgcag-3’ (配列番号21)および下流プライマー 5’-cgaggtcgacctagcgagggggcagggcctgcatg-3’ (配列番号18)でアセンブリ・増幅して4-1BB細胞内シグナル領域とCD3 zeta、すなわちBBZを得、アセンブリとPCR増幅の条件は上記と同様である。バンドの理論上のサイズは465 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (B) Assembly and amplification with an upstream primer 5'-agagtgaagttcagcaggagcgcag-3' (SEQ ID NO: 21) and a downstream primer 5'-cgaggtcgacctagcgagggggcagggcctgcatg-3' (SEQ ID NO: 18) to produce a 4-1BB intracellular signal region and CD3 zeta, that is, BBZ was obtained, and the conditions of assembly and PCR amplification were the same as above. The theoretical size of the band was 465 bp, and the amplified product was confirmed to be in agreement with the theoretical size by agarose gel electrophoresis.
(c)上流プライマー 5’-cactgtctctgcaaccacgacgccagcg-3’ (配列番号22)および下流プライマー 5’-cgaggtcgacctagcgagggggcagggcctgcatg-3’ (配列番号18)で等モルのCD8αヒンジ領域-膜貫通領域とCD3 zeta(約50 ng)をアセンブリし、そしてPCRでCD8-CD3 zeta(すなわちCD8-Z)を得、アセンブリとPCR増幅の条件は上記と同様である。理論上のサイズは537 bpである。増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (C) The upstream primer 5'-cactgtctctgcaaccacgacgccagcg-3' (SEQ ID NO: 22) and the downstream primer 5'-cgaggtcgacctagcgagggggcagggcctgcatg-3' (SEQ ID NO: 18) are equimolar to the CD8α hinge region-transmembrane region and CD3 zeta (about 50 ng). A) and PCR to obtain CD8-CD3 zeta (ie CD8-Z), the conditions of assembly and PCR amplification being the same as above. The theoretical size is 537 bp. It was confirmed by agarose gel electrophoresis that the amplified product was in agreement with the theoretical size.
(d)上流プライマー 5’-cactgtctctgcaaccacgacgccagcg-3’ (配列番号23)および下流プライマー 5’-cgaggtcgacctagcgagggggcagggcctgcatg-3’ (配列番号18)でCD8αヒンジ領域-膜貫通領域をBBZとアセンブリし、そしてPCRで目的断片:CD8-CD137-CD3 zeta(すなわちCD8-BBZ)を得、アセンブリとPCR増幅の条件は上記と同様である。理論上のサイズは663 bpである。増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (D) The upstream primer 5'-cactgtctctgcaaccacgacgccagcg-3' (SEQ ID NO: 23) and the downstream primer 5'-cgaggtcgacctagcgagggggcagggcctgcatg-3' (SEQ ID NO: 18) were used to assemble the CD8α hinge region-transmembrane region with BBZ, and then PCR was performed. A fragment: CD8-CD137-CD3 zeta (ie CD8-BBZ) was obtained, and the conditions of assembly and PCR amplification were the same as above. The theoretical size is 663 bp. It was confirmed by agarose gel electrophoresis that the amplified product was in agreement with the theoretical size.
(e)上流プライマー 5’-accacgacgccagcgccg-3’ (配列番号24)および下流プライマー 5’-cgaggtcgacctagcgagggggcagggcctgcatg-3’ (配列番号18)でCD8αヒンジ領域-CD28膜貫通領域とZから上記と同様のアセンブリおよびPCR増幅によって目的断片:CD8ヒンジ領域-CD28膜貫通領域-28Z細胞内領域を得、アセンブリとPCR増幅の条件は上記と同様である。バンドの理論上のサイズは678 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (E) With the upstream primer 5'-accacgacgccagcgccg-3' (SEQ ID NO: 24) and the downstream primer 5'-cgaggtcgacctagcgagggggcagggcctgcatg-3' (SEQ ID NO: 18), the same assembly as above from CD8α hinge region-CD28 transmembrane region and Z A fragment of interest: CD8 hinge region-CD28 transmembrane region-28Z intracellular region was obtained by PCR amplification, and the conditions of assembly and PCR amplification were the same as above. The theoretical size of the band was 678 bp and the amplified product was confirmed to be in agreement with the theoretical size by agarose gel electrophoresis.
(f)上流プライマー 5’-accacgacgccagcgccg-3’ (配列番号19)および下流プライマー 5’-cgaggtcgacctagcgagggggcagggcctgcatg-3’ (配列番号18)でCD8ヒンジ領域をCD28膜貫通領域-細胞内シグナル領域断片およびBBZとアセンブリし、目的断片:CD8ヒンジ領域-CD28TM-28BBZを得、その理論上のサイズは804 bpで、アセンブリ・増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 (F) With the upstream primer 5'-accacgacgccagcgccg-3' (SEQ ID NO: 19) and the downstream primer 5'-cgaggtcgacctagcgagggggcagggcctgcatg-3' (SEQ ID NO: 18), the CD8 hinge region was replaced with the CD28 transmembrane region-intracellular signal region fragment and BBZ. After assembly, a fragment of interest: CD8 hinge region-CD28TM-28BBZ was obtained, its theoretical size was 804 bp, and the assembly/amplification product was confirmed by agarose gel electrophoresis to match the theoretical size.
(g)等モルの上記増幅で得られたそれぞれヒンジ領域と膜貫通領域を有するδZ、 Zおよび28BBZ核酸断片で、それぞれ等モルの一本鎖抗体の核酸配列scFv806またはscFvCD19(質量約50 ng)とアセンブリしてPCRを行い、条件は上記断片のアセンブリおよびPCR増幅と同様で、図2で示される形態でアセンブリしてキメラ抗体806-δZ、806-Z、806-BBZ、806-28Zおよび806-28BBZをコードする核酸配列を得た。 (G) equimolar δZ, Z and 28BBZ nucleic acid fragments each having a hinge region and a transmembrane region obtained by the above amplification, each equimolar nucleic acid sequence of a single chain antibody scFv806 or scFvCD19 (mass about 50 ng) And the PCR is performed under the same conditions as the above-described fragment assembly and PCR amplification. The chimeric antibodies 806-δZ, 806-Z, 806-BBZ, 806-28Z and 806 are assembled in the form shown in FIG. A nucleic acid sequence encoding -28BBZ was obtained.
