[go: up one dir, main page]

JP2020095011A - Radiation thickness gauge with abnormality monitoring function and abnormality monitoring method for radiation thickness gauge - Google Patents

Radiation thickness gauge with abnormality monitoring function and abnormality monitoring method for radiation thickness gauge Download PDF

Info

Publication number
JP2020095011A
JP2020095011A JP2019138597A JP2019138597A JP2020095011A JP 2020095011 A JP2020095011 A JP 2020095011A JP 2019138597 A JP2019138597 A JP 2019138597A JP 2019138597 A JP2019138597 A JP 2019138597A JP 2020095011 A JP2020095011 A JP 2020095011A
Authority
JP
Japan
Prior art keywords
radiation
value
abnormality
measured
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019138597A
Other languages
Japanese (ja)
Other versions
JP7001084B2 (en
Inventor
西田 哲郎
Tetsuo Nishida
哲郎 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020095011A publication Critical patent/JP2020095011A/en
Application granted granted Critical
Publication of JP7001084B2 publication Critical patent/JP7001084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

【課題】シャッタの動作異常以外の異常をも検知可能な異常監視機能付き放射線式厚さ計を提供する。【解決手段】異常監視機能付き放射線式厚さ計10は、放射線源および該放射線源から放射される放射線を解除自在に遮蔽するシャッタを有する線源部12と、放射線を検出する検出器14と、被測定物Oを挟むように線源部12および検出器14を保持するフレーム16と、を備える。放射線式厚さ計10はさらに零校正時毎に検出器14で測定した複数の検出電圧に基づいて、放射線式厚さ計10の異常を判定する異常判定手段を備える。【選択図】図1PROBLEM TO BE SOLVED: To provide a radiation type thickness gauge with an abnormality monitoring function capable of detecting an abnormality other than an operation abnormality of a shutter. SOLUTION: A radiation type thickness gauge 10 with an abnormality monitoring function includes a radiation source unit 12 having a radiation source and a shutter for freely shielding the radiation emitted from the radiation source, and a detector 14 for detecting the radiation. A frame 16 that holds the radiation source portion 12 and the detector 14 so as to sandwich the object O to be measured is provided. The radiation type thickness gauge 10 further includes an abnormality determining means for determining an abnormality of the radiation type thickness gauge 10 based on a plurality of detection voltages measured by the detector 14 at each time of zero calibration. [Selection diagram] Fig. 1

Description

本発明は、鋼板などの被測定物に放射線を照射し、その透過放射線量から被測定物の厚さを測定する放射線式厚さ計に関し、特にその異常を監視するものに関する。 The present invention relates to a radiation type thickness meter that irradiates an object to be measured, such as a steel plate, with radiation, and measures the thickness of the object to be measured from the amount of transmitted radiation, and more particularly to a device that monitors an abnormality thereof.

この種の放射線式厚さ計は、放射線が被測定物を通過する際に吸収、散乱して減衰する性質を利用し、被測定物の厚さを非接触で測定するものであり、鉄鋼業においては薄板や厚板の厚さなどの寸法精度向上のために用いられている。例えば圧延ラインには、圧延機出側直近にガンマ線厚さ計が設置され、板厚偏差を減少させる種々の自動板厚制御(AGC)が導入されている。 This type of radiation-type thickness gauge uses the property that radiation absorbs, scatters, and attenuates when it passes through an object to be measured, and measures the thickness of the object to be measured without contact. Is used to improve the dimensional accuracy of thin and thick plates. For example, in a rolling line, a gamma ray thickness gauge is installed in the immediate vicinity of the rolling mill exit side, and various automatic strip thickness control (AGC) for reducing strip thickness deviation is introduced.

鋼板の厚さ測定精度は、鋼板の品質保証および歩留まりを確保する上で非常に重要であり、放射線式厚さ計に何らかの異常が発生した場合にはそれを確実に検知し、適切に対処するのが肝要である。 The accuracy of steel plate thickness measurement is very important for ensuring the quality assurance and yield of the steel plate, and if any abnormality occurs in the radiation type thickness gauge, it is reliably detected and appropriate measures are taken. Is essential.

例えば特許文献1には、放射線検出器から出力される検出信号レベルがシャッタ閉状態に対応する判定レベル以上かをレベル判断手段により判断し、この判定レベル以上の判断が所定期間以上であればシャッタ異常判断手段によりシャッタ動作異常と判断するシャッタ異常検出装置が提案されている。 For example, in Patent Document 1, the level determination means determines whether the detection signal level output from the radiation detector is equal to or higher than a determination level corresponding to the shutter closed state. If the determination of the determination level is equal to or higher than a predetermined period, the shutter is released. There has been proposed a shutter abnormality detection device that determines that the shutter operation is abnormal by the abnormality determination means.

特開昭62−44616号公報JP 62-44616 A

ところで、放射線式厚さ計の異常は、シャッタの動作異常だけではなく、その他の構造内部の不具合や信号伝送ケーブルの劣化等に起因して発生することがある。しかし、上記従来のシャッタ異常検出装置は、放射線検出器から出力される検出信号レベルがシャッタ閉状態に対応する所定の判定レベル以上か否かを判断するものであるので、検出できる不具合はシャッタ動作異常だけであり、上述したようなシャッタの動作異常以外の異常は検出することができなかった。 By the way, an abnormality of the radiation type thickness gauge may occur not only due to an abnormal operation of the shutter but also due to other internal defects of the structure or deterioration of the signal transmission cable. However, the conventional shutter abnormality detection device determines whether or not the detection signal level output from the radiation detector is equal to or higher than a predetermined determination level corresponding to the shutter closed state. It is only an abnormality, and an abnormality other than the above-described operation abnormality of the shutter cannot be detected.

それ故本発明の目的は、放射線式厚さ計において、シャッタの動作異常以外の異常をも検知可能とすることにある。 Therefore, an object of the present invention is to make it possible to detect an abnormality other than the operation abnormality of the shutter in the radiation type thickness gauge.

上記課題を解決するため、本発明の放射線式厚さ計は、放射線源および該放射線源から放射される放射線を解除自在に遮蔽するシャッタを有する線源部と、放射線を検出する検出器と、被測定物を挟むように前記線源部および前記検出器を保持するフレームと、を備え、前記線源部から被測定物に放射線を照射し、該被測定物を透過した透過放射線量から被測定物の厚さを測定する放射線式厚さ計において、零校正時毎に前記検出器で測定された複数の検出電圧に基づいて、放射線式厚さ計の異常を判定する異常判定手段を備える。 In order to solve the above problems, the radiation type thickness gauge of the present invention is a radiation source and a radiation source unit having a shutter that releasably shields radiation emitted from the radiation source, and a detector that detects radiation, A frame that holds the radiation source section and the detector so as to sandwich the object to be measured, irradiates the object to be measured with radiation from the radiation source unit, and measures the amount of transmitted radiation that has passed through the object to be measured. In a radiation type thickness gauge for measuring the thickness of a measurement object, based on a plurality of detection voltages measured by the detector at each zero calibration, an abnormality determination means for determining abnormality of the radiation type thickness gauge is provided. ..