3.プラスミドベクターの構築
本実施例で使用されたベクターシステムは、第三世代の自己不活性化レンチウイルスベクターシステムに属し、当該システムは計3つのプラスミド、すなわちタンパク質Gag/Pol、Revタンパク質をコードするパッケージングプラスミドpsPAX2、VSV-Gタンパク質をコードするエンベローププラスミドPMD2.Gおよび空ベクターpPWT-eGFPに基づいた目的遺伝子CARをコードする組み換え発現ベクターを有する。
3. Construction of plasmid vector The vector system used in this example belongs to the third generation self-inactivating lentiviral vector system, which is a package encoding a total of three plasmids, namely the proteins Gag/Pol and Rev proteins. Ng plasmid psPAX2, envelope plasmid PMD2.G encoding VSV-G protein and a recombinant expression vector encoding the target gene CAR based on the empty vector pPWT-eGFP.
空ベクターpPWT-eGFPにおいて、伸長因子-1α(elongation factor-1α,EF-1α)のプロモーターが強化型緑色蛍光タンパク質(enhanced green fluorescent protein,eGFP)の発現を調節し、一方、目的遺伝子CARをコードする組み換え発現ベクターにおいて、口蹄疫ウイルス由来のリボソームスキッピング配列(food and mouth virus disease、FMDV、ribosomal skipping sequence、F2A)でeGFPと目的遺伝子CARの共発現を実現させた。F2Aは口蹄疫ウイルスの2A(「自己切断ポリペプチド2A」ともいう)由来のコア配列で、2Aの「自己切断」機能を有し、上流と下流の遺伝子の共発現が実現できる。2Aは、切断効率が高く、上・下流遺伝子の発現のバランスが良く、かつそれ自身の配列が短いという利点のため、遺伝子治療用のマルチシストロン性ベクターの構築に有効で実行可能な策略を提供した。特に、キメラ抗原受容体遺伝子修飾Tリンパ球による免疫治療において、当該配列を用いて目的遺伝子とGFPまたはeGFPの共発現を実現させることが多く、GFPまたはeGFPを検出することで、CARの発現を間接に検出することができる。 In the empty vector pPWT-eGFP, the elongation factor-1α (elongation factor-1α, EF-1α) promoter regulates the expression of enhanced green fluorescent protein (eGFP), while encoding the target gene CAR. In this recombinant expression vector, eGFP and the target gene CAR were co-expressed with a foot and mouth disease virus-derived ribosome skipping sequence (FMDV, ribosomal skipping sequence, F2A). F2A is a core sequence derived from 2A of foot-and-mouth disease virus (also referred to as “self-cleaving polypeptide 2A”), has the “self-cleaving” function of 2A, and can realize coexpression of upstream and downstream genes. 2A provides an effective and feasible strategy for constructing multicistronic vector for gene therapy due to its advantages of high cleavage efficiency, good balance of upstream/downstream gene expression, and short sequence of itself. did. In particular, in immunotherapy with chimeric antigen receptor gene-modified T lymphocytes, coexpression of the target gene and GFP or eGFP is often realized using the sequence, and CAR expression is detected by detecting GFP or eGFP. It can be detected indirectly.
本実施例では、F2Aを介して連結するdGFPと特異性CARを共発現するレンチウイルス発現ベクターが構築され、pWPT-eGFP-F2A-CARと総称する。eGFP-F2A-CARの各部分をアセンブリする方法は以下のとおりである。 In this example, a lentivirus expression vector that co-expresses dGFP and specific CAR linked via F2A was constructed, and is generically called pWPT-eGFP-F2A-CAR. The method for assembling each part of eGFP-F2A-CAR is as follows.
プライマーでアセンブリする方法によってF2A(66bp)-CD8αシグナルペプチド(63bp)ならびに上流eGFPおよび下流CARとアセンブリするわずかな核酸(約18 bp)配列を含む断片を得、理論上のサイズは165 bpで、プライマーはそれぞれ以下のとおりである。
5’-attcaaagtctgtttcacgctactagctagtccg-3’(配列番号25)
5’-gtgaaacagactttgaattttgaccttctgaagttggcaggagacgttgagtccaac-3’(配列番号26)
5’-agcggcaggagcaaggcggtcactggtaaggccatgggcccagggttggactcaacgtc-3’(配列番号27)
5’-ctcctgccgctggccttgctgctccacgccgccaggccggacatcctgatgacccaatc-3’(配列番号28)
The method of primer assembly yielded a fragment containing the F2A (66 bp)-CD8α signal peptide (63 bp) and a small nucleic acid (approximately 18 bp) sequence that assembles with upstream eGFP and downstream CAR, with a theoretical size of 165 bp, The primers are as follows.
5'-attcaaagtctgtttcacgctactagctagtccg-3' (SEQ ID NO:25)
5'-gtgaaacagactttgaattttgaccttctgaagttggcaggagacgttgagtccaac-3' (SEQ ID NO:26)
5'-agcggcaggagcaaggcggtcactggtaaggccatgggcccagggttggactcaacgtc-3' (SEQ ID NO: 27)
5'-ctcctgccgctggccttgctgctccacgccgccaggccggacatcctgatgacccaatc-3' (SEQ ID NO: 28)
プライマーによるアセンブリの条件は、前変性:94℃、4min、変性:94℃、20s、アニーリング:50℃、20s、伸長:68℃、30sで25サイクル後、68℃、10minで伸長させた。増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。
上流プライマー 5’-cttacgcgtcctagcgctaccggtcgccaccatggtgagcaagggcgaggag-3’ (配列番号29)および下流プライマー 5’-gctactagctagtccggacttgtacagctcgtccatg-3’ (配列番号30)で増幅して目的遺伝子eGFPを得、pWPT-eGFP空ベクターを鋳型とし、PCR増幅条件は、前変性:94℃、4min、変性:94℃、40s、アニーリング:56℃、40s、伸長:68℃、40sで25サイクル後、68℃、10minで伸長させ、理論上のサイズは735 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。
The conditions for assembly with primers were as follows: predenaturation: 94° C., 4 min, denaturation: 94° C., 20 s, annealing: 50° C., 20 s, extension: 68° C., 30 s, 25 cycles, and extension at 68° C. for 10 min. It was confirmed by agarose gel electrophoresis that the amplified product was in agreement with the theoretical size.