本発明の放射線式厚さ計の好適な態様では、前記異常判定手段は、下記判定条件A〜Dのうちから選ばれる少なくとも一つの判定条件から構成されている。

判定条件A:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定する
判定条件B:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定する
判定条件C:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定する
判定条件D:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定する
In a preferred aspect of the radiation type thickness gauge of the present invention, the abnormality determination means is configured by at least one determination condition selected from the following determination conditions A to D.
Judgment condition A: Judgment condition B in which the current value and the previous value of the detected voltage measured in the open state of the shutter at the time of the zero calibration are compared, and when the difference exceeds a certain value, it is judged as abnormal. : The maximum value and the minimum value are obtained from the present value of the detected voltage measured in the open state of the shutter at the time of the zero calibration and the past values of at least the two most recent times, and the difference exceeds a certain value. In this case, the determination condition C is determined to be abnormal: the current value of the detected voltage measured in the closed state of the shutter at the time of the zero calibration is compared with the previous value, and when the difference exceeds a certain value, it is determined to be abnormal. Judgment condition D: Judgment of the maximum value and the minimum value from the current value of the detection voltage measured in the closed state of the shutter at the time of the zero calibration and the past values of at least two times immediately thereafter, and the difference between them. If it exceeds a certain value, it is judged as abnormal

本発明の放射線式厚さ計の好適な態様では、前記異常判定手段は、前記判定条件A〜Dのうちから選ばれる二以上の判定条件を有し、順次判定するように構成されている。 In a preferred aspect of the radiation type thickness gauge of the present invention, the abnormality determination means has two or more determination conditions selected from the determination conditions A to D, and is configured to sequentially determine.

本発明の放射線式厚さ計の好適な態様では、前記異常判定手段は、順次構成されている前記判定条件のうち、異常と判定された判定条件以降を省略するように構成されている。 In a preferred aspect of the radiation type thickness gauge of the present invention, the abnormality determining means is configured to omit the determination conditions after the determination condition that is abnormal among the determination conditions that are sequentially configured.

上記課題を解決するため、本発明の放射線式厚さ計の異常監視方法は、放射線源および該放射線源から放射される放射線を解除自在に遮蔽するシャッタを有する線源部と、放射線を検出する検出器と、被測定物を挟むように前記線源部および前記検出器を保持するフレームと、を備え、前記線源部から被測定物に放射線を照射し、該被測定物を透過した透過放射線量から被測定物の厚さを測定する放射線式厚さ計の異常監視方法において、零校正時毎に前記検出器で測定された複数の検出電圧に基づいて、放射線式厚さ計の異常を判定することを含む。 In order to solve the above-mentioned problems, an abnormality monitoring method for a radiation type thickness gauge according to the present invention detects a radiation source and a radiation source unit having a shutter that releasably shields the radiation emitted from the radiation source. A detector and a frame that holds the radiation source section and the detector so as to sandwich the measurement object, irradiates the measurement object with radiation from the radiation source section, and transmits the measurement object. In the abnormality monitoring method of the radiation type thickness gauge that measures the thickness of the measured object from the radiation dose, the abnormality of the radiation type thickness gauge is based on the multiple detection voltages measured by the detector at each zero calibration. Including determining.

本発明の放射線式厚さ計の異常監視方法の好適な態様では、判定条件A:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定すること、判定条件B:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定すること、判定条件C:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定すること、および、判定条件D:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定すること、のうちから選ばれるいずれか一つの判定条件を用いることを含む。 In a preferred aspect of the radiation thickness gauge abnormality monitoring method of the present invention, determination condition A: a current value and a previous value of the detected voltage measured in the open state of the shutter at the time of the zero calibration are compared, When the difference exceeds a certain value, it is determined to be abnormal. Judgment condition B: The present value of the detected voltage measured in the open state of the shutter at the time of the zero calibration and the past value of at least two of the latest values. The maximum value and the minimum value are obtained from the inside, and when the difference exceeds a certain value, it is determined to be abnormal. Criteria C: This time of the detected voltage measured in the closed state of the shutter at the time of the zero calibration. The value is compared with the previous value, and if the difference exceeds a certain value, it is determined to be abnormal, and the determination condition D: This time of the detected voltage measured in the closed state of the shutter at the time of the zero calibration. The maximum value and the minimum value are obtained from the value and the past value of at least two times immediately after that value, and when the difference exceeds a certain value, it is determined to be abnormal, and any one of the determination conditions selected from Including using.

本発明の放射線式厚さ計の異常監視方法の好適な態様では、前記判定条件A〜Dのうちから選ばれる二以上の判定条件を順次判定することを含む。 A preferred aspect of the abnormality monitoring method for the radiation thickness gauge of the present invention includes sequentially determining two or more determination conditions selected from the determination conditions A to D.

本発明の放射線式厚さ計の異常監視方法の好適な態様では、前記判定条件を順次判定し、異常と判定された判定条件以降を省略することを含む。 A preferred aspect of the abnormality monitoring method for the radiation type thickness gauge of the present invention includes sequentially determining the determination conditions, and omitting the determination conditions after the determination of abnormality.

放射線式厚さ計において測定結果に悪影響を及ぼすような何らかの異常が生じた場合には、零校正時の検出電圧に変化が生じるところ、本発明によれば、零校正時毎に測定した検出電圧の推移から異常を判定するようにしたので、このような異常を検知することができる。 When some abnormality that adversely affects the measurement result occurs in the radiation type thickness gauge, the detection voltage at the time of zero calibration changes, but according to the present invention, the detection voltage measured at each zero calibration is measured. Since the abnormality is determined from the transition of, it is possible to detect such an abnormality.

さらに、異なる複数の異常判定条件を用いることで、異常監視能力を高めることができる。加えて、順次判定する複数の異常判定条件において、最初に異常と判定された以降の処理を省略することにより、異常判定処理を効率化できる。 Furthermore, by using a plurality of different abnormality determination conditions, the abnormality monitoring capability can be enhanced. In addition, in the plurality of abnormality determination conditions that are sequentially determined, the processing after the first determination of abnormality is omitted, so that the abnormality determination processing can be made efficient.

本発明の一実施形態の放射線式厚さ計における異常監視方法の実施に適した本発明の一実施形態の異常監視機能付き放射線式厚さ計の概略構成図である。It is a schematic block diagram of the radiation type thickness gauge with an abnormality monitoring function of one embodiment of this invention suitable for implementation of the abnormality monitoring method in the radiation type thickness meter of one embodiment of this invention. 図1の放射線式厚さ計における零校正のタイミングチャートの一例である。It is an example of a timing chart of zero calibration in the radiation type thickness gauge of FIG. 板厚と電圧との関係を示す検量線の一例である。It is an example of a calibration curve showing the relationship between the plate thickness and the voltage. 放射線式厚さ計の修繕に際して行う品質保証試験の一例である。This is an example of a quality assurance test performed when repairing a radiation thickness gauge. (a)〜(d)は異常判定部により実施される異常判定方法の一例を示すフローチャートである。(A)-(d) is a flowchart which shows an example of the abnormality determination method implemented by the abnormality determination part. (a)〜(d)は異常判定部により実施される異常判定方法の他の例を示すフローチャートである。(A)-(d) is a flowchart which shows the other example of the abnormality determination method implemented by the abnormality determination part.