Amplify with the upstream primer 5'-cttacgcgtcctagcgctaccggtcgccaccatggtgagcaagggcgaggag-3' (SEQ ID NO: 29) and the downstream primer 5'-gctactagctagtccggacttgtacagctcgtccatg-3' (SEQ ID NO: 30) to obtain the target gene eGFP, and use the pWPT-eGFP empty vector as a template and PCR amplification as a template. The conditions are: pre-denaturation: 94°C, 4 min, denaturation: 94°C, 40s, annealing: 56°C, 40s, extension: 68°C, 40s, 25 cycles, extension at 68°C, 10min, theoretical size 735 At bp, the amplification product was confirmed by agarose gel electrophoresis to match the theoretical size.
上流プライマー 5’-cttacgcgtcctagcgctaccggtcgccaccatggtgagcaagggcgaggag-3’ (配列番号29)および下流プライマー 5’-gaggtcgacctacgcgggggcgtctgcgctcctgctgaacttcactctggtgataaccagtg-3’ (配列番号12)で上記で得られた等モルのF2A-CD8αシグナルペプチド断片、eGFPおよび806-δZ(約80 ng)を用いてアセンブリしてeGFP-F2A-806-δZを得、アセンブリ条件は、前変性:94℃、4min、変性:94℃、40s、アニーリング:62℃、40s、伸長:68℃、140sで5サイクル後、適切な体積のDNAポリメラーゼおよび上・下流プライマーを補充した後、PCR増幅を25サイクル行い、増幅条件は、前変性:94℃、4min、変性:94℃、40s、アニーリング:62℃、40s、伸長:68℃、140sであった。理論上のサイズは1861 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。 The upstream primer 5'-cttacgcgtcctagcgctaccggtcgccaccatggtgagcaagggcgaggag-3' (SEQ ID NO: 29) and the downstream primer 5'-gaggtcgacctacgcgggggcgtctgcgctcctgctgaacttcactctggtgataaccagtg-3' (SEQ ID NO: 12) were obtained with the above-mentioned 8'-SEQ ID NO. (About 80 ng) was used to assemble to obtain eGFP-F2A-806-δZ, and the assembly conditions were as follows: predenaturation: 94°C, 4 min, denaturation: 94°C, 40s, annealing: 62°C, 40s, extension: 68. After 5 cycles at 140°C for 40°C, after supplementing with an appropriate volume of DNA polymerase and upstream/downstream primers, PCR amplification was performed for 25 cycles, and the amplification conditions were pre-denaturation: 94°C, 4 min, denaturation: 94°C, 40s, Annealing: 62°C, 40s, extension: 68°C, 140s. The theoretical size was 1861 bp, and the amplified product was confirmed to be in agreement with the theoretical size by agarose gel electrophoresis.
上流プライマー 5’-cttacgcgtcctagcgctaccggtcgccaccatggtgagcaagggcgaggag-3’ (配列番号29)および下流プライマー 5’-gaggtcgacctagcgagggggcagggcctgcatgtgaag-3’ (配列番号18)で上記で得られた等モルのF2AとCD8αシグナルペプチド断片、eGFPおよび806-Z、 806-BBZ、CD19-BBZ 、806-28Zおよび806-28BBZ(約80 ng)を用いてそれぞれアセンブリした。アセンブリ条件は、前変性:94℃、4min、変性:94℃、40s、アニーリング:62℃、40s、伸長:68℃、140sで5サイクル後、適切な体積のDNAポリメラーゼおよび上・下流プライマーを補充した後、PCR増幅を25サイクル行い、増幅条件は、前変性:94℃、4min、変性:94℃、40s、アニーリング:62℃、40s、伸長:68℃、140sであった。 Equimolar F2A and CD8α signal peptide fragments obtained above with the upstream primer 5'-cttacgcgtcctagcgctaccggtcgccaccatggtgagcaagggcgaggag-3' (SEQ ID NO: 29) and the downstream primer 5'-gaggtcgacctagcgagggggcagggcctgcatgtgaag-3' (SEQ ID NO: 18) , 806-BBZ, CD19-BBZ, 806-28Z and 806-28BBZ (about 80 ng), respectively. Assembly conditions: pre-denaturation: 94°C, 4 min, denaturation: 94°C, 40s, annealing: 62°C, 40s, extension: 68°C, 140s, after 5 cycles, supplement with appropriate volume of DNA polymerase and upstream/downstream primers After that, PCR amplification was performed for 25 cycles, and the amplification conditions were pre-denaturation: 94° C., 4 min, denaturation: 94° C., 40 s, annealing: 62° C., 40 s, extension: 68° C., 140 s.
得られたeGFP-F2A-806-Z、eGFP-F2A-806-BBZ、eGFP-F2A-806-28ZおよびeGFP-F2A-806-28BBZの理論上のサイズはそれぞれ2164 bp、2290 bp、2305 bp、2431 bpで、増幅産物はアガロースゲル電気泳動によって理論上のサイズと一致することが確認された。ここで、読み枠の上・下流にMluIおよびSalIの酵素切断サイトが導入された。上記で得られた目的遺伝子eGFP-F2A-CARをMluIおよびSalIで二重酵素切断し、同様に二重酵素切断されたpWPTベクターにライゲーションし、構築された各キメラ抗原受容体を発現するレンチウイルスベクターはMluIおよびSalIの酵素切断によって同定され(図3)、そして配列決定によって精確と確認された後レンチウイルスのパッケージングを行った。
前記のように、eGFP-F2A-CARは一本のmRNAに転写されるが、eGFPおよび抗EGFR287-302キメラ抗原受容体といった二つのタンパク質に翻訳され、CD8αシグナルペプチドの作用によって抗EGFR287-302キメラ抗原受容体を細胞膜に局在化させる。
The resulting eGFP-F2A-806-Z, eGFP-F2A-806-BBZ, eGFP-F2A-806-28Z and eGFP-F2A-806-28BBZ have theoretical sizes of 2164 bp, 2290 bp, 2305 bp, respectively. At 2431 bp, the amplification product was confirmed by agarose gel electrophoresis to match the theoretical size. Here, the enzyme cleavage sites of MluI and SalI were introduced at the upper and lower ends of the reading frame. The target gene eGFP-F2A-CAR obtained above was double-enzyme-digested with MluI and SalI, and ligated to pWPT vector which was also double-enzyme-digested, and a lentivirus expressing each chimeric antigen receptor constructed. Vectors were identified by enzymatic cleavage of MluI and SalI (FIG. 3) and confirmed by sequencing for lentiviral packaging.
As mentioned above, eGFP-F2A-CAR is transcribed into a single mRNA, but it is translated into two proteins such as eGFP and the anti-EGFR287-302 chimeric antigen receptor, and the anti-EGFR287-302 chimera by the action of the CD8α signal peptide. Localizes the antigen receptor to the cell membrane.