以下、図面を参照し、本発明の異常監視機能付き放射線式厚さ計および放射線式厚さ計における異常監視方法の実施の形態を詳細に説明する。ここで、図1は、本発明の一実施形態の放射線式厚さ計における異常監視方法の実施に適した本発明の一実施形態の異常監視機能付き放射線式厚さ計(以下、単に放射線式厚さ計という。)の概略構成図である。 Embodiments of a radiation thickness gauge with an abnormality monitoring function and an abnormality monitoring method in the radiation thickness gauge according to the present invention will be described below in detail with reference to the drawings. Here, FIG. 1 is a radiation type thickness gauge with an abnormality monitoring function of one embodiment of the present invention (hereinafter, simply referred to as a radiation type, which is suitable for performing an abnormality monitoring method in the radiation type thickness meter of one embodiment of the present invention. It is a schematic configuration diagram of a thickness gauge).

本実施形態の放射線式厚さ計10は、移動する鋼板等の被測定物Oに放射線を照射して、被測定物Oを透過した透過放射線量から被測定物Oの厚さを測定するものであって、主として、ガンマ線やX線等の放射線を放射する線源部12と、放射線を検出する検出器14と、被測定物Oを搬送するパスライン平面と垂直な方向で該被測定物Oを挟むように線源部12および検出器14を保持する例えばC字形のフレーム16と、フレーム16を支持するとともにオンライン位置およびオフライン位置間でレール18上を走行(移動)する台車20と、各種の演算処理および制御を行う制御盤22と、測定結果を記録する例えばアナログ式の記録計24と、を備えて構成される。 The radiation type thickness gauge 10 of the present embodiment irradiates a moving object to be measured O, such as a moving steel plate, with radiation, and measures the thickness of the object to be measured O from the amount of transmitted radiation that has passed through the object to be measured O. In particular, the radiation source unit 12 that emits radiation such as gamma rays and X-rays, the detector 14 that detects radiation, and the object to be measured in a direction perpendicular to the pass line plane that conveys the object to be measured O. For example, a C-shaped frame 16 that holds the radiation source section 12 and the detector 14 so as to sandwich O, a carriage 20 that supports the frame 16 and travels (moves) on a rail 18 between an online position and an offline position, A control panel 22 for performing various kinds of arithmetic processing and control, and an analog recorder 24 for recording measurement results, for example, are provided.

線源部12は、γ線源やX線源等の図示しない放射線源と、該放射線源を格納する図示しない格納容器と、該格納容器の開口部を開閉可能であり放射線源から放射される放射線を解除自在に遮蔽する図示しないシャッタとを有する。 The radiation source unit 12 is capable of opening and closing a radiation source (not shown) such as a γ-ray source or an X-ray source, a storage container (not shown) that stores the radiation source, and an opening of the storage container, and is radiated from the radiation source. And a shutter (not shown) that shields radiation in a releasable manner.

検出器14は、図示しない電離箱およびプリアンプを有し、放射線源から放射された放射線は、電離箱で電気信号に変換され、プリアンプで適度な電圧信号に変換、調整される。 The detector 14 has an ionization chamber and a preamplifier (not shown), and the radiation emitted from the radiation source is converted into an electric signal by the ionization chamber and converted into an appropriate voltage signal by the preamplifier and adjusted.

制御盤22内には、検出器14から出力された検出電圧のアナログ/デジタル変換を行う平均処理部26と、デジタル化された検出電圧に基づいて被測定物Oの厚さを算出する厚さ演算部28と、零校正部30と、サンプル校正部32とが設けられている。 In the control panel 22, an averaging unit 26 that performs analog/digital conversion of the detection voltage output from the detector 14, and a thickness that calculates the thickness of the object to be measured O based on the digitized detection voltage. An arithmetic unit 28, a zero calibration unit 30, and a sample calibration unit 32 are provided.

零校正部30は、所定の校正時間間隔、例えば8時間毎に、オフライン位置までフレーム16を移動させた後、放射線中に被測定物Oが無い状態にて、シャッタ開のときの検出器14の検出電圧Voと、シャッタ閉のときの検出器14の検出電圧Vsとをそれぞれ測定して零校正を実施する。検出電圧Vo、Vsは零校正の都度、記憶部34に記憶される。図2に、零校正のタイミングチャートを示す。測定中の状態から制御盤22に設けられた零校正ボタン(図示せず)が押されるかあるいは所定の校正時間になると、台車20がオフライン位置に移動し、該オフライン位置にてシャッタ閉の状態で電圧Voの測定が開始される。その後、被測定物O無しかつシャッタ開の状態で電圧Vsの測定が開始される。 The zero calibration unit 30 moves the frame 16 to the offline position at predetermined calibration time intervals, for example, every 8 hours, and then detects the detector 14 when the shutter is open in the absence of the DUT O during radiation. And the detection voltage Vs of the detector 14 when the shutter is closed are measured to perform zero calibration. The detection voltages Vo and Vs are stored in the storage unit 34 each time zero calibration is performed. FIG. 2 shows a timing chart of zero calibration. When the zero calibration button (not shown) provided on the control panel 22 is pressed from the state during measurement or when a predetermined calibration time is reached, the carriage 20 moves to the offline position and the shutter is closed at the offline position. Then, the measurement of the voltage Vo is started. Then, the measurement of the voltage Vs is started without the object to be measured O and the shutter is open.

サンプル校正部32は、例えば零校正後に、板厚が既知である複数のサンプル(厚さ基準片)を実測し、図3に示すような検量線(校正テーブル)を作成(補正)する。作成した検量線は、制御盤22内の記憶部34に記憶され、厚さ演算部28は、被測定物Oの厚み測定時に検出電圧を読込み、記憶された検量線から厚みを演算処理し、材質補正部36(図1参照)は、厚さ演算部28により算出された被測定物Oの厚さの計算値に対して被測定物Oの材質(密度)を考慮して補正を行う。 The sample calibration unit 32 actually measures a plurality of samples (thickness reference pieces) whose plate thicknesses are known, for example, after zero calibration, and creates (corrects) a calibration curve (calibration table) as shown in FIG. The created calibration curve is stored in the storage unit 34 in the control panel 22, the thickness calculation unit 28 reads the detection voltage when measuring the thickness of the object O to be measured, and calculates the thickness from the stored calibration curve. The material correction unit 36 (see FIG. 1) corrects the calculated value of the thickness of the object to be measured O calculated by the thickness calculator 28 in consideration of the material (density) of the object to be measured O.

放射線式厚さ計10は、放射線が被測定物Oを通過する際に吸収、散乱して減衰する性質を利用しており、被測定物Oの厚さを下記式(1)〜(3)から求める。
Vz=Vo−Vs ・・・(1)
V=Vz・exp(−μ・t) ・・・(2)
Vh=V+f(t) ・・・(3)
ここで、Voは、放射線中に被測定物Oが無くかつシャッタ開のときの検出器14の検出電圧を示し、Vsは、被測定物Oが無くかつシャッタ閉のときの検出器14の検出電圧を示し、Vは、板厚がtの時の電圧理論値を示し、μは、被測定物Oの吸収係数(例えば鉄の場合には0.9)を示し、f(t)は、板厚毎のサンプル補正量を示し、Vhは、サンプル補正後の電圧を示す。
The radiation type thickness gauge 10 utilizes the property that radiation is absorbed, scattered and attenuated when passing through the object to be measured O, and the thickness of the object to be measured O is expressed by the following formulas (1) to (3). Ask from.
Vz=Vo-Vs (1)
V=Vz·exp(−μ·t) (2)
Vh=V+f(t) (3)
Here, Vo represents the detection voltage of the detector 14 when there is no object to be measured O in the radiation and the shutter is open, and Vs is the detection voltage of the detector 14 when there is no object to be measured O and the shutter is closed. Represents a voltage, V represents a theoretical voltage value when the plate thickness is t, μ represents an absorption coefficient of the object to be measured O (for example, 0.9 in the case of iron), and f(t) represents A sample correction amount is shown for each plate thickness, and Vh is a voltage after the sample correction.

また制御盤22内には、測定結果を、ネットワークを介して上位計算機38に伝送する上位伝送部40と、測定結果が所定の目標厚みの範囲内にあるか否かを監視し、外れた場合にオフゲージ(厚さ不良)と判定するオフゲージ判定部42とが設けられている。 In the control panel 22, a measurement result is transmitted to the higher-order computer 38 via the network, a higher-order transmission unit 40, and whether or not the measurement result is within a predetermined target thickness range is monitored. An off-gauge determination unit 42 that determines an off-gauge (thickness defect) is provided.

ところで、鉄鋼業等の製造業において製品の厚さ測定精度は、製品の品質保証および歩留まりを確保する上で非常に重要であるから、部品交換を含め放射線式厚さ計10を修繕した場合には、交換前後で品質保証試験を行うことが多い。図4は、その手順の一例を示しており、品質保証試験には、修繕前に放射線式厚さ計10に異常が無いことを確認するための修繕前検査と、結線チェックと、シャッタの開閉試験と、台車20の走行試験と、板厚測定試験と、ドリフト試験と、零校正試験と、サンプル校正試験と、サンプルの再測定と、上位計算機38への伝送試験と、ノイズ確認等のその他の試験と、オンライン監視とが含まれる。 By the way, in the manufacturing industry such as the steel industry, the accuracy of measuring the thickness of the product is very important for ensuring the quality assurance and the yield of the product. Therefore, when the radiation type thickness gauge 10 is repaired including the parts replacement, Often perform quality assurance tests before and after replacement. FIG. 4 shows an example of the procedure. In the quality assurance test, pre-repair inspection for confirming that there is no abnormality in the radiation type thickness gauge 10 before repair, connection check, and shutter opening/closing. Test, running test of carriage 20, plate thickness measurement test, drift test, zero calibration test, sample calibration test, sample remeasurement, transmission test to host computer 38, noise confirmation, etc. Testing and online monitoring.

このような品質保証試験において、シャッタ開閉試験では異常が無いにも拘わらず、測定結果が安定せず、また立ち上げ数週間後に誤ってオフゲージと判定される事例も確認されており、このような放射線式厚さ計10の不具合は、シャッタの動作異常以外に要因がある場合がある。しかし、従来の、検出器14から出力される電圧レベルがシャッタ閉状態に対応する所定の判定レベル以上か否かだけを判断する手法では、このような他の要因に起因した異常を検出できない場合がある。 In such a quality assurance test, although there are no abnormalities in the shutter open/close test, the measurement results are not stable, and there are cases in which it is erroneously determined to be an off-gauge a few weeks after startup. The malfunction of the radiation type thickness gauge 10 may have factors other than the abnormal operation of the shutter. However, when the conventional method of determining whether the voltage level output from the detector 14 is equal to or higher than a predetermined determination level corresponding to the shutter closed state cannot detect an abnormality due to such another factor. There is.

そこで本実施形態では、シャッタの動作異常以外の異常をも検知可能とするため、零校正時毎に検出器14で測定された複数の検出電圧に基づいて、放射線式厚さ計10の異常を判定する異常判定手段として、制御盤22に異常判定部44を設けている。 Therefore, in the present embodiment, in order to detect an abnormality other than the shutter operation abnormality, an abnormality of the radiation type thickness gauge 10 is detected based on a plurality of detection voltages measured by the detector 14 at each zero calibration. An abnormality determination unit 44 is provided on the control panel 22 as an abnormality determination means for determination.

より具体的には異常判定部44は、零校正時にシャッタ開の状態にて測定された検出電圧Voの今回値と前回値とを比較し、その差の絶対値(|今回値−前回値|)が一定値α1(mV)を超えた場合に異常と判定する(以下、判定条件Aという。)よう構成されている。α1は、例えば0(mV)超え10(mV)以下の範囲内とするのが好ましく、その理由は、正常時の8時間ドリフト実績がこの範囲を超えたことがないからである。検出電圧Voの今回値と前回値との差の絶対値がα1を超えるような異常の要因としては、放射線を放射する機器において線源の固定が不十分である(完全に固定されておらず、機械的ガタが生じている)等が考えられる。さらに好ましくはα1を0(mV)超え8(mV)以下の範囲とすれば、異常の見逃しや誤検出を抑止できる。 More specifically, the abnormality determination unit 44 compares the current value and the previous value of the detection voltage Vo measured in the shutter open state at the time of zero calibration, and the absolute value of the difference (|current value-previous value| ) Exceeds a constant value α1 (mV), it is determined to be abnormal (hereinafter referred to as determination condition A). It is preferable that α1 be in the range of, for example, 0 (mV) to 10 (mV) or less, because the 8-hour drift record in the normal state has never exceeded this range. The cause of the abnormality such that the absolute value of the difference between the present value and the previous value of the detection voltage Vo exceeds α1 is that the radiation source is insufficiently fixed in the device that emits radiation (it is not completely fixed). , Mechanical backlash has occurred) etc. More preferably, if α1 is set to be in the range of 0 (mV) to 8 (mV) or less, it is possible to prevent overlooking and erroneous detection of an abnormality.

判定条件Aに代えてまたは加えて、異常判定部44は、零校正時にシャッタ開の状態にて測定された検出電圧Voの今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値α2(mV)を超えた場合に異常と判定する(以下、判定条件Bという。)よう構成されている。α2は、例えば0(mV)超え20(mV)以下の範囲内とするのが好ましく、その理由は、正常時の複数回の零校正時(たとえば、1週間)のドリフト実績がこの範囲を超えたことがないからである。検出電圧Voの今回値およびその直近少なくとも2回の過去値の中の最大値と最小値との差がα2を超えるような異常の要因としては、放射線を放射する機器において線源の固定が不十分である(完全に固定されておらず、機械的ガタが生じている)、線源を固定するネジが徐々に緩む、配線が劣化して回路抵抗が徐々に高まる、等が考えられる。さらに好ましくはα2を0(mV)超え15(mV)以下の範囲とすれば、異常の見逃しや誤検出を抑止できる。 Instead of or in addition to the determination condition A, the abnormality determination unit 44 determines the maximum value and the minimum value from the current value of the detection voltage Vo measured in the shutter open state at the time of zero calibration and the past values at least two times immediately thereafter. The value is calculated, and when the difference exceeds a constant value α2 (mV), it is determined to be abnormal (hereinafter referred to as determination condition B). It is preferable to set α2 within a range of, for example, 0 (mV) to 20 (mV) or less, because the drift performance at the time of normal zero calibration (for example, one week) exceeds the range. Because I have never played. The cause of the abnormality such that the difference between the maximum value and the minimum value of the current value of the detection voltage Vo and the past value of at least the two most recent times thereof exceeds α2 is that the radiation source is not fixed in the device that emits the radiation. It may be sufficient (not completely fixed and mechanical backlash), screws for fixing the radiation source are gradually loosened, wiring is deteriorated and circuit resistance is gradually increased. More preferably, if α2 is set in the range of 0 (mV) to 15 (mV) or less, it is possible to prevent the abnormality from being overlooked and erroneous detection.