4.293Tへのプラスミドのトランスフェクションおよびレンチウイルスのパッケージング
6〜10代目まで培養した293T細胞(ATCC:CRL-11268)を10 cmシャーレに6×106の密度で接種し、37℃、5% CO2で一晩培養し、トランスフェクションへの使用に備えた。培地は10%牛胎児血清(PAA社)含有DMEM(PAA社)で、翌日、トランスフェクションの約2時間前に、培養液を無血清DMEMに変えた。
4. Transfection of plasmid into 293T and packaging of lentivirus
293T cells (ATCC: CRL-11268) cultured from the 6th to the 10th generation were inoculated into a 10 cm dish at a density of 6 × 10 6 and cultured overnight at 37°C and 5% CO 2 for use in transfection. Prepared The medium was DMEM containing 10% fetal bovine serum (PAA) (PAA), and the culture medium was changed to serum-free DMEM the next day, about 2 hours before transfection.
トランスフェクションの手順は以下の通りである。
4.1 20 μgの空プラスミドpWPT-eGFP(mockコントロール)または20 μgの目的遺伝子プラスミドpWPT-eGFP-F2A-CARを、それぞれ15 μgのパッケージングプラスミドPAX2および6 μgのエンベローププラスミドpMD2.Gとともに500 μLのMillQ水に溶解させ、均一に混合した。
4.2 62 μLの2.5M CaCl2(Sigma社)を一滴ずつ入れ、1200 rpm/minで均一に渦流混合した。
4.3 最後に500 μLの 2×HeBS(280mM NaCl、10mM KCl、1.5mM Na2HPO4・2H2O、12mMブドウ糖、50mM Hepes(Sigma 社)、pH 7.05、0.22 μMろ過・除菌)を一滴ずつ入れ、1200 rpm/minで10s均一に渦流混合した。
4.4 直ちにシャーレに一滴ずつ入れ、軽く均一に振とうし、37℃、5% CO2で4〜6 h培養した後、10%牛胎児血清含有DMEMに変えた。
The procedure of transfection is as follows.
4.1 20 μg empty plasmid pWPT-eGFP (mock control) or 20 μg target gene plasmid pWPT-eGFP-F2A-CAR together with 15 μg packaging plasmid PAX2 and 6 μg envelope plasmid pMD2.G in 500 μL MillQ was dissolved in water and mixed uniformly.
4.2 62 μL of 2.5 M CaCl 2 (Sigma) was added drop by drop and vortex mixed uniformly at 1200 rpm/min.
4.3 Finally, add 500 μL of 2×HeBS (280 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4・2H2O, 12 mM glucose, 50 mM Hepes (Sigma), pH 7.05, 0.22 μM filtration/disinfection) drop by drop at 1200 rpm/ Vortex mixed uniformly for 10 s at min.
4.4 Immediately, each drop was placed in a petri dish, shaken gently and uniformly, cultured at 37°C, 5% CO2 for 4 to 6 hours, and then changed to DMEM containing 10% fetal bovine serum.
トランスフェクションの次の日にトランスフェクション効率(すなわち緑色蛍光を示した細胞の割合)を観察し、〜80%の陽性トランスフェクション効率の場合はトランスフェクション実験成功とした。トランスフェクションから48 hまたは72 h後、0.45 μmフィルター(Millipore社)でろ過してウイルスを収集し、その後Beckman Optima L-100XP超遠心機で28000 rpm、4℃で2時間遠心し、遠心上清を捨て、遠心で得られた沈殿を原液体積の1/10〜1/50のQuantum 007培養液(PAA社)で再懸濁させ、100 μL/管で分注し、-80℃で凍結保存し、ウイルスの滴定またはTリンパ球への感染に備えた。 The day after transfection, the transfection efficiency (ie the percentage of cells showing green fluorescence) was observed and a positive transfection efficiency of -80% was considered a successful transfection experiment. 48 h or 72 h after transfection, the virus was collected by filtration with a 0.45 μm filter (Millipore), and then centrifuged in a Beckman Optima L-100XP ultracentrifuge at 28000 rpm at 4°C for 2 hours, and the supernatant was centrifuged. The precipitate obtained by centrifugation is resuspended in 1/10 to 1/50 of the original volume of Quantum 007 culture solution (PAA), dispensed at 100 μL/tube, and stored frozen at -80°C. And prepared for virus titration or infection of T lymphocytes.
5.mockまたはeGFP-F2A-CARでパッケージングされたレンチウイルスの力価の測定
一日目は、1×105/mLで293T細胞を96ウェル培養プレートに100 μL/ウェルで接種し、37℃、5% CO2で培養し、培養液は10%牛胎児血清含DMEMであった。二日目は、培養上清を50 μL/ウェル捨て、新鮮な上記培養液を50μL /ウェルで追加し、最終濃度が6 μg/mLのポリブレンを含有させ、37℃、5% CO2で30 minインキュベートした。ウイルス原液を10 μL/ウェルで、またはウイルス濃縮液を1 μL/ウェルで入れ、5倍に希釈し、勾配を4つにし、重複ウェルを2つにし、37℃、5% CO2で培養した。感染から48 h後、フローサイトメーターによりeGFPを検出し、陽性率が5〜20%の細胞数が好適で、力価(U/mL)=陽性率×希釈倍数×100×104で力価を算出した。リン酸カルシウムトランスフェクション法でパッケージングされたウイルスの力価は約0.5〜2×106 U/mLで、濃縮後測定されたウイルスの力価は約2×107 U/mLであった。
5. Titer determination of lentivirus packaged with mock or eGFP-F2A-CAR On the first day, inoculate 96-well culture plates with 100 μL/well of 293T cells at 1×10 5 /mL at 37°C, The cells were cultured in 5% CO 2 and the culture medium was DMEM containing 10% fetal bovine serum. On the second day, discard 50 μL/well of culture supernatant, add 50 μL/well of the above fresh culture medium to contain polybrene at a final concentration of 6 μg/mL, and add 30 μC at 37°C, 5% CO 2 . Incubated for min. Virus stocks were added at 10 μL/well or virus concentrate at 1 μL/well, diluted 5-fold, 4 gradients, 2 duplicate wells, and incubated at 37°C, 5% CO 2 . .. 48 hours after infection, eGFP was detected by a flow cytometer, and the number of cells with a positive rate of 5 to 20% is suitable, and the titer (U/mL) = positive rate x dilution factor x 100 x 104 Calculated. The titer of virus packaged by the calcium phosphate transfection method was about 0.5-2×10 6 U/mL, and the titer of virus measured after concentration was about 2×10 7 U/mL.