判定条件AやBに代えてまたは加えて、異常判定部44は、零校正時にシャッタ閉の状態にて測定された検出電圧Vsの今回値と前回値とを比較し、その差の絶対値(|今回値−前回値|)が一定値β1(mV)を超えた場合に異常と判定する(以下、判定条件Cという。)よう構成されている。β1は、例えば0(mV)超え1(mV)以下の範囲内とするのが好ましく、その理由は、正常時の8時間ドリフト実績がこの範囲を超えたことがないからである。検出電圧Vsの今回値と前回値との差の絶対値がβ1を超えるような異常の要因としては、検出器14で検出した電気信号を制御盤22に伝達するケーブルへのノイズ混入等が考えられる。さらに好ましくはβ1を0(mV)超え0.5(mV)以下の範囲とすれば、異常の見逃しや誤検出を抑止できる。 Instead of or in addition to the determination conditions A and B, the abnormality determination unit 44 compares the current value and the previous value of the detected voltage Vs measured in the shutter closed state at the time of zero calibration, and the absolute value of the difference ( When |current value-previous value|) exceeds a constant value β1 (mV), it is determined to be abnormal (hereinafter, referred to as determination condition C). β1 is preferably in the range of, for example, 0 (mV) or more and 1 (mV) or less, because the 8-hour drift record in the normal state has never exceeded this range. As a cause of the abnormality in which the absolute value of the difference between the current value and the previous value of the detected voltage Vs exceeds β1, it is considered that noise is mixed in the cable that transmits the electric signal detected by the detector 14 to the control panel 22. Be done. More preferably, if β1 is set in the range of more than 0 (mV) and 0.5 (mV) or less, oversight or erroneous detection of abnormality can be suppressed.

判定条件A〜Cに代えてまたは加えて、異常判定部44は、零校正時にシャッタ閉の状態にて測定された検出電圧Vsの今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値β2(mV)を超えた場合に異常と判定する(以下、判定条件Dという。)よう構成されている。β2は、例えば0(mV)超え2(mV)の範囲内とするのが好ましく、その理由は、正常時の複数回の零校正時(たとえば、1週間)のドリフト実績がこの範囲を超えたことがないからである。検出電圧Vsの今回値およびその直近少なくとも2回の過去値の中の最大値と最小値との差がβ2を超えるような異常の要因としては、検出器14で検出した電気信号を制御盤22に伝達するケーブルへのノイズ混入等が考えられる。さらに好ましくはβ2を0(mV)超え1.5(mV)以下の範囲とすれば、異常の見逃しや誤検出を抑止できる。 Instead of or in addition to the determination conditions A to C, the abnormality determination unit 44 determines the maximum value from the current value of the detected voltage Vs measured in the shutter closed state at the time of zero calibration and the past value of at least the latest two times. And a minimum value, and when the difference exceeds a constant value β2 (mV), it is determined to be abnormal (hereinafter referred to as determination condition D). β2 is preferably in the range of, for example, 0 (mV) over 2 (mV), because the drift record at the time of normal zero calibration (for example, one week) exceeds this range. Because there is nothing. As the cause of the abnormality in which the difference between the maximum value and the minimum value of the current value of the detected voltage Vs and the past value of at least the two most recent times thereof exceeds β2, the electric signal detected by the detector 14 is controlled by the control panel 22. It is conceivable that noise is mixed in the cable transmitted to the. More preferably, if β2 is set in the range of 0 (mV) to 1.5 (mV) or less, it is possible to prevent overlooking and erroneous detection of an abnormality.

なお、判定条件BやDでは、対象とする測定回数を多くした場合、気候変動によるドリフトで誤検出するおそれがあり、測定回数を制限するか、α2やβ2に温度変動を考慮するなどの対応が望ましい。 It should be noted that in the determination conditions B and D, when the number of times of measurement to be targeted is increased, there is a risk of erroneous detection due to drift due to climate change. Is desirable.

図5(a)〜(d)に異常判定部44が零校正部30による零校正(VoおよびVsの測定)毎に実施する異常判定方法の一例を示す。まず図5(a)に示す例は上記判定条件Aに相当し、ステップS10にて、異常判定部44が、放射線中に被測定物Oが無くかつシャッタが開の時の検出電圧Voの今回値および前回値を記憶部34から読み出し、ステップS11において、読み出した今回値と前回値の差の絶対値を一定値α1と比較し、α1を超える場合にはステップS12において異常を知らせる異常信号(警報)を出力する。 5A to 5D show an example of an abnormality determination method performed by the abnormality determination unit 44 for each zero calibration (measurement of Vo and Vs) by the zero calibration unit 30. First, the example shown in FIG. 5A corresponds to the above determination condition A, and in step S10, the abnormality determination unit 44 causes the current detection voltage Vo when the object to be measured O is not present in the radiation and the shutter is open this time. The value and the previous value are read from the storage unit 34, and in step S11, the absolute value of the read difference between the present value and the previous value is compared with a constant value α1. Alarm) is output.

図5(b)に示す例は上記判定条件Bに相当し、ステップS20にて、異常判定部44が、放射線中に被測定物Oが無くかつシャッタが開の時の検出電圧Voの今回値に加えて、その直近少なくとも2回の過去値を記憶部34から読み出し、ステップS21において、読み出した3つ以上の検出電圧の中から最大値と最小値を抽出し、ステップS22において、抽出した最大値と最小値の差を一定値α2と比較し、α2を超える場合にはステップS23において異常を知らせる異常信号(警報)を出力する。また、最大値と最小値を求める際の過去値の回数は、3回〜5回とするのが好ましく、その理由は、回数を多くすると判定精度は向上するものの、異常の発見が遅くなるおそれがあるからである。 The example shown in FIG. 5B corresponds to the above determination condition B, and in step S20, the abnormality determination unit 44 determines that the current value of the detected voltage Vo when there is no DUT O during radiation and the shutter is open. In addition, the past values of the latest at least two times are read from the storage unit 34, the maximum value and the minimum value are extracted from the read three or more detection voltages in step S21, and the extracted maximum value is extracted in step S22. The difference between the value and the minimum value is compared with a constant value α2, and if α2 is exceeded, an abnormality signal (alarm) indicating an abnormality is output in step S23. Further, the number of past values when obtaining the maximum value and the minimum value is preferably 3 to 5 times, because the determination accuracy improves as the number of times increases, but the detection of an abnormality may be delayed. Because there is.