実施例2.CD8 + Tリンパ球への組み換えレンチウイルスの感染
健常者の末梢血から密度勾配遠心法によりヒト末梢血単核球(上海市血液センターから提供)を得、末梢血単核球からCD8+ Tリンパ球磁気ビーズ(Stem Cell Technologies)ネガティブ分離方法によってCD8+ Tリンパ球を得、分離されたCD8+ Tリンパ球について、フローサイトメトリーによってCD8+ Tリンパ球の純度を検出し、CD8+ Tリンパ球の陽性率≧95%のものが好適で、次の操作に進めた。Quantum 007リンパ球培地液(PAA社)を約1×106/mLの密度で入れて培養し、且つ細胞:磁気ビーズの比率が1:1になるように抗CD3およびCD28抗体の両者で覆われた磁気ビーズ(Invitrogen社)と、最終濃度100 U/mLの組換えヒトIL-2(上海華新生物高技術有限公司)を入れ、24 h刺激培養した。その後、MOI≒5で上記組み換えレンチウイルスを用いてCD8+ Tリンパ球を感染した。感染された細胞を一日おきに5×105/mLの密度で継代するとともに、リンパ球培養液に最終濃度100 U/mLの組換えヒトIL-2を追加した。
Example 2. Infection of CD8 + T lymphocytes with recombinant lentivirus Human peripheral blood mononuclear cells (provided by Shanghai Blood Center) were obtained from peripheral blood of healthy subjects by density gradient centrifugation, and CD8 + T lymphocytes were obtained from the peripheral blood mononuclear cells. give spherical magnetic beads (Stem Cell Technologies) CD8 + T lymphocytes by negative separation method, the isolated CD8 + T lymphocytes, to detect the purity of CD8 + T lymphocytes by flow cytometry, CD8 + T lymphocytes A positive rate of ≧95% is preferable, and the procedure was advanced to the next step. Quantum 007 lymphocyte culture medium (PAA) was added at a density of about 1 × 10 6 /mL and cultured, and the cells:magnetic beads were covered with both anti-CD3 and CD28 antibodies so that the ratio was 1:1. Magnetic beads (Invitrogen) and recombinant human IL-2 (Shanghai Hua Neoplasm High-Technology Co., Ltd.) at a final concentration of 100 U/mL were placed and stimulated for 24 hours. Then, at MOI≈5, CD8 + T lymphocytes were infected with the above recombinant lentivirus. The infected cells were passaged every other day at a density of 5×10 5 /mL, and recombinant human IL-2 at a final concentration of 100 U/mL was added to the lymphocyte culture medium.
感染されたCD8+ Tリンパ球について、培養の7日目にフローサイトメトリーによって各異なるキメラ抗原受容体の発現を検出し、eGFPとCARの共発現のため、eGFPの陽性細胞、すなわちキメラ抗原受容体を発現する陽性細胞を検出した(図4)。感染されないTリンパ球を陰性コントロールとし、異なるキメラ抗原受容体を発現するウイルス感染CD8+ Tリンパ球の陽性率は下記表に示す。当該陽性率の結果から、レンチウイルス感染方法によれば、ある程度の陽性率を有するCAR+ Tリンパ球が得られることは分かった。 For infected CD8 + T lymphocytes, the expression of each different chimeric antigen receptor was detected by flow cytometry on day 7 of culture, and eGFP-positive cells, namely chimeric antigen receptor, were detected due to coexpression of eGFP and CAR. Positive cells expressing the body were detected (Fig. 4). The positive rate of virus-infected CD8 + T lymphocytes expressing different chimeric antigen receptors using T lymphocytes not infected as a negative control is shown in the table below. From the result of the positive rate, it was found that CAR + T lymphocytes having a certain positive rate can be obtained by the lentivirus infection method.
CD8+ Tリンパ球は、異なるキメラ抗原受容体がパッケージングされたウイルスにそれぞれ感染された後、細胞密度5×105/mlで一日おきに継代培養し、カウントし、かつ継代した細胞培養液にIL-2を(最終濃度100 U/ml)追加し、培養の14日目に約35〜55倍増幅し(図5を参照)、異なるキメラ抗原受容体を発現するCD8+ Tリンパ球は体外である程度の数の増幅が可能で、その後の体外毒性試験および体内試験に保障を与えることが分かった。 CD8 + T lymphocytes were subcultured every other day at a cell density of 5 × 10 5 /ml, counted and passaged after infection with viruses packaged with different chimeric antigen receptors. IL-2 (final concentration 100 U/ml) was added to the cell culture medium, and it was amplified about 35 to 55 times on day 14 of culture (see FIG. 5) to express different chimeric antigen receptors CD8 + T. It has been found that lymphocytes can be expanded to a certain number outside the body and provide security for subsequent in vitro toxicity and in vivo studies.
実施例3.EGFR287-302エピトープの上皮由来腫瘍細胞系における露出状況に対する検出
フローサイトメーター検出方法を用いて蛍光活性化細胞選別装置(FACSCalibur、Becton Dickinsonから)によっていくつかの上皮由来の腫瘍細胞の表面EGFR287-302エピトープの露出状況を検出した。使用された材料は以下の通りである。
(1)本実験室で構築された当該サイトを識別するモノクローナル抗体CH12(構築方法は中国特許CN 101602808B実施例1〜4を参照)を一次抗体とした(最終濃度20 μg/ml、100 μL/サンプル)。
(2)FITCで標識されたヒツジ抗ヒトIgGを二次抗体とした(AOGMA社)。
Example 3. EGFR287-302 Epitope-Derived Detection in Epithelial-Derived Tumor Cell Lines Surface of Several Epithelial-Derived Tumor Cells by Fluorescence Activated Cell Sorter (FACSCalibur, Becton Dickinson) Using Flow Cytometer Detection Method The exposure status of the epitope was detected. The materials used are as follows.
(1) The monoclonal antibody CH12 (see Chinese Patent CN 101602808B Examples 1 to 4 for the construction method) that identifies the site constructed in this laboratory was used as the primary antibody (final concentration 20 μg/ml, 100 μL/ sample).
(2) FITC-labeled sheep anti-human IgG was used as a secondary antibody (AOGMA).