図5(c)に示す例は上記判定条件Cに相当し、ステップS30にて、異常判定部44が、放射線中に被測定物Oが無くかつシャッタが閉の時の検出電圧Vsの今回値および前回値を記憶部34から読み出し、ステップS31において、読み出した今回値と前回値の差の絶対値を一定値β1と比較し、β1を超える場合にはステップS32において異常を知らせる異常信号(警報)を出力する。 The example shown in FIG. 5C corresponds to the above determination condition C, and in step S30, the abnormality determination unit 44 determines that the current value of the detected voltage Vs when there is no DUT O in the radiation and the shutter is closed. And the previous value is read from the storage unit 34, and in step S31, the absolute value of the difference between the read current value and the previous value is compared with a constant value β1, and if β1 is exceeded, an abnormal signal (alarm) indicating an abnormality is issued in step S32. ) Is output.

図5(d)に示す例は上記判定条件Dに相当し、ステップS40にて、異常判定部44が、放射線中に被測定物Oが無くかつシャッタが閉の時の検出電圧Vsの今回値に加えて、その直近少なくとも2回の過去値を記憶部34から読み出し、ステップS41において、読み出した3つ以上の検出電圧の中から最大値と最小値を抽出し、ステップS42において、抽出した最大値と最小値の差を一定値β2と比較し、β2を超える場合にはステップS43において異常を知らせる異常信号(警報)を出力する。また、最大値と最小値を求める際の過去値の回数は、3回〜5回とするのが好ましく、その理由は、回数を多くすると判定精度は向上するものの、異常の発見が遅くなるおそれがあるからである。 The example shown in FIG. 5D corresponds to the above determination condition D, and in step S40, the abnormality determination unit 44 determines that the current value of the detected voltage Vs when the DUT O is not present in the radiation and the shutter is closed. In addition, the past values of the latest at least two times are read from the storage unit 34, the maximum value and the minimum value are extracted from the read three or more detection voltages in step S41, and the extracted maximum value is extracted in step S42. The difference between the value and the minimum value is compared with a constant value β2, and if β2 is exceeded, an abnormality signal (alarm) is output in step S43 to notify the abnormality. Further, the number of past values when obtaining the maximum value and the minimum value is preferably 3 to 5 times, because the determination accuracy improves as the number of times increases, but the detection of an abnormality may be delayed. Because there is.

図6(a)〜(d)に異常判定部44が零校正部30による零校正(VoおよびVsの測定)毎に実施する異常判定方法の他の例を示す。図6(a)および(c)は図5(a)および(c)とそれぞれ同じであるので説明を省略する。 FIGS. 6A to 6D show another example of the abnormality determining method performed by the abnormality determining unit 44 for each zero calibration (measurement of Vo and Vs) by the zero calibration unit 30. 6(a) and 6(c) are the same as FIGS. 5(a) and 5(c), respectively, and a description thereof will be omitted.

図6(b)に示す例は上記判定条件Bに相当し、ステップS20にて、異常判定部44が、放射線中に被測定物Oが無くかつシャッタが開の時の検出電圧Voの今回値に加えて、過去の検出電圧Voの最大値、最小値を記憶部34から読み出す。ステップS21にて、測定回数Nが1か、または、今回値が最大値より大きいかを比較し、測定回数Nが1である場合、または、今回値が大きい場合にはステップ22により最大値を今回値とした後、次ステップS23に移り、そうでない場合には、次ステップS23に移る。ステップS23では、測定回数Nが1か、または、今回値が最小値より小さいか比較し、測定回数Nが1である場合、または、今回値が小さい場合にはステップS24により最小値を今回値とした後、次ステップS25に移り、そうでない場合には、次ステップS25に移る。ステップS25において、最大値と最小値の差を一定値α2と比較し、α2を超える場合にはステップS26において異常を知らせる異常信号(警報)を出力する。そうでない場合には、最大値および最小値を記憶部34に保存する。なお、N=1では、最大値と最小値が同じであり、N=2では、最大値−最小値は、今回値と前回値の差の絶対値に等しくなるため、N=3以上、つまり、検出電圧の今回値とその直近少なくとも2回の過去値を用いることが望ましい。 The example shown in FIG. 6B corresponds to the above determination condition B, and in step S20, the abnormality determination unit 44 determines that the current value of the detected voltage Vo when there is no DUT O during radiation and the shutter is open. In addition to the above, the maximum value and the minimum value of the past detection voltage Vo are read from the storage unit 34. In step S21, it is compared whether the number N of measurements is 1 or the current value is larger than the maximum value. If the number N of measurements is 1 or the current value is large, the maximum value is set in step 22. After setting the current value, the process proceeds to the next step S23, and if not, the process proceeds to the next step S23. In step S23, it is compared whether the number N of measurements is 1 or the current value is smaller than the minimum value. If the number N of measurements is 1 or the current value is small, the minimum value is set to the current value in step S24. After that, the process proceeds to the next step S25, and if not, the process proceeds to the next step S25. In step S25, the difference between the maximum value and the minimum value is compared with the constant value α2, and if α2 is exceeded, an abnormal signal (alarm) indicating the abnormality is output in step S26. If not, the maximum value and the minimum value are stored in the storage unit 34. When N=1, the maximum value and the minimum value are the same, and when N=2, the maximum value-minimum value is equal to the absolute value of the difference between the current value and the previous value, so N=3 or more, that is, It is desirable to use the current value of the detected voltage and the past value of at least twice the latest value.

図6(d)に示す例は上記判定条件Dに相当し、ステップS40にて、異常判定部44が、放射線中に被測定物Oが無くかつシャッタが閉の時の検出電圧Vsの今回値に加えて、過去の検出電圧Vsの最大値、最小値を記憶部34から読み出す。ステップS41にて、測定回数Nが1か、または、今回値が最大値より大きいかを比較し、測定回数Nが1である場合、または、今回値が大きい場合にはステップS42により最大値を今回値とした後、次ステップS43に移り、そうでない場合には、次ステップS43に移る。ステップS43では、測定回数Nが1か、または、今回値が最小値より小さいか比較し、測定回数Nが1である場合、または、今回値が小さい場合にはステップS44により最小値を今回値とした後、次ステップS45に移り、そうでない場合には、次ステップS45に移る。ステップS45において、最大値と最小値の差を一定値β2と比較し、β2を超える場合にはステップS46において異常を知らせる異常信号(警報)を出力する。そうでない場合には、最大値および最小値を記憶部34に保存する。なお、N=1では、最大値と最小値が同じであり、N=2では、最大値−最小値は、今回値と前回値の差の絶対値に等しくなるため、N=3以上、つまり、検出電圧の今回値とその直近少なくとも2回の過去値を用いることが望ましい。 The example shown in FIG. 6D corresponds to the above-mentioned determination condition D, and in step S40, the abnormality determination unit 44 determines that the current value of the detected voltage Vs when the DUT O is not present in the radiation and the shutter is closed. In addition, the maximum value and the minimum value of the past detection voltage Vs are read out from the storage unit 34. In step S41, it is compared whether the number of measurements N is 1 or the current value is larger than the maximum value. If the number of measurements N is 1 or the current value is large, the maximum value is determined in step S42. After setting this value, the process proceeds to the next step S43, and if not, the process proceeds to the next step S43. In step S43, it is compared whether the number of measurements N is 1 or the current value is smaller than the minimum value. If the number of measurements N is 1 or the current value is small, the minimum value is set to the current value in step S44. After that, the process proceeds to the next step S45, and if not, the process proceeds to the next step S45. In step S45, the difference between the maximum value and the minimum value is compared with the constant value β2, and if β2 is exceeded, an abnormality signal (alarm) indicating an abnormality is output in step S46. If not, the maximum value and the minimum value are stored in the storage unit 34. When N=1, the maximum value and the minimum value are the same, and when N=2, the maximum value-minimum value is equal to the absolute value of the difference between the current value and the previous value, so N=3 or more, that is, It is desirable to use the current value of the detected voltage and the past value of at least twice the latest value.