エピトープ露出状況の具体的な検出方法は以下の通りである。
1.対数増殖期の表3に示された各腫瘍細胞を6 cmシャーレに接種し、接種の細胞密度が約90%で、37℃のインキュベーターで一晩培養した。
2.10 mMのEDTAで細胞を消化し、200 g×5 minで遠心して細胞を収集した。〜1×107/mLの濃度で1%ウシ胎児血清含有リン酸塩緩衝液(1%NBS/PBS)に最懸濁させ、100 μl/管の量でフローサイトメーター専用管に入れた。
3.200 g×5 minで遠心し、上清を捨てた。
4.実験群はそれぞれ被験抗体CH12を入れ、同時に一つのコントロール群は陰性コントロールとして無関連抗体を入れ、もう一つのコントロール群は抗体が入っていないPBSブランクコントロールである。各抗体の最終濃度はいずれも20 μg/mlで、各管に100ulずつ入れた。氷浴に45分間置いた。
The specific method of detecting the status of epitope exposure is as follows.
1. Each of the tumor cells shown in Table 3 in the logarithmic growth phase was inoculated into a 6-cm dish, and the cells were inoculated at a cell density of about 90% in an incubator at 37°C overnight.
2. Cells were digested with 10 mM EDTA and centrifuged at 200 g x 5 min to collect cells. The suspension was resuspended in a phosphate buffer (1% NBS/PBS) containing 1% fetal bovine serum at a concentration of ˜1×10 7 /mL, and 100 μl/tube was placed in a dedicated flow cytometer tube.
3. Centrifuge at 200 g x 5 min and discard the supernatant.
4. Each of the experimental groups contained the test antibody CH12, at the same time one control group contained an irrelevant antibody as a negative control, and the other control group was a PBS blank control containing no antibody. The final concentration of each antibody was 20 μg/ml, and 100 μl was placed in each tube. Place in ice bath for 45 minutes.
5.各管に1%NBS/PBSを2mlずつ入れ、200 g×5 minで遠心し、計二回行った。
6.上清を捨て、1:50で希釈したFITCで標識されたヒツジ抗ヒトIgGを各管に100 μlずつ入れた。氷浴に45分間置いた。
7.各管に1%NBS/PBSを2mlずつ入れ、200 g×5 minで遠心し、計二回行った。
8.上清を捨て、300 μlの1%NBS/PBSに最懸濁させ、フローサイトメーターで検出した。
9.フローサイトメーターのデータ解析ソフトWinMDI 2.9でデータを解析した。
5. 2% of 1% NBS/PBS was put into each tube, and the tube was centrifuged at 200 g×5 min, and the total was performed twice.
6. The supernatant was discarded and 100 μl of 1:50 diluted FITC-labeled sheep anti-human IgG was placed in each tube. Place in ice bath for 45 minutes.
7. 2% of 1% NBS/PBS was put into each tube, and the tube was centrifuged at 200 g×5 min, and the total was performed twice.
8. The supernatant was discarded, resuspended in 300 μl of 1% NBS/PBS, and detected by a flow cytometer.
9. The data was analyzed with data analysis software WinMDI 2.9 of the flow cytometer.
結果は図6に示すように、脳膠腫細胞系U87ではEGFR287-302エピトープの露出が検出されず、外来のEGFR過剰発現のU87-EGFR(本実験で独自に構築・保存し、構築方法はWang H.ら, Identification of an Exon 4-Deletion Variant of Epidermal Growth Factor Receptor with Increased Metastasis-Promoting Capacity. Neoplasia, 2011, 13, 461 - 471.を参照する)およびEGFRvIII過剰発現のU87-EGFRvIII(本実験で独自に構築・保存し、構築方法はWO/2011/035465を参照する)ではEGFR287-302エピトープの露出が検出され、また3つの膵臓腺癌細胞系PANC-1、CFPAC-1およびBxPC-3ではいずれもEGFR287-302エピトープの露出が検出された。 As shown in FIG. 6, the EGFR287-302 epitope was not detected in the glioma cell line U87, and exogenous EGFR overexpression U87-EGFR (constructed and stored independently in this experiment, the construction method was Wang H. et al., Identification of an Exon 4-Deletion Variant of Epidermal Growth Factor Receptor with Increased Metastasis-Promoting Capacity. Neoplasia, 2011, 13, 461-471.) and EGFRvIII overexpression U87-EGFRvIII (this experiment) Independently constructed/stored in, and refer to WO/2011/035465 for construction method), exposure of EGFR287-302 epitope was detected, and three pancreatic adenocarcinoma cell lines PANC-1, CFPAC-1 and BxPC-3 were detected. In all cases, exposure of the EGFR287-302 epitope was detected.
実施例4. キメラ抗原受容体を発現する細胞の体外毒性効果実験
体外毒性実験で使用された材料は以下の通りである。
標的細胞はそれぞれ上記表に示された6種類の細胞である。エフェクター細胞は、体外で12日間培養され、FACSによってキメラ抗原受容体の発現が検出された陽性細胞で、キメラ抗原受容体陽性(CAR+)のCD8+ Tリンパ球と記す。
エフェクター細胞対標的細胞比は場合によりそれぞれ3:1、1:1および1:3または5:1、2.5:1および1:1とし、標的細胞数は10000/ウェルとし、異なるエフェクター細胞対標的細胞比でエフェクター細胞を対応させた。各群ではいずれも重複ウェルを4つとし、4つの重複ウェルの平均値を取った。検出時間は18hまたは20hである。
Example 4. In vitro toxicity effect experiment of cells expressing chimeric antigen receptor The materials used in the in vitro toxicity experiment are as follows.
The target cells are the 6 types of cells shown in the above table, respectively. Effector cells are cultured in vitro for 12 days and are positive cells in which expression of the chimeric antigen receptor was detected by FACS, and are referred to as chimeric antigen receptor positive (CAR + ) CD8 + T lymphocytes.
The effector cell to target cell ratios are optionally 3:1, 1:1 and 1:3 or 5:1, 2.5:1 and 1:1 respectively, with a target cell number of 10,000/well and different effector cell to target cells. The effector cells were matched by ratio. There were 4 duplicate wells in each group, and the average value of 4 duplicate wells was taken. The detection time is 18h or 20h.
ここで、各実験群および各コントロール群は以下の通りである。
各実験群:各標的細胞+異なるキメラ抗原受容体を発現するCD8+ Tリンパ球。
コントロール群1:標的細胞最大放出LDH。
コントロール群2:標的細胞自発放出LDH。
コントロール群3:エフェクター細胞自発放出LDH。
Here, each experimental group and each control group are as follows.
Each experimental group: each target cell + CD8 + T lymphocyte expressing a different chimeric antigen receptor.
Control group 1: maximum release LDH of target cells.
Control group 2: Target cell spontaneous release LDH.
Control group 3: effector cell spontaneously released LDH.
検出方法:CytoTox 96非放射性細胞毒性検出キット(Promega社)を用いて行った。当該方法は比色法に基づいた検出方法で、51Cr放出法の代わりとして用いられた。CytoTox 96(登録商標)検出で定量的に乳酸脱水素酵素(LDH)を測定した。LDHは安定した細胞質酵素で、細胞が溶解する時に放出され、その放出形態は放射性解析における51Crの放出形態と基本的に同様である。放出されたLDH培地上清において、30分間カップリングする酵素反応によって検出することができ、酵素反応において、LDHは一種のテトラゾリド(INT)を赤色のホルマザン(formazan)に変換させることができる。生成される赤色の産物の量は溶解した細胞の数に比例する。具体的には、CytoTox 96非放射性細胞毒性検出キットの取扱説明書を参照する。 Detection method: CytoTox 96 non-radioactive cytotoxicity detection kit (Promega) was used. The method was a colorimetric based detection method and was used as an alternative to the 51Cr emission method. Lactate dehydrogenase (LDH) was quantitatively measured by CytoTox 96 (registered trademark) detection. LDH is a stable cytoplasmic enzyme that is released when cells are lysed and its release form is basically similar to that of 51 Cr in radiological analysis. In the released LDH medium supernatant, it can be detected by an enzymatic reaction which is coupled for 30 minutes, and in the enzymatic reaction, LDH can convert a kind of tetrazolid (INT) into red formazan. The amount of red product produced is proportional to the number of lysed cells. Specifically, refer to the instruction manual for the CytoTox 96 non-radioactive cytotoxicity detection kit.
細胞毒性の計算式は以下の通りである。
結果から以下のことがわかる。
本発明のscFv(EGFR)-806-Z CAR+を発現するCD8+Tリンパ球および806-28BBZ CAR+のCD8+Tリンパ球は、腫瘍細胞U87-EGFRvIIIに対して非常に顕著な細胞毒性を示し、それぞれ55.5%および85%と高かった。
また、上記本発明のCD8+Tリンパ球の細胞毒性は高度腫瘍特異性のもので、EGFR287-302エピトープを露出する腫瘍細胞U87-EGFRvIIIに対する高細胞毒性に対し、EGFR287-302エピトープを露出しない腫瘍細胞U87に対して低い細胞毒性を示し、両者の場合いずれも2%未満であった。同時に、実験結果の信頼性の証拠としてのブランクコントロールの空プラスミド(mock)で形質移入されたT細胞および陰性コントロールとして元のT細胞におけるエフェクター分子の影響を評価するキメラ抗原受容体806-δZ遺伝子組み換えT細胞もいずれもU87およびU87-EGFRvIIIに対してほとんど同様の低い細胞毒性を示した。上記実験はエフェクター細胞対標的細胞比が5:1で、作用時間20 hの場合測定された。
The results show the following.
The scFv(EGFR)-806-Z CAR + expressing CD8 + T lymphocytes and 806-28BBZ CAR+ CD8+ T lymphocytes of the present invention show very pronounced cytotoxicity against tumor cells U87-EGFRvIII. , 55.5% and 85%, respectively.
Further, the cytotoxicity of the CD8 + T lymphocytes of the present invention is highly tumor-specific, and the tumor cells that do not expose the EGFR287-302 epitope are highly cytotoxic to the tumor cells U87-EGFRvIII that expose the EGFR287-302 epitope. It showed low cytotoxicity against U87 cells, and both cases were less than 2%. At the same time, the chimeric antigen receptor 806-δZ gene to assess the effect of effector molecules on T cells transfected with a blank control empty plasmid (mock) as evidence of the reliability of the experimental results and on the original T cells as a negative control. Both recombinant T cells showed almost the same low cytotoxicity against U87 and U87-EGFRvIII. The above experiments were measured at an effector cell to target cell ratio of 5:1 and an action time of 20 h.
また、異なるエフェクター細胞対標的細胞比の場合、作用時間18 hの時に測定された本発明のscFv(EGFR)-806-Z CAR+を発現するCD8+Tリンパ球、および806-28BBZ CAR+のCD8+Tリンパ球はEGFR287-302エピトープを露出する腫瘍細胞U87-EGFRおよびU87-EGFRvIIIおよび三つの膵臓腺癌細胞系PANC-1、CFPAC-1およびBxPC-3に対する細胞毒性作用はいずれもエフェクター細胞対標的細胞比勾配に対する依存性を示し、下記表に示すように、エフェクター細胞対標的細胞比が高ければ、細胞毒性が高くなる。 Also, for different effector cell to target cell ratios, CD8 + T lymphocytes expressing the scFv(EGFR)-806-Z CAR + of the present invention and 806-28BBZ CAR + of the present invention measured at an action time of 18 h. CD8 + T lymphocytes expose the EGFR287-302 epitope Tumor cells U87-EGFR and U87-EGFRvIII and three pancreatic adenocarcinoma cell lines PANC-1, CFPAC-1 and BxPC-3 all have cytotoxic effects on effector cells The dependence on target-to-target cell ratio gradient is shown, and as shown in the table below, the higher the effector cell to target cell ratio, the higher the cytotoxicity.
エフェクター細胞対標的細胞比が3:1の時、キメラ抗原受容体806-28BBZ CAR+のCD8+Tリンパ球のU87-EGFRに対する細胞毒性は98%と高く、U87-EGFRvIIIに対する細胞毒性は81%と高く、三つの膵臓腺癌細胞系PANC-1、CFPAC-1およびBxPC-3に対する細胞毒性はそれぞれ65%、40%および70%であった。
一方、陰性コントロールとして非特異性scFvのキメラ抗原受容体における影響を評価するキメラ抗原受容体CD19-BBZ CAR+のCD8+Tリンパ球は、三つの膵臓腺癌細胞系に対する細胞毒性がいずれも10%未満で、かつエフェクター細胞対標的細胞比勾配に対する依存性を示していない。
When the ratio of effector cells to target cells was 3:1, the chimeric antigen receptor 806-28BBZ CAR + had a high cytotoxicity of CD8 + T lymphocytes of U87-EGFR of 98% and U87-EGFRvIII of 81%. The cytotoxicity against the three pancreatic adenocarcinoma cell lines PANC-1, CFPAC-1 and BxPC-3 was 65%, 40% and 70%, respectively.