なお、図示は省略するが、異常判定部44は、異常監視能力を高めるため、図5(a)〜(d)または図6(a)〜(d)に示した異常判定方法に用いる判定条件A〜Dのうちのいずれか2つもしくは3つ、あるいは4つ全てを実施してもよい。この場合、複数の異常判定処理は所定の順序で順次行われ、いずれかの判定演算で異常と判断された場合には、異常信号を出力し、残余の判定処理を行うことなく演算を終了させる。もって、効率よく異常判定処理することができる。 Although not shown, the abnormality determination unit 44 uses the determination conditions used in the abnormality determination method shown in FIGS. 5A to 5D or 6A to 6D in order to enhance the abnormality monitoring capability. Any two or three of A to D, or all four may be implemented. In this case, a plurality of abnormality determination processes are sequentially performed in a predetermined order, and when it is determined to be abnormal by any of the determination calculations, an abnormality signal is output and the calculation is terminated without performing the residual determination process. .. Therefore, the abnormality determination processing can be performed efficiently.

放射線式厚さ計10において測定結果に悪影響を及ぼすような何らかの異常が生じた場合には、零校正時の検出電圧に変化が生じるところ、本実施形態によれば、零校正時毎に測定した検出電圧Vo、Vsの推移から異常を判定するようにしたので、このような異常を検知することができる。 When some abnormality that adversely affects the measurement result occurs in the radiation thickness gauge 10, the detection voltage at the time of zero calibration changes. According to the present embodiment, the measurement is performed at each zero calibration. Since the abnormality is determined from the transition of the detection voltages Vo and Vs, such abnormality can be detected.

特に、零校正時にシャッタ開の状態で測定した検出電圧Voの今回値と前回値との差が一定値α1を超えた場合、あるいはVoの今回値および過去値の複数回分(例えば5回分)で最大値と最小値の差が一定値α2を超えている場合に異常と判定することで、放射線源が完全に固定されていない等の放射線式厚さ計10内部で発生する異常やシャッタの動作不良等を検知することができる。 In particular, when the difference between the current value and the previous value of the detection voltage Vo measured with the shutter open at the time of zero calibration exceeds a constant value α1, or when the current value and the past value of Vo are multiple times (for example, five times). When the difference between the maximum value and the minimum value exceeds a constant value α2, it is determined as an abnormality, so that the abnormality such as the radiation source not being completely fixed or the inside of the radiation thickness gauge 10 or the operation of the shutter. It is possible to detect defects and the like.

また、零校正時にシャッタ閉の状態で測定した検出電圧Vsの今回値と前回値との差が一定値β1を超えた場合、あるいはVsの今回値および過去値の複数回分(例えば5回分)の最大値と最小値の差が一定値β2を超えている場合に異常と判定することで、検出器14で検出した電気信号を制御盤22に伝達するケーブルへのノイズ混入やシャッタの動作不良等、放射線源以外の箇所での異常を検知することができる。 In addition, when the difference between the current value and the previous value of the detected voltage Vs measured in the shutter closed state at the time of zero calibration exceeds a constant value β1, or when the current value and the past value of Vs are obtained for a plurality of times (for example, five times). When the difference between the maximum value and the minimum value exceeds the constant value β2, it is determined to be abnormal, so that noise is mixed into the cable that transmits the electrical signal detected by the detector 14 to the control panel 22, malfunction of the shutter, and the like. , It is possible to detect abnormalities at locations other than the radiation source.

本発明によれば、放射線式厚さ計において、シャッタの動作異常以外の異常をも検知することが可能となる。 According to the present invention, it is possible to detect an abnormality other than the operation abnormality of the shutter in the radiation thickness gauge.

10 放射線式厚さ計
12 線源部
14 検出器
16 フレーム
18 レール
20 台車
22 制御盤
24 記録計
26 平均処理部
28 厚さ演算部
30 零校正部
32 サンプル校正部
34 記憶部
36 材質補正部
38 上位計算機
40 上位伝送部
42 オフゲージ判定部
44 異常判定部
10 Radiation Thickness Gauge 12 Radiation Source Section 14 Detector 16 Frame 18 Rail 20 Truck 22 Control Panel 24 Recorder 26 Average Processing Section 28 Thickness Calculation Section 30 Zero Calibration Section 32 Sample Calibration Section 34 Storage Section 36 Material Correction Section 38 Upper computer 40 Upper transmission unit 42 Off gauge determination unit 44 Abnormality determination unit

Claims (8)

放射線源および該放射線源から放射される放射線を解除自在に遮蔽するシャッタを有する線源部と、放射線を検出する検出器と、被測定物を挟むように前記線源部および前記検出器を保持するフレームと、を備え、前記線源部から被測定物に放射線を照射し、該被測定物を透過した透過放射線量から被測定物の厚さを測定する放射線式厚さ計において、
零校正時毎に前記検出器で測定された複数の検出電圧に基づいて、放射線式厚さ計の異常を判定する異常判定手段を備えることを特徴とする放射線式厚さ計。
A radiation source and a radiation source unit having a shutter that releasably shields the radiation emitted from the radiation source, a detector for detecting the radiation, and the radiation source unit and the detector so as to sandwich an object to be measured. In a radiation type thickness gauge for irradiating the object to be measured with radiation from the radiation source part and measuring the thickness of the object to be measured from the amount of transmitted radiation that has passed through the object to be measured,
A radiation thickness gauge, comprising: abnormality determination means for determining abnormality of the radiation thickness gauge based on a plurality of detection voltages measured by the detector at each zero calibration.
前記異常判定手段は、下記判定条件A〜Dのうちから選ばれる少なくとも一つの判定条件から構成されていることを特徴とする請求項1に記載の放射線式厚さ計。

判定条件A:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定する
判定条件B:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定する
判定条件C:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定する
判定条件D:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定する
The radiation type thickness meter according to claim 1, wherein the abnormality determination means is configured by at least one determination condition selected from the following determination conditions A to D.
Judgment condition A: Judgment condition B in which the current value and the previous value of the detected voltage measured in the open state of the shutter at the time of the zero calibration are compared, and when the difference exceeds a certain value, it is judged as abnormal. : The maximum value and the minimum value are obtained from the present value of the detected voltage measured in the open state of the shutter at the time of the zero calibration and the past values of at least the two most recent times, and the difference exceeds a certain value. In this case, the determination condition C is determined to be abnormal: the current value of the detected voltage measured in the closed state of the shutter at the time of the zero calibration is compared with the previous value, and when the difference exceeds a certain value, it is determined to be abnormal. Judgment condition D: Judgment of the maximum value and the minimum value from the current value of the detection voltage measured in the closed state of the shutter at the time of the zero calibration and the past values of at least two times immediately thereafter, and the difference between them. If it exceeds a certain value, it is judged as abnormal
前記異常判定手段は、前記判定条件A〜Dのうちから選ばれる二以上の判定条件を有し、順次判定するように構成されていることを特徴とする請求項2に記載の放射線式厚さ計。 The radiation type thickness according to claim 2, wherein the abnormality determination unit has two or more determination conditions selected from the determination conditions A to D and is configured to sequentially determine. Total. 前記異常判定手段は、順次構成されている前記判定条件のうち、異常と判定された判定条件以降を省略するように構成されていることを特徴とする請求項3に記載の放射線式厚さ計。 The radiation type thickness gauge according to claim 3, wherein the abnormality determining means is configured to omit the determination conditions after the determination condition of abnormality among the determination conditions that are sequentially configured. .. 放射線源および該放射線源から放射される放射線を解除自在に遮蔽するシャッタを有する線源部と、放射線を検出する検出器と、被測定物を挟むように前記線源部および前記検出器を保持するフレームと、を備え、前記線源部から被測定物に放射線を照射し、該被測定物を透過した透過放射線量から被測定物の厚さを測定する放射線式厚さ計の異常監視方法において、
零校正時毎に前記検出器で測定された複数の検出電圧に基づいて、放射線式厚さ計の異常を判定することを特徴とする放射線式厚さ計の異常監視方法。
A radiation source and a radiation source unit having a shutter that releasably shields the radiation emitted from the radiation source, a detector that detects the radiation, and the radiation source unit and the detector that sandwich the object to be measured. An abnormality monitoring method for a radiation type thickness gauge, comprising: a frame for irradiating the object to be measured with radiation from the radiation source part and measuring the thickness of the object to be measured from the amount of transmitted radiation transmitted through the object to be measured. At
An abnormality monitoring method for a radiation thickness gauge, comprising: determining abnormality of the radiation thickness gauge based on a plurality of detection voltages measured by the detector at each zero calibration.
判定条件A:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定すること、判定条件B:前記零校正時に前記シャッタの開状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定すること、判定条件C:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値と前回値とを比較し、その差が一定値を超えた場合に異常と判定すること、および、判定条件D:前記零校正時に前記シャッタの閉状態にて測定された前記検出電圧の今回値とその直近少なくとも2回の過去値の中から最大値と最小値とを求め、その差が一定値を超えた場合に異常と判定すること、のうちから選ばれるいずれか一つの判定条件を用いることを含むことを特徴とする請求項5に記載の放射線式厚さ計の異常監視方法。 Judgment condition A: Comparing the present value and the previous value of the detected voltage measured in the open state of the shutter at the time of the zero calibration, and if the difference exceeds a certain value, it is judged to be abnormal. B: The maximum value and the minimum value are obtained from the present value of the detected voltage measured in the open state of the shutter at the time of the zero calibration and the past values of at least the two most recent values, and the difference exceeds a certain value. If it is determined to be abnormal, the determination condition C: the current value and the previous value of the detection voltage measured in the closed state of the shutter at the time of the zero calibration are compared, and the difference exceeds a certain value. And the determination condition D: a maximum value and a minimum value from the present value of the detected voltage measured in the closed state of the shutter at the time of the zero calibration and the past value of at least two times immediately thereafter. The radiation-type thickness according to claim 5, further comprising: determining the abnormality and determining an abnormality when the difference exceeds a certain value, and using one of the determination conditions selected from the following. Abnormality monitoring method of the gauge. 前記判定条件A〜Dのうちから選ばれる二以上の判定条件を順次判定することを含むことを特徴とする請求項6に記載の放射線式厚さ計の異常監視方法。 The abnormality monitoring method for a radiation thickness gauge according to claim 6, further comprising sequentially determining two or more determination conditions selected from the determination conditions A to D. 前記判定条件を順次判定し、異常と判定された判定条件以降を省略することを含むことを特徴とする請求項7に記載の放射線式厚さ計の異常監視方法。
The abnormality monitoring method for a radiation thickness gauge according to claim 7, further comprising: sequentially determining the determination conditions and omitting the determination conditions after the determination that the abnormality has occurred.
JP2019138597A 2018-11-28 2019-07-29 Radiation type thickness gauge with abnormality monitoring function and abnormality monitoring method for radiation type thickness gauge Active JP7001084B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018221963 2018-11-28
JP2018221963 2018-11-28

Publications (2)

Publication Number Publication Date
JP2020095011A true JP2020095011A (en) 2020-06-18
JP7001084B2 JP7001084B2 (en) 2022-01-19

Family

ID=71084102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138597A Active JP7001084B2 (en) 2018-11-28 2019-07-29 Radiation type thickness gauge with abnormality monitoring function and abnormality monitoring method for radiation type thickness gauge

Country Status (1)

Country Link
JP (1) JP7001084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983966B1 (en) * 2020-09-16 2021-12-17 株式会社東芝 Thickness measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539144A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Calibration of thickness gauge
JPS6244616A (en) * 1985-08-22 1987-02-26 Toshiba Corp Abnormality detector for shutter
JPS62187201A (en) * 1986-02-13 1987-08-15 Aasunikusu Kk Beta-ray thickness gage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539144A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Calibration of thickness gauge
JPS6244616A (en) * 1985-08-22 1987-02-26 Toshiba Corp Abnormality detector for shutter
JPS62187201A (en) * 1986-02-13 1987-08-15 Aasunikusu Kk Beta-ray thickness gage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983966B1 (en) * 2020-09-16 2021-12-17 株式会社東芝 Thickness measuring device
WO2022059246A1 (en) * 2020-09-16 2022-03-24 株式会社東芝 Thickness measurement device

Also Published As

Publication number Publication date
JP7001084B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
EP3076873B1 (en) System for generating spectral computed tomography projection data
US7980760B2 (en) X-ray inspection apparatus and X-ray inspection program
JP2009103525A (en) Method for diagnosing abnormality of tooth plane of gear and apparatus using same
JPWO2011093402A1 (en) Analysis equipment
WO2019230040A1 (en) Prediction data server and x-ray thickness measurement system
JPS63135848A (en) Defect inspection instrument
JP2020095011A (en) Radiation thickness gauge with abnormality monitoring function and abnormality monitoring method for radiation thickness gauge
JP2007248090A (en) Quality control system for clinical examination
JP6676241B1 (en) X-ray diffractometer
JP2013156137A (en) Thickness measuring device, thickness measuring method and control program
JP4828962B2 (en) Radioactivity inspection method and apparatus
KR101160661B1 (en) diagnostic device of a electronic equipment from radiation induced degradation using the CMOS semiconductor devices
JP5033672B2 (en) Male screw measuring device and judging device
JP4369313B2 (en) Clinical laboratory system
JP2007242287A (en) X-ray output device diagnosis apparatus and X-ray output device diagnosis method
JP2011179936A (en) X-ray inspection system
JP2882048B2 (en) Sensing element sensitivity correction method and X-ray detector
JP2007322344A (en) X-ray inspection device
JP2013190361A (en) X-ray inspection device and method for controlling the same
US10996349B2 (en) X-ray signal processor and x-ray spectrometer
JP7234040B2 (en) Oxygen concentration measurement system and oxygen concentration measurement method
JP6585325B1 (en) Predictive data server and X-ray thickness measurement system
JP7102303B2 (en) X-ray inspection device and X-ray generator height adjustment method
JP2018146380A (en) Abnormality determination method of surface inspection device and surface inspection device thereof
JP3850390B2 (en) X-ray inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7001084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250