On the other hand, as a negative control, the CD8 + T lymphocytes of the chimeric antigen receptor CD19-BBZ CAR + , which evaluate the effect of non-specific scFv on the chimeric antigen receptor, had cytotoxicity against all three pancreatic adenocarcinoma cell lines. % And shows no dependence on effector cell to target cell ratio gradient.
Claims (11)
以下のキメラ抗原受容体タンパク質:
scFv(EGFR)-CD8-CD3ζ、
scFv(EGFR)-CD8-CD137-CD3ζ、
scFv(EGFR)-CD28-CD28-CD3ζ、
scFv(EGFR)-CD28-CD28-CD137-CD3ζ、
またはこれらの組み合わせであって、ここで、前記キメラ抗原受容体タンパク質における1番目のCD28はその膜貫通領域を、2番目のCD28はその細胞内シグナル領域を表す、請求項3に記載の核酸。 The chimeric antigen receptor protein comprises an extracellular binding region, a transmembrane region, and an intracellular signal region, which are sequentially linked, and the following chimeric antigen receptor protein:
scFv(EGFR)-CD8-CD3ζ,
scFv(EGFR)-CD8-CD137-CD3ζ,
scFv(EGFR)-CD28-CD28-CD3ζ,
scFv(EGFR)-CD28-CD28-CD137-CD3ζ,
Or the combination thereof, wherein the first CD28 in the chimeric antigen receptor protein represents its transmembrane region and the second CD28 represents its intracellular signal region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019238469A JP7088902B2 (en) | 2019-12-27 | 2019-12-27 | Nucleic acid encoding the chimeric antigen receptor protein and T lymphocytes expressing the chimeric antigen receptor protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019238469A JP7088902B2 (en) | 2019-12-27 | 2019-12-27 | Nucleic acid encoding the chimeric antigen receptor protein and T lymphocytes expressing the chimeric antigen receptor protein |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017512081A Division JP6682509B2 (en) | 2014-05-14 | 2014-05-14 | Nucleic acid encoding chimeric antigen receptor protein and T lymphocyte expressing chimeric antigen receptor protein |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020099326A true JP2020099326A (en) | 2020-07-02 |
JP2020099326A5 JP2020099326A5 (en) | 2020-12-17 |
JP7088902B2 JP7088902B2 (en) | 2022-06-21 |
Family
ID=71139019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019238469A Active JP7088902B2 (en) | 2019-12-27 | 2019-12-27 | Nucleic acid encoding the chimeric antigen receptor protein and T lymphocytes expressing the chimeric antigen receptor protein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7088902B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010536340A (en) * | 2007-08-14 | 2010-12-02 | ルードヴィッヒ インスティテュート フォー キャンサー リサーチ | Monoclonal antibody 175 targeting EGF receptor and derivatives and uses thereof |
WO2012138475A1 (en) * | 2011-04-08 | 2012-10-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-epidermal growth factor receptor variant iii chimeric antigen receptors and use of same for the treatment of cancer |
WO2013123061A1 (en) * | 2012-02-13 | 2013-08-22 | Seattle Children's Hospital D/B/A Seattle Children's Research Institute | Bispecific chimeric antigen receptors and therapeutic uses thereof |
CN103382223A (en) * | 2012-04-01 | 2013-11-06 | 上海益杰生物技术有限公司 | Multi-functional antibody polypeptide aiming at epidermal growth factor receptor (EGFR) cryptic epitope and T cell antigen |
JP2014507118A (en) * | 2010-12-09 | 2014-03-27 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Use of chimeric antigen receptor modified T cells for the treatment of cancer |
-
2019
- 2019-12-27 JP JP2019238469A patent/JP7088902B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010536340A (en) * | 2007-08-14 | 2010-12-02 | ルードヴィッヒ インスティテュート フォー キャンサー リサーチ | Monoclonal antibody 175 targeting EGF receptor and derivatives and uses thereof |
JP2014507118A (en) * | 2010-12-09 | 2014-03-27 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Use of chimeric antigen receptor modified T cells for the treatment of cancer |
WO2012138475A1 (en) * | 2011-04-08 | 2012-10-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-epidermal growth factor receptor variant iii chimeric antigen receptors and use of same for the treatment of cancer |
WO2013123061A1 (en) * | 2012-02-13 | 2013-08-22 | Seattle Children's Hospital D/B/A Seattle Children's Research Institute | Bispecific chimeric antigen receptors and therapeutic uses thereof |
CN103382223A (en) * | 2012-04-01 | 2013-11-06 | 上海益杰生物技术有限公司 | Multi-functional antibody polypeptide aiming at epidermal growth factor receptor (EGFR) cryptic epitope and T cell antigen |
Non-Patent Citations (1)
Title |
---|
CANCER RESEARCH, vol. 72, no. 12, JPN6017049881, 2012, pages 2924 - 2930, ISSN: 0004428812 * |
Also Published As
Publication number | Publication date |
---|---|
JP7088902B2 (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6682509B2 (en) | Nucleic acid encoding chimeric antigen receptor protein and T lymphocyte expressing chimeric antigen receptor protein | |
JP6664528B2 (en) | CLD18A2-targeted immune effector cells and methods for their preparation and use | |
CN104140974B (en) | Encode the nucleic acid of the Chimeric antigen receptor albumen of GPC 3 and express the T lymphocytes of the Chimeric antigen receptor albumen of GPC 3 | |
US11453860B2 (en) | GPC3 and ASGPR1 double-targeted transgenic immune effector cell and use thereof | |
US11299525B2 (en) | Chimeric antigen receptor-modified immune effector cell carrying PD-L1 blocking agent | |
CN106519037B (en) | Activable Chimerical receptor | |
WO2016150400A1 (en) | Immune effectorcell of targeting cldn6, and preparation method therefor and application thereof | |
CN107058354A (en) | The nucleic acid of encoding chimeric antigen receptor protein and the T lymphocytes for expressing Chimeric antigen receptor albumen | |
JP7088902B2 (en) | Nucleic acid encoding the chimeric antigen receptor protein and T lymphocytes expressing the chimeric antigen receptor protein | |
HK40038274A (en) | Therapeutic agent containing isolated recombinant oncolytic adenovirus and immune cells and use therefor | |
HK1238285A1 (en) | Nucleic acid for coding chimeric antigen receptor protein and t lymphocyte for expression of chimeric antigen receptor protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210120 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210419 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20210518 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211117 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220317 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220308 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20220331 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220426 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220609 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7088902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |